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Abstract
Extended warning of above-average and extreme precipitation is valuable to a
wide range of stakeholders. However, the sporadic nature of precipitation makes
it difficult to forecast skilfully beyond one week. Subseasonal forecasting is a
growing area of science that aims to predict average weather conditions multiple
weeks in advance using dynamical models. Building on recent work in this area,
we test the hypothesis that using large-scale horizontal moisture transport as a
predictor for precipitation may increase the forecast skill of the above-median
and high-precipitation weeks on subseasonal time-scales. We analysed retro-
spective forecast (hindcast) sets from the Australian Bureau of Meteorology’s
latest operational subseasonal-to-seasonal forecasting model, ACCESS-S2, to
compare the forecast skill of precipitation using integrated water vapour trans-
port (IVT) as a proxy, compared to using precipitation forecasts directly. We show
that ACCESS-S2 precipitation generally produces more skilful forecasts, except
over some regions where IVT could be a useful additional diagnostic for warning
of heavy precipitation events.

K E Y W O R D S
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1 INTRODUCTION

The science and application of subseasonal prediction are
rapidly growing fields (e.g., Robertson and Vitart, 2019).
Over the last decade, subseasonal prediction has been a
key focus of the World Weather Research (WWRP) and
World Climate Research Programmes (WCRP) through
the Subseasonal-to-Seasonal (S2S) Prediction Project
(Brunet et al., 2010; Robertson et al., 2015). The potential

benefits of accurate enhanced warnings, particularly of
rainfall, are enormous to a variety of stakeholders, and
the uptake of subseasonal forecasts for decision-making
is rapidly increasing (White et al., 2022). The Australian
Bureau of Meteorology has been providing subseasonal
forecasts to the public as part of its regular operations since
August 2019 using ACCESS-S (Australian Community
Climate and Earth System Simulator–Seasonal; Hudson
et al., 2017; Wedd et al., 2022). In this study, we use
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ACCESS-S to examine the subseasonal prediction of
rainfall.

There has also been an increasing interest in the
ability to predict extremes on subseasonal time-scales
(e.g., Domeisen et al., 2022; Vitart and Robertson, 2018;
Vitart et al., 2019), including for Australia using the
ACCESS-S system (Lim et al., 2021; King et al., 2020a; Mar-
shall et al., 2021; Cowan et al., 2022). Rainfall extremes
over Australia are strongly modulated by natural modes of
variability (e.g., Min et al., 2013; King et al., 2014; 2020b;
Marshall and Hendon, 2019). King et al. (2020a) evaluated
the potential of using the ACCESS-S version 1 (Hudson
et al., 2017) to predict various extreme rainfall indices
on S2S time-scales over Australia. They found there was
the potential to produce useful operational forecasts of
extreme rainfall indices on these time-scales. In addition,
the Bureau of Meteorology is now providing forecasts to
the public of the chance of having unusually dry/wet
conditions in the weeks to seasons ahead. ‘Unusually’ is
defined as being in the top or bottom 20% of climatology
for the selected outlook period (http://www.bom.gov.au
/climate/outlooks). There are, however, challenges asso-
ciated with predicting rainfall, especially extremes. Rain-
fall is highly variable in space and time, and its irregular
nature makes it difficult to forecast well beyond one week.
For example, for the extreme rainfall event over north-
eastern Australia in the summer of 2019 the ACCESS-S1
model only indicated above-average rainfall in the region
up to one week ahead (Cowan et al., 2019), and all 11
models from the S2S prediction project database failed
to simulate this event more than a few days in advance
(Vitart et al., 2017; Domeisen et al., 2022). Additionally,
ACCESS-S1 failed to predict a drier than usual Austral
spring in 2020 over Australia due to the La Niña signal
dominating the forecast and the influence of the Indian
Ocean Dipole (IOD) and the Madden Julian Oscillation
(MJO) being under-represented (Lim et al., 2021). How-
ever, other extreme events across the world, such as the
heavy rain that led to flooding in Ecuador in January 2016,
were apparent in the European Centre for Medium-Range
Weather Forecasts (ECMWF) re-forecasts up to three
weeks ahead (Pineda et al., 2023). The predictability of the
Ecuador floods was likely enhanced by a strong El Niño
and active MJO. These studies suggest there is variable skill
in extreme rainfall prediction on subseasonal time-scales
that is particularly dependent on the phase of relevant
climate modes, and perhaps the location of the event.

