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Abstract 

Anaesthesiology is a medical subject focusing on the use of drugs and other methods 
to deprive patients’ sensation for discomfort in painful medical diagnosis or treatment. 
It is important to assess the depth of anaesthesia (DoA) accurately since a precise as-
sessment is helpful for avoiding various adverse reactions such as intraoperative 
awareness with recall (underdosage), prolonged recovery and an increased risk of post-
operative complications for a patient (overdosage). Evidence shows that the depth of 
anaesthesia monitoring using electroencephalograph (EEG) improves patient treat-
ment outcomes by reducing the incidences of intra-operative awareness, minimizing 
anaesthetic drug consumption and resulting in faster wake-up and recovery. For an 
accurate DoA assessment, intensive research has been conducted in finding “an ulti-
mate index”, and various monitors and DoA algorithms were developed. Generally, 
the limitations of the existing DoA monitors or latest DoA algorithms include unsatis-
factory data filtering techniques, time delay and inflexible. 

The focus of this dissertation is to develop reliable DoA algorithms for accurate DoA 
assessment. Some novel time-frequency domain signal processing techniques, which 
are better suited for non-stationary EEG signals than currently established methods, 
have been proposed and applied to monitor the DoA based on simplified EEG signals 
based on plenty of programming work (including C and other programming language). 
The fast Fourier transform (FFT) and the discrete wavelet transforms are applied to 
pre-process EEG data in the frequency domain. The nonlocal mean, mobility, permu-
tation entropy, Lempel-Ziv complexity, second order difference plot and interval fea-
ture extraction methods are modified and applied to investigate the scaling behaviour 
of the EEG in the time domain. We proposed and developed three new indexes for 
identifying, classifying and monitoring the DoA. The new indexes are evaluated by 
comparing with the most popular BIS index. Simulation results demonstrate that our 
new methods monitor the DoA in all anaesthesia states accurately. The results also 
demonstrate the advantages of proposed indexes in the cases of poor signal quality and 
the consistency with the anaesthetists’ records. These new indexes show a 3.1-59.7 
seconds earlier time response than BIS during the change from awake to light anaes-
thesia and a 33-264 seconds earlier time response than BIS during the change from 
deep anaesthesia to moderate anaesthesia. 
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1. INTRODUCTION 

 

1.1. Depth of anaesthesia assessment 

Anaesthesiology is a medical subject focusing on the use of drugs and other methods 
to deprive patients’ sensation for discomfort in painful medical diagnosis or treatment. 
The anaesthesia depth is reflected in the change of the partial pressure of the anaes-
thetics in the brain (Nakamura, Sanjo, & Ikeda, 1999). Successful anaesthetic pro-
cesses can be defined as patients achieving reversible loss of consciousness, no in-
traoperative awareness, and no reaction to pain stimuli. 

It is extremely important to assess the depth of anaesthesia (DoA) accurately since a 
precise assessment is helpful for avoiding various adverse reactions such as intraoper-
ative awareness with recall (underdosage), prolonged recovery and an increased risk 
of postoperative complications for a patient (overdosage). For patients, the intraoper-
ative awareness is a terrible experience. It may cause serious mental illness. Although 
the incidence of intraoperative awareness has been reduced from 1-2% of the 1980s to 
the current 0.1%, there are still a lot of risks for some special procedures (such as 
caesarean section or heart surgery) or high-risk surgery patients. The incidence of in-
traoperative awareness may be over 40% for patients with multiple trauma or other 
special diseases (Ghoneim & Block, 1997; Myles et al., 2004). 

The inhalation anaesthesia and intravenous anaesthesia are two main general anaes-
thesia. As for inhalation anaesthesia, experiences have shown that if the concentration 
of volatile gas in the blood is more than 50% of the minimum alveolar concentration, 
the intraoperative awareness will not happen. However, for some patients, it is more 
suitable to use intravenous anaesthesia. Nowadays, the existing general anaesthesia is 
normally using combined intravenous anaesthesia and inhalation anaesthesia to opti-
mize the security and stability of operations.  

Because of the individual patient differences, no clear explanations about the effects 
of narcotic drugs on the brain mechanism and also for other reasons, the accurate dose 
necessary to induce anaesthesia, assessing the DoA and determining the relationship 
of anaesthesia and consciousness are always persistent challenges for anaesthesiolo-
gists (Alfeeli & Agah, 2009). Therefore, more profound study about anaesthesia mech-
anisms and DoA algorithms is required to ensure patient safety, avoid intraoperative 
awareness, prevent narcotic drug overdose, reduce health care costs and reduce com-
plications. The research for accurate DoA assessment is of great significance. 
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1.2. Real-time monitoring of depth of anaesthesia using 
EEG 

It has been shown that there are reversible invariant electroencephalographic changes, 
independent of the drug used, and independent of the anaesthesia protocol (John, 
2001). Determining the depth of anaesthesia using electroencephalography (EEG) is 
based on these changes related to increasing concentrations of anaesthetics in the 
blood. An intravenous agent propofol, for example, induces a continuum of neuro-
physiological changes, which reflect on the spectral properties of EEGs (Kortelainen, 
Koskinen, Mustola, & Seppänen, 2008). Unlike most clinical assessments such as sys-
tolic blood pressure, heart rate, sweating, lacrimation, limb movements, pulse and skin 
conductance, the DoA assessment based on EEG is more accurate because it is less 
impacted by the use of other drugs like muscle relaxants and vasodilators (Sebel et al., 
2004). 

Generally, the DoA assessment is based on the simplified forehead EEG signal analy-
sis. There are two main ways to generate anesthesia index: Proactive monitoring (by 
stimulating the patient and then analyzing the activity of evoked potentials) and pas-
sive monitoring (by analyzing the EEG activity observed).  

The EEG patterns change during anaesthesia. As the level of anaesthesia deepens, the 
EEG activity of high frequency bands decreases but the synchronous activity of low 
frequency bands enhances. The EEG signal becomes regular and the average of am-
plitude increase. The synchronization of EEG from frontal area and top area of head 
reduces. As the anaesthesia level deepens further, the amplitude and frequency of EEG 
signals are both reduced and the burst suppression phenomenon occurs. Therefore, it 
is advocated that the EEG signal can provide a reliable basis for the measurement of 
hypnosis or anaesthesia (Zikov, Bibian, Dumont, Huzmezan, & Ries, 2006). Evidence 
shows that the depth of anaesthesia monitoring using EEG improves patient treatment 
outcomes by reducing the incidences of intraoperative awareness, minimizing anaes-
thetic drug consumption and resulting in faster wake-up and recovery (Bowdle, 2006; 
Chen, Li, Xiong, Bao, & Li, 2010). 

However, the high nonlinearity and nonstationarity make the processing of EEG and 
derivation of DoA hard. In addition, each individual patient is different, for instance, 
the degree of stimulation and pain induced by surgery are different and the use of 
concomitant analgesic drugs produce different results. Therefore, developing an accu-
rate DoA index is a big challenge.  

The traditional EEG analysis methods can be classified into time domain analysis 
methods and frequency domain analysis methods.  

General time domain analysis methods are based on amplitude, mean, variance, kur-
tosis and so on. These methods are relatively simple and can only show a basic under-
standing of EEG signals.  

Frequency domain analysis methods include the Fourier transform methods, Wavelet 
transform methods, Hilbert-Huang transform methods and so on. The EEG frequency 
values obtained by frequency domain analysis methods certainly have the physical 
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meanings and can be used for DoA assessments. In addition, there are also different 
nonlinear methods in EEG signal processing and DoA algorithm developments. They 
include entropy, complexity, detrended moving-average, Isomap-based estimation, 
detrended moving-average, Bayesian methods and so on. However, there is still a lack 
of consensus as to which physiological features constitute anaesthesia, and no general 
hypotheses exists for the mechanism of anaesthesia (Urban & Bleckwenn, 2002).  

In the past few decades, many commercial DoA monitors are available. Among these 
DoA monitors, the Bispectral index (BIS) monitor, produced by the American Aspect 
company, is the most famous and widely used one.  However, even for the BIS moni-
tors, the warning from the Aspect company is "not recommended the anaesthetists 
simply rely on BIS monitor during surgery" ("Service information manual, Aspect 
Medical Systems, Inc.,") . 

It has been reported that problems exist with the BIS monitor such as false alarm, time 
delay and fuzzy values (Liang, Li, & Li, 2009). In addition, electromyogram (EMG) 
and other high-frequency electrical artifacts interfere with EEG interpretation. Data 
processing time produces a lag in the computation of the DoA monitoring index. The 
EEG effects of anaesthetic drugs are not good predictors of movement in response to 
surgical stimulus and the currently available monitoring algorithms do not account for 
all anaesthetic drugs. Generally, the limitations of the existing BIS DoA monitor and 
DoA algorithms include unsatisfactory data filtering techniques, time delay and 
inflexible and low noise immunity problems. 

 

1.3. Research objectives 

This research aims to develop new methods to monitor the DoA in real time based on 
EEG data recorded during operations using the time-frequency domain analysis tech-
niques. The objectives of this research are:  

1. Develop reliable data filtering techniques to denoise recorded EEG signals;  

2. Extract EEG features in time and frequency domains and to develop reliable DoA 
indexes:  

 in the time and frequency domain using the fast Fourier transforms, mobility, 
permutation entropy and Lempel-Ziv complexity methods;  

 in the time and frequency domain using the fast Fourier transforms, second 
order difference plot methods;  

 in the time and frequency domain using the fast Fourier transforms, interval 
feature extraction, modified second order difference plot and modified permu-
tation entropy methods; 

3. Identify patient’s anaesthetic state in the case of poor signal quality;  

4. Improve the time lag in DoA computation;  

5. Evaluate and compare the proposed DoA indexes and their performance. 
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1.4. Outcomes and results  

In this study, the EEG signals from the forehead are employed to monitor the DoA 
using both the time domain and frequency domain analysis methods. The fast Fourier 
transforms (FFT) and the discrete Wavelet transforms (DWT) are applied to pre-pro-
cess EEG data in the frequency domain. The mobility (M), permutation entropy (PE), 
Lempel-Ziv complexity (LZC), second order difference plot (SODP) and interval fea-
ture extraction methods are applied to study the scaling behaviour of the EEG in the 
time domain. The conceptual framework of this study is presented in Figure 1.1 and 
Figure 1.2. Based on these above techniques, four new methods (one denoising method 
and three DoA indexes) are proposed and developed for monitoring the DoA and the 
outcomes are listed below. 

 

 

 

 

                                                

Figure 1.1: EEG signal filtering 

To obtain satisfactory data filtering results, a modified nonlocal mean method was 
developed to denoise the raw EEG data. As a patch-based method, the nonlocal mean 
method (NLM) method calculates the weighted sum of a patch. The weight of each 
point is determined by the similarity between the points of the own patch and its neigh-
bour. Based on the weighted sum, the noise is filtered out. After filtering some low 
frequency noise of raw data by the FFT band filter, the NLM method was applied for 
EEG signal denoising for the first time. The denoising results are compared with that 
of the popular sym8 and db16 Wavelet threshold denoising (WTD) methods. On av-
erage, the NLM achieves 2.70dB increase in improved signal to noise ratio (SNRimp) 
and 0.37% drop in improved percentage distortion ratio (PRDimp) compared with 
WTD. A modified nonlocal mean method, the moving adaptive shape patches- non-
local mean method (MASP-NLM), performs even better than the original NLM when 
the signals change dramatically. In addition, the performance of the combined 
NLMWTD method is also better than the original WTD method (0.50dB to 4.89dB 
higher in SNRimp), especially, when the signal quality is poor. 

Three new indexes, which are developed based on the denoised signals, are developed 
and evaluated. All of them are able to continuously assess the DoA of patients while 
the quality of signal was poor and the popular BIS did not have any valid outputs. 

It is shown in Figure 1.2 that EEG signals of different frequency bands were obtained 
using FFT band filter from denoised EEG data. Then the parameters such as Ms, LZCs, 
PEs and SODPs were calculated from the EEG signals of different frequency bands 

NLM de-
noising 

MASP-NLM

  Combined NLMWTD 

Improved SNR, 
MSE & PRD

Assessment 
 

FFT band filter Raw Data Denoised EEG signal 
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using four feature extraction methods (mobility, Lempel-Ziv complexity, permutation 
entropy and second order difference plot methods). After that, these different parame-
ters were selected to form parameter sets. Three new DoA indexes were designed 
based on these parameter sets. Eventually, the performances of new indexes were eval-
uated by comparing to the most popular BIS index and patients’ clinical records. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Diagram for methodologies of feature extraction and DoA index design 

To improve the time lag in DoA computation, two new DoA indexes are developed. 
They are Tindex and Iindex which are designed based on parameters of M, SODP, PE 
and LZC.  

The mobility is a timing characteristic calculated from the variance and the variances 
of the signal and the first derivative of the signals. As a graphical representation of 
successive rates against each other, the second order difference plot provides a rate of 
data variability. This technique has been used in EEG signal processing  
(Thuraisingham, Tran, Boord, & Craig, 2007) and classification (Pachori & Patidar, 
2014). There the SODP and M parameters are used to assess the DoA for the first time.  

DoA design and evaluation 

Feature extraction 

Band filter 

Denoised EEG signal 

FFT band filter 

EEG signals of different frequency bands 

Mobility Permutation entropy Lempel-Ziv complexity Second order difference plot 

Ms LZCs PEs SODPs 

Interval feature extraction 

DoA index evaluation 

Tindex Iindex Sindex 
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The Lempel-Ziv complexity and permutation entropy were also applied to extract the 
feature from EEG signals in this study. As an effective method of measuring for char-
acterizing the randomness of signals, the Lempel-Ziv complexity is a commonly used 
method in biomedical signal processing (McBride et al., 2014). The permutation en-
tropy, based on symbolic dynamics, was also proposed to measure the complexity in 
an electroencephalographic series (Bandt & Pompe, 2002).  

The these new indexes are evaluated and compared with measured BIS. The results 
show that there is a very close correlation between the proposed indexes and the BIS 
during different anaesthetic states.  

The Iindex shows an earlier time response (3.1-59.7 seconds) than BIS during the 
change of anaesthetic states from consciousness to unconsciousness. The Tindex also 
shows a 33-264 seconds earlier time response than BIS from deep anaesthesia to mod-
erate anaesthesia. 

To enhance the flexibility of DoA index, the three new indexes are developed based 
on four different parameters which are calculated from different EEG frequency bands. 
All of the three indexes show better performance than BIS index in case of poor signal 
quality.  

The noise immunity problems of existing DoA assessment methods are noted in this 
research. In some cases, the popular BIS index does not have any valid outputs or 
shows incorrect DoA results because of noise. However, the new indexes can accu-
rately assess the patients’ anaesthetic states according to the clinical records.  

In addition, the interval feature method was applied to increase the robustness of DoA 
algorithms. The features derived from different signal segments, called “interval fea-
tures”, are able to lead to high classification accuracy (Rodríguez, Alonso, & Maestro, 
2005). Using the interval feature method, it is possible to only extract more features 
from the same signals but also obtain interval features from different lengths. The new 
Iindex is designed based on the interval second order difference plot (ISODP) and 
interval permutation entropy (IPE) techniques. ISODP and IPE make the new DoA 
index smoother than the BIS index and clearly respond to the change of index trends 
which can be seen from most cases of this study.  

 

1.5. Presentation of the dissertation 

The dissertation consists of seven chapters. The development of a reliable DoA index 
is the focus of this study. Chapters 4-7 illustrate various time and frequency domain 
analysis methods and their applications in the accurate assessment of DoA. 

Chapter 1 introduces the depth of anaesthesia assessment and significance, real-time 
monitoring depth of anaesthesia using EEG, research objectives, outcomes and thesis 
outline. 
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Chapter 2 provides a comprehensive literature overview about the DoA assessment 
which includes anaesthesia and clinical practice, DoA monitors and EEG, basic meth-
ods and techniques, limitations of existing DoA monitors and DoA assessment meth-
ods, and potential improvements.  

Chapter 3 describes BIS system configuration and EEG data acquisition. It includes 
data acquisition, equipment settings, data format and normalization and signal quality. 

Chapter 4 presents a modified nonlocal mean denoising method. Its results are com-
pared with that of the popular sym8 and db16 Wavelet threshold denoising methods. 
The results show that the NLM, on average, achieves 2.70dB increase in improved 
signal to noise ratio and 0.37% drop in improved percentage distortion ratio compared 
to the popular sym8 and db16 Wavelet threshold denoising methods. Two modified 
nonlocal mean methods, the moving adaptive shape patches-NLM and combined 
NLMWTD denoising methods, are also introduced and evaluated in this chapter. 

Chapter 5 applies timing characteristics of EEG Beta frequency band to assess the 
DoA. The M, PE and LCZ parameters of Beta frequency bands (21.5-30Hz) are se-
lected to form the parameter set and to design a new DoA index. The results demon-
strate that the new index can clearly discriminate the awake, light anaesthesia, moder-
ate anaesthesia, and deep anaesthesia states. The new index also shows a 33-264 sec-
onds earlier time response than BIS during the change of anaesthetic states. In addition, 
the proposed index is able to continuously assess the DoA of patients while the quality 
of signal was poor and the BIS did not have any valid outputs.  

Chapter 6 applies a regression technology-based parameter evaluation method to 
evaluate the correlation between the SODPs calculated from different frequency com-
ponents in the EEG signal. The best parameter set of SODP is selected to design a new 
DoA index. The results show that there is a very close correlation between the pro-
posed index and the BIS during different anaesthetic states. The proposed DoA index 
is able to continuously assess the DoA of patients and agree with the clinical records 
while BIS did not have any valid outputs. 

Chapter 7 extends the SODP method to apply the interval second order difference 
plot and the interval permutation entropy techniques to assess the DoA. The new index 
shows an earlier time response (3.1-59.7seconds) than BIS during the change of an-
aesthetic states. In addition, the proposed index is able to provide valid DoA index 
while the quality of signal was poor and the BIS did not have any valid outputs. 

Chapter 8 summarises the major outcomes and conclusions of this study. The chapter 
also presents the possible future work in this area based on this work.    
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2. BACKGROUND AND LITERATURE REVIEW 

This chapter reviews the existing depth of anaesthesia monitors and their algorithms, 
identifies their problems. The latest research results show that their performance can 
be improved further using up-to-date computing techniques and neural research out-
comes.  

 

2.1. Anaesthesia and clinical practice 

2.1.1.  The process of anaesthesia 

Anaesthesia is used to decrease sensitivity to pain of patients during surgeries. For 
different surgeries, general anaesthesia and local anaesthesia are applied to make pa-
tients partially or totally lose consciousness. Only general anaesthesia is concerned in 
this research. The three phases to general anaesthesia are induction, maintenance and 
emergence. The descriptions of anaesthetic type and process are introduced in the Ta-
ble 2.1. 

Table 2.1:  Anaesthetic type and process (Tai Nguyen-Ky, 2011) 

 Name Descriptions 

Type 

General 

anaesthesia 

 

It affects the whole body and leads to a loss of consciousness. 

