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Abstract—Avoidance of obstacles is a fundamental problem for 

mobile robots. In recent times, a rapid increase in computing 

power combined with an equally steep decrease in size, electrical 

requirements and cost in computers has led to the increase in the 

use of cameras and vision as a realistic means of achieving real 

time avoidance. 

In this paper, we investigate a means by which a machine 

vision system could utilise optical blur as an avoidance indicator. 

The methods used are intended for monocular systems and 

employ the blur recovery methods of Hu and de Haan to find 

optical blur and optical blur and the looming method described 

by Raviv and Joarder and Sahin and Gaudiano to relate this to 

object approach. It was intended that this system be relatively 

simple in hardware and software implementation. To verify the 

success of the design, we conducted tests in a controlled 

environment. It was found that obstacle approach could reliably 

be computed through this method, but its success depended on 

the camera lens properties. 

 Keywords—mobile robots, obstacle avoidance, looming, 

optical blur 

1 INTRODUCTION 

Recently, machine vision has been an increasingly 

popular sensor choice for obstacle avoidance. While there are 

a number of differing means for achieving this, we feel that 

they could be augmented with a slightly different approach. In 

this paper, we investigate the feasibility of using optical blur 

as an avoidance cue. We aim to provide the basis of an 

avoidance method that is robust, simple and not tied to 

explicitly known camera properties. By combining a robust 

blur recovery mechanism with the concept of visual looming, 

we illustrate that the optical blur of an object in an image can 

be used to produce viable navigation cues in a fashion that is 

suitable for mobile robot avoidance. 

Classically, avoidance has been achieved by stereo vision, 

the use two cameras has been popular in various depth 

perception schemes and details occur in almost every vision 

text (eg: [1, 2] etc.). However true stereo systems have their 

own complexities, not the least of which is their need for two 

cameras [3]. 

In monocular vision, a stereo approximation can be 

created through use of the ‘stereo-through-motion’ concept, 

which uses the discrepancy between frames caused by robot 

motion to approximate true stereo. However this method is 

limited by the fact that no depth information can be recovered 

for objects on the optical axis [1]. For a forward moving robot 

these are the very objects most likely to cause collision. 

Aside from stereo and related systems, there exist several 

other paradigms for visual obstacle detection. Various 

methods of optical flow are recounted in [1, 2]. However these 

sources also point out that such methods suffer from a number 

of qualifiers and problems, such as the aperture problem. 

The method we chose to investigate is based on the 

Looming method described in [4] and [5]. This is based on the 

change of various image properties over time. These two 

sources contain most of the key information relating to this 

method. The work of [5] demonstrates the use of projected 

object area, using the increasing area of approaching objects in 

a controlled environment as a basis for avoidance. This work 

is supported by the lengthy paper of [5], where other cues, 

such as texture and irradiance are discussed. The work of [5] 

also discusses the use of optical blur in some detail, although 

no results are presented for this approach. Additional sources 

for this method are rare, typically the work of [6], which make 

reference to the looming approach, but prefer a method 

augmented by other sensors. 

2 KEY COMPONENTS  

2.1 Visual Looming 

 Visual looming is based on the simple fact that “objects 

look larger as they get closer and smaller as they move away” 

[4]. While this definition was originally used in relation to 

objects' projected area, the same principle can be applied to 

several image object properties, such as texture, irradiance and 

optical blur [5]. Whichever quantity is used, the basic 

mathematical description is the same. As described in [5] A 

quantity L, the scalar looming value of units [       ], is 

defined by the following equation: 

   
  

  

 
   (1) 

 Where R is the range between the object and the camera 

plane and the negative sign is to ensure that decreasing range 

creates increasing (positive) looming value [5]. At first glance 

this is not very useful, as range (R) is unknown. However, if R 

could be replaced by some other quantity g, proportional to R, 

then the value L could be established. If the value g were 

computed in real-time then an evolving estimate of would be 

available [5]. Also if g is directly proportional to R, then it 

would be unnecessary to know any camera properties, thus 
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negating the need for camera calibration. This estimate of 

looming could be combined with a threshold value of L 

computed by used of (1). 

