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Abstract
Sleep apnea is a potential sleep disorder, which deteriorates the quality of sleep. It is characterized by the obstruction in
nasal airflow, which results in a low concentration of oxygen in the blood. Though polysomnography (PSG) is considered as
a gold standard for diagnosing sleep apnea, it is arduous, demanding, expensive and inconvenient to the patients. This study
presents an effective, efficient and sustainable sleep apnea automated detection system using pulse oximetry signals (SpO2),
which indicate the percentage of oxygen content in the blood. The conventional methods, which employ PSG recordings
are computationally intensive and costly. Nowadays, the focus is on non-invasive and portable devices for higher conve-
nience and cost-effective diagnosis. In this work, we have used optimal duration-bandwidth concentrated wavelet transform
to decompose the SpO2 signals into various sub-bands (SBs). The Shannon entropy features are extracted from various SBs
coefficients. These features are then fed to various supervised machine learning algorithms, including decision trees and en-
semble algorithms for automated detection of sleep apnea. The proposed model has attained the highest accuracy of 95.97%,
and area under the receivers operating characteristics curve (AUC) of 0.98 for optimal wavelet-based Shannon entropy fea-
tures when an ensemble boosting technique called random under-sampling boosting (RUSBoost) is employed with ten-fold
cross-validation strategy. Thus, the proposed model is portable, economical, and accurate which can be used even at homes.
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1 Introduction

Sleep is considered an essential research topic for many
decades. Good sleep has an enormous impact on our
emotions and health. Sleep apnea is a potential sleep disor-
der delineated by obstructed breathing during sleep-time.
The person’s breathing stops and starts many times during
sleep resulting in less oxygen supply to the brain. Apnea
is one of the notable types of sleep disorder which results
in the intrusion of breathing. Its severity is measured on
the scale of apnea/hypopnea index (AHI). An index of < 5
is considered normal, and an AHI > 5 shows sleep apnea
disorder. An AHI in between 5 to 15 denotes mild apnea, an
AHI in between 15 to 30 is regarded moderate, and greater
than 30 is rated as severe sleep apnea disorder [4]. The sleep
apneic patient has cessation in his breathing or phases of
shallow breathing during sleep. These cessations lasts for a
few seconds to minutes and may occur several times during
the sleep. As the breathing resumes, the cessations may
be followed by snorting or loud snoring sound [16]. The
people may encounter sleepiness or may feel tired during
the day time due to lack of sleep. It can cause hyperactivity
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induced problems in children [35]. It is estimated that 2%
of adult women and 4% of adult men are affected by sleep
apnea. Sleep apnea is curable, but most of the patients are
unidentified and, therefore, untreated [52]. Untreated sleep
apnea-hypopnea syndrome (SAHS) can cause various heart
diseases such as chlorosis, cardiovascular dis-function, and
stroke-related problems [44].

Obstructive sleep apnea (OSA) is one of the most preva-
lent types of sleep apnea. Across the world, there are more
than 1 billion cases of undiagnosed OSA [3, 38]. Chronic
OSA requires treatment to avert hypoxemia, sleep depletion,
and various other sleep-related complexities. The elders and
men are more prone to have OSA than youngsters and wo-
men. The risk of OSA in individuals also rises with aging,
increase in body weight and smoking [52]. Diabetic patients
are three times more prone to have OSA than healthy indi-
viduals. The diagnosis methods include polysomnography
or oximetry during sleep.

Polysomnography (PSG) is the conventional method used
for sleep disorder detection including OSA. The typical
PSG contains recording of electroencephalogram (EEG),
electrooculography (EOG), electromyography (EMG), elec-
trocardiography (ECG), oronasal airflow, respiratory effort,
and oxygen saturation (SpO2) [32]. The analysis of PSG is
cumbersome, expensive and tedious as it requires the data
collection during overnight sleep in sophisticated clinics.
Hence, it is desired to have a substitute for PSG-based sys-
tem which is simple, inexpensive and portable which can be
used in homes and clinics. Several apnea detection systems
have been developed based on snoring [29], questionnaires
[28], ECG [14, 38, 45], and pulse oximetry [18, 21, 23].
Pulse oximeter (SpO2) signal has attracted the attention of
several researchers [2, 13, 25] as an alternative for PSG.