There might be more scope for useful S2S prediction
of synoptic-scale weather systems due to their longer life-
time and larger spatial scales compared with mesoscale
rain-bearing systems (Robertson et al., 2020). Integrated
water vapour transport (IVT) is a measure of horizon-
tal water vapour flux throughout the column of the

atmosphere, which is a key ingredient in rainfall gen-
eration (Zhu and Newell, 1998). There is a wealth of
literature demonstrating the strong connection between
enhanced IVT and rainfall globally often in the context
of atmospheric rivers (ARs), which are narrow regions of
enhanced IVT in the lower troposphere (Ralph et al., 2006;
Lavers et al., 2011; Waliser and Guan, 2017; Viale
et al., 2018; Reid et al., 2021a; 2021b). Studies of AR pre-
dictability in operational numerical weather prediction
models over western North America found skill in AR
forecasts out to 10-day lead times (Wick et al., 2013). It has
only been recently that analyses of ARs in the S2S context
have been conducted. Mundhenk et al. (2018) found that
AR activity along the west coast of North America could
be skilfully predicted up to five weeks ahead depending
on the phases of the MJO and Quasi-Biennial Oscillation
(QBO) and Huang et al. (2021) also found the S2S fore-
casting skill of ARs was strongly related to El Niño and
the MJO. A global evaluation of AR subseasonal predic-
tion skill in the ECMWF S2S forecast system found that
the forecast outperformed climatology out to a three-week
lead time over broad regions of the subtropics and midlat-
itudes (DeFlorio et al., 2019b). Experimental operational
S2S forecast products of ARs have been developed over
the western USA (DeFlorio et al., 2019a).

On medium-range time-scales (one- to two-week
lead times), Lavers et al. (2014) showed that IVT had
higher predictability than rainfall over Europe during
the 2013/2014 winter. Moreover, using water vapour
transport had the potential to extend the forecast lead
time of extreme hydrological events by up to three days
relative to rainfall forecasts. This suggests that rainfall pre-
dictability is more susceptible to uncertainties associated
with mesoscale dynamics and horizontal mass conver-
gence, whereas IVT is largely driven by synoptic-scale
processes. Synoptic-scale features should be represented
more physically in the model than smaller-scale precipita-
tion features which suffer due to resolution and imperfect
parameterisation schemes (Lin et al., 2022). Similarly,
Ramos et al. (2020) showed that during extreme rainfall
over Portugal, IVT forecasts had greater predictive skill
than rainfall beyond approximately five days lead time.

In summary, subseasonal forecasting of rainfall, espe-
cially extreme rainfall, is a developing research area and
skilful, useful predictions could have considerable value
to society. However, there are major uncertainties associ-
ated with rainfall prediction on subseasonal time-scales.
IVT has strong correlations with extreme rainfall and is
modulated by climate modes that lend predictability on
S2S time-scales. Some studies have shown that IVT can
extend the lead time of rainfall forecasts on medium-range
time-scales by a few days. This research foundation has
led to the question we aim to answer in this study: can
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the most recent version of ACCESS-S simulate and predict
global IVT, and can we use IVT to increase the forecast skill
of predicting above-average and extreme rainfall events on
subseasonal time-scales?

2 DATA AND METHODS

We use data from a dynamical S2S prediction system
to examine the performance in predicting atmospheric
water vapour transport and rainfall. Observational data
and reanalyses are used for verification.

