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Abstract	
 
Electronic Healthcare Record (EHR) systems can provide significant benefits by 

improving the effectiveness of healthcare systems. Research and industry projects 

focusing on storing healthcare information in NoSQL databases has been triggered by 

practical experience demonstrating that a relational database approach to managing 

healthcare records has become a bottleneck. Previous studies show that NoSQL 

databases based on consistency, availability and partition tolerance (CAP) theorem 

have significant advantages over relational databases such as easy and automatic 

scaling, better performance and high availability. However, there is limited empirical 

research that has evaluated the suitability of NoSQL databases for managing EHRs. 

This research addressed this identified research problem and gap in the literature by 

investigating the following general research: How can a simulation of a large EHR 

system be developed so that the performance of NoSQL document databases 

comparative to relational databases can be evaluated? 

Using a Design Science approach informed by a pragmatic worldview, a number of 

IT artefacts were developed to enable an evaluation of performance of a NoSQL 

document oriented database comparative to a relational database in a simulation of a 

large scale EHR system. These were healthcare data models (NoSQL document 

database, relational database) for the Australian Healthcare context, a random 

healthcare data generator and a prototype EHR system. The performance of a NoSQL 

document database (Couchbase) was evaluated comparative to a relational database 

(MySQL) in terms database operations (insert, update, delete of EHRs),  scalability, 

EHR sharing and data analysis (complex querying) capabilities in a simulation of a 

large scale EHR system, constructed in the cloud environment of Amazon Web 

Services (AWS). Test scenarios consisted of a number of different configurations 

ranging from 1, 2, 4, 8 and 16 nodes for 1Million, 10 Million, 100 Million and 500 

Million records to simulate database operations in a large scale and distributed EHR 

system environment.  

The Couchbase NoSQL document database was found to perform significantly better 

than the MySQL relational database in most of the test cases in terms of database 

operations -insert, update, delete of EHRs, scalability and EHR sharing. However, the 

MySQL relational database was found to perform significantly better than the 
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Couchbase NoSQL document database for the complex query test that demonstrates 

basic analysis capabilities. Furthermore, the Couchbase NoSQL document database 

used significantly more disk space than the MySQL relational database to store the 

same number of EHRs.  

This research made a number of important contributions to knowledge, theory and 

practice. The main theoretical contribution to design theory was the design and 

evaluation of a prototype EHR system for simulating database management operations 

in a large scale EHR system environment. The prototype EHR system was 

underpinned by the development of two data models with data structures designed for 

a NoSQL document database and a relational database and a random healthcare data 

generator which were based on Australian Healthcare data characteristics and 

statistics. The design of a data model for EHRs for a NoSQL document database using 

an aggregated document modelling approach provided an important contribution to 

data modelling theory for NoSQL document databases using de-normalisation and 

document aggregation. The design of a random healthcare data generator was another 

important contribution to design theory and was based on a data distribution algorithm 

(multinomial distribution and probability theory) informed by National Health Data 

Dictionary and published Australian Healthcare statistics. The prototype EHR system 

allowed this study to demonstrate through a simulated performance evaluation that a 

NoSQL document database has significant and proven performance advantages over 

relational databases in most of the database management test cases. Hence this study 

demonstrated the utility and efficacy of a NoSQL document database in the simulation 

of a large scale EHR system. This research has made a number of important 

contributions to practice. Foremost is that the IT artefacts (namely, a data model for 

storing EHRs in a NoSQL document database, a random healthcare data generator and 

a prototype EHR system) developed and evaluated in this research can be readily 

adopted by practitioners. Another important practical contribution of this research is 

that it is based on the open source availability of NoSQL database and relational 

database alternatives. Hence, this research can provide a sound basis for lower-income 

countries as well higher-income countries to establish their own cost-effective national 

EHR systems without the restrictions, limitations, complexity or complications of 

similar proprietary relational database systems. 
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Chapter	1	–	Introduction	

1.1	Chapter	Introduction	
 
This first chapter of the thesis provides the foundation for this research. First, the 

background and the motivation for undertaking this research are discussed. Then a 

description of the research problem is provided and the research questions that were 

investigated in this study are introduced. Next, the research paradigm and 

methodological approach that guided the conduct of this research are outlined. Finally, 

the scope and planned contributions of this research are presented, followed by a 

general outline of the thesis chapters. Figure 1.1 outlines the structure of this chapter. 