SpO2 signals measure the percentage (%) of oxygen
saturated hemoglobin present in the blood. It is widely
accepted for both pediatric and adult occupants. The pulse
oximeter is one of the well-known sensors used to evaluate
the saturation of oxygen (SpO2) in the blood and pulse rate
[53]. These sensors can report the results within seconds
with high accuracy and are inexpensive. The presence and
severity of OSA can be determined by calculating the
desaturation index of the patient’s blood, and after that
patient can be sent for further diagnostic confirmation. [9].
A normal pulse oximeter (SpO2) reading is between 95%
to 100%, and it is considered low if it is below 95%. Some
frequently used SpO2 features are, oxygen desaturation
index [21], saturation variability index and total time spent
below a specific saturation level [23].

1.1 Related work

Some of the works, which have employed SpO2 signals for
apnea detection are discussed in this section. Burgos et al.

[5] have employed a bagged tree classifier using statistical
features extracted from SpO2 signals of sleep apnea ECG
database (SAE) database and obtained a classification accu-
racy of 93%. A seminal work by Xie et al. [51] used SpO2

signals for the identification of sleep apnea. They have used
150 statistical and frequency domain features extracted from
SpO2 signals and achieved classification accuracy (CAC)
of 82% using SVM and decision tree classifiers on the UCD
database with 25 records. They showed that SpO2 signals
could perform better than ECG signals in identifying sleep
apnea. Mostafa et al. [25] employed 61 time and frequency
domain features along with a neural network (NN) and got
maximum sensitivity of 96.5% with the SAE database. Sim-
ilarly, Almazaydeh and Faezipour [1] used statical features,
delta index, and a multi-layer NN for sleep apnea detec-
tion. They obtained an accuracy of 93.3% and sensitivity
of 87.5% by taking 17% of the SAE database as test data.
Zhang et al. [53] designed a smart pillow with an SVM clas-
sifier to detect apnea using a private database and obtained
a CAC of 90%. Similarly, Oliver and Flores-Mangas [30]
have used features based on power spectral density (PSD)
and SpO2 signals for developing a wearable device to detect
apnea using a personal database. They did not mention clas-
sification performance. Garde et al. [12] used five-time and
spectral-domain features with linear discriminant for sleep
apnea detection and achieved CACs of 92.1% using the
data acquired from British Columbia children’s hospital.
Ravelo-Garci et al. [33] combined ECG based features with
19 SpO2 based frequency domain features and reported
CAC of 86.5% using the SAE database. Haoyu et al. [13]
achieved good performance using SpO2 signals coupled
with SVM classifier for private and UCD databases. How-
ever, they used features obtained from SpO2 and heart
rate variability (HRV) signals. Further, Mostafa et al. [26]
used a deep belief network (DBN) formed using stacked
restricted Boltzmann machines (RBM) to detect the sleep
apnea. They used SpO2 signals extracted from the UCD
database. The DBN is trained and tested using 10-fold
CV and achieved CACs of 85.26%. Recently, Cen et al.
[6] used Convolutional Neural Network (CNN) using UCD
database with 1s-SpO2 epochs instead of 1 min epochs and
achieved CAC of 79.61%. Several above-mentioned previ-
ous works [13, 13, 25, 51] required the overnight record-
ings of SpO2 signals and analysis required a large feature
set.

1.2 Proposed work

This study proposed an automated system using optimal
duration-frequency concentrated (ODFC) wavelet filter
bank (WFB) and SpO2 signals. We aim to design a
simplified, economic, and portable OSA detection system
using SpO2 signals to be used even at homes. The
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salient features of the proposed study are mentioned
below:

1. The SpO2 can be easily recorded using a pulse-
oximeter sensor even when a subject is sleeping. The
SpO2 based apnea detection system overcomes the
drawbacks of PSG-based systems, which require labo-
rious visual inspection of multi-channel signals. Hence,
an automated apnea detection system is proposed using
SpO2 instead of conventional PSG or ECG signals.