2.1 Access-S2

This study evaluates the performance in predicting
IVT and rainfall using the most recent version of the
ACCESS-S seasonal prediction system (ACCESS-S2),
which became operational in 2021 (Wedd et al., 2022).
ACCESS-S2 uses the same coupled model as the
UK Met Office GloSea5-GC2 model (Maclachlan
et al., 2015), and remains unchanged from ACCESS-S1
(Hudson et al., 2017), aside from minor corrections and

enhancements (Wedd et al., 2022). The primary differ-
ence between ACCESS-S1 and ACCESS-S2 lies in the data
assimilation, which generates the initial conditions for
the forecasts (Wedd et al., 2022). The GC2 coupled model
(Williams et al., 2015) comprises the Unified Model (UM)
atmosphere model (Walters et al., 2017), the NEMO3.4
ocean model (Madec and the NEMO team, 2008; Megann
et al., 2014), the Joint UK Land Environment Simulator
(JULES) land surface model (Best et al., 2011) and the
Los Alamos Sea Ice Model (CICE) (Hunke et al., 2015).
These components are coupled hourly using the Ocean
Atmosphere Sea Ice Soil coupler (OASIS3; Valcke, 2013).
Additional details of these models can be found in Figure 1.

The ACCESS-S2 hindcast period extends from 1981
to 2018, with nine ensemble members per hindcast.
Unlike ACCESS-S1, the hindcast configuration employs
a time-lagged ensemble approach in which the num-
ber of ensemble members depends on the start date of
the hindcast (Wedd et al., 2022). In our study, we used
a 27-member ensemble that is valid on the 1st of every
month. This comprised nine ensemble members from
three successive days: the 1st of the month plus the two
days prior. The first one or two days were excluded, as

F I G U R E 1 Schematic and
details of the ACCESS-S2 component
models. [Colour figure can be viewed at
wileyonlinelibrary.com]

Forecast Period: 1st – 28th of every month

F I G U R E 2 Schematic of
time-lagged ensemble method. [Colour
figure can be viewed at
wileyonlinelibrary.com]
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REID et al. 71

necessary, to ensure that the data analysed for all ensem-
ble members start on the 1st of the month (see Figure 2).
The months were analysed and grouped into meteoro-
logical seasons. For brevity, we present the summer and
winter results.

We used weekly total rainfall which was coarsened
to 2◦ × 2◦ horizontal resolution using conservative regrid-
ding. Horizontal winds and specific humidity on vertical
levels between 950 hPa and 300 hPa were used to calculate
the IVT as in Reid et al. (2020). The IVT was also coars-
ened to 2◦ × 2◦ using a bilinear interpolation. A benefit of
using coarse resolution data is that near misses will not be
punished as much during verification (Ebert, 2008). This
is especially important for highly inhomogeneous vari-
ables such as rainfall where small spatial errors can lead to
unfairly poor skill scores.

2.2 Verification datasets

We used IVT from ERA5 (Hersbach et al., 2019) also regrid-
ded bilinearly to a 2◦ × 2◦ grid. The Global Precipitation
Climatology Project version 1.3 (GPCP; Adler et al., 1994)
daily global rainfall dataset was used as our reference
rainfall. The rainfall data was also coarsened to 2◦ × 2◦
horizontal resolution using conservative regridding. We
use relative magnitudes (i.e., exceedance of a percentile)
throughout this study because we do not expect such a
coarse rainfall grid to capture realistic magnitudes of rain-
fall extremes, and we assess the model against its own per-
centile climatology (which is dependent on start date and
location) in order to take into account model biases and
as suggested by Nayak et al. (2014). All percentiles were
calculated using rainfall weeks, that is, weeks where rain-
fall exceeded 1 mm at each grid point. The observational
rainfall dataset limits our period of analysis to 1997–2018.
However, given the 27-member ensemble, this gives us a
sample size of n= 1782 for each season and lead time.

2.3 Verification skill scores

To verify the model predictors, contingency tables were
constructed.

In the contingency table shown in Table 1, a is a hit, b
is a miss, c is a false alarm and d is a correct negative.