 

Figure 1.1 Structure of Chapter 1 

1.2	Background	and	Motivation	
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Electronic Health Record (EHR) systems and healthcare data sharing between 

healthcare providers remain a significant challenge for many countries, despite many 

developments in database technology and network infrastructure (Bacelar-Silva et al. 

2011; Hoerbst et al. 2010; Pearce & Haikerwal 2010). Many countries such as 

Australia, Finland, Germany and Turkey are working on establishing nationwide e-

health platforms that will facilitate data sharing. However, issues about data standards, 

scalability, high volumes of data storage, data processing and the cost of EHR system 

implementations are particularly challenging for governments and healthcare 

providers (Bacelar-Silva et al. 2011; Drejhammar 2010; Grimson 2001; Hoerbst et al. 

2010; Jin, Deyu & Xianrong 2011; Pearce & Haikerwal 2010; Schmitt & Majchrzak 

2012; Vest 2012). 

Data intensive information systems such as healthcare systems require database 

management systems in order to function properly (Mengchen 2011; Vera et al. 2015). 

The size and heterogeneity of data stored and managed in modern distributed systems, 

including healthcare systems, are increasing exponentially (Floratou et al. 2012; Goli-

Malekabadi, Sargolzaei-Javan & Akbari 2016; Lee, Tang & Choi 2013).  

Most EHR systems are based on relational databases which struggle to accommodate  

the expanding size and evolving structure and use of healthcare data that requires data 

management systems that support scalability, high availability and data model 

flexibility which cannot be provided by relational databases (Blobel 2006; Dolin et al. 

2006; Freire et al. 2016; Guo et al. 2004; Jin, Deyu & Xianrong 2011; Orfanidis, 

Bamidis & Eaglestone 2004; Schmitt & Majchrzak 2012). Furthermore, large scale 

EHR systems have significant potential for improving clinical decision support, 

population health management, discovering patterns and developing new treatments 

using efficient parallel data analytics over large volumes of healthcare data (Goli-

Malekabadi, Sargolzaei-Javan & Akbari 2016; Hermon & Williams 2014). However, 

managing and analysing large scale healthcare data requires new data management 

tools and methods (Raghupathi & Raghupathi 2014; Sun & Reddy 2013)  

The need to scale databases beyond the capabilities of relational databases running on 

a single large computer system has driven the introduction of new scalable database 

systems (Borkar, Carey & Li 2012; Helland 2011; Konstantinou et al. 2011). These 
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new systems are referred to as “NoSQL” databases. While the name is not entirely 

agreed upon, NoSQL stands for “Not Only SQL” (Cattell 2011).  

Relational database management systems have limitations due to scalability and 

infrastructure cost issues (Borkar, Carey & Li 2012; Cattell 2011). NoSQL database 

systems which have emerged in response to these limitations are mostly open-source 

and can run on commodity hardware architectures (Jin, Deyu & Xianrong 2011; 

Konishetty et al. 2012; Valduriez 2011). NoSQL database systems can scale 

horizontally with no single point of failure or bottlenecks because of a shared-nothing 

architecture (Borkar, Carey & Li 2012; Konishetty et al. 2012). 

In a shared-nothing architecture, servers have their own resources, thus they do not 

share RAM, processor or storage capability (Borkar, Carey & Li 2012; Cattell 2011). 

This enables horizontal scaling, the distribution of data and processing operations over 

many servers to achieve large numbers of read/write operations per second (Cattell 

2011). 

NoSQL databases offer low-cost solutions that provide high availability and address 

scalability issues. NoSQL database systems have been heavily influenced by Google’s 

Bigtable and Amazon’s Dynamo systems and can easily scale up to accommodate 

large datasets (Borkar, Carey & Li 2012; Schram & Anderson 2012). Some NoSQL 

databases have been developed and used commercially by companies such as Google 

and Amazon. However, there are many open source NoSQL database systems based 

on similar approaches, including HBase, MongoDB, CouchDB, Cassandra, 

Couchbase, etc. (Schram & Anderson 2012). 

NoSQL database systems are already used in some large commercial applications by 

technology company leaders such as Google, Amazon, LinkedIn and Facebook. 