2. The proposed system is simple, portable, inexpensive,
fast, comfortable, and accurate.

3. To extract features from SpO2 signals, a new class
ODFC of WFB has been employed.

4. Wavelet-based Shannon entropy features have been
used to train and test the model.

5. The model is trained and tested using two independent
databases obtained from two different sources.

6. The performance of the developed method has sur-
passed all other techniques.

7. In order to address the inherent data imbalance problem,
a random under-sampling is boosting (RUSBoost)
algorithm has been built for the classification, which is
exceptionally useful in classifying imbalanced data.

8. We have shown that SpO2 based systems outperformed
ECG based sleep apnea detection systems.

9. The SpO2 sensors are economical, simple to use, and
convenient to place on subjects’ bodies.

2Methods andmaterials

2.1 Database

In this work, we have used St. Vincents University Hospital/
University College Dublin Sleep Apnea Database (UCD) [17].
The database contains records of 25 subjects with 21 males and
four females. The database contains full overnight PSG record-
ings of patients with a suspected sleep disorder. Each record
is nearly about 5.9 to 7.7 hours long with annotation files.
In each annotation file, the details of sleep apneic/hypopnic
events are indicated. The PSG recording also contains
EOG, EEG, EMG, oro-nasal airflow, ribcage movements,
abdomen movements (uncalibrated strain gauges), snoring
(tracheal microphone) and body position [7].

These PSG recordings were recorded using JaegerToen-
nies system. Recording of an ECG and SpO2 signal was
done via a modified V2 lead and a finger pulse oximeter,
respectively. An experienced sleep technologist performed
the staging of sleep using the full polysomnography record
along with sleep apnea types namely: obstructive, mixed,
central apnea and hypopnea during the entire sleep duration

of patients [51]. Table 1 shows the general physiological
details of subjects used in two databases [49].

Our second database is Sleep Apnea ECG database (SAE).
This database contains 70 records with 35 records for train-
ing and 35 records for testing. Each recording may vary from
7 hours to 10 hours. The database contains a continuous digi-
tized ECG signal with machine generated QRS notes along
with apnea annotations. These apnea annotations are assigned
to each one minute non-overlapping segments of signal. In
this database, 8 recordings also consists 4 additional signals
which are chest and abdominal respiratory signals, Resp
N, oronasal airflow and oxygen saturation (SpO2). In this
work, we have used only SpO2 signals. Table 1 shows
the general physiological properties of patients and further
information can be found in [50]. It is very important to note
that SpO2 signals are sampled at frequency of 100Hz in
SAE database, whereas in UCD database they are sampled
at 8 Hz only. The minimum desirable sampling frequency
for SpO2 signals is 25 Hz [4].

2.2 Proposedmethod

The proposed approach is shown in Fig. 1. The SpO2 signal
is acquired from the whole night PSG recordings and then
segmented. These signals are subjected to pre-processing
followed by wavelet decomposition, feature extraction and
classification.

2.2.1 Segmentation and preprocessing

The SpO2 signals in UCD and SAE database are sampled
at 8 Hz and 100 Hz, respectively. For our experiment, we
segmented both database signals into 1-min events (epochs)
for further analysis. Then consequently, the annotations are
altered to give minute-based details. The particular epoch
is labeled as “apneic” if it has apnea/hypopnea events for
at least five consecutive seconds; otherwise, the particular
epoch is annotated as “normal.” The distribution of 1 min
segments for the apneic and non-apneic condition is given
in Table 1. The segments are passed through Butter-worth
filters of order six [4]. Although, pulse oximetry is highly
stable if the patient is stationary and well- perfused. How-
ever, the motion artifacts may lead to loss of data, inaccurate
readings, and false alarms. The movements during trans-
portation, tapping, rubbing, scratching, waving, and shi-
vering are few common patient motion sources. In order
to remove the motion artifacts, we have used a duration-
bandwidth localized length-12 orthogonal wavelet filter
with four vanishing moments for six levels of the wavelet
decomposition. Then soft thresholding has been applied
to the obtained wavelet coefficients. Subsequently, inverse
wavelet transform is taken using the same wavelet filter to
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Table 1 Physiological details
of subjects used in two
databases

