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1 Introduction 
Three springs clusters are located approximately 20km north-east of Injune, in 

the north-eastern margin of the Surat Basin (Fig. 1). These are: 

• The ‘Lucky Last Springs’ cluster (#230) with vents 287 and 340; 

• The ‘Springrock Creek’ cluster (#561) with vent 285; 

• The ‘Abyss Springs’ cluster (#592) with vents 285a, 285b and 286. 

The geological setting in the realm of these springs is complex, including a 

number of faults (marked in black in Figure 1) which may act as a preferential 

flow conduits and/or hydrogeological barrier to groundwater.  

This report summarizes an innovative modelling effort which aims to enhance 

the hydrogeological understanding of this area, with an emphasis on the springs 

flow mechanisms. The model was developed using FEFLOW platform due to its 

advance capabilities for (1) allows an unstructured grid, which increased 

flexibility around key areas of interest and larger cell sizes away for focus areas  

, (2) allows multi-level water tables, i.e., two or more phreatic aquifers, and (3) 

surface-subsurface interconnection. 

 

2 BACKGROUND 

2.1 SCOPE 

In areas of concentrated CSG development, the impacts on water levels caused 

by individual CSG projects can overlap. In these situations, the Queensland 

Government may declare an area to be a ‘Cumulative Management Area’ (CMA).  

The area of concentrated CSG development in Queensland has been declared as 

the ‘Surat CMA’.  

When a CMA is declared, the Office of Groundwater Impact Assessment (OGIA) 

is required to prepare a cumulative assessment of impacts of CSG water 

extraction. This includes regional groundwater modelling and the development of 

integrated management arrangements, including spring and aquifer monitoring 

requirements.  The collective assessments and management arrangements are 

established in an ‘Underground Water Impact Report’ (UWIR).  
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Figure 1: Location and Geological maps 

Springs complex 
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A key component of the UWIR is the Spring Impact Management Strategy 

(SIMS). The SIMS relates to all potentially affected spring vents (points of 

discrete groundwater discharge) and watercourse springs (gaining streams). In 

relation to potentially affected springs, the mechanism and nature of the 

connection between a spring and underlying aquifers affects the susceptibility of 

the spring to a change in water pressure. OGIA is currently undertaking a 

project improve the local scale hydrogeological understanding at selected sites 

(OGIA, 2013). To support this research, OGIA contacted USQ to complete an 

innovative modelling study for the Lucky Last and Abyss spring complexes. 

2.2 Data sources 

Data sources for this project included previous studies (EHA, 2009; KCB, 2012a, 

KCB, 2012b) and data supplied exclusively for the purpose of this project by 

OGIA. The latter includes stratigraphic interpretation of private water bore and 

exploration well within the model domain.  

2.3 Geology 

The study area is located at the north-eastern rims of the Surat Basin. The study 

area is intersected by a prominent fault, which is part of the longer Hutton-

Wallumbilla Fault Zone (Figure 1) and which lower the south-west part in respect 

to the north-east accompanied by thrust.  

The outcropping sequence includes four Jurassic formations (from top to 

bottom): Birkhead Formation, Hutton Sandstone, Evergreen Formation and the 

Precipice Sandstone. In the Evergreen Formation, two members can be 

identified- the Westgrove Ironstone Member and the Boxvale Sandstone 

Member; the section above and below these sequence is termed upper zone and 

lower zone, respectively (Table 1). On the north-east side of the major fault only 

the Evergreen Formation and Precipice Sandstone are at outcrop. 

Table 1: Composite geological section 

Formation Sub-units Principle lithology 
Birkhead  mud and siltstone 
Hutton  sandstone 
Evergreen Upper zone shale 

Westgrove Member mud and siltstone 
Boxvale Member sandstone 
Lower zone shale 

Precipice  sandstone 
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In principle, the Hutton Sandstone, the Precipice Sandstone and the Boxvale 

Sandstone Member comprise water bearing layers, the Evergreen Formation 

comprises shales, and Birkhead Formation and Westgrove Ironstone Member 

comprise mud and siltstone (Cook et al., 2013). 