NoSQL database systems can support the management of more complex and 

heterogeneous data sources and offer high scalability and high availability that 

relational database systems cannot provide (Borkar, Carey & Li 2012; Cattell 2011; 

Konstantinou et al. 2011). Furthermore, open source NoSQL database systems have a 

significant advantage in terms of implementation and software licence costs over 

relational database systems. This is another reason to use NoSQL database systems to 

address the shortcomings of commercial relational database management systems 

(Escriva, Wong & Sirer 2012). 
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Implementation of EHR systems in many countries are in progress. Countries such as 

Turkey, Australia, China and the UK are following an e-health transition strategy. The 

use of information systems in healthcare facilities is increasing as it is promoted by 

national strategies and working groups (Australian Digital Health Agency 2015; Nøhr 

et al. 2005). Increasing diffusion of information systems to deliver healthcare and the 

increasing size and heterogeneity of healthcare data has resulted in a bottleneck for 

storage, retrieval, high availability and analysis aspects of relational databases. 

NoSQL database systems might be the solution to this bottleneck (Jin, Deyu & 

Xianrong 2011; Schmitt & Majchrzak 2012). 

While there are significant advantages in using NoSQL database systems, there is 

limited research which has compared the performance of NoSQL databases in terms 

of database operations (insert, update, delete), scalability and data analysis (complex 

querying) capability with relational database systems in a healthcare domain. There 

are numerous white papers, blog entries and comments mentioning the advantages of 

NoSQL database systems over relational databases. However, there are very few 

empirical studies that compare NoSQL database systems and relational database 

systems, particularly in the context of healthcare (Parker, Poe & Vrbsky 2013). Hence, 

there is a significant need to evaluate these different types of database systems 

(NoSQL versus relational) in a healthcare context.  

1.3	Research	Problem	and	Research	Questions	
 
The identification of the gap in the literature provided the motivation for conducting 

this research. The research problem that was addressed in this PhD thesis can be 

defined as: 

There is a need for an empirical evaluation of the performance of NoSQL document 

databases in terms of database operations, scalability, data sharing and data analysis 

aspects comparative to relational databases in large scale Electronic Health Records 

(EHR) systems based on a healthcare data model. 

Based on this research problem, the general research question investigated in this study 

is framed as follows. 
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General RQ: How can a simulation of a large EHR system be developed so that the 

performance of NoSQL document databases comparative to relational databases can 

be evaluated? 

In order to investigate this general research question, seven specific research questions 

are investigated to evaluate the feasibility of NoSQL document databases for 

managing distributed EHRs in an Australian healthcare context. 

RQ1: How can a NoSQL document data model and a relational data model be 

developed for an EHR system that are in line with documents published by healthcare 

authorities in Australia?  

RQ2: How can a random healthcare data generator be developed that will generate 

EHRs that are representative of the characteristics of Australian healthcare data based 

on statistics available in the public domain?  

RQ3: How can a prototype EHR system be developed that will facilitate database 

operations and measure performance and scalability for NoSQL document databases 

and relational databases?   

RQ4: How do NoSQL document databases perform compared to relational databases 

in executing basic database operations such as insert, delete and update on electronic 

health records?  

RQ5: How do NoSQL document databases scale compared to relational databases in 

electronic health record systems?  

RQ6: How do NoSQL document databases perform compared to relational databases 

in supporting electronic health record sharing through patient record retrieval in a 

distributed EHR system?  

RQ7: How do NoSQL document databases perform compared to relational databases 

in executing complex queries on electronic health records? 

1.4	Research	Paradigm	and	Methodological	Approach	
 
This research addresses the gap identified in the literature and proposes a solution to 

the research problem described in the previous section by evaluating a NoSQL 

document database system in terms of the performance of database operations, 
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scalability, data sharing and data analysis (complex querying) capabilities comparative 

to a relational database in the context of the healthcare domain using healthcare-

specific data models and data characteristics. This performance evaluation of a 

NoSQL database in the healthcare domain is based on the development of IT artefacts 

that are specifically built for healthcare applications rather than using a generic 

performance-measurement approach. 