DATABASE

UCD SAE

Mean Value Range Mean Value Range

Age (years) 50 ± 10 28 - 68 43.25 ± 8.35 31 - 54

BMI (kg/m2) 31.6 ± 4.0 25.1 - 42.5 25.12 - 42.54 19.2 - 40.4

AHI 21.4 ± 20.3 1.7 - 90.9 32.0 ± 35.9 0 - 77.4

Total subjects 25 8

Normal subjects 2 2

Apneic subjects 23 6

Sampling frequency 8 Hz (SpO2) 100 Hz (SpO2)

Epoch size 1 minute 1 minute

Apneic epoches 222 1609

Normal epoches 9359 2338

Total epoches 9581 3947

Fig. 1 Schematic diagram of the proposed method

obtain clean epochs. Then these clean epochs are used for
further processing.

2.2.2 Design of wavelet based filter banks

The decomposition of signals using Fourier transform fails
to extract time localization information [48]. Wavelets are
widely used to provide good duration-frequency localiza-
tion to decompose the signal [19, 42]. This section presents
the eigen-filter design to design of linear-phase, time fre-
quency optimized dual band, bi-orthogonal filter banks. We
have used eigen-filter technique as it is computationally
efficient and provides a global solution [41]. The properties
of filter bank depends largely on decay rate of frequency
response, flatness of frequency response curve at particular
frequency, size of pass band, transition band and stop
band, ripples in frequency response in pass band and stop
band, duration-frequency concentration, linearity of phase
and length of individual filters [43]. According to the
Gabor’s uncertainty principle, it is not possible to localize
a signal simultaneously in both time and frequency domain
arbitrarily [39]. Thus, designing filters with minimum time-
frequency product is a challenging and interesting problem.
In this study, we have used duration-frequency optimized
biorthogonal linear phase wavelet filter banks [41].

A conventional dual channel perfect reconstruction bi-
orthogonal FB consists of an analysis bank and a synthesis
bank [41]. Let us assume Y0(z) and Y1(z) represents anal-
ysis low pass and high pass filter, respectively of the filter
bank (Fig. 2). The output of analysis filter is down-sam-
pled by scale of 2. Similarly, for synthesis bank U0(z)

and U1(z) represents low pass and high pass filter where
input to filter is up-sampled by scale of 2. To ensure alias,
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Fig. 2 Design of dual channel
biorthogonal FB

amplitude and phase distortion cancellation [47], the choice
of high-pass filter must follow (1) and (2) [46]

Y1(z) = z−1U0(−z), U1(z) = zY0(−z) (1)

Y0(z)U0(z) + Y1(z)U1(z) = 2 (2)

Let product filter is defined as P0(z) = Y0(z)U0(z), then
phase reconstruction condition is expressed as [40]

S(z) + S(−z) = 2 (3)

Equation (3) denotes that product filter is symmetric
which means coefficients regarding even powers of z are 0
except for z0 which is 1. This reduces the design of dual
channel filter bank to half band filter S(z) [37]. In this work,
we have used complementary eigenfilter based approach to
design time-frequency localized filter bank. First an optimal
analysis lowpass filter is designed via formulation an eigen-
filter based optimization problem. In this optimization prob-
lem, we minimized the time-frequency product of analy-
sis filter subject to the constraints of regularity. Having
obtained the analysis filter, we proceeded to design synthe-
sis lowpass filter by formulating another eigenfilter problem
wherein the objective is to minimize the time-frequency
product of the synthesis filter subject to the constraints of
bi-orthogonality and regularity.

The frequency response of designed FB is shown in
Fig. 3. The six subbands (SBs) of the sample SpO2 signals
that are obtained from ODFC WFB are shown in Fig. 4.

2.2.3 Feature extraction

After the wavelet decomposition of signal into six sub-
bands(SBs), from each of SB, we have extracted Shannon
entropy (SE) to differentiate apneic and normal classes.
Entropy is termed as measure of disorder, uncertainty or ran-
domness in the given information. Together ODFC WFB
based entropy is found to be very effective to discriminate
between apneic and non-apneic signals. The Shannon entro-
py(SE) is given by [22]

SE = −
n∑

k=1

xklog2(xk) (4)

where xk represents the kthsample pf the wavelet coefficient
sequence x(n) of length N.