Local 

anaesthesia 

It temporarily blocks the sensation of pain in a certain part of 
the body while the patient remains awake 

Process 
of gen-
eral an-

aesthesia 

Induction The initial state of unconsciousness. 

Maintenance Keeping patient unconscious. 

Emergence Patient emerges from unconscious into awake. 
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There are four parts for a typical anaesthetic procedure: premedication, induction, 
maintenance and recovery. Pharmacological methods are used for the whole medical 
procedures of general anaesthesia.  

 

2.1.2. Anaesthetic medicines 

From 1840 to 1860, Nitrous oxide, Ether and Chloroform were introduced as anaes-
thetic drugs. At the end of the 1890s, Ethylchloride was used for the first time. After 
1920, the species of anaesthetic agents used increased quickly. The Ethlene, Vinethene, 
Pentobarbital, Cyclopropane, Trichlorethylene, Thiopental, Isopropenylvinylether, 
Propylmethylether, Meperidine, Fluroxene, Althesin, Ethylvinylether, Halothane, 
Methohexital, Droperidol, Methoxyflurane, Ketamine, Enflurane, Isoflurane, Etomi-
date, Fentanyl, Midazolam, Sevoflurane, Alfentanyl, Sufentanil, Propofol, Desflurane, 
Remifentanil and Xe were introduced as anaesthetic agents in succession in the 20th 
century (Urban & Bleckwenn, 2002). Nowadays, the Propofol, Parecoxib, midazolam, 
fentanyl and alfentanil are still widely used for modern general anaesthesia. 

Anaesthetics are available in three formulations: gases (vapours), injections (intrave-
nous anaesthetics) and external application. Generally, the gases and injections are 
used for general anaesthesia. 

 

Table 2.2:  Anaesthetic agent administration 

Type Descriptions 

Injection The drug is injected into muscle, vein (intravenously) or under the skin 
with a needle. 

Gases The drug is applied with a gas mask for inhalation. 

External  

application 

Creams, gels, liquids are applied directly onto the body tissues being 
treated. 

 

The most commonly used anaesthetic protocol is to induce anaesthesia intravenously, 
then maintain it with anaesthetic gases (Tai Nguyen-Ky, 2011). The hypnotic, analge-
sic and muscle relaxant are typically applied together in general anaesthetics. Before 
different agents are combined for patients, several important factors need to be con-
sidered: their characteristics, their relative concentrations with respect to each other, 
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and bolus or continuously intravenous dose (Urban & Bleckwenn, 2002). For the pa-
tients in different cases, the type and doses of anaesthetic agents are decided by anaes-
thetists based on their experiences.  

 

2.1.3. Anaesthesia and awareness 

A precise assessment of DoA is helpful for avoiding various adverse reactions such as 
intraoperative awareness with recall (underdosage), prolonged recovery and an in-
creased risk of postoperative complications for a patient (overdosage).  

 

Figure 2.1: Significance of DoA assessment 

Awareness in general anaesthesia most often refers to remembering events from the 
procedure and signifies inadequate anaesthesia. The figure below shows the relation-
ship between consciousness and anaesthetic agents. 
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Figure 2.2: Hierarchical model of the interaction between pain and anaesthetic agents to 
achieve unconsciousness (Gelb, Leslie, Stanski, & Shafer, 2010). 

The Hierarchical model introduced by Gelb et al. (2010) describes anaesthesia as a 
hierarchical system in which anaesthetic agents operate at three distinct levels in the 
nervous system.  When a patient is under dosage, there is not enough anaesthetic or 
analgesic to prevent consciousness during the operation process. This leads to aware-
ness during surgery (Brice, Hetherington, & Utting, 1970). Intraoperative awareness 
occurs in 0.1% of cases in low risk procedures (Jones & Aggarwal, 2001; Myles et al., 
2004; Sandhu & Dash, 2009) and 4% of cases in high risk procedures (Tonner & Bein, 
2006). Moreover, the incidence of intraoperative awareness may be over 40% for patients 
with multiple trauma, patients undergoing caesarean section or cardiac surgery and 
haemodynamically unstable patients (Davidson et al., 2005; Kuizenga, Wierda, & 
Kalkman, 2001; Mathews, Rahman, Cirullo, & Malik, 2005; Tai Nguyen-Ky, 2011).  

When the intraoperative awareness happens, patients may feel the pain or pressure of 
operation, hear conversations, or feel they cannot breathe. As a result, the intraopera-
tive awareness may cause severe postoperative psychosomatic dysfunction. Therefore, 
intraoperative awareness, which is caused by a failure to adequately anaesthetise, is treated 
as a medico-legal liability for anaesthetists (Lennmarken, Bildfors, Enlund, Samuelsson, 
& Sandin, 2002; Moerman, Bonke, & Oosting, 1993; Sandin, Enlund, Samuelsson, & 
Lennmarken, 2000; Sebel et al., 2004).  

On the other hand, the over dosage may lead to a serious brain injury, nerve damage, 
paralysis, or a spinal cord injury of patients. It may also cause serious complications 
such as a heart attack; stroke or even death (One case reported during patient-con-
trolled analgesia (PCA)) (Bøggild-Madsen & Cargnelli, 1978; Musshoff, Padosch, & 
Madea, 2005; Tai Nguyen-Ky, 2011). 

A number of methods have been developed over the years to detect the level of con-
sciousness and determine the depth of anaesthesia clinically. Most clinical assessments 
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are based on biophysical signs such as systolic blood pressure, heart rate, sweating, 
lacrimation, limb movements, pulse and skin conductance. However, the use of other 
drugs like muscle relaxants and vasodilators makes the interpretation of clinical signs 
harder, and cases of intraoperative awareness have been reported (Sebel et al., 2004). 
In addition, the clinical manifestations of individual patients are different. Therefore, 
those clinical methods do not achieve the desired accuracy in anaesthetic depth assess-
ment (Nguyen-Ky, Peng Wen, & Yan Li, 2013b). 

 

2.2.  EEG and DoA monitors  

2.2.1. Human brain and neural networks 

The human brain, a complex structure, is a network with 100 billion units and 100 
trillion connections. The neuron is a single brain cell which is the fundamental unit of 
the brain. The structure of a neuron is shown in Figure 2.3. 

 

Figure 2.3: Structure of a neuron (Atwood & MacKay, 1989) 

The electrical impulses and chemical secretions enable the neurons to communicate to 
each other.  The electrical impulses have a specific amount of influences or weights 
on the neuron, and transport from one neuron to another. This kind of transmission 
activates the neuronal network and leads to a noticeable change in voltage. A special 
apparatus called electroencephalograph can be capture the changes in voltage, and 
shows continuous oscillating electric activities (Antognini, Carstens, & Raines, 2003; 
Atwood & MacKay, 1989; Bischoff, Schmidt, & am Esch, 2000; Nguyen-Ky, 2011; 
Saeid & Chambers, 2007). 

 

 

 

2.2.2.  EEG and DoA 
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As the amount of anaesthetic agent increase, the typical patterns of EEG signals show 
the characteristics that average amplitude increase and average frequency decline. It 
has been shown that there exists reversible invariant EEG changes, independent of the 
drug used, and independent of the anaesthesia protocol (John, 2001). Hence, it is ad-
vocated that the EEG signal can provide a reliable basis for deriving a surrogate meas-
urement of hypnosis and anaesthesia (Zikov et al., 2006).  

Determining the depth of anaesthesia using the EEG is based on the changes in signal 
characteristics related to increasing concentrations of anaesthetics in the blood. An 
intravenous agent propofol, for example, induces a continuum of neurophysiological 
changes, which reflect on the spectral properties of EEG (Kortelainen et al., 2008). 
However, the EEG signals are the signatures of neural activities (Sanei & Chambers, 
2008), their great nonlinearity and nonstationarity make the EEG signals hard to as-
sess. In addition, individual patients have variability and various factors, for instance, 
the degree of stimulation and pain induced by surgery and the use of concomitant an-
algesic drugs. Therefore, developing an accurate DoA index is indeed challenging 
work. 

 

2.2.3.  Instrumental monitoring  

For an accurate DoA assessment, intensive research has been conducted in finding “an 
ultimate index”, and various monitors were developed to assess the DoA, including 
central function analyzing monitor (CFAM) (Maynard & Jenkinson, 1984), Bispectral 
(BIS) monitor, Nacotrend monitor, Patient State Analyser 4000, Score of Neonatal 
Acute Physiology (SNAP) monitor, Auditory evoked potential (AEP) monitor, En-
tropy-Module, Cerebral State monitor (CSM), and Index of Consciousness (IoC) mon-
itor. With the advanced DoA monitors, the incidences of awareness have been reduced 
from about 1–2% in the 1980s to about 0.1% in 2010 (Musizza & Ribaric, 2010). 

The Narcotrend Monitor was first introduced by Narcotrend in 2000, Germany. Com-
pared to the BIS, the Narcotrend seems to perform better during emergence as it re-
gains its baseline value upon discontinuation of the drug effect (G. N. Schmidt et al., 
2003).  The Danmeter company designed the first generation of the AEP monitor in 
2001 and then AEP-Monitor/2. The new version applied autoregressive models with 
exogenous input to detect the AEP and added spectral EEG parameters to build DoA 
index (Musizza & Ribaric, 2010). In 2002, Physiometrix introduced the PSA-4000, 
which also displays a dimensionless number: the Patient State Index (PSI). While the 
PSI is based on similar principles to the BIS (i.e., composite index based on spectral 
and bispectral parameters), it differs in that it focuses on the power shift of specific 
frequency components between the frontal cortex and the posterior lobes. In the same 
year, the Score of Neonatal Acute Physiology (SNAP) monitor, the first Personal Dig-
ital Assistant (PDA)-based DoA monitor, was introduce by Nicolet Biomedical Mon-
itors. It assesses high and low frequency EEGs and outputs a SNAP index that ranges 
from 0 to 99 (awake) (Willmann, Springman, Rusy, & Daily, 2002).  

The Morpheus medical company introduced the Index of Consciousness (IoC) monitor 
whose main algorithm is the symbolic dynamics method, which divides an EEG signal 



CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

14 

into a finite number of partitions with certain symbols and uses the alternations of 
symbols to determine the dynamics of the EEG. Entropy index monitoring produced 
by Datex-Ohmeda in 2003 was based on the acquisition and processing of raw EEGs 
and facial electromyography signals by using entropy algorithms to produce two pa-
rameters: State Entropy (SE) and Response Entropy (RE) (Viertiö‐Oja et al., 2004). 
In 2004, Danmmeter devised the Cerebral State monitor (CSM). Its Cerebral State In-
dex (CSI) is calculated using a fuzzy logic combination of four sub parameters of the 
EEG signals in time domain and frequency domain (Jensen, 2005).  Besides, central 
function analysing monitor (CFAM) (Maynard & Jenkinson, 1984), which analyses 
EEG spectrum and amplitude, is rarely used because of the limitations of the early 
technologies. 

Table 2.3:  Comparison of DoA monitors summarized from (Musizza & Ribaric, 2010). 

 BIS Narcotrend PSA 
4000 

AEP-
Monitor/2 

Entropy 
Module 

CSM IoC 

Database 
included in 
the devel-
opment of 
algorithm 
or for in-
ference 

Yes 
 

Yes 
 

Yes 
 

No; index 
based on 
previous 
studies of 
the algo-

rithm 
 

No; in-
dex 

based on 
previous 
studies 

of the al-
gorithm 

 

No; in-
dex 

based 
on pre-
vious 

studies 
of the 
algo-
rithm 

 

No; in-
dex 

based 
on pre-
vious 

studies 
of the 
algo-
rithm 

 
Features or 

methods 
included in 
algorithm 

Bispectral 
analysis, 
beta-ratio 

SEF, 
median 

fre-
quency, 
spectral 
entropy, 
relative 
δ, Ɵ, α, 
β, 

AR 
model 

Several 
frequency 

domain 
features 

extracted 
from 

power 
spectrum 

AEP, 
ARX 
model 

Mul-
tiscale 

analysis, 
entropy, 
spectral 
entropy 

α, β, α-β 
power 
ratios 

Symbol 
dynam-
ics anal-

ysis 

Surrogate 
analysis 

No 
 

Yes 
 

Yes 
 

Yes 
 

No 
 

No 
 

No 
 

Burst sup-
pression 
analysis 

Yes 
 

Yes 
 

Yes 
 

Yes 
 

Yes 
 

Yes 
 

Yes 
 

Index cal-
culation 

Weighted 
sum of 

sub-
parame-

ters 
 

Classifica-
tion func-
tion with 

plausibility 
analysis 

Plausibil-
ity analy-
sis with 

surrogate 
testing 
against 

BSR and 
arousal 
parame-

ters 
 

Modula-
tion of in-
dex based 
on SNR 

and EMG 
 

Entropy, 
no infer-
ence al-
gorithm 

 

Fuzzy 
logic in-
ference 
system 

Fuzzy 
logic in-
ference 
system 
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In Musizza’s research, a detailed comparison of different DoA monitors was reported 
(Musizza & Ribaric, 2010). They discussed the advantages and disadvantages of dif-
ferent monitors according to their algorithms at full length (See the summary in  ).  

In this chapter, we analyse the performance of different DoA monitors in clinical use 
and the functions of the latest models. 

 

2.2.3.1. BIS Index  

The BIS index (A-2000 BIS monitor; Aspect Medical Systems Inc., Newton, MA)  is 
a single index derived from a set of time domain and frequency domain measures 
(Pomfrett & Pearson, 1998). It is calculated from the following four parameters: (i) 
burst suppression ratio (BSR); (ii) quazi suppression index; (iii) relative β ratio and 
(iv) synch fast slow. BIS is presented as a numerical index ranging from 100 (awake) 
to 0 (isoelectric EEG). Values below 60 indicate that the patient is almost certainly 
unconscious. Generally, the anaesthesia states include awake, light anaesthetic, mod-
erate anaesthetic and deep anaesthetic states. The awake states are corresponding to 
the BIS range from 80 to 100, the light anaesthetic states are corresponding to the BIS 
range from 60 to 80, the moderate anaesthetic states are corresponding to the BIS range 
from 40 to 60, and the deep anaesthetic states are corresponding to the BIS range from 
10 to 40  (Nguyen-ky, Wen, & Li, 2013a). 

Although the BIS monitor has received some critical press, it is an important reference 
or benchmark for a newly developed DoA index. According to DoA monitors industry 
reports (Aspect, 2013), up to August 2013, 90% of the famous brands have BIS mod-
ules and more than 3400 papers published are related to the BIS. The BIS monitors 
were and are still the most popular monitor in the market. The newest BIS models have 
four electrodes to obtain two channels of EEG signals. The filter results are improved 
by comparing the signals of two channels.  However, Nguyen-Ky et al claimed that 
there were still some problems existing in the BIS monitors (Nguyen-ky, Wen, & Li, 
2013a), including being redundant (Schneider, Schöniger, & Kochs, 2004); not re-
sponsive to some anaesthetic agents (Johansen, Sebel, & Sigl, 2000); not robust across 
patients (Hall & Lockwood, 1998) and time delay (Kuizenga et al., 2001).  

 

2.2.3.2.  Other indexes 

The AEP-Monitor/2 applies the autoregressive model with the exogeneous input 
(ARX) model instead of moving time averaging (MTA) (old version) to calculate the 
Middle Latency Auditory Evoked Potentials (MLAEP). As a result, the time delay for 
data collection decreases from 45-120 seconds to 2-6 seconds. However, the limita-
tions of the AEP-Monitor/2 are that the quality of signals from the passive electrode 
are not good; it is only suitable for the patients who are more than two years old; it 
cannot be used for patients who are impaired in hearing or have severe neurological 
dysfunction; it cannot be applied for ear-nose-throat surgeries; and not convenient in 
clinical use ( Li & Li, 2014). 
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The Danmeter CSM monitor is equipped with Danmeter Neuro sensors (the same as 
AEP). It is portable and able to connect with a UP8000 monitor wirelessly and it can 
be applied in intensive care units (ICU) and infants’ surgeries. However, some cases 
reveal that the CSI cannot reflect the real states of patients. The advantage of the Nar-
cotrend monitor is that it is cheap. The disadvantages are that the monitor is too big to 
be applied in some small ICU or operating rooms; and the information obtained from 
the monitor is too complex to be understood timely. 

The latest E-Entropy modules can be used for the monitors with a newer version soft-
ware than L-ANE03(A) or L-CANE03(A). State entropy reflects the hypnotic effect 
of drugs on the cerebral cortex and RE serves as analgesic parameters. However, some 
research reveal that BIS was seen to respond better with State entropy and response 
entropy in some cases (Vanluchene, Struys, Heyse, & Mortier, 2004) and the increase 
of the difference between SE and RE shows that the motor neuron only responds to 
noxious simulation, but not directly indicates the analgesia per se (Takamatsu, Ozaki, 
& Kazama, 2006). 

The SNAP 2 can detect the useful information in low frequency band and predict the 
recovery of consciousness in high frequency band at the same time. But it can only 
analyse and present one channel of raw EEG data and are not equipped with paediatric 
sensors as BIS monitors do. 

 

2.3. Basic methods and techniques 

2.3.1. Frequency domain methods 

Frequency domain analysis examines the EEG signal based on the frequency spectrum 
of the signal. Fast Fourier transformation and Wavelet transformation are the most 
popular methods which transform data from time domain signal into frequency domain 
signal for DoA assessment. A fast Fourier transform is an efficient algorithm to com-
pute the discrete Fourier transform (DFT) which decomposes signals into components 
of different frequencies. It can extract the features of amplitude, phase spectrum and angle 
of a signal.  

Wavelet transformation normally includes integral Wavelet and orthonormal Wavelet 
transformations. The former one is usually used for Time-frequency analysis (TFA) and 
the later one enjoys a great popularity in the research of Multi-resolution analysis (MRA). 
Wavelet transforms are also classified into discrete wavelet transforms (DWTs) and con-
tinuous wavelet transforms (CWTs). Since Fourier transformation defines the presence of 
a particular frequency within a sample window, it has no time response or time resolution. 
However, Wavelet transformation is able to detect both time and frequency responses of 
finite duration signal components but with limited frequency content over their duration 
(Daubechies, 1992; Mallat, 1999; Tai Nguyen-Ky, 2011; Vetterli & Herley, 1992). In 
Zikov et al.’s results, the Daubechies Wavelet DB16 worked slightly better than other 
wavelet methods for identifying different states of anaesthesia (Zikov et al., 2006). The 
Daubechies Wavelets are characterized by a maximal number (A) of vanishing mo-
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ments for the given support width N=2A. With each Wavelet type of Daubechies wave-
lets class, there is a low pass scaling function (called the father wavelet) which gener-
ates an orthogonal multi-resolution analysis. 

£ሺݔሻ ൌ ∑ ܽ௞
ேିଵ
௞ୀ଴ £ሺ2ݔ െ ݇ሻ                                       (2.1) 

The high pass Wavelet function (mother wavelet) can be depicted based on scaling 
function. 