T A B L E 1 Contingency table schematic

Event
(model
predictor)

Non-event
(model
predictor)

Event (observations) a b

Non-event (observations) c d

The Critical Success Index (CSI; Wilks, 2019) is
defined as:

CSI = a
a + b + c

. (1)

The CSI is a measure of the proportion of correct fore-
casts that excludes correct negatives, which is useful for
forecasts where the ‘yes’ event occurs less often than the
‘no’ event as is typically the case when evaluating rainfall
and extremes. CSI has been used by the US National
Weather Service and is a valuable measure of skill when
event frequency is consistent (Schaefer, 1990). As we use
a percentile-based definition for events, the frequency will
be consistent by definition (except for comparing skill of
predicting above-median rainfall with >80th percentile
rainfall) and therefore CSI is a simple and useful verifi-
cation measure for this analysis. A CSI of 0 is the worst
possible score and a CSI of 1 is the best possible score.

Binary masks were developed for each of the predic-
tors and observation datasets to indicate events (e.g., when
weekly total rainfall is above the 80th percentile). All per-
centile values are relative to the dataset that they are then
applied to, to account for climatological biases. This means
the magnitude of the 80th percentile of precipitation in
ACCESS-S2 will be different from the 80th percentile of
precipitation in GPCP. This also allowed for the compar-
ison of different variables, that is, using high IVT occur-
rence as a predictor for rainfall. Grid points where the IVT
exceeded the 80th percentile were categorised as events
in the same way as described above for weekly rainfall.
Figure 3 is an illustrative example of this method. For
every week and ensemble member, we constructed binary
latitude–longitude masks of the ACCESS-S2 precipitation
data that indicated which grid points exceeded the 50th
or 80th percentile threshold (1 indicates percentile thresh-
old exceeded). The same was done for the ACCESS-S2
IVT and the observations. Then for each grid point we
made contingency tables as in Table 1 and calculated the
skill score shown in Equation (1). In the example given in
Figure 3, green boxes show hits, red boxes show misses,
blue boxes show false alarms, and white boxes show cor-
rect negatives. Figure 3 illustrates one forecast start date,
lead time and ensemble member. The skill scores shown
in Figure 4 onwards are calculated from the total number
of hits, misses and false alarms at each lead time for every
start date and ensemble member.

3 RESULTS

The logical structure of the results is presented as fol-
lows: we first present the CSI scores for ACCESS-S2
precipitation in forecasting observed precipitation
(Figure 4) and ACCESS-S2 IVT in forecasting observed
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72 REID et al.

F I G U R E 3 Example schematic
of how the contingency tables were
developed. Boxes represent a
latitude–longitude grid with binary
mask to indicate the occurrence of an
event. Green boxes show where the
predictor correctly predicted an event
(i.e., a hit), red boxes show misses, blue
boxes show false alarms and white
boxes show correct negatives. [Colour
figure can be viewed at
wileyonlinelibrary.com]

(a)

(b)

(c)

(d)

F I G U R E 4 Critical Success Index for forecasting weeks with above-50th-percentile precipitation in (a) December–January–February
(DJF) and (c) June–July–August (JJA), and above the 80th percentiles of precipitation in (b) DJF and (d) JJA using ACCESS-S2 verified
against Global Precipitation Climatology Project (GPCP) precipitation. Week n indicates forecast lead time where week 0 is the first week of
the forecast. [Colour figure can be viewed at wileyonlinelibrary.com]

IVT (Figure 5). Next, we present the difference between
these two scores to highlight the skill in forecasting
IVT compared to the skill in forecasting precipitation in
ACCESS-S2 (Figure 6). The second hypothesis we test
is that IVT could be used as a proxy for precipitation
forecasts by presenting the CSI score where we use
weekly mean observed IVT as a predictor for weekly

total observed precipitation (Figure 7; using the method
described in Figure 3). Finally, we show the key result for
this study which is the CSI score for using ACCESS-S2
IVT to forecast observed precipitation (Figure 8) and
the difference between the CSI scores obtained when
using ACCESS-S2 precipitation and IVT as predictors for
observed precipitation (Figure 9).
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REID et al. 73