2.4 Hydrogeology 

2.4.1 The regional system 

The studied area lies within the eastern margin of the Great Artesian Basin 

(GAB). The GAB comprises a sequence of alternating layers of permeable 

sandstone aquifers and lower permeability siltstone and mudstone aquitards 

including the Jurassic units in the focus of this study (see Table 1). The overall 

recharge rate for sandstone outcrop in the area was estimated to be 1-5 

mm/year (Kellett et al., 2003; QWC, 2012). The major aquifers, including 

Precipice and Hutton sandstones are vast, have significant water storage, and 

are extensively developed for groundwater use (primarily stock, 

domestic/town/industrial water supply). North-east of the fault, the Bandanna 

Formation is currently being exploited for CSG extraction, requiring de-

pressurization of the formation. 

Groundwater flow within this part of the GAB is generally eastward-south-

eastward (Figure 2). Generally, near the recharge zones, vertical water leakage 

is induced by pressure differences, and tends to be downwards, with the shallow 

aquifers feeding the deeper artesian aquifers, and vice versa, away from the 

recharge zones vertical gradient is upward (Welsh, 2006).  

  

Figure 2: Groundwater flow field in (a) Hutton Sandstone Aquifer and (b) Precipice 
Sandstone Aquifer (source: QWC, 2012). Model area in red for scale. 

a) b) 
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Previous studies indicate that within the study area, heads decrease in the 

Hutton aquifer from ~+370 m to ~+345 - +335 m and in the precipice aquifer 

from +340 m to +310 m. In turn, this suggests a downward vertical gradient, as 

expected near the recharge zones. 

2.4.2 Springs and watercourses connectivity 

Within the studied area there is inter-connection between the surface water and 

the groundwater through several systems, including the various low discharged 

springs (describe below) and a ~5 km section of the Injune creek. This 

interconnected section runs from the Birkhead/Hutton contact line at elevation 

+356 m, eastward, to elevation +348 m (Figure 3). 

 

Figure 3: Springs and Creek location 

The springs include five groups (Table 2), three of which are located in 

association with the fault zone, and in similar elevation. The springs are 

permanent, some with a significant mounding (KCB, 2012a). Nevertheless, all 

the springs serves only as a minor outlet for the regional aquifers. 
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Two hydrogeological ‘springs feeding’ mechanisms were suggested for the vents 

included in the studied area (Figure 4; QWC, 2012): 

1. ‘Water table window’: springs are fed by phreatic water table, at places 

where the potential head is slightly higher than the topography. In the 

studied area the Hutton formation is incised and feed the Injune Creek 

and probably also the cabin and Abyss springs. The Evergreen Formation 

is probably feeding the ‘Creek’ springs and maybe also the ‘Lucky last’ and 

‘Fourdog’ springs (KCB, 2012a,b). 

2. ‘Artesian pressure’: springs are fed by confined aquifer, at places where a 

possible ‘leak’ occurs, such as near fractured fault zones. In the studies 

area the Precipice sandstone may feed the ‘Lucky last’ and ‘Fourdog’ 

springs, leaking upward through the fault zone (KCB, 2012a,b). 

 

Figure 4: Suggested Springs Emerging Mechanism. (a-b) ‘Springs types’ as appear in 
QWC, 2012; (c) Conceptualization of the studied area for vents 286 and 287  

 

   

SW       NE 
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Table 2: Spring groups details  

Group Elevation  
[m asl] 

Outcrop Previous 
suggested 
feeding 
mechanism 
 (KCB, 2012b) 

Cabin Springs (285A+B) +355.5 Birkhead/Hutton 
contact line 

WT/AR 

Abyss Springs (286) +348.2 Hutton/Westgrove 
contact line 

WT/AR 

Fourdog (287) +349.5 Westgrove WT/AR 

Lucky last (340) +349 - +350 Westgrove WT/AR 

Creek (285) +356.8 Boxvale WT 

3 NUMERICAL MODEL SETTINGS 

3.1 Conceptualization 

The numerical flow model exhibits the groundwater flow in the four prominent 

hydrogeological units, namely Birkhead Formation (aquitard), the Hutton 

Sandstone (aquifer), the Evergreen Formation (aquiclude) and the Precipice 

Sandstone (aquifer), as well as the groundwater system interconnection with the 

surface water.  