݉ሺݔሻ ൌ ∑ ܾ௞
ெିଵ
௞ୀ଴ £ሺ2ݔ െ ݇ሻ                                       (2.2) 

As Daubechies Wavelet is orthogonal Wavelet, there is a fixed relationship between 
the scaling coefficient (a) and Wavelet coefficient (b), that is 

                                        ܾ௡ ൌ ሺെ1ሻ௡ܽேିଵି௡                                              (2.3) 

Symlet Wavelets are similar to Daubechies Wavelets, and the main differences are the 
mother Wavelet functions. Daubechies Wavelets D2-D20 (the index number refers to 
N) and Symlet Wavelets 2-8 are commonly used to carry out different feature extrac-
tion work. 

Other methods such as Filter banks (Mertins), power spectral density (PSD), eigenvector-
based method (R. Schmidt & Franks, 1986) are also used in DoA assessment. 

 

2.3.2. Time domain methods 

Most of the time domain analysis measures are statistical ones such as mean, variance 
and standard deviation (Musizza & Ribaric, 2010). For DoA assessment, the features 
such as amplitude, entropy, complexity autoregressive and burst suppression are ex-
tracted from the time of EEG signals. In most DoA algorithms, both frequency domain 
analysis methods and time domain analysis methods are employed. 

 

2.3.3. Time-frequency and nonlinear methods 

 EEG changes during the induction of anaesthesia are nonlinear and need, therefore, 
to be processed with nonlinear methods. The methods based on nonlinear dynamics 
theory and information theory, such as entropy algorithm, have been applied (Bein, 
2006; Bruhn, Lehmann, Röpcke, Bouillon, & Hoeft, 2001; Bruhn, Röpcke, Rehberg, 
Bouillon, & Hoeft, 2000; Cao, Tung, Gao, Protopopescu, & Hively, 2004; Fell, 
Röschke, Mann, & Schäffner, 1996; XL Li, Sleigh, Voss, & Ouyang, 2007; Viertiö‐
Oja et al., 2004). The approximate entropy can serve as an index of degree of conscious 
states or DoA (Fan, Yeh, Chen, & Shieh, 2011). However, compared with the sample 
entropy, it is more suitable for long time series and less sensitive to the transformation 
of complexity (Wei et al., 2013). Multi-scale entropy (MSE) is also applied to identify 
the different states of patients  (Liu et al., 2012). 
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The detrended moving-average (DMA) method is used to quantify correlation proper-
ties in nonstationary signals with underlying trends. It has been proposed to study the 
scaling properties of a time series (Arianos & Carbone, 2007; Nguyen-Ky, Wen, & Li, 
2010; Xu et al., 2005). The Isomap-based estimation is designed to assess neurophys-
iological changes during anaesthesia and offers potentials for the development of more 
advanced systems for the depth of anaesthesia monitoring (Kortelainen, Väyrynen, & 
Seppänen, 2011a; Kortelainen, Vayrynen, & Seppanen, 2011b).  

Empirical-mode decomposition (EMD) was proposed to explore the structure of EEG 
recordings (Li, Li, Liang, Voss, & Sleigh, 2008; Sweeney-Reed & Nasuto, 2007). The 
method can break a complicated signal into a series of oscillatory intrinsic mode func-
tions (IMFs) embedded in the original signal (Chen et al., 2010). Li et al (2008) have 
successfully established an approach centering on Hilbert–Huang transform (HHT) 
and EMD to analyze the EEG data for the DoA measurement. Ensemble empirical-
mode decomposition (EEMD), an adaptive time-frequency analysis method is partic-
ularly suitable for extracting useful information from noisy nonlinear or nonstationary 
signals. Unfortunately, since the EEMD is highly compute-intensive, the method is not 
suitable for real-time applications. Aiming to solving this problem, a parallelized 
EEMD method was developed using general-purpose computing on the graphics pro-
cessing unit (GPGPU), namely, G-EEMD (Chen et al., 2010). The Multivariate em-
pirical mode decomposition (MEMD) can efficiently eliminate the noises among EMD, 
EEMD and complementary ensemble empirical mode decomposition (CEEMD) (Wei 
et al., 2013). 

As one of the most popular choices in the time-frequency-transformations, Wavelet 
transformation is also used for DoA assessment. In 2001, Wavelet decomposition of 
the EEG was adopted to assess the hypnotic state of anesthetised patients undergoing 
surgery. The results show that  the technique could differentiate clearly between the 
anesthetised state and the awake “baseline” state (Bibian et al., 2001). Gifani et al 
(2005) claimed the depth of anaesthesia could be discriminated precisely using the 
detrended fluctuation analysis (DFA) on different scales of Wavelet coefficients and 
quantifying the relative drift between the lines generated by DFA. In 2006, Wavelet 
entropy (WE) was designed to characterize the dynamical properties of EEGs and the 
results show that the WE measure distinguished the awake and asleep state in anaes-
thesia with a high accuracy of 95% (Ye, Tian, & Weng, 2006). Stationary Wavelet 
transform (SWT) was used to analyse a single-channel (frontal) EEG signal to obtain 
a Wavelet-based anaesthetic value for central nervous system monitoring (WAVCNS). 
The results show WAVCNS offers faster tracking of transitory changes at induction 
and emergence, with an average lead of 15–30 seconds compared with the BIS. In 
addition the WAVCNS regains its pre induction baseline value when patients are re-
sponding to verbal command after emergence from anaesthesia (Zikov et al., 2006). 
Through the Wavelet analysis technique, a steady-state index was developed to obtain 
steady-state information of the system response (inputs-output) which is useful for 
modelling the drugs combined effect (Castro, Almeida, Amorim, & Nunes, 2009). 
Based on the features extracted using Wavelet analysis, a radial-basis function (RBF) 
network is trained to calculate the index for DoA assessment (Taslimi, Rabiee, & 
Shakouri, 2009). Nguyen-Ky et al. proposed a double Wavelet-based denoising algo-
rithm to denoise the raw data, and proposed to assess DoA based on discrete Wavelet 
transform (DWT) and power spectral density (PSD) function (Nguyen-Ky et al., 2010, 
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2013a; Nguyen-Ky, Wen, Li, & Gray, 2011). The result shows that the proposed index 
reflected the patient’s transition from consciousness to unconsciousness with the in-
duction of anaesthesia in real time (Ghanatbari, Mehridehnavi, Rabbani, Mahoori, & 
Mehrjoo, 2010). They also applied the Wavelet transform on EEG signals to obtain a 
new index (namely WAI). In 2012, Liang et al. applied the Hurst exponent and wavelet 
transform in multiscale rescaled range analysis (MRRA) algorithms and received a 
satisfactory result (Liang et al., 2012). 

Variational Bayesian framework was used to extract high order spectral features of 
EEG signals. The results show that, better classification can be achieved with higher 
order spectral features in two third of anaesthetic agents (Rezek, Roberts, Siva, & 
Conradt, 2005). In 2007, Rezek et al. (Rezek, Roberts, & Conradt, 2007) presented an 
autoregressive class of polyspectral models in the variation Bayesian framework. Their 
results showed that the estimated higher order spectra significantly improved DoA as-
sessment. A Bayesian dynamical model for quantifying probability of response and 
probability of correct response simultaneously was applied to trinary behavioural data 
from ten human subjects undergoing general anaesthesia. This method served as an 
example of responses to auditory stimuli at varying levels of propofol anaesthesia 
ranging from light sedation to deep anaesthesia in human subjects (Wong et al., 2011). 
Kortelainen et al. developed an algorithm based on Bayesian Information Criterion 
(BIC) for the assessment of the switch-like change in the signal characteristics occur-
ring just before the awakening (Kortelainen, Vayrynen, Jia, Seppanen, & Thakor, 
2012).  The result showed it detected the sudden change in the EEG related to the 
moment of awakening with a precision comparable to careful visual inspection. Based 
on the Bayesian method, the MAP was applied to denoise the wavelet coefficients 
based on a shrinkage function and the new Bayesian threshold showed better perfor-
mance than the Larger Posterior Mode (LPM) one. The effect of sample n and variance 
r on the Maximum Posterior Probability (MPP) is studied. Compared with the BIS 
index, the new BDoA index could estimate the patient’s hypnotic state in the case of 
poor signal quality (Nguyen-Ky et al., 2013a). 

The main noise sources of EEG signals are external (environmental) noise and physi-
ological noise. The external sources include the AC power line noise and electromag-
netic noise from the equipment and recording rooms. The physiological noise such as 
EMG, ECG, EOG and skin potentials are hard to avoid during the recording process 
(Repovš, 2010). Although there is no accurate description (traits and magnitude) of the 
noise in EEG signals, three types of noise can be summed up from previous studies 
(Nguyen-Ky et al., 2011; Repovš, 2010; Ryynanen, Hyttinen, & Malmivuo, 2004; 
Zandi et al., 2011). They are Gaussian white noise, spiking noise and specific fre-
quency noise.  Normally, the frequencies below 0.01Hz (caused by sweating and drifts 
in electrode impedance) and those above 100 Hz (caused by contraction of muscles) 
are filtered out (Repovš, 2010). The noise from electricity lines (50 or 60 Hz) can also 
be eliminated by notch filters. 

Conventionally, three steps are applied to obtain high quality denoised EEG signals. 
Firstly, external environmental noise should be eliminated using efficient methods dur-
ing data recording process (Repovš, 2010). Secondly, based on known EMG, ECG and 
EOG data, algorithms (e.g., adaptive filtering (He, Wilson, & Russell, 2004) and blind 
source separation (Romero, Mañanas, & Barbanoj, 2008)) are developed to remove 
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these interferences from EEG signals. Thirdly, the other types of noise are eliminated 
using advanced denoising methods (e.g., signal averaging, filtering). Although most 
of the existing DoA monitors have artefact detection and removal modules, the de-
noising results are not satisfactory.  

To eliminate the EMG, AC power line, electrode disturbance and other disturbances, 
the Wavelet transform noise rejection methods including Wavelet decomposition and 
reshape, Wavelet threshold values and the Wavelet max-module method were applied 
in EEG signal denoising (Yu, 2009). The newest outcomes include that an adaptive 
threshold technique to remove spikes and low-frequency noise from raw EEG data and 
the results revealed the output EEG signal is almost noiseless when using the hard 
threshold (Nguyen-Ky et al., 2011); a new Bayesian Wavelet threshold based on the 
Maximum a Posterior (MAP) is applied to denoise the wavelet coefficients (Nguyen-
Ky et al., 2013a) and it performed better than the wavelet threshold based on Larger 
Posterior Mode (LPM) (Cutillo, Jung, Ruggeri, & Vidakovic, 2008). However, these 
methods are mainly based on the Fourier transform, their denoising results of EEG 
signals (which is not cyclical or steady) is not that good (L. Zhang, Wu, & Zhi, 2009). 
While the Hilbert-Huang Transform (HHT) shows better performance in EEG signal 
denoising, the empirical-mode decomposition, one important part of HHT, is highly 
compute-intensive and may lead to time delay in some cases.  

To reduce the time delay, an adaptive window length technique in Nguyen-Ky et al.’s 
paper was applied to compute the optimum length of the sliding window and the results 
shown that the new index can reflect the changes between consciousness and uncon-
sciousness during emergence from anaesthesia in nearer to real time (Nguyen-Ky et 
al., 2011). In Nguyen-Ky et al.’s later study, a new index BDoA was proposed based 
on the Maximum Posterior Probability (MPP) values, which performed better in de-
tecting the anaesthesia states’ change from awake to light, moderate and deep anaes-
thesia than the BIS index (Nguyen-Ky et al., 2013a). 

To enhance the flexibility and robustness of a DoA index, a novel technology using 
the spectral features of EEG was presented for separating the anaesthetic effects of 
propofol and an ultrashort-acting opioid, remifentanil. The results show that the feature 
set was able to detect the impacts of propofol and classified whether remifentanil had 
been co-administered or not. As a result, the determination of the clinical state of the 
patient becomes more accurate (Kortelainen, Vayrynen, et al., 2011a). 
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Table 2.4:  Summary of latest DoA algorithms. 

Algorithms Derivative algorithms Reference 

 
 
 
 

   Entropy 

Entropy (Bein, 2006; Bruhn et al., 2001; Bruhn 
et al., 2000; Cao et al., 2004; Fell et al., 
1996; Li et al., 2007; Viertiö‐Oja et 

al., 2004) 
Approximate entropy (Fan et al., 2011) 

Sample entropy (Wei et al., 2013) 

Multi-scale entropy (Liu et al., 2012) 

DMA MDMA (Nguyen-Ky et al., 2010) 

Isomap-based 
estimation 

Isomap-based estimation (Kortelainen, Vayrynen, et al., 2011a) 

 
 
 
 
 

      EMD 

Empirical-mode decom-
position 

(Li et al., 2008; Sweeney-Reed & 
Nasuto, 2007) 

EEMD (Li et al., 2008) 

G-EEMD (Chen et al., 2010) 

MEMD (Wei et al., 2013) 

CEEMD (Wei et al., 2013) 

    
 
 
 
 
 
   Wavelet 

Wavelet (Bibian et al., 2001) (Castro et al., 
2009) 

DFA (Gifani et al., 2005) 

Wavelet entropy (Ye et al., 2006) 

WAVCNS (Zikov et al., 2006) 

RBF (Taslimi et al., 2009) 

DWT (Ghanatbari et al., 2010; Nguyen-Ky et 
al., 2010, 2013a; Nguyen-Ky et al., 

2011) 
MRRA (Liang et al., 2012) 

 
 
 
 

  Bayesian 

Bayesian (Rezek et al., 2005) 

Variation Bayesian (Rezek et al., 2007) (Wong et al., 2011) 

BIC (Kortelainen et al., 2012) 

MAP (Nguyen-Ky et al., 2013a) 

MPP (Nguyen-Ky et al., 2013a) 

 

2.4. Limitations of existing DoA monitors  

Although the BIS monitor is the most popular one, it still received many criticisms. 
Other monitors based on different DoA algorithms improved the performance in dif-



CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

22 

ferent aspects. However, they are not widely used because of other limitations. Ac-
cording to the review of existing DoA monitors and their algorithms, the following 
research gaps in the field are identified: 

 

2.4.1. Unsatisfactory filtering results 

The filtering results were not satisfactory with existing methods and it’s hard to accu-
rately evaluate the denoising results for EEG signals. Electromyography (EMG), Elec-
trocardiography (ECG) and Electrooculography (EOG) cannot be removed efficiently 
by existing filtering methods (Johansen, 2006). In addition, all existing monitors were 
susceptible to electromagnetic (EM) interference (Musizza & Ribaric, 2010). There-
fore, an efficient denoising method is urgently needed, especially in the case of de-
noising poor quality signals. 

 

2.4.2. Time delay 

The BIS and other existing monitors showed a long time delay after a change in a state 
of consciousness. The burst-suppression ratio (BSR), one important parameter for all 
the existing monitors, normally only represents a portion of the isoelectric EEG of 60s 
(Musizza & Ribaric, 2010), thus existing monitors are hard to avoid time delay. 

 

Table 2.5:  Susceptibility to EM interference and time delay (Musizza & Ribaric, 2010) 

 BIS Narcotrend Entropy 
Module 

CSM 

Susceptibility to EM interfer-
ence 

Moderate Moder-
ate 

High 
 

Moderate 
 

Estimated time delay 63 s / 61 s 
 

90 s /26 s Data not 
available 

106 s / 55s 
 

 
2.4.3. Inflexibility  

Since there is a wide variation in responses to the anaesthetic agents among individuals, 
the same effect-site concentrations, even if accurately approximated do not therefore 
induce similar EEG changes to all patients (Kortelainen, Vayrynen, et al., 2011a). The 
BIS monitor received criticisms, such as non-responsive to some anaesthetic agents 
(Johansen et al., 2000) and not robust across patients (Hall & Lockwood, 1998). In 
addition, it is not reasonable to attempt to measure DoA changes with a single, com-
plex parameter, but rather using multiple parameters that properly describe all the 
phases of the continuum from awake to very deep anaesthesia state (Kortelainen, 
Vayrynen, et al., 2011a).  Although most of the existing DoA algorithms used different 
multiple parameters to estimate DoA, the parameter selections were not flexible and 
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they were limited in some aspects, Therefore the existing DoA algorithms are not ro-
bust with the changes of agents or patients. 

 

2.5.  Summary 

This chapter conducts a comprehensive review about existing DoA monitors and their 
algorithms. The latest research results show that there are still many improvements 
need to be made. The review shows that the main limitations of existing DoA monitors 
are: 

 EMG and other high-frequency electrical artifacts are common and interfere 
with EEG interpretation. 

 Data processing time produces a lag in the computation of the depth-of-anaes-
thesia monitoring index. 

 The EEG effects of anaesthetic drugs are not good predictors of movement in 
response to surgical stimulus because the main site of action for anaesthetic 
drugs to prevent movement is the spinal cord. The currently available monitor-
ing algorithms do not account for all anaesthetic drugs, including ketamine, 
nitrous oxide and halothane. 

Generally, the limitations of the existing DoA monitors include unsatisfactory data 
filtering techniques, time delay and inflexibility. Efforts in solving or answering the 
above questions should be encouraged and promoted.  
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3. BIS SYSTEM CONFIGURATION AND EEG 
DATA ACQUISITION  

 

The EEG data were collected from adult patients using BIS monitors. These raw EEG 
data files, binary files containing unfiltered EEG data, were exported to an USB drive 
from BIS monitors. The unfiltered EEG data were converted to signed numerical for-
mula using MATLAB. 

 

 

 

3.1. Data acquisition  

The attending anaesthetist recorded the time, intravenous dosing and significant intra-
operative events as indicated by the BIS monitor clock. The purposes and procedures 
of data collection were explained to all the patients. The agreement including all the 
ethics issues was made with all the patients. The study was approved by the University 
of Southern Queensland Human Research Ethics Committee (No: H09REA029) and 
the Toowoomba and Darling Downs Health Service District Human Research Ethics 
Committee (No: TDDHSD HREC 2009/016).  