F I G U R E 5 Critical Success Index for forecasting weeks with above-50th-percentile integrated water vapour transport (IVT) in (a)
December–January–February (DJF) and (c) June–July–August (JJA), and above the 80th percentiles of IVT in (b) DJF and (d) JJA using
ACCESS-S2 verified against ERA5 IVT. Week n indicates forecast lead time where week 0 is the week the forecast was initiated. The Tibetan
Plateau and Himalayan Mountains have been masked due to high uncertainties with modelled IVT at those altitudes. [Colour figure can be
viewed at wileyonlinelibrary.com]

(a)

(b)

(c)

(d)

F I G U R E 6 Difference in Critical Success Index (CSI) for forecasting precipitation versus forecasting integrated water vapour transport
(IVT) above the 50th percentiles in (a) December–January–February (DJF) and (c) June–July–August (JJA), and above the 80th percentiles in
(b) DJF and (d) JJA (i.e., difference between Figures 4 and 5). Positive values (purple) indicate that precipitation is forecasted with higher
skill while negative values (orange) indicate that IVT is forecasted with higher skill. [Colour figure can be viewed at wileyonlinelibrary.com]
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(a)

(c)

(b)

(d)

F I G U R E 7 Critical Success Index skill score for predicting the occurrence of (a) above-50th-percentile precipitation in
December–January–February (DJF), (c) June–July–August (JJA) and (b) above-80th-percentile precipitation in DJF, and (d) in JJA in Global
Precipitation Climatology Project (GPCP) using ERA5 integrated water vapour transport (IVT). [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 8 Critical Success Index for forecasting weeks with above-50th-percentile precipitation in (a) December–January–February
(DJF), and (c) June–July–August (JJA), and above-80th-percentile precipitation in (b) DJF and (d) JJA using ACCESS-S2 integrated water
vapour transport (IVT) as a predictor for precipitation. Predictions are verified against Global Precipitation Climatology Project (GPCP)
precipitation. Week n indicates the forecast lead time as before. [Colour figure can be viewed at wileyonlinelibrary.com]
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(a)

(b)

(c)

(d)

F I G U R E 9 Difference between ACCESS-S2 rainfall and ACCESS-S2 integrated water vapour transport (IVT) Critical Success Index for
predicting above 50th percentiles of precipitation in (a) December–January–February (DJF), and (c) June–July–August (JJA), and above 80th
percentiles in (b) DJF and (d) JJA (i.e., difference between Figures 4 and 8). Purple colours indicate that ACCESS-S2 rainfall has higher skill
and orange colours indicate that ACCESS-S2 IVT has higher skill. Week n indicates the forecast lead time. Positive values (purple) indicate
that precipitation is a better predictor while negative values (orange) indicate that IVT is a better predictor. [Colour figure can be viewed at
wileyonlinelibrary.com]

3.1 How well does ACCESS-S2 forecast
precipitation and IVT?

Figure 4 presents the CSI for forecasting weeks above the
50th and 80th percentiles of weekly precipitation using
ACCESS-S2 precipitation verified against GPCP precipita-
tion. The model generally performs better in regions with
higher precipitation such as over the equatorial Pacific
Ocean. Forecasts of above-median rainfall are consider-
ably better than forecasts of above 80th percentile rainfall.
As illustrated in Figure 6, ACCESS-S2 generally forecasts
future IVT better than future precipitation. In particular,
IVT is forecast with higher skill over the northeastern
Pacific winter storm tracks where ARs (i.e., regions of high
IVT) are responsible for a considerable proportion of west-
ern US winter rainfall at all lead times (Ralph et al., 2006).

These results support the hypothesis that model IVT
has higher forecast skill than model precipitation over
large regions of the globe. Similar results were also shown
by Lavers et al. (2014) over Europe and Lavers et al. (2016)
over North America using the ECMWF forecasting sys-
tem on NWP time-scales. They suggest this is likely due to
IVT being associated with synoptic-scale processes, which
models can simulate better than the mesoscale processes
that influence precipitation generation.