Further distinction to the sub-units of the Evergreen Formation was made only at 

the vicinity to the fault zone as (1) there are no wells to constrain such a 

detailed division in wider areas, (2) the outcrops of the different members of the 

Evergreen Formation in the NE area are not continuous, i.e, they are desiccated 

to discrete hills, and (3) in many places the upper sub-units are dry (i.e., the 

groundwater table is found below bottom of the layer). Throughout the model, 

the top hydrogeological units assumed to be under phreatic conditions.  

The model comprises three dominant structural zones: a south-western lower 

zone, a mid-fault uplifted zone and a north-eastern uplifted zone (Figure 5). In 

between the three zones two narrow belts of elements were set to represent the 

fault (gauge); across these fault belts extreme elevation gradient exist. 

As it comprises a very small part of the entire GAB, its boundaries do not 

coincide with the hydrogeological boundaries of the system; groundwater flow is 

assumed to derive by the differences in the assigned head. At places where 
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groundwater - surface-water interconnections is assumed, a suitable 

representation of the hydrological conditions was assigned to the top layer. 

The objectives of the model were to represent a low discharge through the 

springs, by satisfactorily reconstruct the groundwater head map through several 

(two) alternative conceptualization of the fault-aquifer properties. It should be 

noted that only limited water level information is available within the 

model domain; the conceptualization and models resolution are 

restricted to the availability and spatial distribution of these 

hydrogeological data.  

 

 

Figure 5: SW-NE Cross-section of the model domain. See colours legend in Table 4. 
More cross sections are shown in the appendix.  

3.2 Interface 

The numerical model was introduced using the FEFLOW code (Version 6.1) of 

WASY’s GmbH (Diersch, 1996). FEFLOW is a commercial finite-element model 

which is able to address the unique specification needed for the study area 

including a complex topography and structure, multiply water tables and lateral 

shift from confined to unconfined conditions. These capabilities are aligned with 

the project objectives. FEFLOW solves the continuum equations for liquids (i.e. 

water) in porous media (Diersch, 1996). Further FEFLOW definitions within the 

text are italic. Complete technical definitions are listed in Table 3, below. 

   

SSW NNE 

Downlifted zone Fault zone Uplifted zone 
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3.3 Model domain and Discretization 

The model domain covers an area of 18 km x 25 km, which rotated about the 

north direction by 30 degrees, to enable better description of the boundaries. It 

was automatically discretise into 2836 triangular elements, to align with the 

following pre-defined features: 

- Formation outcrops; 
- The Hutton-Wallumbilla Fault; 
- The local water bores; 
- Spring locations; 
- Spring section of the Injune creek. 
Elements dimensions varied according; particularly small elements are located 

along the fault line, vent line and around the springs. 

 

Table 3: FEFLOW option for mesh generation and problem summary 

Problem Summary 

G
en

er
al

 Description: Separate flow process 

Type: Saturated 

Time class: Steady flow 

S
ur

fa
ce

s Projection: 3D phreatic aquifer (fixed mesh) 

Free surface constrains: unconstrained when touching the top surface 

unconstrained when falling dry 

N
um

er
ic

 Anisotropy settings Axis-parralel anisotropy 

Velocity approximation improved 

Solver type Preconditioned conjugate gradient PCG 

M
es

h 

Element type: Triangular prisms 

Number of layers: 4 

Number of elements: 11,344 (2,836 per slice) 

 