The EEG data were collected at Toowoomba St Vincent’s Hospital from 37 adult pa-
tients (age 22-83 years, weight 55-130 kg, height 154-194cm, gender 15F/22M) by a 
senior anaesthetist. Their typical drug administration included earlier pharmaceuticals 
intravenous midazolam 0.05 mg/kg, fentanyl 1.5-3 μg/kg or alfentanil 15-30 μg/kg. 
The details are shown in Table 3.1 and Table 3.2. 
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Table 3.1:  Patient demographics and intraoperative drug usage 

Age (year) 
 

22-83 

Weight (kg) 
 

55-130 

Height(cm) 
 

154-194 

Gender (F/M) 15/22 
 

Midazolam (mg) 2-5 
 

Alfentanil (μg) 
 

500,750,1000 

Propofol (mg) 90-200 

Parecoxib (mg) 
 

40 

Fentanyl (μg) 100,150 
 

 

Table 3.2:  Clinical notes 

Time Patient  Time Patient  Time Patient 

19/08/09 3* 31/08/09 17 02/09/09 25 

09:22:00 midazo-
lam 

3 10:13:15 midazo-
lam 

3.5 07:07:15 midazo-
lam 

4 

09:22:03 alfentanil 1000 10:13:35 alfentanil 1000 07:07:30 alfentanil 1000 
09:25:53 propofol 120 10:14:53 propofol 150 07:08:45 propofol 150 
09:25:55 start 

sevo/N2O 
 10:14:55 start 

des/N2O 
  07:08:50 start 

des/N2O 
 

09:30:00 parecoxib 40 10:16:30 intubate   07:11:00 intubate  
09:30:05 morphine 5 10:19:00 morphine 5 07:15:00 morphine 5 
09:43:00 propofol 60 10:19:05 parecoxib 40 07:34:00 morphine 5 
09:44:50 morphine 5 10:40:53 morphine 3 08:34:51 end 

des/N2O 
 

10:26:20 end sevo  10:53:46 end 
des/N2O 

     

   10:59:05 extubate      
*** SNAPSHOT CREATED 

*** 
*** SNAPSHOT CREATED 

*** 
*** SNAPSHOT 
CREATED *** 

* Take patients 3 and 17 and 25 as examples. 
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3.2. Equipment settings  

The BIS VISTATM monitor (BIS VISTA Version 3.00, Algorithm Version BIS 4.1 
(Johansen, 2006)) was used to collect raw EEG data.  

The BIS VISTA monitoring system used is shown in Figure 3.1.  

 

Figure 3.1: The BIS VISTA monitoring system ("Service information manual, Aspect 
Medical Systems, Inc.,") 

The BIS VISTA Monitoring System consists of the following basic components: 

• BIS VISTA Monitor (P/N 185-0151) 

The BIS VISTA Monitor includes front panel, rear panel and integral battery. The front 
panel of the BIS VISTA monitor contains the Touch Screen, BISx port and the 
ON/Standby button. All controls (including ON/Standby button) are accessible by 
touching a designated area on the monitor screen. The ON/Standby button indicates 
whether the monitor is ON or in Standby mode. The rear panel includes two USB ports, 
the clamp shoe, an RS-232 port, the Reset button, the Battery/Power Supply cover, 
and the power cord receptacle. A rechargeable lithium ion battery inside the monitor 
provides approximately 45 minutes of back-up power when power cannot be supplied 
via the power cord. 

• BISx (P/N 185-0145-AMS) 

The BISx receives, filters, and processes patient EEG data. It is located close to the 
patient's head where the EEG signal is less subject to interference from other medical 
equipment. 
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• Patient Interface Cable (PIC) (P/N 186-0107) 

Aspect's BIS sensor patient interface cable is used to connect the BISx to the BIS sen-
sor. 

• Monitor Interface Cable (MIC) 

The monitor interface cable is long and flexible. It is used to connect the BISx to the 
front of the monitor. 

• BIS Sensor 

The sensor is the single use component of the BIS Monitoring System. It should be 
replaced after each use. All sensors, including the BIS Extend Sensor, utilize the mon-
itor’s saved settings (such as smoothing rate)("Service information manual, Aspect 
Medical Systems, Inc.,"). 

 

Four different types of electrodes are used in the EEG recording. They are extend sen-
sor, quarto sensor, pediatric sensor and standard sensor. 

 

Figure 3.2: Different types of electrodes ("BIS sensor for Aspect Medical Systems, Inc.,") 

The EEG data were collected through the four adhesive forehead Quatro elec-
trodes/sensors used clinically for BIS monitor. “The BIS Quatro Sensor offers en-
hanced performance in deep anaesthetic states and improved resistance to interference 
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from noise sources, such as high frequency/electromyography conditions, in the oper-
ating room and intensive care unit.” ("BIS sensor for Aspect Medical Systems, Inc.,"). 

According to the BIS VISTA™ Monitoring System operating manual, cable connec-
tions, which include connecting the BISx to the monitor and connecting the PIC to the 
BISx, need to be done before hand. The initial menu settings include language selec-
tion, date and time and view/save settings. After that, the monitor can be switched on, 
and the system initiates a self-test to make sure that all parts are operating properly. 
The Quatro electrodes were placed diagonally on the forehead with electrode No. 1 at 
the centre of the forehead, approximate 2 inches (5 cm) above the bridge of the nose, 
electrode No. 4 directly above the eyebrow, No. 2 between No. 1 and No. 4, No. 3 on 
the temple, between the corner of the eye and hairline. The impedances of the elec-
trodes should be below 5 Ω (Rezek et al., 2007). 

 

Figure 3.3: The electrode locations (Al-Kadi, Reaz, Ali, & Liu, 2014) 

During the operation, the current numeric value of the BIS is displayed and continu-
ously updated in the upper left corner of the screen as long as signal quality is suffi-
cient. Three ports on the rear of the BIS VISTA monitor facilitate data transfer. The 
USB port is used to export data to a removable drive. 

 

3.3. Data format and normalization 

The collected data were transferred to a portable computer for off-line analysis through 
a USB drive. The exported EEG data files include the real time data (EEG, BIS and 
other processed variable information), BIS history data (BIS and other processed var-
iables from the BISx) and monitor error logs (critical events and any monitor errors).  
The real time data is used as the raw EEG signals in this study.  

The raw EEG data file named as filename.r2a is a binary file containing unfiltered 
EEG data from channel 1 and 2. It starts with the value of Channel 1, followed by the 
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value of Channel 2, and so on (Al-Kadi et al., 2014). The raw EEG signals were sam-
pled at a frequency of 128 for each channel and each EEG sample was a 16-bit signed 
integer in unit of 0.05 μV. The recorded data were presented in an ASCII code format 
which cannot be opened or read by normal text editors. Therefore, they were converted 
to signed numbers using MATLAB code which was developed by our research group 
members.  

The root filename for real time data is LMMDDHHMM, where MM is the month (01-
12), DD is the day (01-31), HH is the hour (00-23), and MM is the minute (00-59). 
These files are stored in filename directory (LMMDDHHMM). The BIS index is pre-
sented as a single value and updated every second, which is calculated from gathered 
EEG data over the past 61.5 seconds. In addition, EMG and signal quantity Indicator 
(SQI) were also obtained at the same time.  

 

3.4. Signal quality  

The signal quality indicator is an index of the signal quality which is calculated based 
on impedance data, artifacts, and other variables. When SQI is lower than 15, the BIS 
index could not output a valid value on the screen. The EEG data from 37 adult patients 
were collected randomly. Because of poor signal quality, there are two main types of 
invalid BIS value appearing among the 37 patients’ data. 

For some cases, the invalid BIS values appear at the beginning of patients’ wake states. 
One reason may be that the connection of sensors and patients’ skin are not stable 
caused by the movements of patients. Another reason may be that the calculation of 
BIS needs a period of time to start the first valuable value. Some other reasons such as 
wrong operation, noise from the equipment or environment also may lead to these 
invalid BIS values. As a result, the beginning of BIS are a series of useless value (-
3276.8 ‘excessive artifact detected in signal’) or always 97.7 without change. Take 
patient 23 for an example, there is no valid BIS value at the wake states Figure 3.4. 
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Figure 3.4: SQI and BIS of patient 23 

The similar invalid BIS values also appear in other 11 cases (patient 1, patient 9, pa-
tient 10, patient 15, patient 16, patient 26, patient 27, patient 28, patient 33, patient 34, 
and patient 35) of the total 37 patients.  There is only a short period of invalid BIS 
values appear at the beginning of awake states in most of these cases. However, some 
cases such as patient 23, it cannot be seen from the BIS index when patient’s anaes-
thetic state changed from awake to anaesthetic state. 

For some cases, the invalid BIS values appear at the middle of moderate anaesthetic 
state or deep anaesthetic state. Take patient 37 for an example, there is no valid BIS 
value at the middle of moderate anaesthetic state (see Figure 3.5).  
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Figure 3.5: SQI and BIS of patient 37 

The similar invalid BIS values also appear in other 2 cases (patient 22 and patient 36) 
of the total 37 patients.   

These two types of invalid BIS values not only appear among the 37 cases of this study, 
but also appear in some other cases of our database in which some data are from other 
hospitals (such as Prince Charles hospital). Therefore, although BIS monitor is the 
most popular commercial DoA monitor, the performance is not satisfied in the case of 
poor signal quality. 

In addition, the BIS monitor may show an incorrect DoA result because of poor signal 
quality.  
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Figure 3.6: SQI and BIS of patient 21 

Take patient 21 for an example, the BIS index shows a significant upward trend from 
about 1280 seconds to 1290 seconds and then a dramatic downward trend from about 
1290 seconds to 1300 seconds in Figure 3.6. However, according to the anaesthetists’ 
record, there was no recovery of consciousness (RoC) during this period. Because of 
the low SQI values about one and half minutes before these significant upward trends 
of the BIS, the BIS index might be influenced by noise and showed an incorrect BIS 
value.  

The same situation also happened in other two cases (patient 15 and patient 29) of the 
total 37 patients. According to the facts mentioned above, it is reasonable to doubt that 
whether the BIS value is reliable or not when the corresponding signal quality indicator 
is lower than 50. 

Therefore, to improve the DoA assessment results, it is of great significance to develop 
a robust DoA index which can show valid output in the case of poor signal quality. 

 

3.5. Summary 

The chapter presents the EEG data acquisition, patient demographics and intraopera-
tive drug usage firstly. Then the equipment settings of BIS VISTATM monitors and 
the instructions of forehead Quatro electrodes are introduced. The raw EEG data were 
collected using BIS monitors and converted to signed numerical formula using 
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MATLAB. In addition, EMG and signal quantity Indicator (SQI) were also obtained 
from patients using BIS monitors. 

The signal quality indicator is an index of the signal quality. When SQI is lower than 
15, the BIS index could not output a valid value on the screen. Among the 37 patients’ 
data, there are two main types of invalid BIS outputs including the values at the begin-
ning of the wake state and the values at the middle of moderate anaesthetic state. In 
addition, the BIS monitor may show an incorrect DoA result which does not agree 
with clinical records because of noise. 
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4. NONLOCAL MEAN METHOD AND DENOISING 

As a patch-based method, the NLM method calculates the weighted sum of a patch. 
The weight of each point is determined by the similarity between the points of the own 
patch and its neighbour. Based on the weighted sum, the noise is filtered out. In this 
study, the original NLM denoising method was improved then applied to EEG signals 
with additive Gaussian white, spiking and specific frequency noise. 

 

4.1. Filtering and pre-processing  

The main noise sources of EEG signals are the external (environmental) sources and 
physiological noise. The external sources include the AC power line noise and elec-
tromagnetic noise from the equipment in recording room. The physiological noise such 
as Electromyography, Electrocardiography, Electrooculography and skin potentials 
are hard to avoid during the recording (Repovš, 2010). Although there is no accurate 
description (traits and magnitude) of the noise in EEG signals, three typical of noises 
have been identified in previous studies (Repovš, 2010; Ryynanen et al., 2004; Zandi 
et al., 2011). They are the Gaussian white, spiking and specific frequency noises. Nor-
mally, the frequencies below 0.01Hz (caused by sweating and drifts in electrode im-
pedance) and those above 100 Hz (caused by contraction of muscles) are filtered out 
(Repovš, 2010). The noise from electricity lines (50 or 60 Hz) can be eliminated by 
notch filters. Only the frequency band (0.01Hz to 64Hz) remains after filtering in this 
study, Then the pre-filtered EEG data was selected for the following denoising pro-
cessing. 

Conventionally, three steps are applied to obtain high quality denoised EEG signals. 
Firstly, external environmental sources noise should be eliminated using efficient 
methods during the data recording process (Repovš, 2010). Secondly, based on known 
EMG, ECG and EOG data, algorithms (e.g., adaptive filtering (He et al., 2004) and 
blind source separation (Romero et al., 2008)) are developed to remove these interfer-
ences from EEG signals. Thirdly, the other types of noise are eliminated using ad-
vanced denoising methods (e.g., signal averaging, filtering).  

In this study, the nonlocal mean denoising method was developed and applied to EEG 
signal denoising. Firstly, the NLM is applied to simulated EEG signals with Gaussian 
white noise, spiking noise and specific frequency noise. Then it is applied to the pre-
processed real EEG signal from hospitals. 
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4.2. Nonlocal mean denoising method 

The nonlocal mean denoising method was first introduced by Buades et al. (Buades, 
Coll, & Morel, 2005) to address the edge degradation problem during denoising pro-
cess. This method has been widely applied in one dimension (1-D) signal filtering and 
2-D image denoising (Darbon, Cunha, Chan, Osher, & Jensen, 2008; Deledalle, Duval, 
& Salmon, 2012; Van De Ville & Kocher, 2009). Compared to Wavelet soft threshold 
algorithm, hybrid empirical mode decomposition and Wavelet denoising method, 
NLM showed better performance in biomedical signal ECG processing (Tracey & 
Miller, 2012).  

Next, we briefly introduce the NLM algorithm.  

Given, v(n) = u(n) + n, where v(n) is the observed data, u(n) is the real data and n is 
the noise. The NLM method is to calculate the weighted sum û(s) as its denoised value 
(Tracey & Miller, 2012). 

ûሺݏሻ ൌ 	
ଵ

∑ ௪ሺ௦,௧ሻ೟
	∑ ,ݏሺݓ ሻ௧∈ேሺ௦ሻݐሺݒሻݐ 	                                          (4.1) 

The weight (w(s,t)) of each neighbour point (t) depends on the similarity between the 
patch of the target point (s) and the patches of the neighbour (t). The weight is calcu-
lated as follows (Buades et al., 2005)： 

,ݏሺݓ  ሻݐ ൌ exp	ሺെ∑ ሺ௩ሺ௦ା௉ሻି௩ሺ௧ା௉ሻሻమ

௛௉మ௉∈∆ ሻ                                (4.2) 

Δrepresents the patch size of the samples surrounding s or t and P is half of the patch 
size. h is the bandwidth which is a key parameter that controls the amount of smoothing 
applied. The value of h should not be too small (cause insufficient averaging) or too 
large (cause dissimilar patches to appear similar, resulting in blur) (Tracey & Miller, 
2012). Figure 4.1 shows the basic patches in NLM method (T. Li, Wen, & Jayamaha, 
2014). 

 

Figure 4.1: Illustration of NLM parameters. 

The same patch centered on s is compared to patches centered on another point t in 
N(s). Before applying the NLM denosing method on EEG signals, the value of three 
important parameters including patch size ∆(∆=2P+1), search neighbourhood N(s) 
(N(s) =2M+1) and bandwidth h need to be selected based on maximum signal to noise 
ratio (SNR) standard (T. Li et al., 2014).   
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In this study, the same trend patches (STP) and moving adaptive shape patches (MASP) 
are developed for improving the NLM denoising method. For the same trend patches, 
before we use t point to calculate the û(s), a judgement about whether s patch and t 
patch have the same trend needs to be done. If they have the same trend (e.g.,  v(s-
p)<v(s)<v(s+p) and v(t-p)<v(t)<v(t+p)), the value of v(t) can be used to calculate û(s), 
otherwise it is invalid. This method reduces the value of interference from diverse 
patches to improve the NLM denoise results. 

For moving adaptive shape patches, a judgement about whether s patch and t patch has 
the same trend also needs to be made. If 0<v(s-p)-v(s)<v(s)-v(s+p) and 0<v(t-p)-
v(t)<v(t)-v(t+p), the patches for t  and s will be changed from (-p,p) to (0,2p), and then 
the new patches are adopted to calculate û(s) and vice versa. To sum up, the patches 
move to the bigger change side. In other cases, the calculation is the same as the basic 
NLM method.  

To obtain better denoising results, two improved nonlocal mean methods are applied 
to the real EEG signals. The first is to combine the denoising results of NLM and 
MASP-NLM using uniformly weighted aggregation method. The new denoising re-
sults are equal to the average of the twos. The second is to combine the NLM methods 
and the WTD methods. The WTD is applied to decompose the raw EEG data into 
different levels of Wavelet coefficients. Then the Wavelet coefficients can be denoised 
using NLM and the filtered Wavelet coefficients are processed to reconstruct the noise-
less EEG signals. 

For assessing the performance of denoising methods, SNR improvement (SNRimp) in 
decibel, mean squared error (MSE), and percentage distortion (PRD) are employed 
(Tracey & Miller, 2012). To compare different denoising algorithms without the in-
fluence of noise, the MSE and PRD are improved as follows. 

SNR ൌ 10logଵ଴
∑ ௨ሺ௡ሻమಿ
೙సభ

∑ ሺ௩ሺ௡ሻି௨ሺ௡ሻሻమಿ
೙సభ

																																							(4.3) 

SNRimp ൌ 10logଵ଴
∑ ሺ௩ሺ௡ሻି௨ሺ௡ሻሻమಿ
೙సభ

∑ ሺûሺ௡ሻି௨ሺ௡ሻሻమಿ
೙సభ

																																							(4.4) 
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ே
	∑ ሺûሺ݊ሻ െ ሺ݊ሻሻଶேݑ

௡ୀଵ 																																								(4.5) 

MSEimp ൌ ሺଵ
ே
െ ଵ

ேమ
∑ ሺ௩ሺ௡ሻି௨ሺ௡ሻሻమ

௨ሺ௡ሻమ
ே
௡ୀଵ ሻ*	∑ ሺûሺ݊ሻ െ ሺ݊ሻሻଶேݑ

௡ୀଵ 																(4.6) 

PRD ൌ 100ට
∑ ሺûሺ௡ሻି௨ሺ௡ሻሻమಿ
೙సభ

∑ ௨మಿ
೙సభ ሺ௡ሻ

																																								(4.7) 
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ே
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																	(4.8) 
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u(n) is the value of simulated signal (assume they are pure data), û(s) is the denoised 
value and v(n) is the value of signals with the additive noise. The improved MSE and 
PRD are adopted to assess the denosing results in this study. 

 

4.3. EEG signal processing using nonlocal mean method 

4.3.1. Parameter selection  

The three important parameters of NLM are the search neighbourhood half-width M, 
the patch half-width P and the bandwidth h. In this study, they were selected based on 
the maximum SNR standard using testing signals with additive noise. In theory, the 
larger the M, the better the performance of NLM will be. However, a large M leads to 
highly computational complexity. Experiments show that results are good for M 
=>1000. The value of P is easy to be selected when the signal is regular (e.g., for 
sinusoidal signal, P/T (length of period) = 0.92). However, the experiments show that 
the best value of P for irregular EEG signals is not fixed.  Our testing shows P=>50 is 
good enough. As it can be seen in Figure 4.2, the SNR increases slowly as the patch 
size increases when P>50. To reduce computation intensity, we choose P=50. The best 
bandwidth h is related to µ (the mean of absolute value of the amplitudes). The ratio 
of the µ/h is about 3.8. Therefore, the value h will be adjusted during the denoising 
process.  

 

 

Figure 4.2: The SNR increase slowly as the patch size increase when the P>50. 