The extracted vectors using SE are concatenated to form
a feature matrix. The generated feature matrix is labeled and
fed for classification. Only six features are computed for
both UCD and SAE databases to classify apneic/non-apneic
segments of data.

2.3 Classification

The labeled feature matrix is fed to various classifiers such
as bagged decision trees, logistic regression, and KNN
and SVM classifiers. We employed the ten-fold cross-
validation scheme to reduce the over-fitting [11]. Cross-
validation is used in model selection better to estimate the
mis-classification error of a predictive model. In ten-fold
cross-validation, ten folds are used for training, and the
remaining one is employed for testing. The advantage is that
the entire data is used for training and testing. The classifi-
cation accuracy of the developed model is an average of the
accuracy of ten folds.We obtain the optimal performance
of decision trees when combined with the ensemble
RUSbossted technique. Decision trees are the exemplar of
supervised machine learning algorithms. It is a tree-like
structure with a node denoting a feature or an attribute, a
branch denotes the classification rule and connects to the
next node, and a terminal or leaf node denotes the outcome.
The uppermost node is also known as the root node in the
decision tree [34]. Decision trees are based on a heuristic
called recursive partitioning. This is also called “divide and
conquer” as it bifurcates the data into subsets within subsets
until the algorithm determines the test class label.

For a dataset with N features, selecting the root attribute
randomly can yield us bad results with low accuracy [10].
Therefore, there are few methods that need to be used first to
determine which attribute should be chosen as a root node.
For appropriate attribute, various parameters are used such
as entropy, information gain and Chi-Square. These parame-
ters are calculated for every attribute, and accordingly the
node attribute is selected.

In this proposed methodology, the ensemble RUSboost
decision tree exhibited the best performance. Ensemble
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Fig. 3 Frequency response of
designed filter pair

techniques combine several decision trees to generate better
classification performance. Boosted decision trees are used
to avoid over-fitting. Boosting is an ensemble technique
used to train a model from many weak learners (decision
trees) connected sequentially to each other. RUSBoost is
used with skewed data to improve the classification perfor-
mance of weak learner [15]. It is a hybrid data boosting al-
gorithm. For the balanced class distribution, dropout regula-
rization is used to avoid the over-fitting problem. AdaBoost
is an ensemble learning technique that is considered to be
more resistant to overfitting than many machine learning

algorithms. AdaBoost produces a strong learner by combin-
ing weak learners in an iterative manner. In each iteration
of training, a new weak learner is appended to the ensem-
ble, followed by the weighting vector’s adjustment to focus
on examples that are misclassified in previous iterations.
This yields a classifier with higher accuracy than the weak
learner’s classifiers.

In order to control the depth of growing tree, we have
chosen spit sizes of 10, 20, and 30. In a decision tree, the
maximum number split may go up to the number of obser-
vations-1 that can lead to a deep and complex tree. The

Fig. 4 Waveforms of 6 SBs for
the sample UCD SpO2 signal :
Apnea(left) and Normal(right)
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tree is built with the objective of minimizing cross-validated
misclassification error. The RUSboost decision tree corres-
ponding to the smallest error is chosen for the model. To
search for the optimal ensemble of boosted classification
trees, the following steps are performed:

– An ensemble of 150 boosted classification trees is
cross-validated using 10-fold cross-validation.

– We vary the maximum number of splits to 10, 20, and
30.

– For each split, we varied the learning rate to 0.1, 0.2,
and 1.

– Estimated the misclassification rate for each ensem-
ble corresponding to the chosen splits and learning
rate.

– Then we have plotted the misclassification rate with
respect to the number of trees up to 150 in the ensemble
for both UCD and SAE databases. Figures 5 and 6
illustrates the tuning of the parameters corresponding to
number of splits 10 & 20 and learning rate 0.1 & 0.2.

– We then identified the number of splits, number of trees,
and learning rate that produced the minimum misclas-
sification rate and selected that ensemble as our model.
identify

– The optimal parameters thus obtained using the RUS-
boost technique are given in Table 2 for both databases.

3 Classification results

The performance of a system depends on the appropriate se-
lection of features, number of SBs, and choice of classifier.