3.4 Layers 

The models mesh represents the local geological structure and comprises of four 

layers (Table 4, Figure 6). These four layers are bounded by 5 slices, the upper 

most of which is the topographic surface (1sec DEM, supplied by OGIA). The 

other four slices were constructed in GIS (ArcView) based on interpolation of a 

point data supplied by OGIA (see ‘grid points’ in Figure 1). All the point data 

were interpolated using the IDW method, with the two faults strand defined as 
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barriers. The GIS layers were imported in to the FEFLOW project and elevation 

data for each of the layers were attributed to the mesh nodes. In vicinity to the 

fault zone, architecture was amended manually to fit a different division into 

Westgroup member (thickness of 10-15 m, and trimming NE), Boxvale member 

(15 m), lower Evergreen (60 m) and Precipice (25-35 m). 

Table 4: Grids Layers 

South-west North-East 

Layer Geological 

unit# 

Top surface Top surface Geological 

unit# 

#1 Birkhead* Topography Topography Evergreen* 

#2 Hutton Top Hutton Top Precipice Precipice 

#3 Evergreen Top Evergreen Top Precipice-10m Precipice 

#4 Precipice Top Precipice Top Precipice-20m Precipice 

  Bottom Precipice Bottom Precipice  

Notes: 

# Colours are the same as in Figure 6. 

* In places where the uppermost geological formation is eroded, cells were set to 

represent the 2nd geological formation. 

 

Figure 6: Oblique view of the model domain from the south-east. Colours represent 
vertical conductivities, and set to exhibit the layered structure. 
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3.5 Parameterization 

The various layers were set with a singular horizontal (Kh=Kx=Ky) and vertical 

(Kv=Kz) hydraulic conductivities (Table 5). Representative values for each layer, 

were extracted from the GHD (2012) model; this information was supplied by 

the OGIA as a digital GIS Raster. It should be noted that different horizontal 

hydraulic conductivities for all formation in the realm of the Surat basin were 

documented and used in previous researches; these may range upon several 

orders of magnitude. For example, the Hutton aquifers was ascribed 0.05–1.25 

m/d and the Precipice aquifer was ascribed 0.1-4 m/d, while in the present work 

both ascribe 1 m/d (based on local GHD (2012) values). Changes of the flow 

regime in respect to changes in the conductivities may be tested using a 

sensitivity analysis.   

In the base scenario, the fault cells were set to Kh=Kv=0.0001 m/d. These 

values are equivalent to siltstone properties, as it is assumed that the fault 

serves as a barrier to the groundwater flow, and that the horizontal conductivity 

of the fault was downgraded due to the slick on the fault. 

Table 5: Hydraulic properties of geological layers 

Formation Sub-units Principle 

lithology 

Hydraulic Conductivity 

[m/d] 

Horizontal Vertical 

Birkhead  mud and siltstone 0.05 7x10e-5 
Hutton  sandstone 1 0.5 
Evergreen Upper zone* shale 

6x10e-5 

 

1e-7 

 
Westgrove Member mud and siltstone 0.001 0.001 
Boxvale Member sandstone 0.1 0.05 
Lower zone shale 6x10e-5 1e-7 

Precipice  sandstone 1 0.1 
* missing  

3.6 Boundary conditions 

The northwest and the southeast boundaries of the model were set as first type 

boundary conditions (Dirichlet type) with a fixed head. Initially, the heads were 

extracted from the GHD model (GHD, 2012); this information was supplied by 

the OGIA as a digital GIS Raster. Basically, heads at the NW were higher than in 

the SE and derive groundwater flow through the domain. Following preliminary 

simulations, the values were slightly adjusted. 
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The five spring complexes and the spring water course were represented by a 

third type boundary condition (Couchy type) (Table 5). This boundary condition 

defines the discharge (Q) as a function of head differences between a given 

spring threshold and the aquifer, and a transfer rate parameter (φ) : 

𝑄 = 𝐴 ∗ Φ ∗ �ℎ𝑎𝑞𝑢𝑖𝑓𝑒𝑟 − ℎ𝑠𝑝𝑟𝑖𝑛𝑔�                       |  ℎ𝑎𝑞𝑢𝑖𝑓𝑒𝑟 > ℎ𝑠𝑝𝑟𝑖𝑛𝑔  

 

As default, φ was set to 1 day-1 for all the springs. Table 5 also listed the 

calculated discharge in the base scenario.    