4.3.2. Results for the simulated EEG signals 

The NLM method is first evaluated using simulated EEG signals which include sinus-
oidal signals with noise and then the real EEG signals from our database. This database 
consists of both filtered and unfiltered raw EEG data which were obtained from hos-
pitals in Toowoomba and Brisbane. These EEG signals were sampled at the frequency 
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of 128 for each channel (two channels) and each EEG sample was a 16-bit signed 
integer in units of 0.05μV.  

Before applying the NLM method to real EEG signals, the simulated EEG signals 
which includes sinusoidal waves (60Hz) with additive Gaussian white noise, spiking 
noise and specific frequency noise (50Hz) respectively served as the testing signals. 
Therefore, three sets of experiments were done to evaluate the NLM method. 

In each set of experiments, the NLM method, the best-practise WTD sym8 and db16 
methods were applied to denoise the same testing signals to compare the performance. 

The maximum amplitude of the Gaussian white noise was from 0 to 0.5µ (µ: the mean 
of absolute value of the signal amplitudes) in the first set of experiments. The noise 
level was distributed into 25 equal levels and the power of the additive noise was lin-
early rescaled from 1 to 25 units. The result in Figure 4.3 shows the SNRimp of NLM 
is much higher than those of sym8 and db16, the MSEimp of NLM is slightly lower 
than those of the other two methods. However, the PRDimp of NLM is higher than 
that of db16. 

 

                                                        (a)                                                                                                             (b) 

 

(c) 

Figure 4.3: Denoising results: (a) improved signal to noise ratio, (b) improved mean squared 
error ratio and (c) improved percentage distortion ratio. 
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                                                                                                 (a)          

                                                                                   

 

                                                                                                  (b) 
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(c) 

Figure 4.4: Comparison of signals with noise and denoised signals. Types of additive noise: 
(a) Gaussian white noise, (b) spiking noise and (c) additive 50Hz noise. 

 

Figure 4.4(a) and Figure 4.4(b) show the results of the NLM denoising method with 
additive Gaussian white noise and spiking noise. It can be seen that the denoised sig-
nals are as smooth as the original sinusoidal signal. The denoising result on specific 
frequency noise is also satisfactory as shown in Figure 4.4(c). The NLM method re-
duces the disparities of two neighbour waveforms efficiently. 

 

4.3.3. Results for the real EEG signals 

The real EEG signals with additive noise are used as the measured raw EEG signals. 
These real EEG signals were obtained when patients were anaesthetised in the awake, 
the light and the deep anaesthetic states. It is difficult to know the exact components 
of noise in the EEG signals, so the testing additive noise is a mix of Gaussian white 
noise, spiking noise and specific frequency noise (50Hz).  Since it is also not easy to 
know the magnitude of real noise, we use different noise levels for testing purposes. 
The maximum amplitude of the Gaussian white noise and additive 50Hz noise were 
from 0.01 to 0.49µ, and the maximum amplitude of spiking noise was from 0.05 to 
2.45µ. The noise level was distributed into 24 equal levels and the power of the addi-
tive noise was linearly rescaled from 1 to 24 units. 

As it can be seen from Figure 4.5, the EEG signals become lower in frequency and 
increasingly regular from awake to deep anaesthesia. Figure 4.6, Figure 4.7, and Figure 
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4.8 show the denoising results of EEG signals for the awake, the light and the deep 
anaesthetic state respectively. 

 

                                                     (a)                                                                                                (b) 

 

(c) 

Figure 4.5: EEG signals at different anaesthetic states: (a) Awake state, (b) Light anaesthetic 
state and (c) Deep anaesthetic state. 

 

(a)                                                                                                        (b) 

Figure 4.6: Denoising results of EEG signals at the awake state: (a) improved signal to noise ratio, and 
(b) improved percentage distortion ratio. 
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(a)                                                                                                         (b) 

Figure 4.7: Denoising results of EEG signals at the light anaesthetic state: (a) improved signal 
to noise ratio, and (b) improved percentage distortion ratio. 

 

 

(a)                                                                                                        (b) 

 Figure 4.8: Denoising results of EEG signals at the deep anaesthetic state: (a) improved signal to noise 
ratio, and (b) improved percentage distortion ratio. 

 

For all EEG signals at different anaesthetic states, the SNRimp of NLM was about 
0.93dB to 6.36dB higher than that of the WTD method when the power of noise was 
more than 11 units. Furthermore, the PRDimp of NLM was about 0% to 11.07% lower 
than that of WTD. On average, the SNRimps of NLM are 5.73dB, 1.55dB, and 0.81dB 
higher than those of WTD at awake, light anaesthetic and deep anaesthetic states re-
spectively. The PRDimps of NLM are lower than those of WTD and the differences 
between NLM and WTD at different anaesthetic states are 1.26%, 0.61%, and 0.46% 
respectively.  

It can also be seen from Figure 4.6 to Figure 4.8 that on average, the SNRimps of NLM 
for different anaesthetic states are approximately -20.18dB, -7.82dB and 1.05dB re-
spectively. The PRDimps are about 22.07%, 21.4% and 7.80% respectively when the 
power of noise was less than 11 units. 

Take patient 25 as an example, the denoising results are shown in Figure 4.9. It can be 
seen that the base line of denoised signal is much closer to X-axis than that of raw 
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signal in Figure 4.9(a). It means the low frequency noise (high amplitude) is eliminated 
efficiently. In addition, as shown in Figure 4.9(b), all the amplitudes of five basic fre-
quency bands are in the normal range according to Table 5.1. 

 

                                                                                                        (a)   

 

                                                                                                        (b)                                                   

Figure 4.9: Denoising results, (a) A comparison between the raw data and denoised data, and 
(c) Denoised data of basic frequency bands. 
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4.3.3.1. Results using improved MASP-NLM method 

As introduced in pervious sections, the NLM method is improved using STP and 
MASP. To evaluate STP-NLM and MASP-NLM methods, they were applied to de-
noise the same EEG signals mentioned above. Compared with the best parameter 
bandwidth h of STP-NLM and MASP-NLM with those of the original NLM, MASP-
NLM displayed a higher SNR when bandwidth was small (h<20) (see Figure 4.10(a)). 
It can be seen that MASP-NLM performs better when the signals change dramatically. 
In other words, MASP-NLM is more suitable for denoising signals with dramatic fluc-
tuation. However, MASP-NLM is more sensitive to patch size than NLM as shown in 
Figure 4.10(b). 

Further improvement of the denoising results was done by combining NLM and 
MASP-NLM denoising results using the uniformly weighted aggregation (UWA) 
method (Deledalle et al., 2012) to combine their strengths. Figure 4.11 shows that on 
average, the combined result is 0.99dB higher in SNRimp than that of original NLM 
and 1.30% lower in PRDimp than that of original NLM. 

 

    (a)                                                                                                      
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         (b) 

Figure 4.10: Comparison of NLM, STP and MASP: (a) Bandwidth h and (b) Patch P. 

 

 

                                                   (a)                                                                                                  (b) 
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(c) 

Figure 4.11: Comparison of NLM, MASP-NLM and MIX-NLM: (a) improved signal to noise ratio, 
(b) improved mean squared error ratio and (c) improved percentage distortion ratio. 

 

4.3.3.2. Results using the combined NLMWTD denoising method 

The NLM method is further improved using Wavelet transform to decompose the raw 
EEG signals so that relatively regular Wavelet coefficients can be filtered by NLM, 
then the noiseless EEG is reconstructed. Figure 4.12 shows the results of the combined 
NLMWTD denoising method. The results showed that when the power of noise was 
more than 11 units, the SNRimp of the combined NLMWTD was about 0.50dB to 
4.89dB higher than that of the original WTD, and the PRDimp was about 9.07% to 
18.44% lower than that of WTD. 

 

                                                  (a)                                                                                                    (b) 
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(c) 

Figure 4.12: Comparison of NLMWTD and WTD: (a) improved signal to noise ratio, (b) improved 
mean squared error ratio and (c) improved percentage distortion ratio. 

 

4.4.  Summary 

It is difficult to obtain pure EEG signals, and the exact noise components in EEG sig-
nals are also not clear. To test the performance of the NLM method, we first apply it 
to the simulated EEG signal which has known sinusoidal signal with additive noise to 
verify its performance. Three types of noise are added into sinusoidal signals to verify 
the performance of NLM. The results show that the NLM methods perform well in 
eliminating the added common Gaussian white, spiking and bases frequency noises 
(50Hz). 

In the experiment using real EEG signals, the noise with different power is added as 
the magnitude of noise is unknown. The results shown in Figure 4.6 to Figure 4.8 are 
compared with those of the most popular WTD sym8 and db16 methods in the EEG 
filtering area. It can be seen clearly that the NLM performs better. In addition, it can 
also be observed from the tendency that the performance of NLM becomes better as 
the power of additive noise increases. The outcome indicates that on average, the 
SNRimp of NLM is about 2.70dB higher than that of WTD and the PRDimp was about 
0.37% lower than that of WTD for real EEG signals. 

In Figure 4.6 to Figure 4.8, the results also show that the SNRimp of the EEG signals 
in different anaesthetic states increases and the PRDimp decreases as the deepening of 
anaesthesia level. That means the NLM performs better for EEG signals at the deep 
anaesthetic state than those at the light anaesthesia, and the denoising results of EEG 
signals at awake state are the worst. Therefore, it is concluded that the more regular 
the signals, the better performance of the NLM denoising method is. 

Compared among three different methods with the best bandwidth parameter h (the 
STP-NLM, the MASP-NLM and the original NLM), only MASP-NLM displayed a 
higher SNR. The results show that the NLM using MASP are more suitable for de-
noising the dramatic changes in EEG signals. The denoising results could be further 
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improved by combining NLM and MASP-NLM denoising results using the UWA 
method. 

In addition, the results of the combined NLM and WTD methods also show that its 
performance is improved than that of the original WTD method (0.50 dB to 4.89dB 
higher in SNRimp, 0 to 0.79 lower in MSEimp and 9.07% to 18.44% lower in 
PRDimp), especially, while the signal quality is poor. 
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5. DOA ASSESSMENT BASED ON TIMING 
CHARACTERISTICS OF EEG BETA 
FREQUENCY BAND 

The great nonlinearity and nonstationarity make the EEG signals hard to be processed. 
One effective way is to divide the EEG signals into a set of signals with different fre-
quency bands, and then applying time domain methods to analyse them. In this Chap-
ter, the most suitable frequency bands for DoA assessment using time domain methods 
are found. The proposed new DoA index is designed based on: the M parameters which 
are calculated from the amplitude of β Frequency band, the LZC parameters which are 
calculated from the power of β Frequency band and the PE parameters which are cal-
culated from the amplitude of βb frequency band. The new DoA index is developed 
and evaluated using the measured EEG data and recorded BIS readings.  

 

5.1. Frequency bands of EEG signals  

The EEG signals are normally defined as the congregation of five basic frequency 
bands (α, β, γ, δ and θ) (Rampil, 1998), These frequency bands are listed in the Table 
5.1.  

Table 5.1: Basic EEG frequency band (Rampil, 1998) 

EEG frequency band Frequency (Hz) Amplitude (µV) 
α (alfa) 7 - 13 20 – 60 
β (beta) 13 - 30 2 – 20 
γ (gama) 30 - 70 3 – 5 
δ (delta) 0.5 - 3.5 20 – 200 
θ (theta) 3.5 - 7 20 – 100 

 

Most DoA algorithms are designed based on the EEG characteristics of different fre-
quency bands. For the BIS monitor, the β-ratio is calculated based on the power spec-
trums of the frequency bands 30-47Hz and 11-20 Hz. Another important parameter, 
Synch-fast-slow from bispectral analysis, is based on the frequency bands of 0.5-47Hz 
and 40-47Hz. The frequency domain analysis of Narcotrend monitor is related to the 
α, β, δ and θ frequency bands. As for the AEP-monitor/2 monitor, the signals of 25-
65Hz frequency band are used to autoregressive model with exogenous input (ARX). 
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Its undisclosed algorithm is applied to frequency band (3-47Hz). Burst suppression is 
also analyzed using the signals of 1-35Hz frequency band. The total frequency band 
from 0.5 to 50Hz is used for PSA 4000 monitor. The frequency domain analysis 
method of Cerebral state monitors includes α-ratio, β-ratio and (β-α)-ratio which are 
more relevant to low frequency bands than high frequency bands. For the Entropy-
Module, the signals of frequency bands 0.8 to 32 Hz and 0.8 to 47Hz  are filtered out 
using FFT method (Musizza & Ribaric, 2010).  

The frequency bands of EEG signals for different DoA algorithms are not the same, 
and EEG channels obtained by different monitors are also different. For BIS monitors, 
Narcotrend monitors, Cerebral state monitors and Entropy-Module, only one channel 
EEG signal is used for their DoA algorithms. But the DoA assessment of PSA 4000 
monitors is based on 4 channels EEG data.  

In this study, the raw EEG data were obtained through BIS monitors. Therefore, two 
channels EEG data are available. The EEG data from both channels are calculated 
using different feature extraction methods. In this chapter, the middle and high fre-
quency bands are divided into 14 small frequency bands to find a more accurate cor-
relation between parameters and anaesthetic states:  

Table 5.2: 14 small frequency bands 

Basic frequency band Small frequency band Frequency (Hz) 

α (alfa) 
αa 7-10 
αb 10-13 

β (beta) 

β1 13-17 
β2 17-21.5 
β3 21.5-26 
β4 26-30 
βa 13-21.5 
βb 21.5-30 

γ (gama) 

γ1 30-38.5 
γ2 38.6-47 
γ3 47-55.5 
γ4 55.5-64 
γa 30-47 
γb 47-64 

 

In this chapter, the Daubechies Wavelets with index number 16 and Sym8 Wavelet 
method are selected to transform the EEG signals into different Wavelet coefficients. 
For one episode of EEG signal, the number of Wavelet coefficients decrease as the 
level of Wavelet coefficients increase, totalling eight levels for Sym8 and 16 levels for 
the db16 Wavelet method. The amount of Wavelet coefficients above level five is too 
small to obtain reliable parameters, only the first five levels of approximately Wavelet 
coefficients and detail Wavelet coefficients are obtained from EEG signals. 
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5.2. Feature extraction methods 

After dividing the denoised EEG signals into different frequency bands, time domain 
analysis methods are applied to extract the timing characteristics which are able to 
classify anaesthetic states. These time domain analysis methods should be low com-
pute-intensive. Otherwise, they are not suitable for real-time applications as high com-
pute-intensive leads to time delays. In addition, the parameters calculated using time 
domain analysis methods should have high correlations with different anaesthetic 
states. These correlations should also be robust for different patients. For these purpose, 
the mobility, permutation entropy and Lempel-Ziv complexity methods are proved 
valuable in this study.  

 

5.2.1. Mobility  

The mobility has shown that it is a promising method to extract the timing character-
istics of EEG signals, as normal timing characteristics such as mean, standard devia-
tion and differences of adjacent episodes of EEG signals have not an apparent rela-
tionship with different anaesthetic states (McBride et al., 2014). The mobility is de-
fined as below: 

M=ට
ఙభ
ఙబ

                                                          (5.1) 

where ߪ଴	is the variance, and ߪଵ	is the variance of the first derivative. In this research, 
we select 56s as the window size and 55s as the overlap for the mobility calculation. 
To easily compare the different feature extraction methods in this research, the same 
window size (56s) is selected for all the feature extraction methods including the M, 
PE, LZC, SODP, IPE and ISODP methods. 

 

5.2.2. Permutation entropy 

Olofsen et al. developed a composite permutation entropy index (CPEI) which reliably 
tracked the anaesthetic-related EEG changes and showed a promising measurement of 
g-amino-butyric acid (GABA)-ergic anaesthetic drug effect (Olofsen, Sleigh, & 
Dahan, 2008). Other studies (Jordan, Stockmanns, Kochs, Pilge, & Schneider, 2008; 
Silva et al., 2011) also consistently showed that the permutation entropy could be used 
to efficiently discriminate different levels of consciousness during anaesthesia, and to 
provide an index for the anaesthetic drug effect. 

The PE is calculated using the following algorithm. Firstly, define the EEG signal 
[x(i),i=1,2,...] into a m-dimension space X[x(i),x(i+L),...,x(i+(m-1)L)], m is the number 
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of  dimension, L is the time delay. Then sort the EEG series in the m dimension space 
in increasing sequence: 

[x(i+(݆ଵ-1)L)≤x(i+(݆ଶ-1)L)≤...≤x(i+(	݆௠-1)L)]                             (5.2) 

݆ଵ	, ݆ଶ, … , and	݆௠ show the new order of the series. For a m-dimension space, there are 
total m! orders. Each X[x(i),x(i+L),...,x(i+(m-1)L)] reflects one of these ‘m!’orders. 
Assume the probabilities of each order are ଵܲ, ଶܲ,...,	 ௄ܲ respectively. According to the 
Shannon Entropy, the permutation entropy PE(m) is calculated as follows: 

PE(m)= -∑ ௝ܲ
௄
௝ୀଵ ݈݊ ௝ܲ                                             (5.3) 

The smaller the PE(m) is, the more regular the time series are. In this research, we 
select 56s as the window size and 55s as the overlap to calculate permutation entropy. 

 

5.2.3. Lempel-Ziv complexity 

As an effective method for characterising the randomness of signals, the Lempel-Ziv 
complexity ሺܥܼܮሻ is a commonly used method for biomedical signals (McBride et al., 
2014).  

The ܥܼܮ	is calculated in the following steps. Firstly, the original signal (numerical 
sequence) need to be transformed into a 1/0 symbolic sequence S by comparing the 
signal to a threshold value. In this research, the median value of the signal is used as 
the threshold value. Whenever the signal is larger than the median value, one maps the 
signal to 1, otherwise, to 0.  

After converting the whole signal into its symbolic 1/0 sequence, distinct “words” can 
be obtained by parsing this sequence and they can be encoded. The sequence S = 
S1S2...Sn is rewritten as a concatenation W = W1−W2...Wm of m “words” chosen 
such that W1= S1= 0 or 1 and Wj (j=2, 3…m) is the shortest “word” that has not ap-
peared previously. Therefore, the number of the encoded distinct “words” (m) is de-
cided by timing characteristics of the symbolic 1/0 sequence. The value of Lempel-
Ziv complexity is relevant to the number of the encoded distinct “words” (m) and the 
length of the signal n. It is defined mathematically as 

= ܥܼܮ                        
௠ሺ௟௢௚మ

೘ାଵሻ

௡
                                                   (5.4) 

In this research, we select 56s as the window size and 55s as the overlap. Based on 
methods presented by previous researchers (Snaedal et al., 2010), the complexity fea-
tures were computed using five-second small windows with 50% overlap. The  ܥܼܮ	 
value for one 56s window size signals is the mean of ܥܼܮs of 21 small window size 
signals. 
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5.3. DoA index design based on time domain features 

The mobility, Lempel-Ziv complexity and PE values are calculated from different fre-
quency bands and all of them constitute the parameters pool.  To find out the optimal 
parameter set for index designing, the regression technique is used to verify the corre-
lation between the parameters and the anaesthetic states (referred to BIS value). The 
coefficient of determination (R squared) is used to evaluate the correlation between 
the parameters and BIS. To develop more reliable DoA algorithms, the correlation 
between parameters and different anaesthetic states are also analysed. The parameters 
which show the best performances of DoA assessment for different anaesthetic states 
are selected as the best parameter set. The new DoA index is designed based on the 
best parameter set. 