To achieve the optimum classification performance using
the proposed method, we have computed ODFC wavelet-
based SE and conducted classification using two datasets
(SAE and UCD), as discussed in Section 2.1 and decision
tree classifier. The statistical analysis (mean ± standard
deviation) of the Shannon entropy features are presented in
Table 3 for both databases. The p-values computed using
student’s t-test for each of six features are found to be
less than the threshold .001 indicating that each feature
is statistically significant. These features when fed to the
classifier are likely to obtain the highest classification
performance.

Table 3 shows the summary of the statistical analysis of
extracted features from six SBs for our proposed work. It
can be observed from the table that mean values of entropy
features for apnea is higher than mean values for healthy
except in SB-1. The SB-1 consists of higher frequency
waves which are not predominant during sleep. Hence,
normal class signals will have a higher value in SB-1.

Table 4 shows classification performance in terms
of average classification accuracy(CAC), sensitivity and
specificity. The confusion matrices for both databases
corresponding to the best classifier with ten-fold cross-
validation is shown in Table 5. We have attained the hig-
hest CAC > 95% for SAE database and more than 89%
for UCD database. We also computed the area under the
receivers operating characteristics (AUC) of .98 and .94
for SAE and UCD databases, respectively. The values of
AUCs are close to unity indicating higher classification
performance. Figure 7 depicts the variation of accuracy,
sensitivity, specificity with respect to various folds of ten-
fold cross-validation.

Fig. 5 Optimization of
ensemble decision tree models
using RUSBoosting for SAE

1331Automated Sleep apnea detection using optimal duration-frequency...



Fig. 6 Optimization of
ensemble decision tree models
using RUSBoosting for UCD

Table 2 Tuning parameters
used for the optimal ensemble
decision tree classifier

Data Base UCD SAE

Classifier Ensemble RUSboosted tree Ensemble RUSboosted tree

No. of Observations 9581 3947

Method RUSBoost RUSBoost

No. of Learner 140 100

Max no. of Splits 10 20

Learning Rate 0.1 0.1

Table 3 Summary of statistical analysis (mean ± SD) of extracted features from 6 sub-bands for our proposed work

Database SB 1 SB 2 SB 3 SB 4 SB 5 SB 6

UCD A Mean -2.67E-01 2.44E-01 2.67E-01 3.51E-01 2.60E-01 3.47E-01
SD 1.12 1.36 1.40 1.62 1.21 2.31

N Mean 6.32E-03 -5.80E-03 -6.34E-03 -8.32E-03 -6.18E-03 -8.22E-03
SD 9.96E-01 9.89E-01 9.88E-01 9.79E-01 9.94E-01 9.45E-01

SAE A Mean -8.26E-01 4.64E-01 7.30E-01 9.29E-01 8.03E-01 2.99E-01
SD 1.03 1.38 1.16 9.05E-01 1.06 1.45

N Mean 5.69E-01 -3.19E-01 -5.03E-01 -6.40E-01 -5.53E-01 -2.06E-01
SD 4.12E-01 3.59E-01 3.71E-01 3.48E-01 3.98E-01 3.76E-01

**** A: Apnea; N: Normal

Table 4 Performance metrics obtained for our proposed system using
two databases

Accuracy(%) Sensitivity(%) Specificity(%) AUC

UCD 89.21 92.34 89.13 0.96

SAE 95.97 95.78 96.09 0.98

Table 5 Confusion matrix for our proposed system obtained using DT
classifier with two databases

UCD SAE

A N A N

Actual A 205 17 1520 67

N 1017 8342 90 2214

Predicted Predicted

**** A: Apnea; N: Normal
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Fig. 7 Graphs of performance
metrics vs. number(No.) of folds
for SAE and UCD database

4 Discussion

Table 6 compares the various state of the art methods that
used SpO2 signals for automated apnea identification using
UCD or SAE databases. From the table it is clear that the
classification performance exhibited by the proposed model
has surpassed all other methods for both databases. It can
be noted from the table that, our model has attained 89.21%,
92.34%, and 89.13% classification accuracy (CAC),

classification sensitivity (CSE) and classification specificity
(CSP), respectively, using only six features using UCD
database. It has achieved more than 95% CAC, CSE and
CSP using SAE database. Hence, our model outperformed
all other methods.