Researchers in the Information Systems (IS) discipline have increasingly used Design 

Science Research (DSR) as an approach to understand and provide solutions to real 

world problems. Design Science Research is identified as a problem-solving 

paradigm, as opposed to a problem understanding paradigm. There has been a number 

of research projects based on a DSRM which consist of design and evaluation of 

artefacts to justify the contributions to theory and practice in the IS discipline (Hevner 

et al. 2004; Peffers et al. 2007). Since the purpose of this research project is to develop 

IT artefacts and evaluate these IT artefacts as a suggested solution to a particular IS 

problem, a Design Science Research (DSR) is an appropriate research paradigm and 

methodology for collecting data to answer the specific research questions framed by 

the research problem and main objectives of this study.  

Hevner et al (2004) argue that the understanding of a problem domain and providing 

a real world solution can be achieved by designing, building and evaluating an artefact 

(Hevner et al. 2004). The term artefact is a broad term. IT artefacts are diverse, with 

many possible manifestations and forms and may be composed from hardware, 

software and process information based on predefined rules, logic, structures, routines 

and values embedded in them  (Zhang, Scialdone & Ku 2011).  

Although various steps for conducting Design Science Research have been suggested 

there are commonly-agreed steps such as identification of the problem, design of the 

artefacts and evaluation of artefacts as solutions to a specific problem (Alturki, Gable 

& Bandara 2011; Gregor & Jones 2007; Rossi & Sein 2003). 

Therefore, in this research, identification of the problem and solution requirements 

within the healthcare context are determined by designing building and evaluating IT 

artefacts to provide a solution to the problem being addressed in this study. Then these 

IT artefacts are used to evaluate the performance of a NoSQL document database in 

the healthcare domain comparative to relational databases. 



7 
 

1.5	Research	Design	and	Scope	
 
This research focuses on the evaluation of the performance of a NoSQL document 

database in terms of database operations, scalability and data analysis capabilities 

(complex querying) comparative to a relational database within the context of large 

scale EHR system implementations. This evaluation is achieved by development of IT 

artefacts that enable a performance evaluation of a NoSQL document database 

comparative to a relational database on a number of important data management 

aspects, namely, the performance of basic database operations (insert, update, delete, 

retrieval), scalability, data sharing and data analysis capabilities (complex querying). 

Previous empirical studies guided the performance comparison of a NoSQL document 

database with a relational database. The performance evaluation conducted in this 

study made use of commonly executed workload scenarios for evaluating database 

performance using the Yahoo Cloud Serving Benchmark (YCSB) tool (Cooper et al. 

2010) that is discussed in detail in section 2.6. 

In order for the performance evaluation of databases for a particular domain such as 

healthcare to be a realistic representation, it is required to establish a relevant data 

structure. The structure of the data for a specific domain such as healthcare can directly 

affect the overall performance of the underlying database. The required data sets and 

data elements of the required data structure are modelled across tables and fields for a 

relational database and the required data structure similarly determines the type of the 

NoSQL database to be used. Furthermore, the complexity of database operations and 

the overall database size are also directly determined by the required data structure 

(Nance et al. 2013; Swaroop & Vijit Gupta 2016). Therefore selecting data sets and 

data elements for performance comparison of a NoSQL document database with a 

relational database needed to be aligned with the context of the study, healthcare to 

achieve more accurate results. 

As the healthcare data context for this study was the Australian healthcare system, data 

sets and data elements that may represent EHRs in the Australian healthcare domain 

are identified and data models are established. These healthcare related data models 

are based on the Australian National Health Data Dictionary which is used mostly for 

data collection and administrative purposes—and discussed later in subsequent 

chapters. Although healthcare systems might have many more data sets and data 
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elements in reality, the Australian National Health Data Dictionary establishes a sound 

basis for determining the minimum (basic) required data sets and elements to be stored 

in an EHR system (AIHW 2015). 

Following the identification of the data elements of a data model for storing EHRs, 

healthcare statistics that represent the data characteristics for the Australian health 

system are identified, and provide the basis for populating an EHR data model with 

healthcare data.  

After these steps, IT artefacts are developed that underpin the simulation of a large 

scale EHR system to enable the evaluation of NoSQL document databases in the 

healthcare domain comparative to relational databases in this research. These IT 

artefacts are a Random Healthcare Data Generator and prototype EHR system. The 

Random Healthcare Data Generator, provides simulated healthcare data that is 

representative of Australian healthcare data based on Australian healthcare statistics. 

The second artefact, the prototype EHR system, facilitated conducting tests for the 

evaluation of a NoSQL document database comparative to a relational database in a 

healthcare domain for a number of important database operations such as insert, 

update, delete of EHRs, scaling, EHR sharing and execution of complex database 

queries. 