 

5.4. Experimental simulation and result evaluation 

5.4.1. Sample selection 

To accurately measure the correlation between parameters and different anaesthetic 
states, the sample selected for parameter evaluation should be representative and di-
verse. As all of the data are collected from the anaesthetic patients, the period of an-
aesthetic state is usually much longer than the awake state. The data selected for the 
sample should balance both the anaesthetic states and awake states. In addition, the 
beginning of EEG data is not reliable in most cases. For example, at the beginning of 
the BIS monitor often displayed a series of useless values (-3276.8 ‘excessive artifact 
detected in signal’) or always stayed at 97.7 without change and the SQI index values 
in some cases are even lower than 15 at the beginning. When we select the sample, we 
can choose the data whose SQI index values are high enough and the BIS values and 
raw EEG data are reasonably good at the beginning. Based on the consideration men-
tioned above, the data of Patient 2, Patient 3, Patient 4, Patient 5 and Patient 7 are 
selected to make up the sample (16693 seconds EEG data totally).  Their data are 
shown in Figure 5.1, the lengths of different anaesthetic states are similar to with each 
other. 
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                                                   (a)                                                                                               (b) 

 

                                                 (c)                                                                                                     (d) 

 

 

（e） 

Figure 5.1: Sampled BIS data, (a) patient 2, (b) patient 3, (c) patient 4, (d) patient 5 and (e) 
patient 7. 

 

5.4.2. Parameter selection 

To evaluate the correlation between parameters and anaesthetic states, the coefficient 
of determination (R squared) is used. 

In statistics, R squared ( ܴଶ), indicates how well data fit a statistical model. In our 
study, the statistical model should be a line or a curve. The definition of the coefficient 
of determination is given below 

ܴଶ ൌ 1 െ
∑ ሺ௬೔ି௙೔ሻమ೔

∑ ሺ௬೔ି௬തሻమ೔
		                                         (5.5) 
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where ݕ௜	is the BIS value.  ௜݂ 	 is the modelled value which is calculated using the sta-
tistical model and parameters, i.e. ௜݂ ൌ 1ܥ ൅ 2ܥ ∗  ௜, where C1 and C2 areݎ݁ݐ݁݉ܽݎܽܲ
constants. ݕത is the mean of ݕ௜, and the R squared ranges from 0 to 1. The greater the R 
squared is, the higher correlation between the parameter and BIS value is. 

To calculate parameters for different frequency bands, the sym8 Wavelet method and 
db16 Wavelet method are applied to decompose the denoised EEG signals into Wave-
let coefficients firstly. The R squared of different parameters is calculated for the level 
5 sym8 Wavelet and db16 Wavelet coefficients respectively. The results are showed 
in Figure 5.2. 

 

 

                                                 (a)                                                                                                   (b) 

 

（c） 

Figure 5.2: Comparisons of different Wavelet coefficients from Channel 1 and Channel 2 sig-
nals, (a) Mobility, (b) Permutation entropy and (c) Lempel-Ziv complexity. The No.1 to No.10 
of Wavelet coefficients represent level 5 db16 Wavelet coefficients. They are level 1 to level 
5 approximately Wavelet coefficients and then detail Wavelet coefficients respectively. The 
No.11 to No.20 of Wavelet coefficients represent level 5 Sym8 Wavelet coefficients. 

As shown in Figure 5.2, the highest R squared of Channel 2 for mobility, permutation 
entropy and Lempel-Ziv complexity are always greater than those of Channel 1. It 



CHAPTER 5: DOA ASSESSMENT BASED ON TIMING CHARACTERISTICS 

OF EEG BETA FREQUENCY BAND 

56 

means that the characteristics of EEG signals from Channel 2 are more correlated to 
DoA states than those from Channel 1. Overall, the R squared based on Wavelet coef-
ficients is too small to be selected as the best parameters for new index design. 

To further explore the relationship between the parameters and frequency bands, the 
EEG signals are divided into five basic frequency bands (α, β, γ, δ and θ), 14 small 
frequency bands mentioned in Table 5.2 and βγ (21.5-38.5Hz). The original signal 
bands are also added as a reference. As a result, we finally obtained 5+15+1=21 sets 
of frequency bands from each episode of EEG signals. The mobility, Lempel-Ziv com-
plexity and PE values are calculated based on both amplitude and power of each basic 
frequency band. The regression results of channel 1 and channel 2 are shown in Figure 
5.3. 

 

                                                        (a)                                                                                             (b) 

 

（c） 

Figure 5.3: Comparisons of different frequency bands from Channel 1 and Channel 2, (a) Mo-
bility, (b) Permutation entropy and (c) Lempel-Ziv complexity. The No.1 to No.21 of fre-
quency bands represent the amplitude of δ (0.5- 3.5Hz), θ (3.5-7Hz), α (7-13Hz), β (13-30 
Hz), γ (30-70 Hz), original signal (0.01-70Hz), βb (21.5-30Hz), γ1 (30-38.5Hz), γ2 (38.6-
47Hz), γ3 (47-55.5Hz), γ4 (55.5-64Hz), γa (30-47Hz), γb (47-64Hz), βa (13-21.5Hz), αa(7-
10Hz), αb(10-13Hz), β1(13-17Hz), β2(17-21.5Hz), β3(21.5-26Hz), β4(26-30Hz), and 
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βγ(21.5-38.5Hz) respectively. The No.22 to No.42 of frequency bands represent the power of 
the frequency bands mentioned above. 

 

It can be seen from Figure 5.3, the results from Channel 2 are much better than those 
of Channel 1. For example, the highest R squared calculated from the power of β (13-
30 Hz) is 0.3436 for Channel 2. However, the highest R squared for Channel 1 is only 
0.2281. The difference is more apparent for permutation entropy parameters that the 
highest R for Channel 2 (0.6050) is 0.2376 higher than that for Channel 1 (0.3674). 
For the parameters of Lempel-Ziv complexity, the highest R squared calculated from 
the power of β (13-30 Hz) is 0.3702 for Channel 2 which is also higher than that for 
Channel 1 (0.3008). To sum up, based on the timing characteristics analysis methods 
and samples in this research, the parameters calculated from Channel 2 is much more 
valuable for doing DoA assessment than those from Channel 1.  

The synchronization of Channel 1 and Channel 2 are also tested to find out a higher R 
squared for the parameters. Two kinds of cross features are calculated. One is based 
on the parameters calculated from two different channels, and the other one is based 
on the original EEG signals of two different channels. The results are showed in Table 
5.3. 

 

 

 

 

Table 5.3: The highest R squared based on cross features 

 
The highest R squared 

 
M 

 
PE 

 
LZC 

Ch2P*-Ch1P 0.1317 0.2602 0.0566 
(Ch1P+Ch2P)/2 0.3139 0.5874 0.3516 

Absolute value of (Ch2P/Ch1P) 0.1257 0.2628 0.0605 
Absolute value of (Ch2EEG**-Ch1EEG) 0.2503 0.3355 0.3625 

(Ch1EEG + Ch2EEG)/2 0.1250 0.5883 0.4050 
Absolute value of (Ch1EEG**/Ch2EEG) 0.0558 0.3290 0.2352 

* Ch2P: The parameters calculated from Channel 2; **Ch2EEG: The amplitude of  Channel 2 signals. 

As shown in the table above, the best R squareds of cross features are always smaller 
than those from Channel 2. Therefore, we only use the parameters calculated from 
Channel 2 to design the new DoA index. 
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5.4.3. New DoA design 

It can be seen from Figure 5.3, the parameters with the highest R squared are the mo-
bility values which are calculated from the power of β (13-30 Hz) frequency band, the 
PE values which are calculated from the amplitude of βb (21.5-30Hz) frequency band 
and the Lempel-Ziv complexity values which are calculated from the power of β (13-
30 Hz) frequency band. They are selected to make up the best parameters pool for new 
DoA design. In this research, we also analysed the relationship between the perfor-
mances and the best parameters in different anaesthetic states. The original three best 
parameters are separated into different groups according to different anaesthetic ranges 
(referred to BIS value, for example, BIS value 70-99), and then the R squareds for 
three parameters are calculated for different anaesthetic ranges respectively. The re-
sults are shown in Figure 5.4. 

 

                                                                                                      (a)     
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                                                                                                     (b) 

Figure 5.4: Performance of the three best parameters for different anaesthetic ranges, (a) In-
creased anaesthetic range, (b) Decreased anaesthetic range. Increased anaesthetic range: the 
anaesthetic range from BIS range (2-3), BIS range (2-4) to BIS range (2-99); Decreased an-
aesthetic range: from BIS range (1-99), BIS range (2-99) to BIS range (98-99). 

It can be seen from Figure 5.4, the R squared of three parameters reaches the peak for 
the BIS range (2-53) and the R squared of three parameters becomes smallest for the 
BIS range (45-99). In this research, to further accurately assess the DoA for different 
anaesthetic states, the whole parameters pool are divided into two parts: the parameters 
refer to the BIS range (1-55) and the parameters refer to the BIS range (55-100). The 
linear regression analysis is done between the parameters and two different BIS range. 
The best R squared is shown in Table 5.4. 

 

Table 5.4: The highest R squared based on different anaesthetic range 

 
The highest R 

squared  
(Frequency band) 

 
BIS (1-55) 

 
BIS (55-100) 

 
BIS (1-100) 

M  0.4758 (power of α) 0.5957 (amplitude of 
β) 

0.3436 (power of β) 

PE 0.6548 (power of βa) 0.6878 (amplitude of 
β) 

0.6050 (amplitude of 
βb) 

LZC  0.5595 (power of β) 0.4425 (amplitude of 
γ4) 

0.3702 (power of β) 
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As shown in the table above, the performance of PE parameters is always better (R 
squared is higher than 60), however, only the M parameters calculated from the am-
plitude of β Frequency band show a high R squared (0.5957)  for the BIS range (55-
100), 5105 data points. As for LZC parameters, the best R squared calculated from 
power of β Frequency band is 0.5595 for the BIS range (1-55), 11868 data points. The 
linear relationship between these three parameters with the BIS value is shown in Fig-
ure 5.5. 

 

 

                                                  (a)                                                                                                   (b) 

 

(c) 

Figure 5.5: The linear relationship between parameters with BIS value, (a) Mobility, (b) Per-
mutation entropy and (c) Lempel-Ziv complexity. The best-fit line is bold and black lines cor-
respond to the 95% confidence boundaries. This fitted linear relation indicates that the two 
methods are extremely correlated. 

The scatter plot graphs for the parameters and BIS are shown in Figure 5.5 for the 
sample (five patients, 16973 data points). Black line shows 95% confidence 
boundaries around the linear pink bold line. Few data points go beyond the 95% 
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confidence boundaries. As for the mobility, Linear equation is fitted to all data points 
during the BIS range (55-100) with the relation as BIS = -93.3097 + 175.3189 * M. 
As for the permutation entropy, Linear equation is fitted to all data points with the 
relation as BIS = 1553.2 - 854.9 * PE. As for the Lempel-Ziv complexity, Linear 
equation is fitted to all data points during the BIS range (1-55) with the relation as BIS 
= 289.0848 - 635.2348 * LZC.  

It can be seen from Figure 5.5(b), the linear relationship between PE parameters with 
BIS values is weak during the BIS range (80-100), therefore, when we design the new 
DoA index, the mobility parameters are used to adjust the DoA assessment result of 
PE parameters during the awake and light anaesthetic states. In addition, the Lempel-
Ziv complexity parameters are used to adjust the DoA assessment result of PE 
parameters during the deep anaesthetic states. The new Tindex is designed as follows: 

Tindex= 
ଵହହଷ.ଶି଼ହସ.ଽ	∗	௉ாା௧భ∗ሺିଽଷ.ଷଵାଵ଻ହ.ଷଶ∗ெሻା௧మ∗ሺଶ଼ଽ.଴଼ି଺ଷହ.ଶଷ∗௅௓஼ሻ

ଵା௧భା௧మ
        (5.6)  

According to BIS = 1553.2 - 854.9 * PE, When PE is equal to 1.7596, BIS is equal to 
50. The 1.7596 of PE value is used as the threshold. According to BIS = -93.3097 + 
175.3189 * M, When M is equal to 0.8459, BIS is equal to 55. When M is equal to 
1.1026, BIS is equal to 100. If PE <= 1.7596 and 0.8459 < M < 1.1026, ݐଵ=1, otherwise, 
 ,ଵ=0. According to BIS = 289.0848 - 635.2348 * LZC, When LZC is equal to 0.4535ݐ
BIS is equal to 1. When LZC is equal to 0.3685, BIS is equal to 55. If PE > 1.7596 and 
0.3685 < LZC < 0.4535, ݐଶ=1, otherwise, ݐଶ=0.  

The threshold is not 1.7561 (Corresponding BIS=55) because the DoA assessment for 
BIS=55 range will be inaccurate if the threshold is set as 1.7561. According to the tests 
on the sample, the Pearson correlation coefficients between the Tindex and the BIS 
index changes as the corresponding BIS values of the threshold increase. The 
relationship is shown in Figure 5.6. When the 1.7596 of PE value is used as the 
threshold, the Tindex show the highest corelation with BIS index. 
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Figure 5.6: The Pearson correlation coefficient and the BIS value of threshold 

The Tindex is normalised in the range of 0-100. If the Tindex value is more than 100, 
the Tindex value is equal to 100, and if the Tindex value is less than 0, the Tindex 
value is equal to 0.  

 

5.4.4. New DoA evaluation 

5.4.4.1. The correlation between Tindex and BIS index 

The new Tindex is evaluated by comparing with the record BIS. The Pearson correla-
tion method will be used to examine the correlation of Tindex and BIS index. It was 
widely applied for evaluating the correlation of new DoA index and BIS index 
(Shalbaf, Behnam, Sleigh, Steyn-Ross, & Steyn-Ross, 2014). The definition of the 
Pearson correlation coefficient is given below: 

ݎݎ݋ܿ ൌ
∑ ሺ௫ି௫̅ሻሺ௬ି௬തሻಿ

ඥ∑ ሺ௫ି௫̅ሻమ ∑ ሺ௬ି௬തሻమಿಿ
		                                         (5.7) 

where the x is the new index value, the y is the corresponding BIS value. The ̅ݔ and ݕത 
is the mean of x and y. The value of Pearson correlation coefficient is between 1 and -
1. If the corr is closed to 1, it means that the two indexes are highly correlated. On the 
other hand, if the corr equals (-1), it means that there is no correlation at all between 
the indexes. If the corr equals 0, it means that there is a lack of correlation between 
two indexes. 
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The Tindex and BIS index are showed in Figure 5.7. The high Pearson correlation 
coefficient (ܿݎݎ݋୔ୟ୲୧ୣ୬୲	ଶିହ,଻=0.8227) show that there is a very close correlation between 
the proposed index and the BIS during different anaesthetic states.  

 

Figure 5.7: Tindex and BIS index 

In addition to the sample, the performances of the new index for another random se-
lected 12 patients (Patient 9 to Patient 20) are evaluated. The Pearson correlation co-
efficients for 12 cases are shown in Figure 5.8. 

 

Figure 5.8: The Pearson correlation coefficients for 12 cases 

 

The average Pearson correlation coefficient for 11 patients (No.9-14, No 16-20) is 
0.8045. However, the performances of new Tindex are not good enough for Patient 15. 
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According to the SQI index of Patient 15, the signal quantity of Patient 15 is poor and 
the BIS did not have any valid outputs at the beginning of awake states. The unreliable 
BIS may cause the low Pearson correlation coefficient for Patient 15. 

 

5.4.4.2. Patient’s state in the case of poor signal quality 

We also evaluated the performance of the new Tindex in poor signal quality cases 
(according to Signal Quality Indicator). When SQI is lower than 15, the BIS index 
could not output the valid values on the screen. In these cases, the value -3276.8 was 
labeled as a notice "excessive artifact detected in signal" (Nguyen-Ky et al., 2013a).  

In our study, the Tindex shows the DoA values in most cases where the BIS index 
could not. In Figure 5.9(a), for patient 35, The BIS index is always -3276.8 from 556 
to 574 seconds, but the Tindex has the assessed DoA value clearly during this period.  
In addition, where the BIS index shows significant upward trends from 532 to 538 
seconds and from 582 to 588 seconds, but the Tindex is flat in general during this 
period. The same situation also happened during 1156 to 1311 seconds of patient 37 
in Figure 5.9(b). According to the anesthetists’ record, there was no recovery of 
consciousness during this period. According to the low SQI values about one minute 
before these significant upward trends of the BIS, the BIS index might be influenced 
by noise such as Electromyography. Therefore, the new Tindex is more reliable in this 
case. 

The data of patient 37 is shown in Figure 5.9(b). The BIS index is always -3276.8 from 
900 to 918 seconds, from 984 to 991 seconds, from 1097 to 1131 seconds, from 2340 
to 2345 seconds and from 2368 to 2379 seconds. But the Tindex has the assessed DoA 
value clearly during this period. It can also be seen from the Figure 5.9(c), the Tindex 
has the assessed DoA value clearly from from 1269 to 1287 seconds but the BIS failed 
to output any useful result. According to the anesthetists’ records, there was no change 
of patients’ anesthestic states during this period. Based on that, the new value of 
Tindex is more reliable.  
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                                                  (a)                                                                                                   (b) 

 

(c) 

Figure 5.9: Comparison of the Tindex and BIS index, (a) patient 36, (b) patient 37 and (c) 
patient 22. 

 

5.4.4.3. Time delay from deep anaesthesia to moderate anaesthesia 

To evaluate the performance of the new Tindex, the time delay (deep anaesthesia to 
moderate anaesthesia) of both Tindex and BIS index are measured. The new index 
shows a very high correlation with BIS during the states of awake, light anesthesia and 
deep anaesthesia. However, the new Tindex shows an earlier reaction than BIS index 
when the patient from deep anaesthesia to moderate anaesthesia. Take patients 12 and 
16 and 26 as examples, the comparison of the Tindex and BIS index is shown in Figure 
5.10. 

 

                                                  (a)                                                                                                   (b) 
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（c） 

Figure 5.10: Comparison of the Tindex and BIS index, (a) patient 12, (b) patient 16 and (c) 
patient 26. The blue square frames show the earlier reaction of Tindex compared with the BIS. 

This kind of earlier reaction appears in all the cases of the 12 patients. For the index 
value change (from 20 to 50), we assume that an index value of 35 corresponds to the 
inflection point where the patient’s anaesthetic states changed from deep anaesthesia 
to moderate anaesthesia. In some cases, there is no significant upward trend near 35, 
so we compare the significant upward trends between BIS and Tindex. The time 
difference and Pearson correlation coefficients for 12 patients are indicated in Table 
5.5.  