Table 6: Springs element boundary conditions 

Complex No. of 

Elements 

Bounding head 

[m]  (hspring) 

Calculated 

discharge [l/s] 

Cabin (285A+B) 3 +355.6 0.04 

Abyss (286) 4 +347-348 6.36 

Lucky last (340) 1 +348.5 0.05 

Fourdog (287) 16 +349 0.05 

Spring rock (285) 1 +356 0.36 
    

Injune Creek 15 355-348 --- 

4 NUMERICAL SIMULATIONS 

4.1 Calibration 

The model was fitted to meet groundwater heads in the relevant hydrogeological 

units by changing the hydraulic conductivity, bounding heads, and the storage 

parameter of the springs. 

The NE zone was calibrated by altering the boundary conditions to fit the 

measured hydraulic heads at bores RN16794 and RN17568, while allowing small 

seepage in spring 285. Heads along the NW and SE boundaries were +387 m 

and +335 m, respectively. 

Heads for the Hutton aquifer in the SW zone were calibrated to fit most of the 

measured data in RN48884, RN31940, RN37712, RN37699, RN15640, 

RN123238 and RN38223. The measured heads at RN37698 and RN24893 were 

substantially lower than any other well in their vicinity by 14-24 m and 10-15 m, 

respectively, thus these wells do not account in the calibration process. The 
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measured head at RN36742 was higher than expected in its position and was not 

calibrated as well. Heads along the NW and SE boundaries were around +370 m 

and +345 m, respectively. This values are in agreement with previous studies 

(Figure 2a). 

There is only one measuring point (RN30988) which can be serve to calibrate 

the head boundaries for the Precipice aquifer. Heads along the NW and SE 

boundaries for this aquifer were set between +370 m - +356 m and +335 m, 

respectively. In any case, the Hutton aquifer head exceed the Precipice aquifer 

head by at least 2 m. 

4.2 Groundwater flow 

There is very little head data of bores in the model domain, which makes the 

compilation of a reliable groundwater flow map complex task. However, the 

numerical model allows drawing such maps, once establishing some assumptions 

along the boundaries. Compiled groundwater head maps for the Hutton and 

Precipice aquifers are shown in Figure 7. Generally, the flow is from NW to SE, 

as induced by the boundary conditions. The head at the Hutton aquifer is higher 

by 5-10 m from the Precipice aquifer in the same spot. This vertical gradient is 

expected at and near the recharge areas. 

   
Figure 7: Groundwater heads at (a) Hutton Formation and (b) Precipice Formation 

Figure 8 
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4.3 Water balance 

Overall, there is a balance between water inflow and outflow (Table 6). The  

total inflows are 117 l/s; however, much more water flow in the SW zone than 

the NE zone (107 l/s and 10 l/s) and much more water flow through the Hutton 

aquifer than the Precipice aquifer (88 l/s and 29 l/s, respectively).  

25% of the water entering the domain is discharge through the surface water 

outlets. A large portion of this component (19%) is through the Injune Creek 

and a smaller component (6%) is through the springs. 

 
Table 7: Water balance [Ml/yr] 

In Out 
NW boundary 3,654 SE boundary 2,734 
  Springs* 216 
  Stream 704 

* Outflow through each of the springs is detailed in Table 5.  

4.4 Flow system 

The various springs are fed by up-gradient component (Figure 8); this result is 

expected where the flow field is dictated by the boundary conditions.  

 
 

Figure 8: Groundwater flow path toward the springs (map view, see inset in Figure 7) 

285AB 

285 

286 

287 

340 
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Springs 285 and 285AB are a typical water table springs. They run from the 

boundary, at the same elevation and gain an upward vertical component only 

near the springs. Flow paths directing toward spring 285AB runs at Hutton 

Formation and those directing towards spring 285 runs in the Precipice 

Formation. 