EHR sharing is one of the important aspects of EHR systems (Narayan, Gagne & 

Safavi-Naini 2010). Sharing EHRs between healthcare providers and a national EHR 

system has various challenges including authentication, security, and privacy 

concerns, however, from a technical and operational perspective, EHR sharing 

requires the retrieval of EHRs from the underlying source database in all cases whether 

it is a single database or a distributed multi-system architecture (Bergmann et al. 2007; 

Jin et al. 2009; Zhang & Liu 2010). In this research, the EHR sharing was limited in 

scope to the retrieval of EHRs of a particular person as a key operation that needs to 

be evaluated in terms of performance. 

The focus of this research is the performance evaluation of a NoSQL document 

database comparative to a relational database in the context of healthcare. Therefore 

"EHR sharing" as a term is used throughout this thesis to identify the operation of data 

retrieval of patient’s EHR for the purpose of demonstrating the performance of the 

databases for an EHR sharing scenario. 
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EHR sharing includes identification of EHRs (multiple records) of a particular person, 

retrieving these records, and -for the relational database- adding the corresponding 

values for the foreign key fields (joining the lookup tables) to make sure the output of 

the operation is an meaningful aggregation of multiple EHRs. 

The overall research design, research steps and their relationship with the research 

questions investigated in this study are presented in Figure 1.2.  

 

Figure 1.2 Overview of the research activities undertaken in this research 

The scope of this research is limited to seven research questions concerned with the 

development of specific IT artefacts which then enabled an evaluation of the 

performance, scalability, data sharing and analysis capabilities (complex querying) of 

a NoSQL document database comparative to a relational database in a specific 

healthcare domain. Related topics such as privacy, interoperability, encryption, 

standards, etc. are independent and comprehensive areas of research within the 

healthcare domain and are out of scope for the main objectives and specific research 

questions investigated in this research. 

1.6	Planned	Research	Contributions	
 
The results of the design and evaluation of IT artefacts should be communicated to 

facilitate the accumulation of knowledge that is relevant, and which address a real 
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world problem (Hevner et al. 2004; Peffers et al. 2007). This research will contribute 

to theory and practice in a number of ways. Foremost, this research will address the 

gap in the literature by developing purpose-built IT artefacts and providing an 

empirical performance evaluation of database operations, scalability, data sharing and 

complex query capabilities of a NoSQL document database comparative to a relational 

database in a simulation of a large scale EHR system. This will contribute to design 

theory and knowledge by applying existing knowledge about NoSQL databases in a 

specific industry section, the healthcare domain, so that a number of artefacts can be 

built and evaluated to address a specific and important problem—data management in 

distributed EHR systems. 

1.7	Outline	of	the	Thesis	
 
Following this introduction chapter, a comprehensive literature review is presented in 

Chapter 2. The previous literature on Electronic Health Records (EHR) systems and 

NoSQL databases was reviewed and identified the research problem and gap in the 

literature that is addressed by this study.  The literature review is then used to frame 

the theoretical basis of this study. The scope and focus of this study is defined through 

an overarching general research question and seven specific research questions that 

were investigated.    

Chapter 3 describes and justifies the choice of the research paradigm, Design Science, 

that in turn, guided the methodological approach used in this research. This chapter 

then discusses the steps taken to conduct this research using a Design Science 

Research Methodological approach and describes why this methodological approach 

is relevant and appropriate for this research. The research design and the steps 

undertaken in the design and evaluation of a number of IT artefacts are described and 

justified. 

In Chapter 4, development of IT artefacts that underpinned the performance evaluation 

are described and discussed. First, existing public information about healthcare data 

sets and data elements for the Australian healthcare domain are investigated and the 

identified data sets and data elements that established the basis for developing the IT 

artefacts are presented. Then, all steps undertaken in the development process for each 

IT artefact are described in detail. A relational healthcare data model and a NoSQL 

healthcare document data model are developed based on the identified requirements.  
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Then, the steps undertaken in the design and implementation of the Random 

Healthcare Data Generator and Electronic Health Record System Prototype artefacts 

are described.  