 

Table 5.5: Pearson correlation and time response comparison between Tindex and BIS 

Patients 9 10 11 12 13 14 15 16 17 18 19 20 

Time difference 
(sec) 

128 122 33 264 223 103 168 126 169 41 74 125 

Pearson 
correlation 

0.80 0.83 0.79 0.77 0.87 0.89 0.53 0.67 0.89 0.80 0.71 0.84 

 

The time difference from deep anaesthesia to moderate anaesthesia is about 33 to 264 
seconds. Although it is hard to assess the exact time when patients’ anaesthetic states 
change from deep anaesthesia to moderate anaesthesia according to anaesthetists’ 
records,  the Tindex, Sindex (Chapter 6, Figure 6.2), Iindex (Chapter 7, Figure 7.3) all 
show the earlier reactions compared with BIS index. It also can be proved by the 
research outcomes of other members in our research group. It can be seen from Figure 
5.11, the BIS index also shows a later reaction when patients’ anaesthetic states change 
from deep anaesthesia to moderate anaesthesia compared with B஽௢஺. These types of 
later reactions for BIS index also appear in Fig. 13 and Fig.15 of Nguyen-Ky et al.’s 
paper (Nguyen-Ky et al., 2013a). 
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Figure 5.11: Comparison of the B஽௢஺  and BIS index (Nguyen-Ky et al., 2013a).The blue 
square frame shows the later reaction of BIS index compared with the B஽௢஺. 

Therefore, the Tindex is more reliable to show the change from deep anaesthesia to 
moderate anaesthesia. The early warning is useful for anesthesitics to control the time 
of surgical operation. 

 

5.5. Summary 

In this chapter, the mobility, Lempel-Ziv complexity and permutation entropy methods 
are applied to obtain the valuable parameters for DoA assessment. After the parameters 
are calculated from different frequency bands, the proposed new DoA index is de-
signed based on: the M parameters which are calculated from the amplitude of β fre-
quency band, the LZC parameters which are calculated from the power of β frequency 
band and the PE parameters which are calculated from the amplitude of βb frequency 
band. Then the new DoA index is evaluated in simulation using the measured EEG 
data and recorded BIS readings. 

The results show that the average Pearson correlation coefficient for 11 patients is 
0.8045. The results also show a 33-264 seconds earlier response than BIS during an-
aesthetic states changes. Furthermore, compared with BIS, the proposed new index 
can assess the DoA while the EEG is corrupted with noise. For example, even when 
the SQI value is below 15 and the BIS failed to output any valid value, the new DoA 
index works well. This means the proposed index can estimate the patient’s anaesthetic 
states in poor signal quality.   
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6. MONITORING DOA USING SECOND ORDER 
DIFFERENCE PLOT METHOD 

This chapter introduces the second order difference plot method and its application for 
EEG signal processing and DoA monitoring. First, a brief review about SODP method 
and its applications in EEG signal processing are provided. Then the SODP method is 
applied to identify different stages of anaesthesia. Finally, a new DoA Sindex is based 
on SODP method is developed and evaluated.  

 

6.1. Second order difference plot method and EEG signal 
processing 

As a graphical representation of successive rates against each other, the second order 
difference plot provides a rate of variability of data. The SODP method has been used 
for the analysis of EEGs and classification of epileptic signals (Pachori & Patidar, 
2014). The SODP of intrinsic mode functions provides an elliptical structure, and the 
feature space formed using ellipse area parameters has given good classification per-
formances. However, to our best knowledge, it has not been applied to assess DoA (T. 
Li, Wen, & Liu, 2015). 

In this study, the SODP method is applied to design a new DoA index. Because the 
BIS index is an important reference or benchmark when developing a new DoA index, 
the performance of the new index is evaluated by comparing with the BIS index in the 
case of poor signal quality. 

The denoised EEG signals, BIS values and signal quantity index were collected from 
21 adult patients (Patient number:12, 13, 17-35, age 22-83 year, weight 60-130 kg. 
gender 9F/12M). In this study, the fast Fourier transform method is applied to divide 
the denoised signal into a set of signals with five basic frequency bands. We also divide 
the high frequency band into eight sub-frequency bands to find more useful parameters 
to design a new DoA index. The original denoised signal is also added in the test as a 
reference. As a result, a total number of 5+8+1=14 sets of frequency bands from each 
episode of the EEG signal are obtained.  

A moving window technique is applied to calculate the SODP, mobility (M), LZC 
(McBride et al., 2014) and PE value. We select 56s as the window size and 55s as the 
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overlap in this study. The calculations based on this window size lead to a satisfactory 
DoA assessment results based on our study.  

We calculate the SODP (Pachori & Patidar, 2014) for EEG each second. The SODP 
of signal x(n) is obtained by plotting X(n)=x(n+1)−x(n) against Y(n)=x(n+2)−x(n+1):  

       SX=ට
∑ ௑ሺ௡ሻమ೙షభ
ಿసబ

ே
                                                     (6.1) 

SY=ට
∑ ௒ሺ௡ሻమ೙షభ
ಿసబ

ே
                                                      (6.2) 

SXY=
ଵ

ே
∑ܺሺ݊ሻ ܻሺ݊ሻ                                                 (6.3) 

         D=  ඥሺܵܺଶ ൅ ܻܵଶሻ െ 4ሺܵܺଶܻܵଶ െ ܻܵܺଶሻ                                  (6.4)   

   SODP= |log (3πඥሺܵܺଶ ൅ ܻܵଶ ൅ ሻሺܵܺଶܦ ൅ ܻܵଶ െ ሻ ) |                   (6.5)ܦ                             

The SODP value of one window is the mean of 56 SODP values. For each set of fre-
quency band, we calculate the SODP, M, LZC and PE values based on the amplitude 
and power.  

 

6.2. Parameter selection  

To assess the effects of the SODP values and find out the optimal feature set for index 
designing, the regression technique is used to verify the correlation between the fea-
tures extracted and the anaesthetic states (referred to the BIS values). Same as the pre-
vious chapter, the R squared is used to calculate the correlation between the SODP and 
the BIS.  

In the following experiments, we calculate the SODP of the EEG signals from each 
patient and then combine them together. After assessing the correlation between the 
SODP sets and the BIS, we selected an optimal SODP set which shows the linear re-
lationship with the Bispectral BIS. Finally, the R squared between the new DoA index 
with the BIS index for different patients are also calculated to show the performance 
of new DoA index. 

To create a reliable sample set, we use 13221 seconds denoised signals from 5 patients 
(patient No. 12, No. 20, No. 24, No. 25 and No. 32). The denoised signals are divided 
into five basic frequency band and eight high frequency bands using fast Fourier trans-
form. The SODP, M, LZC and PE values are calculated and compared with their cor-
responding BIS values using the following linear regression function:  

 					 ௜݂=C1+C2*ܲܽݎ݁ݐ݁݉ܽݎ௜.                (6.6)                        



CHAPTER 6: MONITORING DOA USING SECOND ORDER DIFFERENCE 

PLOT METHOD 

70 

where C1 and C2 are constants. They can be obtained using Matlab regression function. 
The SODP, M, LZC or PE values are calculated for each 56-second signal. The results 
of 14 frequency bands are shown in Figure 6.1. 

 

 

Figure 6.1: The R squared of 14 frequency bands for different feature extraction methods. The 
No.1 to No.14 of frequency bands represent the amplitude of δ (0.5- 3.5Hz), θ (3.5-7Hz), α (7-
13Hz), β (13-30 Hz), γ (30-70 Hz), original signal (0.01-70Hz), βb (21.5-30Hz), γ1 (30-
38.5Hz), γ2 (38.6-47Hz), γ3 (47-55.5Hz), γ4 (55.5-64Hz), γa (30-47Hz), γb (47-64Hz) and βa 
(13-21.5Hz) respectively. The No.15 to No.28 of frequency bands represent the power of the 
frequency bands mentioned above.  

 

As it can be seen in Figure 6.1, the R squared of high frequency bands (γ, β) is much 
higher than that of low frequency bands (δ, θ and α). The average R squared of the 
SODP values is 0.1125 which is much higher than others (M: 0.0429, PE: 0.0818 and 
LZC: 0.0604). In addtion, the R squareds of SODP values for 16 different frenquency 
bands are more than 0.1. However, there are only eight different frenquency bands for 
LZC, three for M, and seven for PE with the R squared higher than 0.1. The 
premutation entropy and complexity measures are proved to be able to reliably track 
the anaesthetic-related EEG changes (Olofsen et al., 2008; X.-S. Zhang, Roy, & Jensen, 
2001) and assess the different anaesthetic states (Silva et al., 2011). Therefore the 
SODP values can be used as measure for discriminating between different levels of 
consciousness during anesthesia depth assessment. 

 

6.3. New index design 

A new DoA index using the regression technique is designed as follows: 
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						Sindex=	C0+∑ ܦܱܵ ௡ܲ
௄೙

௡ ∗                          ௡                                (6.7)ܥ

where C0 to Cn are constants. The value of Kn is [-3, -2, -1, 2, 3]. The best SODP value 
calculated from the amplitude of γ2 (38.6-47Hz), is selected as the ܱܵܦ ଵܲ and then we 
add other suitable SODP values. To reduce the redundancy and computation complex-
ity of the new DoA algorithm, we only used the best seven SODP values to design the 
new index. In our experiments, the best SODP parameter set is from seven different 
frequency bands. The diversification can increase the robustness of the new Sindex.  
The seven SODP values (ܱܵܦ ଵܲ	to	ܱܵܦ ଻ܲ) are calculated from the amplitude of γ2, 
the powers of γ, βb, γ3, and original signals, the amplitude of α and the power of γ4, 
respectively. The value of Kn is also decided by the best R squared. After tested with 
different Kn for the SODP set, the regression results only show a little difference. 
Therefore it is not very meaningful to find an optimatise K.  Finally, the new index is 
defined as follows, 

Sindex	=	14.51+16.29*ܱܵܦ ଵܲ‐1.01*ܱܵܦ ଶܲ‐6.07*ܱܵܦ ଷܲ‐14.08*ܱܵܦ ସܲ		

ܦܱܵ*21.10+																			 ହܲ‐8.63*ܱܵܦ ଺ܲ+6.65*ܱܵܦ ଻ܲ																																																	
(6.8)	

The Sindex is normalised at the range of 0-100. If the Sindex value is more than 100, 
it is set to 100. Likewise, if the Sindex value is less than 0, it is set to 0.  

 

6.4. New DoA evaluation 

The Sindex is evaluated by comparing with the recorded BIS. The average R squared 
between the new DoA index and the BIS index for 21 patients is 0.5375. In addition 
to the five patients (No. 12, No. 20, No. 24, No. 25 and No. 32) applied during the 
above experimental process, the performances of the Sindex for another 16 patients 
are also evaluated. Take patient 13, 19 and 34 as examples, the new index  shown in 
Figure 6.2 has a very high correlation with the BIS during the states of awake, light 
anesthesia and deep anesthesia. 
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                                                  (a)                                                                                                   (b) 

 

(c) 

Figure 6.2: Comparisons of the Sindex and BIS index, (a) patient 13 (R squared =0.6593), (b) 
patient 19 (R squared =0.422), and (c) patient 34 (R squared =0.4954). 

When SQI is lower than 15, the BIS index could not display the values on the screen. 
In this study, the Sindex shows valid index values in cases which the BIS index cannot. 
As it can be seen in Figure 6.3(a), for patient 22, the BIS index are always -3276.8 
from 1328 to 1346 seconds, but the Sindex can assess the DoA during this period. 
Another similar case is also shown in Figure 6.3(c). The BIS index is always -3276.8 
from 900 to 918 seconds, from 984 to 991 seconds and from 1097 to 1131 seconds. 
But the Sindex has the assessed DoA value clearly during this period. According to 
the BIS value before and after this period, the value of Sindex is reliable. In the case 
of patient 23, the comparison of the new proposed index, Sindex and the BIS values is 
showed in Figure 6.3(b). From 0 to 81 seconds, the invalid BIS values can not be 
displayed on the monitor screen. However, the Sindex shows the change from awake 
to deep anaesthesia state. This is consistent with the clinical observations according to 
the anesthetist’s record (the Parecoxib (40 mg) and Propofol (160 mg) were used about 
1 minute before the BIS index starting to show some valid values).  

 

                                                   (a)                                                                                                   (b) 
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（c） 

Figure 6.3: Comparison of Sindex and BIS index, (a) patient 22, (b) patient 23 and (b) patient 
37. 

 

6.5. Discussion 

Comparing with BIS, the beginning of the new Sindex is not stable in some cases. One 
important reason is that when designing the new indexes, the regression technique is 
used to find the best coefficients which make the new index highly correlate to the BIS 
index.  However, the beginning of BIS is not reliable in most cases because the calcu-
lation of BIS needs a period of time to start the first valuable value. It can be proved 
that the BIS values at the beginning of awake states are a series of useless value or 
always 97.7 without change. It is hard to know how many of them are useless, so we 
cannot delete them simply. Another reason is that all of the data are collected from the 
anaesthetic patients, thus the period of anaesthetic state is much longer than the awake 
state. As a result, the regression results from the sample can only obtain the high R 
squared in anaesthetic state, but small R squared in awake state. Not only the amount 
of the awake state data, but also the quality of the awake state data from the sample 
limit the outcome of regression technique. Although the optimization of samples has 
already been tried in Chapter 4, more work can be done in the future research. The 
larger sample size and higher quality samples are helpful to increase the robustness of 
the new indexes. 

In addition, although R squared and Pearson correlation coefficients are widely used 
for assess the correlation among DoA researchers (Nguyen-Ky et al., 2013a; Shalbaf 
et al., 2014), the performance of them are not good for reflecting the real correlation 
in some cases from our study, especially, for the range with dramatic change of anaes-
thetic states. In future research, separating the different anaesthetic states for correla-
tion evaluation or improve correlation evaluation method may lead to a more accurate 
correlation evaluation. 
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6.6. Summary 

In this study, the SODP method is introduced and applied to assess DoA. The new 
DoA index is designed based on seven SODP parameters calculated from the 
amplitudes of γ2 (38.6-47Hz) and α (7-13Hz), and the powers of γ (30-70Hz), βb (21.5-
30Hz), γ3 (47-55.5Hz), γ4 (55.5-64Hz) and original signals. Compared with the BIS, 
the proposed Sindex shows a very close correlation during different anaesthesia states. 
In addition, the Sindex can assess the DoA while the signal quality is poor and the BIS 
has no valid output. 
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7. DEPTH OF ANAESTHESIA ASSESSMENT 
USING INTERVAL PERMUTATION ENTROPY 
AND INTERVAL SECOND ORDER 
DIFFERENCE PLOT TECHNIQUES  

 

This chapter presents a new method to apply the interval permutation entropy and in-
terval second order difference plot techniques to assess the depth of anaesthesia. 
Firstly, the denoised electroencephalograph signals are decomposed into 13 different 
frequency bands.  The permutation entropy and second order difference plot values of 
each frequency band are calculated. The PE and SODP values of high frequency bands 
(21.5-47Hz) show the highest linear relationship with the anaesthesia states, therefore 
they are selected to form the parameter set. Then the SODP and PE parameters are fine 
tunned using interval feature (IF) technique. Finally, a new index is designed using the 
IPE and ISODP.  

 

7.1. Interval feature extraction methods 

Features derived from the signal over time segments of various lengths, called “inter-
val features”, have shown to lead to high classification accuracy (Rodríguez et al., 
2005; Rodrıguez, Alonso, & Boström, 2001). Using interval feature method can not 
only extract more features from the same signals, but also obtain interval features from 
different lengths. The interval method is simple and intuitive compared to the other 
feature extraction methods. The simplicity is of significance in view of the large vari-
ability of the data. A more intricate and versatile model such as wavelets may overfit 
the noise. In addition, the interval extraction method is non-linear, which gives it ad-
ditional flexibility (Kuncheva & Rodríguez, 2013). However, to our best knowledge, 
the interval extraction method has not been applied to assess DoA. 
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7.2. EEG signal processing based on Interval feature ex-
traction method 

The EEG data were collected from 23 adult patients (Patient1 to Patient 23, age 24-74 
year, weight 55-110 kg. gender 11F/12M).  

To obtain valuable parameters of denoised EEG signals, the fast Fourier transform 
method is applied to divide the denoised signal into five different frequency bands. We 
also divide the two high frequency bands into eight smaller frequency bands: βa (13-
21.5Hz), βb (21.5-30Hz), γ1 (30-38.5Hz), γ2 (38.6-47Hz), γ3 (47-55.5Hz), γ4 (55.5-
64Hz), γa (30-47Hz) and γb (47-64Hz). The original signal bands are also added as a 
reference. As a result, we totally obtained 5+8+1=14 sets of frequency bands from 
each episode of EEG signal.  

 

7.2.1. SODP and PE parameters 

A moving window technique is applied to calculate the PE and SODP parameters. The 
BIS monitor uses EEG segments up to 61.5s for index calculation and the window size 
is 60s as for Entropy-Module. As the Interval feature (IF) method shows the interval 
lengths are better to be the multiples of 2 (Kuncheva & Rodríguez, 2013), such as 2, 
4, 8, we select 56s as the window size and the overlap is 55s.  Therefore, as for every 
second, the PE and SODP are calculated based on the signals of its previous 56 sec-
onds.  

The second order difference plot (Pachori & Patidar, 2014) of each window size-signal 
is calculated. The SODP is calculated in seconds. The SODP of a 56-second EEG 
signal is the average of 56 SODPs. 

As for each set of frequency band, we calculate their PEs and SODPs based on ampli-
tude and power respectively. As a result, we obtained 28 sets of SODP and PE as the 
parameter pool. 

To find out the optimal parameter set for index designing, the regression technique is 
used to test the correlation between the parameters and anaesthetic states (referred to 
the BIS value). The coefficient of determination (R squared) is used to evaluate the 
correlation between the parameter and BIS value. 

 

7.2.2.  Parameter set optimisation using interval feature 

After comparing the correlation between the parameter and BIS value, the parameter 
which shows the highest linear relationship with the BIS value is selected to form the 
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optimal parameter set. Then the optimal parameter set is further improved using inter-
val feature methods. 

“Interval features” are derived from the signal over time segments of various lengths.  
Take one segment of the new DoA index as an example, denoted by x(i) the value of 
the signal at time i, where i =1, 2,..., T (T is dividable by 10). The signal segment is 
divided into 10 units equally, and the unit length is u=T/10. The first unit will be 
U(1)=[x(1), x(2),..., x(u)], the tenth unit will be U(10)=[x(T-u+1), ...,x(T-1), x(T)]. The 
interval length is varied as powers of two, so three kinds of point sets are two units, 
four units and eight units. While the starting point is kept at j, the first kind of interval 
at j is the point set [U(j-1), U(j)], j∈ [j=2, ..., 10], the second kind of interval is [U(j-
3), U (j-2), U (j-1), U(j)],  j∈ [j=4, ..., 10], and the third kind of interval is [U(j-7), U 
(j-6),..., U(j)], j∈ [j=8, ..., 10]. For three kinds of interval length, there are totally 
9+7+3=19 intervals.  