The value of R in that calculation would be the desired 

minimum range for safe operation and dR/dt would be the 

current speed. By comparing this threshold to the variable 

value of L computed from some image property g, it becomes 

possible to establish a mechanism for imminent collision 

warning, without the range R being explicitly known at all 

times. As pointed out in [5] there are a number of image 

quantities that could be considered candidates for g. They 

mention object projection area (used to considerable effect in 

[4]), conduct extensive tests with object irradiance and texture 

and discuss blur at length. However no data for blur as a 

looming cue is presented. Using the optical model described 

below, it can be seen that blur radius, like projected area, is 

directly related to the distance of the object from the image 

plane. It is also preferable to projected area as a measurement 

quantity, because the area approach assumes that an object is 

entirely within the image frame in at least one direction [6]. 

Blur has the advantage that it can be measured at the 

peripheral of the object regardless of how much of the object 

is in the frame. 

2.2 Optical Blur and Blur Recovery 

Fig. 1: Illustration of the circle of confusion and blur optics. 

 

Beginning with the thin lens model (Thin lenses are the 

standard model as described in [7, 8] and most other sources.) 
depicted in Fig. 1, it can be seen that a sharp object will only 

appear sharp in the image if the image plane is at a certain 

point. In actual fact this ‘point’ is a narrow range, the width of 

which is dependent on the lens specifics and sensor resolution. 

This range is known as the depth of field and is closely related 

to the lens focal length [6]. If the image plane is not at this 

point (in this range) then the sharp point becomes a blurred 

circle, referred to as the circle of confusion [9].If this circle 

could be quantified it could be used in the looming 

calculations to compute L, as the radius of the circle of 

confusion (blur) will be related to distance from the image 

plane to the object, assuming the camera and lens specifics are 

constant [8]. 

Many sources, often beginning with the work of [10], 

model the blur circle as a two dimensional, symmetric 

Gaussian function. Thus radius of blur becomes the σ value of 

the Gaussian (actually, it is proportional to this, but σ is 

usually held to be a good measure of blur). The method of Hu 

and de Haan recovers this value by re-blurring the original 

image twice with a Gaussian blur, using increasing values of σ 

each time [11]. They then illustrate that using a ratio of 

differences between the blurred images and assuming that the 

re-blur values of σ are much larger than the original, one can 

recover a good approximation of the original σ at the edges of 

objects. The blur values are only fully accurate at the edges of 

image objects. This is because the mathematical mechanism 

developed by Hu and de Haan computes blur based on the 

maximum difference between the original and re-blurred 

frames, which occurs at object edges (see [11] for details). 

When implementing their mechanism on a two dimensional 

image, they divided the image into a small grid and used the 

largest difference for that area to compute blur. A similar 

approach was taken here, it is important to observe that as one 

moves away from an edge, the recovered blur values become 

less accurate. It is important to note that the original blur must 

be relatively small compared to the re-blur values [11]. As 

there is a practical limit to how large these values can be made 

(or computation becomes intractable), one must assume that 

there exists a point for which blur is too large to be reliably 

computed. 

 

Fig. 2: The experimental setup as seen by the camera, showing the 

input image on the left and the blur image on the right, light squares 

represent more blur. Average blur was computed in a central 

window. These photos show image 0 of the 4.3mm lens sequence. 

 

3 EXPERIMENTAL SETUP 

In order to demonstrate the feasibility of avoidance 

through blur and looming, a series of images were taken in a 

controlled environment and processed using the ideas outlined 

above. Inspired by the experiments in [5] and [4], an idealised 

planar object was fixed to a wall. In this case the object was a 

checker-board with clear, arbitrarily sized squares, sufficiently 

large to be easily distinguished at a distance. A tape measure 

was then fastened perpendicular to the image on a bench. The 

camera was placed at the maximum distance from the image 

object and focused on that object by hand. This hand focusing 

was relatively inexact, relying on decreasing the returned 

value of blur for the target image until a minimum had been 

reached. This was as we wished to evaluate the system without 
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resorting to detailed camera calibration, believing that the 

method should be sufficiently robust to withstand small errors 

from focusing. For purposes of comparison, three lenses were 

used, a 25mm telephoto, an 8mm telephoto and a 4.3mm 

‘standard’ lens. To illustrate the consistency of the results, two 

tests were undertaken for each lens. 