It is evident from the table that the classification perfor-
mance yielded by all methods, including our proposed me-
thod for the UCD database, is lower than the SAE database.
The possible reason may be UCD data is highly imbalanced

Table 6 Summary of various automated state-of-the-art apnea detection systems using SpO2 signals with UCD / SAE databases (Studies are
arranged in the ascending order of CAC)

Study Methodology Performance

Cen et al. [6], 2018 Employed multi-layer CNN with UCD database
using 1s SpO2 epochs

CAC=79.61%

Xie et al. [51], 2012 Used decision trees on 39 linear and non linear
statistical and frequency domain features of SpO2
signals obtained from UCD database.

CAC=82.79% CSE=78.23%, CSP=84.25%

Mostafa et al. [26] Used a deep belief network (DBN) formed by using
stacked restricted Boltzmann machines (RBM) on
UCD database using ten-fold cross validation.

CAC=85.26% CSE=60.36%, CSP=91.71%

Almazaydeh et al. [1], 2012 Used NN on three Statistical features utilizes SAE
database with 17% testing data

CAC=90.3% CSE=87.5%

Burgos et al. [5], 2009 Used bagged tree on basic statistical features extracted
from SAE database

CAC=93%

Pathinarupothi et al. [31], 2017 Used long short-term memory recurrent neural net-
works on SAE database

CAC=95%

Proposed work Used Ensemble RUSBoosted trees by extracting
ODFC WFB based SE on SAE database with 10
fold CV

CAC=95.97%, CSE=95.78%, CSP=96.09%

Bold entries are the results of our proposed work
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Table 7 Details of time taken for various databases

Prediction Speed Training Time

UCD 22000 obs/sec 7.4254 secs

SAE 10000 obs/sec 8.9134 secs

compared to the SAE database. Also, the UCD database
is sampled at 8 Hz, whereas the SAE database is sampled
at 100 Hz. The minimum desirable sampling frequency for
SpO2 signals is 25 Hz [4].

It is to be noted that Haoyu et al. [13] achieved the CAC
of 98.54%, which is higher than our model. However, they
used combined features obtained from SpO2 and HRV sig-
nals. They have used a private database consisting of 10
subjects. But, we have used only SpO2 signals and two
public databases.

The proposed method is a real-time sleep apnea detection
system developed using SpO2 signal. The method is simple
and fast fast (training time is: 7.4254 sec and testing time
is 22000/sec). Table 7 denotes the prediction speed and trai
ning time for both datasets. Further, the wavelet decompo-
sition has been performed using a new class of WFB called
ODFC, in which filter has minimal joint time-frequency
localization. It is to be noted that, we have used one feature
set containing only six entropy features to obtain the highest
performance.

This work focuses on implementation of real-time auto-
mated detection of sleep apnea. Figure 8 shows the proposed
cloud-based architecture for using wavelet-based features
and machine learning model developed using SpO2 signal.
The system comprises of two parts: (i) SpO2 signal
extraction with a smart device and (ii) cloud-based apnea
detection service.

A pulse oximeter can be attached to the patient’s finger,
which gathers the overnight data throughout the patient’s
sleep. During online mode, the data extracted is sent to the
cloud using a smart device and then to the classifier model
for classification. The outcome of the diagnosis is sent to the
smart device. The patient is alerted using the alarm if apnea
is detected to put continuous positive airway pressure mask
or any other oral device to continue the normal sleep. In
the cloud, the model is developed by us using a supervised
learning model and SpO2. The apnea identification model
which has been trained using UCD and SAE databases can
be placed in the cloud for automated immediate diagnosis
using SpO2 signals. It also can be re-trained using the
patient’s test data which is used to detect the unknown class
using our developed model.