3.2 Can observed IVT be used as a
proxy for precipitation?

To test whether modelled IVT could be used as a pre-
dictor for precipitation we first test whether there is skill
in using observed IVT as a predictor for observed pre-
cipitation (Figure 7). As in the previous figures, forecast
skill is lower for above 80th percentile rainfall when using
above 80th percentile IVT as a proxy. These results could
be interpreted as the upper limit of skill that could be
obtained from using IVT to predict precipitation; how-
ever, this interpretation should only apply to regions where
observations are more robust such as at lower latitudes and
over land (Manton et al., 2020).

3.3 Can modelled IVT be used as a
proxy for precipitation?

After establishing the skill of ACCESS-S2 in predicting
IVT and precipitation, and that using IVT as proxy for
precipitation has skill in the observations, we now test
whether modelled IVT can be used as a predictor for
precipitation up to three weeks ahead. Importantly, we
assess whether using IVT as a predictor for precipitation
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provides any additional skill for precipitation forecasts
given that IVT has a higher forecast skill than precipi-
tation over large regions of the globe. The rationale for
this is that IVT could be a useful additional diagnostic for
warning of extreme precipitation events. Figure 8 shows
the CSI score for using ACCESS-S2 IVT as a predictor for
precipitation verified against GPCP precipitation. To com-
pare the two predictors (ACCESS-S2 IVT and ACCESS-S2
precipitation), we plotted the difference between Figures 4
and 8 to show which predictor has a higher CSI value for
forecasting observed precipitation (Figure 9). The purple
regions in Figure 9 indicate locations where using the
model precipitation leads to a higher skilled forecast of
observed precipitation and the orange indicates locations
where using the model IVT as a proxy for precipitation
actually leads to a higher skilled forecast. Figure 10 illus-
trates the same information as Figure 9, but we show the
percentage increase (instead of absolute difference) in the
forecast skill from using IVT as proxy for precipitation
relative to the using the model precipitation.

Precipitation is generally a better predictor in DJF
except over some key regions including the Middle East
and northeast Pacific midlatitude storm tracks at longer
leads. These are regions where synoptic-scale systems
involving high IVT are a key source of rainfall in DJF
(Ralph et al., 2006; Esfandiari & Lashkari, 2020). This is

not particularly surprising; however, it does provide some
physical reasoning for the results we are observing and
why using IVT as a predictor may be useful in some regions
but not others.

During JJA, IVT performs well as a predictor off the
southwest coast of North America and the Middle East
again as well as over parts of South America where ARs
are most active in austral winter (Viale et al., 2018). The
results also indicate skill in using IVT to forecast winter
precipitation over Antarctica, especially West Antarctica.
Strong moisture flux from lower latitudes over Antarc-
tica can drive considerable wintertime melting (Wille
et al., 2019); however, satellite observations of precip-
itation are prone to considerable uncertainties at high
latitudes (Manton et al., 2020).

4 DISCUSSION

The results shown here suggest that ACCESS-S2 has
greater skill in forecasting IVT than precipitation and in
some regions IVT can be used as a proxy for precipita-
tion at lead times of 2–4 weeks to produce more skilful
forecasts. However, model precipitation is more skilled
during the week of model initialisation and over regions
of high convection. It is worth noting that over large

F I G U R E 10 Same as Figure 9, but the results are presented as percentage increase in Critical Success Index (CSI) from using
integrated water vapour transport (IVT) as a predictor relative to using model precipitation as a predictor for precipitation. [Colour figure can
be viewed at wileyonlinelibrary.com]
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regions, especially over the ocean, there is not much dif-
ference in the skill between using precipitation to fore-
cast precipitation and using IVT to forecast precipita-
tion.