Flow paths towards spring 286 runs parallel and south of the southern fault. 

They origin and run in the Hutton Formation, nevertheless, at varied depths.  

 

Figure 9: Groundwater flow path toward spring 286 (vertical plain, generally parallel to 
the fault) 

Most of the flow paths towards springs 287 run within the faulted zone, along 

the Precipice Formation and gain vertical component in vicinity of the spring 

(Figure 10). Additional flow path occurs parallel to the southern fault from the 

Hutton Formation. 

 

Figure 10: Groundwater flow path toward spring 287 (vertical plain, generally parallel to 
the fault) 

WNW ESE 

WNW ESE 
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Flow paths towards springs 340 can be divided into 3 groups: the first 

component origins at the WNW boundary, and runs parallel to the southern 

fault, at either sides of it; this component corresponds with the regional flow in 

the Precipice Formation. The second component originates some 1km up-

gradient from the spring, in shallow depths; this component probably 

corresponds to lateral flow from the Hutton formation. The third component is a 

vertical flow path, origin at the Precipice Formation in vicinity to the springs. 

 
 

Figure 11: Groundwater flow path toward spring 340 (vertical plain, generally parallel to 
the fault) 

 

5 SUMMARY 
A 3D geological mesh, including four formations and complex faulting geology, 

was built for the studied area. The 3D model have been attributed boundary 

conditions and estimated hydraulic parameters. Flow at the relevant 

hydrogeological units has been set to driven by the head differences across the 

NW-SE boundaries, while feeding some interconnected surface water spring 

complexes. The preliminary results suggest all springs are fed by up-gradient 

component, with springs along the fault fed also by vertical component. 

Sensitivity of the result to parameterization and the plausible of different springs 

feeding mechanisms should be further investigated. 

 

 

WNW ESE 

1 
2 

3 
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Appendix – geological cross-sections  

 
Figure A-0: Cross-sections location. Background colours represent 

topography (elevation) of base Precipice. 

• All cross-sections have a x7 vertical exaggeration. 

• All cross-sections run from SSW (left) to NNE (right). 
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Cross-section I. 

 
Notes: Birkhead Formation thins out, while Hutton Formation outcrops. Faulting 

take place along two strands- the southern is the major and the northern have 

only minor faulting. 

 

Cross-section II 

 
Notes: Birkhead Formation almost reaches the southern fault strand. Faulting 

take place along two strands- the southern is the major and the northern have 

only minor faulting. 

 

Cross-section III 

 
Notes: Birkhead Formation almost reaches the southern fault strand, and is very 

thin along low areas (creeks). Faulting take place along two strands- the 

southern is the major and the northern have only minor faulting. 
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Cross-section IV 

 
Notes: Birkhead Formation almost reaches the southern fault strand, and is very 

thin along low areas (creeks). Hutton Formation is thickening toward the SE 

(compare to thickness in sections I, II, III). Precipice Formation outcrops in the 

NE in low area (creek). Faulting take place along two strands- the southern is 

the major and the northern have only minor faulting. 

 

Cross-section V 

 
Notes: Birkhead Formation almost reaches the southern fault strand, and is very 

thin along low areas (creeks). Hutton Formation is thickening toward the SE 

(compare to thickness in previous sections). Precipice Formation outcrops in the 

NE in low area (creek). Faulting take place along two strands- the southern is 

the major and the northern have only minor faulting. 
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Cross-section VI 

 
Notes: Birkhead Formation thins out, as the Hutton Formation outcrops. Hutton 

Formation is in its thickest section (compare to thickness in previous sections). 

Faulting take place along one strand only. 

 

Cross-section VII 

 
Notes: Birkhead Formation thins out, as the Hutton Formation outcrops. Hutton 

Formation is slightly thinner than section VI. Faulting take place along one 

strand only. 
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