In this study, three interval lengths are used to extract feature. The interval values cal-
culated from each interval are: (1) the mean of the parameters μ, (2) the standard de-
viation σ, and (3) the covariance with the time variable (CTV). However, only the 
means of different interval lengths are useful to improve the optimal parameter set in 
this study. When we calculate the interval values, the window size is divided into eight 
equal units and each unit is equal to seven seconds. For each Interval parameter (Ipa-
rameter) value, Interval 2 is the mean of 14 parameter values (PE or SODP) from the 
previous 14 second period, Interval 4 is the mean of 28 parameter values from the 
previous 28 second period and Interval 8 is the mean of 56 parameter values from the 
previous 56 second period. The new Interval parameter (IPE, ISODP) are calculate as 
follows, 

Iparameter (IPE, ISODP) = Interval 2* Interval 4/ Interval 8              (7.1) 

The new Iindex is designed based on the new Iparameters (IPE, ISODP) using regres-
sion technique.  

 

7.3. Parameter estimation 

42013 seconds denoised signals from 13 patients (patient 1 to patient 13) are randomly 
selected for the following experiments. Firstly, we calculated the parameters for each 
patient’s EEG signals and then put these parameters from different patients together. 
After that we evaluated the correlation between the parameters of the whole sample 
with BIS values using a regression technique. 

The denoised signals are divided into 5 basic frequency bands using the fast Fourier 
transform method. The SODP and PE value are calculated based on both amplitude 
and power of each basic frequency band. According to  Liang et al. (Liang et al., 2009), 
L=6 seconds, m=3 are selected in this study for the best performance. Then the SODP 
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and PE for each second are compared with relevant BIS value using line regression 
technique. The results of five basic frequency bands are showed in Table 7.1. 

Table 7.1: The regression results of Basic EEG frequency bands 

R 
squared 

 
Parameters 

δ

(delta) 

θ 
(theta) 

α 
(alfa) 

β 
(beta) 

γ 
(gama) 

Denoisd 
data 

 Amplitude 

 
SODP 0.0438  0.0339  0.0434  0.2494  0.3673  0.2560 

PE 0.0248  0.0670  0.1005  0.0713  0.3244  0.2321 

Power SODP 0.0311  0.0265  0.0321  0.2027  0.0838  0.2043 

PE 0.0347  0.0327  0.0825  0.0430  0.3098  0.2020 

 

As shown in Table 7.1, the best R squared of SODP (0.3673) is higher than that of  PE 
(0.3244). The premutation entropy is proved to be able to reliably track the anaesthetic-
related EEG changes (Olofsen et al., 2008) and assess the different anaesthetic 
states(Silva et al., 2011). Therefore the SODP is treated as a promising parameter for 
discriminating between different levels of consciousness during anesthesia.  

Table 7.1 also shows that the R squared of high frequency bands (γ, β) is much higher 
than that of low frequency bands (δ, θ and α). To find a more accurate correlation 
between parameters and BIS value, the high frequency bands are divided into eight 
small frequency bands: βa(13-21.5Hz), βb(21.5-30Hz), γ1(30-38.5Hz), γ2(38.6-47Hz), 
γ3(47-55.5Hz), γ4(55.5-64Hz), γa(30-47Hz) and γb(47-64Hz). The R squared of 
different frequence bands are listed as follows: 

 

Table 7.2: The regression results of high EEG frequency bands 

R squared Parameters βa βb γ1 γ2 γ3 γ4 γa γb

Amplitude SODP 0.2560  0.3182  0.3454  0.2709  0.1283  0.1119  0.3637  0.1759 

PE 0.0449  0.5529  0.0311  0.0611  0.1146  0.2806  0.0053  0.0839 

Power SODP 0.1285  0.1640  0.0472  0.0006  0.1733  0.1994  0.0787  0.1171 

PE 0.0341  0.0001  0.0007  0.0012  0.3434  0.0040  0.0169  0.1805 

 

As for PE, the best R squared 0.5529 is in βb (21.5-30Hz). Therefore, according to 
Table 7.1 and Table 7.2, the PE value calculated from the amplitude of βb and the 
SODP value calculated from the amplitude of γ  show the strongest linear correlation 
with BIS value. These two parameters are selected to form the optimal parameter set 
and they are futher improved using Interval feature method. According to equation 
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(6.1), the IPE values and ISODP values are obtained based on the original SODP and 
PE values.  

To evaluate the performances of ISODP and IPE, we calculate the average values of 
ISODP, IPE, SODP and PE for different anaesthesia states respectively. As can be 
seen in Figure 7.1, the ISODP and IPE show stronger linear correlation with the BIS 
value than SODP and PE. Besides, unlike SODP and PE, ISODP and IPE make the 
new DoA index smoother than BIS index and clearly response to the change of index 
trends which can be seen from Figure 7.3(b), Figure 7.4(b) and Figure 7.6. 

 

                                                            (a)                                                                                               (b) 

Figure 7.1: The comparison of Iparameters and original parameters, (a) ISODP and SODP, (b) 
IPE and PE. 

 

7.4. New Index Design and Evaluation 

Table 7.3: The best parameter set 

 
Anaesthesia states 

 
BIS value 

 
Length 

ISODP 
amplitude of γ 

(30-70 Hz) 
 

IPE 
amplitude of βb 

(21.5-30Hz) 

Awake 80-100 1144s 4.3781±1.7636 1.7378±0.0221 

Light anaesthesia 60-80 3227s 2.8777±1.0899 1.7486±0.0167 

Moderare anaesthesia 40-60 18149s 1.9019±0.5907 1.7627±0.0074 

Deep anaesthesia 10-40 18801s 1.6530±0.5323 1.7711±0.0096 
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Table 7.3 shows the best parameter set for new DoA design. We design the new DoA 
index using regression technique. The proposed new DoA index is designed as 
follows: 

Iindex= C0 + C1*ISODP + C2*IPE                             (7.2) 

C0, C1 and C2 are constants. They can be obtained using Matlab regression function. 
Based on 42013 seconds EEG data from 13 patients, the Iindex is calculated as follows, 

Iindex= 1241.72 +5.05*ISODP-685.72 *IPE                       (7.3) 

The Iindex is normalised in the range of 0-100. If the Iindex value is more than 100, 
the Iindex value is equal to 100, and if the Iindex value is less than 0, the Iindex value 
is equal to 0.  

The new Iindex is compared with the BIS using realistic anesthetic EEG signals. In 
addition to the 13 patients applied as the sample during the above experimental 
process, the performances of the new index for another 10 patients (patient 14 to 
patient 23) are evaluated. A scatter plot for the Iindex and BIS is shown in Figure 7.2 
for the 10 patients (31380 data points). Linear equation is fitted to all data points with 
the relation as Iindex = 0.5932*BIS+18.96. Black line shows 95% confidence 
boundaries around the linear pink bold line. Few data points go beyond the 95% 
confidence boundaries. The high Pearson correlation coefficient 
( ଵସିଶଷ	୔ୟ୲୧ୣ୬୲ݎݎ݋ܿ =0.7773) for the 10 patients show that there is a very close 
correlation between the proposed index and the BIS during different anaesthetic states 
 .(୔ୟ୲୧ୣ୬୲ଵିଵଷ=0.7610ݎݎ݋ܿ)

Comparing with the BIS, the beginning of the Iindex is not close enough in some cases. 
One important reason is that when designing the new index, the regression technique 
is used to find the best coefficients which make the new index highly correlate to the 
anaesthetic states. To solve this problem, it is necessary to develop some methods to 
filter out the useless value of the awake state data and optimise the sample structure. 
The larger sample size and higher quality samples are helpful to increase the 
robustness of the new Iindex. 
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Figure 7.2: A scatter plot for the Iindex and BIS for 7 patients. The best-fit line is bold and 
black lines correspond to the 95% confidence boundaries. This fitted linear relation indicates 
that the two methods are extremely correlated. 

 

7.4.1.  Time delay from consciousness to unconsciousness 

To evaluate the performance of the new Iindex, the time delay (awake to deep anaes-
thesia) of both Iindex and BIS index are measured. Take patients 14 and 18 as exam-
ples, in Figure 7.3 and Figure 7.4, the new index shows a very high correlation with 
BIS during the states of awake, light anaesthesia and deep anaesthesia. However, the 
new Iindex shows an earlier reaction than BIS index when the patient is from awake 
to deep anaesthesia. 
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                                                            (a)                                                                                               (b) 

Figure 7.3: Comparison of the Iindex and BIS index of patient 14, (a) all anaesthetic states, (b) 
the state from awake to deep anaesthesia. The blue square frames show the earlier reaction of 
Iindex compared with the BIS. 

 

 

                                                            (a)                                                                                               (b) 

Figure 7.4: Comparison of the Iindex and BIS index of patient 18, (a) all anaesthetic states, (b) 
the state from awake to deep anaesthesia. The blue square frames show the earlier reaction of 
Iindex compared with the BIS. 

This kind of earlier reaction appears in nine cases of the 10 patients. According to 
Junbeom et al.’s paper (Kim et al., 2014), we assume that an index value  of 70 corre-
sponds to the inflection point where the patient starts to be anesthetized. In some cases, 
there is no significant downward trend near 70, so we compare the significant down-
ward trends between BIS and Iindex. The time difference and Pearson correlation co-
efficients for 10 patients are indicated in Table 7.4. The time difference for loss of 
consciousness (LoC) is about 3.1 to 59.7 seconds. The early warning is useful for an-
aesthetics to control the time of surgical operation. 
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Table 7.4: Pearson correlation and time response comparison between Iindex and BIS 

Patients 14 15 16 17 18 19 20 21 22 23 

Time 
difference 

(sec) 
10.7 3.1 59.7 5.9 33.8 8.0 37.5 36.4 16.9 No 

data* 

Pearson 
correlation 

0.7491 0.7431 0.7332 0.8189 0.7751 0.6761 0.7071 0.3983 0.5242 0.8531 

* See Fig.6(b) 

 

7.4.2.  Patient’s state in the case of poor signal quality 

We also evaluated the performance of the new Iindex on poor quality data (according 
to Signal Quality Indicator). In our study, the Iindex shows the DoA values in most 
cases where the BIS index could not. In Figure 7.5(a), for patient 22, the BIS index is 
always -3276.8 from 1269 to 1287 seconds, but the Iindex has the assessed DoA value 
clearly during this period. The same situation also happened during 501 to 519 seconds 
and 1180 to 1191 seconds of patient 29 in Figure 7.6(c). According to the BIS value 
before and after this period, the value of Iindex is reliable. 

The data of patient 23 is showed in Figure 7.5(b). It is observed from the 0 to 26 sec-
onds, there are invalid BIS which were not displayed on the screen. However, the new 
Iindex shows all the changes from awake to deep anaesthesia all the time. This agreed 
with clinical observations recorded by attending anaesthetists, which said the 
Parecoxib (40 mg) and Propofol (160 mg) were administered about 1 minute before 
the BIS index starts to show some valid value. 

 

                                                         (a)                                                                                               (b) 
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(c) 

Figure 7.5: The comparison of Iindex and BIS index, (a) patient 22, (b) patient 23 and (c) 
patient 36. 

 

                                                   (a)                                                                                                  (b) 
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    (c) 

 

Figure 7.6: The comparison of Iindex and BIS index, (a) patient 15, (b) patient 21 and (c) 
patient 29. 

The data of patient 15 is shown in Figure 7.6(a). Where the BIS index shows signifi-
cant upward trends from 2200 to 2250 seconds and from 2790 to 2830 seconds, but 
the Iindex is flat in general during this period. According to the anaesthetists’ record, 
there was no recovery of consciousness during this period. According to the low SQI 
values about one minute before these significant upward trends of the BIS, the BIS 
index might be influenced by noise such as Electromyography. Therefore, the new 
Iindex is more reliable in this case.  

The same situation also happened during 1125 to 1135 seconds of patient 21 in Figure 
7.6(b) and 2100 to 2200 seconds of patient 29 in Figure 7.6(c). 

 

7.5. Summary 

In this study, the second order difference plot and permutation entropy method are 
applied to obtain the valuable parameters for DoA assessment.  

Using regression technique, the proposed new DoA index is designed based on two 
parameters: the IPE value calculated from the amplitude of βb (21.5-30Hz) and the 
ISODP value calculated from the amplitude of γ (30-70 Hz). The new DoA index is 
evaluated in simulation using measured EEG data and BIS recordings. 

The results show a very close correlation with recorded BIS during different anaesthe-
sia states. The Pearson correlation coefficient for 10 patients is 0.7771. The results also 
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show an earlier response (3.1-59.7 seconds) than BIS index during anaesthetic states 
changes.  

Furthermore, compared with BIS, the proposed new index can assess the DoA even 
the SQI value is below 15, while the BIS failed to output any useful result. This means 
the proposed index can estimate the patient’s anaesthetic states in poor signal quality. 
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8. DISCUSSION AND CONCLUSIONS 
 

The focus of this study was to develop reliable DoA algorithms for accurate DoA as-
sessment. Some novel signal processing techniques, which are better suited for non-
stationary EEG signals than currently established methods, have been proposed and 
applied to monitor the DoA using simplified EEG signals. To sum up the whole re-
search process, the realistic EEG data collected from hospitals are converted into dec-
imal numbers and then the NLM denoising algorithms are applied to denoise the raw 
EEG signal. After that, we propose and develop three new DoA indexes for identifying, 
classifying and monitoring the DoA. Finally, the new indexes are evaluated by compar-
ing to the most popular BIS index. The results show that the proposed indexes perform 
better in the cases of poor signal quality, time delay, and agreeing with the clinical records. 

 

8.1. Work and main contributions 

The significant achievements of this dissertation are presented in Chapters 4 to 7 which 
introduce one novel method to denoise raw anaesthetic EEG data and three novel 
methods to monitor the depth of anaesthesia. Details of the research contributions are 
summarized as follows: 

To improve the data filtering results, the nonlocal mean method was applied to denoise 
the raw EEG data. The results show that the NLM, on average, achieves 2.70dB in-
crease in improved signal to noise ratio and 0.37% drop in improved percentage dis-
tortion ratio compared to the popular sym8 and db16 Wavelet threshold denoising 
methods. Another two modified NLM methods also show satisfactory EEG denoising 
results. The improved moving adaptive shape patches-NLM performs better than the 
original NLM when the signals change dramatically. In addition, the performance of 
the combined NLMWTD denoising method is also better than the original WTD 
method (0.50dB to 4.89dB higher in SNRimp), especially, when the signal quality is 
poor.  

To improve the time lag in DoA computation and flexibility of DoA algorithms, three 
new indexes (Tindex, Sindex and Iindex) are developed based on four parameters (M, 
PE, SODP and LZC) which are calculated from different frequency bands. To develop 
more reliable DoA indexes, the mobility, second order difference plot and interval 
feature extraction methods were applied to classify different anaesthetic states. As a 
result, all of the three indexes are not only able to clearly discriminate the awake state, 
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light anaesthesia, moderate anaesthesia and deep anaesthesia state, but also can con-
tinuously assess the DoA of patients while the quality of signal was poor. In some 
cases, the popular BIS index shows incorrect DoA values because of noise, but the 
new indexes can accurately assess the patients’ anaesthetic states according to the clin-
ical records. 

The new Tindex shows a 33-264 seconds earlier time response than BIS from deep 
anaesthesia to moderate anaesthesia.  

The proposed Iindex also shows an earlier time response (3.1-59.7seconds) than BIS 
during the change of anaesthetic states. The interval feature extraction method makes 
the new DoA index smoother than BIS index and clearly responds to the change of 
index trends which can be seen from most cases of this study. 

To sum up, the main contributions are that a novel denoised method was developed to 
improve the filtering result of EEG signals; three new DoA indexes are designed to 
accurately assess DoA. The advancements of these new indexes are showing reliable 
results in the case of poor signal quality and earlier time response during the change 
of anaesthetic states. 

 

8.2. Discussion  

Compared with the Tindex and Sindex mentioned in pervious chapters, the trend of 
Iindex is smoother than those of Tindex and Sindex. Therefore, it is suggested that 
Tindex and Sindex can be used to reflect the patient’s changes of anaesthetic states; 
and Iindex can be used to monitor the steady state during general anaesthesia.  

In addition, The Tindex shows a 33-264 seconds earlier time response than BIS during 
the change from deep anaesthesia to moderate anaesthesia. However, the Iindex shows 
a 3.1-59.7 seconds earlier time response than BIS during the change from awake to 
light anaesthesia. Therefore, Iindex and Tindex can be coordinated by their weighted 
sum. Another option is that the Iindex is used for the DoA assessment from awake to 
light anaesthetic states of the patients. After the patients reach the deep anaesthetic 
states, the Tindex is used for the DoA assessment instead of Iindex. Therefore, the 
time delay can be reduced to the maximum extent by the combined Tindex and Iindex. 
However, these combinations are based on the assumptions that we can detect or pre-
dict the transient and the steady state. 

 

8.3. Future work and direction 

During the course of this study, many improvements in DoA index design were ex-
plored for improvement. Despite these attempts, there is still much room for further 
improvements.  

As for general DoA indexes, the performance for one patient is good but for another 
one, it may not be satisfactory. Not only Tindex, Sindex, Iindex, but also BIS index is 
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influenced by the physical characteristics of different patients. Therefore, the perfor-
mances of DoA indexes are different in different cases. One promising option for im-
provement is to develop an individualized DoA index which can be adjusted according 
to each individual patient. 

In future research, by increasing the number of patients, these parameters (M, PE, LZC, 
SODP) in Chapters 5, 6, and 7 may become a function of patients’ physical character-
istics. Accurately assessing the relationship between these parameters with the char-
acteristics of patients will help in developing a more robust individualized DoA index. 

In addition, the patients in this study are all adults. The age range is from 22 to 83 
years old. However, the DoA assessment based on EEG signals for children is very 
different from that of adults because the children’s brains are still developing. There-
fore, the individualized DoA index development for different age groups is of great 
significance. 

In future research, EEG, ECG, blood pressure and other standard measures will be 
combined as the input signals which may be advantageous to increase the validity of 
the depth of anaesthesia assessment. The ECG, blood pressure and other standard 
measures of individual patients can be considered when an individualized DoA index 
is designed. 

In this study, the DoA assessment is based on the single channel EEG signals. All the 
PE, SODP, M and LZC parameters are calculated based on the Channel 2 EEG signals 
obtained from BIS monitors. There are experiments in Chapter 5 proving that the PE, 
SODP, M and LZC parameters calculated from Channel 2 EEG signals are more useful 
for new DoA index than those calculated from Channel 1. It also shows that the front 
temporal synchronization of EEG signals is helpful for DoA assessment in other re-
search. For example, an index named order pattern laminarity (OPL) was designed 
based on the order patterns cross recurrence plot method to successfully assess changes 
in long-range frontal-temporal synchronization as the mechanism forming the founda-
tion of conscious perception (Shalbaf et al., 2014). Therefore, the work about multi-
channel electroencephalogram analysis for different parameters can be done to im-
prove the assessment of depth of anaesthesia in the future. 
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