The performance of the system can be improved further
by developing an accurate and robust deep learning (DL)
model with a large SpO2 database. Various DL architectures
namely; convolution neural network (CNN) [8], long
short term memory (LSTM) networks, restricted boltzmann
machines (RBM) and autoencoders have been used for
healthcare applications. Recently Mostafa et al. [27] have
summarized several DL-based methods that have been used
for apnea detection. The DL algorithms do not have feature
extraction, selection and classification steps, separately.
Hence, DL algorithms have been preferred by many
researchers [24], nowadays. However, DL algorithms are
computationally intensive and require more computational
power. Further, it cannot be predicted apriori that a particu-
lar DL-based method is suitable for a real-time applications.
In this regard, it is worth noting that recently, Cen et al.
[6] have used CNN based model using UCD database
with SpO2 and achieved CAC of 79.61% which is 10%
lower than our model. We attained CAC of 89.21% using
UCD database with only six features. Also, Mostafa et al.

Fig. 8 Illustration of cloud-based sleep apnea detection system
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[26] used RBM based DL method and obtained CAC of
85.26% using UCD data which is around 4% lesser than our
proposed model.

The advantages of our proposed system are as follows:

1. The ODFC wavelets are considered to be the best tools
for non-stationary signals including SpO2. The use
of a novel class of optimized wavelet-based Shan-
non entropy features yielded high classification perfor-
mance. It has already been established in the literature
that the wavelets have good time-frequency localization
and, therefore, they can analyze non-stationary signals
well [36]. Moreover, the wavelets designed to have min-
imal joint duration-bandwidth localization in the pro-
posed study have performed well in the classification of
SpO2 signals.

2. Developed model is economical, and diagnosis is
accurate and faster.

3. System is simple and portable due to the use of SpO2

signals, and fewer features are extracted from them for
classification.

4. Though we have proposed a simple and accurate me-
thod with a fewer number of features for the classifica-
tion, we have not used generally used simple classifiers.
We have used RobustBoost and RUSBoost ensemble
techniques to obtain a high classification performance.
Hence, we hypothesize that the proposed combina-
tion of optimal ODFC wavelet-based features and the
RUSBoost tree algorithm yielded high classification
accuracy for the identification of apnea using SpO2

signals.
5. In order to eliminate probable motion artifacts caused

due to voluntary and involuntary movements, we have
used time-frequency localized orthogonal wavelets and
soft thresholding to remove the artifacts.

6. Result of diagnosis can be obtained from anywhere.
7. Developed a real-time automated detection system that

can be used in both primary centers/homes as well
at specialized clinics due to its highest classification
performance, reduced costs, and most importantly,
optimal comfort for patients.

The limitation of the wavelet-based method is that we
cannot predict apriori an optimal number of decompo-
sition levels. Further, there may be the possibility of poor
contact between SpO2 sensor and the finger due to
body movements, which may lead to capturing of false
signals. Also, we have used only 32 subjects. Further study
is needed to examine our method’s performance when
SpO2 recordings are collected from portable monitoring a
patient’s home in the absence of technicians. In addition,
despite the high classification performance of our model,
one must consider that a definitive diagnosis must be

made on the basis of additional information (based on
comprehensive sleep evaluation).

Hornero et al. [20], developed a apnea detection system
using approximate entropy features extracted from arterial
oxygen saturation SaO2 signals (NOT SpO2) and observed
CAC of 85.3%. In future, we plan to explore the perfor-
mance of our model using SpO2 signals for automated sleep
apnea identification.

5 Conclusion

We have developed a real-time automated sleep apnea detec-
tion system using pulse oximetry (SpO2) signals, which
can be used instead of PSG/ECG signals. We have extrac-
ted entropy features from wavelet coefficients of SpO2 sig-
nals. We used optimal duration-frequency localized wavelet
filter bank in order to decompose SpO2 signals into sub-
bands. We have achieved the highest CACs of 95.97% and
89.21% for SAE and UCD databases, respectively, using
a decision tree classifier with a ten-fold cross-validation
strategy. The proposed methodology used only six optimal
wavelet-based features for the classification. The proposed
method is simple, fast, inexpensive, portable, and accurate.
In the future, we intend to test our method with more data
and propose using it in hospitals and homes by implement-
ing the algorithm in a small portal device. Hence, sleep
apnea can be detected in real-time accurately. Nowadays,
specialized sleep laboratories are required to acquire PSG
signals and detect sleep apnea accurately. This is expen-
sive, time-consuming, and uncomfortable for the patients.
In order to overcome these limitations, our proposed SpO2

based real-time system can be used.
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