Raviv and Joarder [5] suggest that the camera should be 

focused at infinity for blur based looming. Clearly, this is 

impractical as the blur for any object in view would be too 

large for the approximations described in section 2.2 and thus 

too large to compute. Thus the camera was focused at the 

maximum test range (1m). To compensate for this, the true 

looming curve was also ‘zeroed’ at this point. Following the 

setup stage, a series of images were taken, each approaching 

closer to the image object each frame by a known distance 

step. Blur and looming were then found from this sequence. In 

all tests the maximum (starting) distance was 1m and the step 

20mm. Distance steps and maximum distance was expressly 

known so that a true looming could be computed for 

comparison, they were not used in the blur looming 

computations. 

For these tests blur was computed by taking a rectangle in 

the centre of the camera image and computing a blur average 

for this area. The change in blur average for the sequence of 

frames provided the Δr value in (1). For these tests, it was 

assumed that Δt = 1. This was considered acceptable as ‘speed’ 

could be any constant, or indeed a variable control input. 

The averaging approach for blur finding has 

disadvantages, in that it is simplistic and assumes that all 

objects in the area are on the same plane and orientation 

relative to the camera. However, for the controlled test 

environment this was considered an acceptable assumption, 

the averaging approach providing consistent results (see 

below). Although such a method could not be used in a real 

mobile application (the assumption that the area contains one 

at object would almost certainly be violated), the overall 

method of looming-through-blur could be implemented by 

substituting this area averaging technique for a simple object 

tracking method. The critical point is to find the previous 

frame history of blur radius r for a given object. In the 

experiments we were able to assume that the area of interest 

contained the same object in each frame. The advantages of 

this experimental set up are that, while it is not real-time, it is 

controlled and produces clear data, illustrating the efficacy of 

looming-through-blur. While modifications needed to 

implement this concept in real time avoidance for mobile 

robots they were considered relatively minor. 

4 RESULTS 

The test as described above was conducted for three 

lenses, a 25mm and 8mm telephoto lenses as well as for a 

4.3mm standard lens. The returned values of blur are 

illustrated in Fig. 3. They show clearly that blur is related to 

distance. However they also show that the blur rate of change 

is specific to each lens. 

As the initial Looming results were very noisy, two forms 

of filter were applied to the data, a moving average filter and a 

Kalman filter. The moving average had a generous window of 

15 data points while the Kalman parameters were generous 

estimates. Some experimentation showed that the filter output 

was not very sensitive to these parameters. As this style of 

filter was used largely to illustrate the difference between the 

moving average and this more classic approach, this was not 

considered very important. 

Fig. 5 shows the unfiltered looming values for all lenses 

and tests. Fig. 6 shows the looming data filtered with a 

moving average filter, while Fig. 7 shows the data filtered 

using a Kalman filter. The errors for these three looming 

results are given in Fig. 8 through 10. 

 
 

Fig. 3: The average blur radius vs. range for all lenses (25mm, 

8mm, and 4.3mm) and tests. 
 

 

Fig. 4: The standard deviation vs. range for all lenses and tests 
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Fig. 5: Unfiltered Looming data vs. Range for all tests. 
 

 

Fig. 6: Looming with a Moving Average Filter vs. Range for all tests. 
 

 
 

Fig. 7: Looming data vs. Range for all tests. Filtered using a Kalman 

filter. 
 

 
 

Fig. 8: Unfiltered looming error vs. Range for all tests. 
 

 
 

Fig. 9: Looming Error for moving average filtered data vs. Range. 

 

 
 

Fig. 10: Looming Error for Kalman filtered data vs. Range. 
 

5 DISSCUSSION 

5.1. Blur Mean and Variance 

As can be seen in Fig. 3, the blur mean for all lenses 

advances in a smooth fashion. However the variance is 

Fig.5: Looming data vs. Range for all tests. Filtered using a 

moving average filter. 
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significant, especially when the image is sharpest. We believe 

that at sharp points in the image the blur recovery is strongly 

affected by noise, with small noise points being erroneously 

reported as ‘sharp’ objects. While the variance decays rapidly, 

its final state is still quite high. Qualitative examination of the 

blur recovered illustrates that a ‘penumbra’ of less accurate 

blur exists around each edge in the image, as the method of Hu 

and de Haan is most accurate on the edge [11]. These 

increasingly inaccurate blur values could account for the 

relatively wide spread of the mean. However, this was not 

considered a serious problem due to the smooth evolution of 

the mean and its clear relationship with range. With a more 

advanced tracking system, this might not be an issue. 