Chapter 5 presents the results of the performance evaluation of a NoSQL document 

database comparative to a relational database in a distributed EHR system. Following 

the selection of a relational database and a NoSQL document database for the purpose 

of this research, the Random Healthcare Data Generator artefact is used to generate 

simulated healthcare records data and populate a NoSQL document data model and a 

relational data model. A prototype EHR system is used to conduct and measure the 

performance of various test scenarios. Then, the results of the test scenarios used to 

evaluate the performance of a NoSQL document database comparative to a relational 

database are presented. 

In Chapter 6 the key findings regarding each of the seven research questions in relation 

to existing literature are discussed in turn. The development of the IT artefacts to 

enable the performance evaluation of the selected NoSQL document database and 

selected relational database in a simulation of a large scale EHR system are discussed 

in relation to research questions 1, 2, 3 and the existing literature. The detailed test 

results for the selected NoSQL document database and the selected relational database 

are discussed in relation to research questions 4, 5, 6 and 7 and the existing literature. 

This is followed by an evaluation of the research activity undertaken in this study using 

well-established design science assessment guidelines (Gill & Hevner 2013; Hevner 

et al. 2004). 

In the last chapter of this PhD thesis, Chapter 7, the research problem and general 

research question that was addressed in this study is restated, and the overall study 

design and research activities undertaken to conduct this study are summarised. Then 

the key research findings of this study are summarised in relation to each of the 

research questions addressed in this study. Next, the key contributions of this study to 

theory and practice are discussed. Finally, the limitations of this study are 

acknowledged and suggestions are provided for future research that builds on this 

study.  

1.8	Definition	of	Key	Terms	
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In this section, the key terms that are used throughout this thesis are defined in terms 

of the context and scope of this research. 

NoSQL: A new kind of database system that is emerged as a response to the need to 

overcome the limitations of relational databases mainly in terms of scalability and 

availability. The term is usually defined as an acronym for "Not Only SQL". (Cattell 

2011).  

NoSQL Document Database: A type of NoSQL database in which the data is stored 

as documents, mainly in a format like JSON. 

Relational Database: Database systems store data in interrelated tables using 

normalisation which is introduced by Codd (1970).  

Electronic Health Record (EHR): A digital record that holds the patient's healthcare-

related data.  

EHR System: The system that is responsible for managing EHRs for patients. In this 

research an EHR System refers to a large-scale, mainly national system that manages 

the collection and storage of EHRs for patients from birth to death.  

EHR Sharing: It is one of the important features of EHR Systems that enables the 

sharing EHRs between an EHR system and healthcare providers. In the context of this 

research, the performance of EHR sharing is evaluated as a technical operation that 

involves the data retrieval of a patient’s EHRs for the purpose of simulating the sharing 

of EHRs in a large scale distributed EHR system.  

1.9	Chapter	Summary	
 
This chapter introduced to the background to this study. The motivation for conducting 

for this study was described and justified in terms of the research problem that was 

addressed in this study. A general research question was framed within the context of 

the research problem identified. This general research question is broken down into 

the seven research questions investigated in this study. The research paradigm and 

methodological approach that guided the conduct of this research was outlined and 

justified. The delimitations of scope and the planned contributions of this research are 

highlighted. Then, finally, an outline of each subsequent thesis chapter is provided. 
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Chapter	2	‐	Literature	Review		

2.1	Introduction	
 
This chapter provides an extensive overview of the relevant literature in order to 

demonstrate the gap in the literature and to provide the context and justification for 

the specific research problem being investigated. Then, the review of the literature 

provides a theoretical and conceptual foundation for this research, underpinning how 

this research can make a contribution to existing theory and practice. Figure 2.1 

presents the structure of this chapter. 

 

Figure 2.1 Structure of Chapter 2 

The volume of healthcare data worldwide has increased rapidly in recent years. 

Furthermore, the diversity of healthcare data is expanding due to widespread 

dissemination of personal medical records systems digitally (Raghupathi & 

Raghupathi 2014). The emergence of technologies such as sensors and digitized 3D 

imaging etc is playing a greater role in healthcare and generating increased volumes 

and variety of healthcare data (Goli-Malekabadi, Sargolzaei-Javan & Akbari 2016; 

Raghupathi & Raghupathi 2014). Healthcare data is generally stored in relational 

databases. However, relational databases have limitations with regards to the current 

data and information needs of the healthcare sector as a whole. Hence, new and 

emerging database systems known as NoSQL databases could be a better fit for 
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managing distributed healthcare data sharing (Freire et al. 2016; Goli-Malekabadi, 

Sargolzaei-Javan & Akbari 2016).  