The skill scores for predicting extreme (>80th per-
centile) precipitation weeks are weaker than the scores
for predicting the above-median precipitation weeks. This
not unique to the use of IVT. Subseasonal prediction of
extreme precipitation events is a major forecasting chal-
lenge (Vitart et al., 2019; King et al., 2020a). Moreover,
the heaviest precipitation totals require ample moisture,
adequate uplift and often slow-moving or stalled weather
systems (Barnes et al., 2023; King et al., 2023). The use
of IVT only captures the moisture component and there-
fore may have limitations in identifying the heaviest
precipitation events.

Previous work examining the subseasonal forecasting
skill for precipitation in all S2S models that were part of
the World Climate Research Programme S2S Prediction
project (Vitart et al., 2017) also demonstrated skill in pre-
cipitation forecasts during weeks 1–2, but the skill dimin-
ished during weeks 3–4, except for over the tropical oceans
(de Andrade et al., 2019). They suggested the inherent vari-
ability of extratropical weather and model deficiencies in
capturing tropical–extratropical processes may be to blame
for the lack of skill outside the tropics. However, our find-
ings indicate that ACCESS-S2 is capable of forecasting IVT
over large subtropical and extratropical regions beyond
two weeks (Figure 6). This indicates that the represen-
tation of extratropical weather systems may not be the
main source of this uncertainty, but rather the conversion
from atmospheric water vapour to precipitation in envi-
ronments where forced rather than free convection is the
key source of uplift for precipitation.

Furthermore, regions where IVT appears to show
higher skill than model precipitation for forecasting pre-
cipitation also tend to be associated with a dry bias in
precipitation in the Met Office Unified Model Global
Atmosphere, which is the atmospheric model compo-
nent used in ACCESS-S2 (Walters et al., 2011; Walters
et al., 2017). Similarly, the northern Indian Ocean and
off the northwest coast of Africa exhibit a positive bias in
reflected shortwave radiation (in DJF) which is indicative
of too much stratocumulus cloud and light rain (Walters
et al., 2011). This suggests that the higher skill that results
from using IVT to predict precipitation in these regions
may be related to uncertainties in the convection param-
eterisation, and that the dry biases in the Unified Model
Global Atmosphere could be attributed to uncertainties
in the parameterisation scheme rather than uncertainties
in simulating the large-scale processes. This, of course, is
worth further investigation in future work before robust
conclusions can be drawn.

5 CONCLUSION

In this study, we have examined the potential of IVT as
a tool to enhance subseasonal prediction skill for fore-
casting precipitation using ACCESS-S2. We showed that
ACCESS-S2 can simulate weeks with above-median IVT
and precipitation reasonably well but has low skill in fore-
casting weeks with both IVT and precipitation above the
80th percentile. There is considerable spatial and seasonal
variability in the IVT and precipitation skill.

However, the effectiveness of using IVT as a predic-
tor for precipitation depends on the specific location. It
works best in regions where high moisture flux plays a
critical role in precipitation generation. In contrast, in
areas where the atmosphere is already highly saturated,
such as over the tropical Pacific Ocean, IVT is less use-
ful. Therefore, our intention is not to propose that IVT
be used instead of modelled precipitation as a predictor,
but rather in conjunction with, to potentially enhance the
skill of rainfall forecasts on multiweek time-scales. Com-
bining the forecasts in such a way that they counteract
each other’s error could potentially lead to better opera-
tional forecasts of rainfall. The challenging aspect would
be determining the weighting for the predictors, which
would likely need to be dependent on location and season.
Machine learning may be a useful tool for future analy-
ses of this kind. We also note that this analysis is based
on the raw hindcast data and operational bias-correcting
techniques would potentially increase the skill scores
reported here.

Using an approach that focuses on large-scale horizon-
tal moisture flux may be a potential avenue for extract-
ing additional skill from subseasonal models at longer
lead times. Synoptic-scale weather systems can be directly
modelled whereas precipitation is subject to parameter-
isation schemes, which may add additional uncertainty.
Further research is required before this method could
become operational, but our work suggests a poten-
tial pathway for improving rainfall forecasts on subsea-
sonal time-scales, which could have significant societal
benefits.
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