5.2. Lenses and Depth of Field  

It is clear that there is a great difference between the three 

lenses in the looming results. The 25mm telephoto shows 

much better looming results than the two shorter focus length 

cameras. We hypothesize that this is because the longer lens 

has a much shorter depth of field due to its longer focal length, 

producing much more distinct ‘layers’ of blur than the other 

two lenses. This is supported by Fig. 3, notice how the blur 

mean for the longer lens advances much faster relative to 

distance, thus the Δr value is much larger in this lens, resulting 

in a correspondingly larger value of looming. This same figure 

shows that, although the lenses have a very smooth blur vs. 

range curve, they advance at very different rates. It is not 

known at this stage if other long focal length lenses would be 

able to produce the same curve, or if the blur would advance 

even faster, resulting in an overestimated looming curve as the 

4.3mm lens was underestimated. If this occurred it would be 

necessary to produce some means of scaling. 

Additionally, Fig. 3 shows that the shorter the focal length, 

the greater the difficulty in focusing the image to begin with. 

Notice that the 4.3mm lens in particular does not start at its 

lowest blur. This indicates that the minimum blur is difficult 

to find, further illustrating that there is little clear distinction 

between different blur states for this lens. 

5.3.  Looming 

Despite the clear difference in looming output for the 

three lenses, it is also clear that they are exhibiting a 

measurable looming increase as range diminishes. However, it 

is doubtful that the shorter lenses could be directly useful as 

their error is clearly not linearly related to range (see Fig. 8-

10). From the results in Fig. 6 and Fig. 9 the long focus lens 

could definitely provide an accurate estimate of the looming 

value; however it is not known if this good estimate will be 

the same for all lenses possessing a suitably short depth of 

field, or if a longer focus lens (say a 50mm) would give 

looming values that rose much faster than the true value. If the 

latter case, some calibration could be necessary. 

Additionally, the calculated looming values are clearly 

very noisy, some form of filtering is necessary to provide 

coherent output. Of the two filters tried, the moving average 

gave the best results. As discussed, the worst noise is located 

near the sharpest image. 

Finally, the looming values show a marked decrease as 

range decreases past a certain point. This is not as marked in 

the shorter lenses, but is clear in the 25mm lens. This is 

believed to be a result of the continuing increase in blur, after 

this point the blur is becoming too large to compute accurately. 

In comparison to previous looming efforts, such as [4, 5] 

the results are promising. In the experimental results for area 

looming in [5] the looming error over 320mm (starting at 

1300mm and advancing in steps of 20mm for 16 steps) was on 

approximate order of 0.01, while their irradiance and texture 

tests showed similar orders of error (ranging from about 0.01 

for area and texture to about 0.025 for irradiance). While our 

results were more erratic (their data was shown without 

smoothing), Fig. 9 shows the error for the 25mm lens to 

relatively good by comparison, around 0.005 for a moving 

average filter (the results in [4] are of a different form). It 

should be noted that the values given for error from [5] may 

not be exact, as their results are presented in graphical form. 

Also they conducted tests at various angles, but only zero 

angle tests were compared to this work. 

6 FUTURE WORK: MOBILE AVOIDANCE 

Clearly, the next stage is the implementation of this 

method on a mobile platform. The key obstacle to this is the 

accurate computation of the change in blur from frame to 

frame. The averaging approach used above would be unlikely 

to produce accurate results in an un-controlled environment 

and would need to be replaced with some form of object 

tracking. While a discussion on the various means of 

achieving this is beyond the scope of this paper, we envisage a 

less distributed value for blur could be obtained by using only 

the object edges. 

Upon actual implementation it would also be necessary to 

consider looming as a control signal. In this paper we did not 

consider looming for variable speeds, the looming value that 

would cue avoidance is based on the change in range (see (1)). 

Thus this rate of change (speed) would either have to be 

known a priori or used as a control input. Alternatively, 

looming could be used to find range directly, as in [4]. 

7 CONCLUSIONS 

The results clearly show that there is a measurable 

increase in looming values as range decreases. For lenses with 

a short focal length (long depth of focus), this is not closely 

related to the true value of looming as computed from range. 

However for a 25mm lens, this (when filtered) closely adheres 

to the theoretical curve. We believe that this is due to the 

much reduced depth of focus in this lens, although it is not 

known if all long focal length lenses would produce the same 

result. 

These values were obtained without performing camera 

calibration and by manually focusing the camera lens at a 

known distance. The results, although noisy, illustrate that 

212



 

 

 

optical blur could be used as an effective avoidance cue for 

mobile machines. 
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