In this chapter, concepts of Electronic Health Records (EHR) and NoSQL database 

systems are introduced and explained, as these technologies provide the foundation 

for the IT artefacts which are developed and evaluated in this study.  Recent research 

on these types of systems is reviewed and the important roles that EHRs and NoSQL 

database systems can play in the healthcare systems are presented. Then, Consistency, 

Availability and Partition Tolerance (CAP) theorem is discussed in terms of NoSQL 

document databases in healthcare; and the evaluation of the performance of NoSQL 

document databases is discussed in terms of basic database operations, scalability, data 

sharing and complex query capabilities in a healthcare domain. Finally this chapter 

identifies the gap in the literature regarding the evaluation of the performance of 

NoSQL document databases in EHR systems and justifies how this gap in the literature 

will be addressed in an overarching research question and a specific set of research 

questions. 

2.2	Electronic	Health	Records	(EHR)	

The practice of storing healthcare information electronically emerged several decades 

ago in the 1990s because paper-based records could no longer meet the requirements 

of an advanced health care system (van Ginneken 2002). Electronically stored 

healthcare information has been identified by a number of different names such as 

Electronic Patient Records (EPR), Computerised Patient Records, Electronic Medical 

Records and Electronic Health Records (EHR) (ISO 2011; Narayan, Gagne & Safavi-

Naini 2010). 

While these terms might sometimes be used interchangeably, the National Health 

Service (NHS) suggests that EPR is “the record of the periodic care provided mainly 

by one institution”. On the other hand, EHR is defined as the collection of a patient’s 

health and healthcare information, from birth to death. According to these definitions, 

EHR is described as a collection of EPRs for a single individual (NHS 1998). 

The International Organization for Standardization (ISO) defined EHR as “a 

repository of information regarding the status of a subject of care in a computer 
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processable form and, transmitted securely, accessible by multiple authorized users” 

(ISO 2004).  

Based on these definitions, and in the context of this research, an electronic record that 

holds a patient’s lifetime health-related information will be referred to as an EHR; and 

systems that handle operations on EHRs will be referred to as EHR systems. 

2.2.1	EHR	systems	

EHR systems play an important role in improving healthcare service delivery by 

increasing quality and effectiveness of health services (Narayan, Gagne & Safavi-

Naini 2010; van der Linden et al. 2009). When EHR systems are implemented at the 

national level and facilitates accumulation of healthcare data, EHR systems through 

data sharing can enable enhanced decision-making by health practitioners and health 

managers—including identification of effective treatments and pattern analysis (Goli-

Malekabadi, Sargolzaei-Javan & Akbari 2016; Kruse et al. 2016; Raghupathi & 

Raghupathi 2014). In order to establish a foundation for the many significant benefits 

that can be realised, EHR systems should be designed to handle increasing data 

volume and diversity and facilitate sharing of healthcare data (Goli-Malekabadi, 

Sargolzaei-Javan & Akbari 2016). Therefore, this research focuses on large scale EHR 

systems that can be comparable to a national system rather than a system for a single 

healthcare service provider, such as a single hospital. 

Many countries have developed their own national EHR system architecture. For 

example, Turkey has a national system called “Saglik-NET” which collects and 

centrally stores a wide range of medical data (Dogac et al. 2011; Kose et al. 2008). In 

the Netherlands, the data is stored locally and a central system called a “National 

Switch Point (NSP)” handles the links to the data and allows access to information by 

various services in the health network (Bacelar-Silva et al. 2011). Austria and 

Germany are also establishing their own nationwide EHR systems (Hoerbst et al. 

2010). 

In England, The National Care Record Service (NCRS) enables access to patients’ 

EHRs in a national system called “Spine” (Bacelar-Silva et al. 2011). Authorised 

professionals can access summary records of patients which include basic information 

such as date of birth, name, contact information, allergies, etc.  
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2.2.2	EHR	Systems	in	Australia	

In Australia, there is a significant effort underway in establishing a Personally 

Controlled Electronic Health Record (PCEHR) system (Vest 2012). This system is 

now named as “My Health Record”. The Australian Digital Health Agency (ADHA) 

(previously known as The National E-Health Transition Authority (NEHTA)) is 

working on establishing governing standards for the My Health Record system. The 

Australian Digital Health Agency is responsible for digital health activities in 

Australia and also provides all stakeholders of digital health, including healthcare 

professionals, patients and implementers with relevant resources and information 

(Australian Digital Health Agency 2015). 

Furthermore, as a part of its role, the Australian Digital Health Agency publishes 

documents guiding the community and software vendors on technical information for 

infrastructure, integration, and clinical document and messaging standards (Australian 

Digital Health Agency 2015; Pearce & Haikerwal 2010).  

2.2.3	Electronic	Health	Record	sharing	functionality	in	EHR	systems	

The literature emphasises the importance of the information sharing function of an 

EHR system in improving healthcare outcomes. Iakovidis (1998) suggests that the 

purpose of an EHR system is to support continuity of care; and van der Linden et al. 

(2009) note that the primary purpose of an EHR system is the support of continuing, 

efficient and quality integrated health care. Narayan et al. (2010) suggest that a life-

time health record system is established to keep track of all healthcare-related 

information of individuals from birth to death to allow efficient, consistent and 

universal sharing of health information. Previous studies also suggest that additional 

purposes of an EHR system include providing support in development of health 

policies, medical education and advanced research (Heard 2006; Iakovidis 1998; 

Murphy, Hanken & Waters 1999). 

Harvard Business Review suggests that having comprehensive EHR systems and 

universal access to these systems are necessary for the best medical care in the 21st 

century, as well as delivering advances in health care (for example, precision 

medicine) (Pearl 2017). EHR sharing functionality has become a topic of interest for 

researchers due to the significant benefits that can be realised. Furthermore sharing 

EHRs with remote locations and even between physicians and pharmacies have also 
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been a subject of previous research to explore the extent of its usefulness. (Ibrahim, 

Mahmood & Singhal 2016; Keller et al. 2015; Pussewalage & Oleshchuk 2016). 

Therefore, EHR sharing has the potential for significantly improving healthcare 

outcomes both at the patient level and at the national level. Furthermore, EHR sharing 

enables a platform that would facilitate providing valuable information to inform 

healthcare policy, medical practice and training, and medical research. EHR sharing 

in this research is delimited in scope to EHR sharing through patient EHR retrieval in 

a large scale EHR system. 

2.2.4	Importance	of	EHR	systems	for	Healthcare	

According to the US Institute of Medicine, an EHR system improves patient safety, 

supports efficient patient care delivery and improves the efficiency of healthcare 

services (Englebardt & Nelson 2002; Kohn, Corrigan & Donaldson 2000). Schiff et 

al. (2003) note that patient safety and quality of healthcare can be increased by sharing 

EHRs amongst healthcare facilities.  

Halamka et al (2005) demonstrated that an uncoordinated approach to managing 

medical records leads to a significant waste of time and medical errors. Previous 

literature suggests that implementing a fully-functioning national EHR system with 

the participation of all healthcare organisations could lead to a USD77.8 billion benefit 

for the United States (Halamka et al. 2005; Schiff et al. 2003; Walker et al. 2005; 

Yasnoff et al. 2004). 

Brazil and Switzerland has adopted e-health strategies to facilitate interoperability and 

sharing of healthcare information across healthcare service providers inspired by the 

positive outcomes of the EHR system implementations of other countries to achieve 

better quality of care and greater efficiency (Chaim, Oliveira & Araújo 2017; De Pietro 

& Francetic 2017). 

2.2.5	Technological	issues	affecting	EHR	systems	

Establishing a nationwide EHR system requires a significant investment, as well as 

extensive system design and project management (Hoerbst et al. 2010; Pearce & 

Haikerwal 2010; Vest 2012). Poorly designed architecture not only poses a substantial 

failure risk for the implementation of EHR systems, but can also result in significant 

losses of financial and human resources (Pearce & Haikerwal 2010). 
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There are a number of obstacles and challenges that exist in relation to establishing 

large scale national EHR systems described previously in the literature, such as 

standardisation of vocabulary, security, privacy and data quality (Gunter & Terry 

2005). In addition to these matters which are extensively covered in various 

publications, Orfanidis, Bamidis and Eaglestone (2004) claim that the expanding size 

of healthcare data also creates an obstacle for EHR systems. Blobel (2006) suggests 

that an EHR system which allows the exchange of health information should be 

scalable, flexible and portable, with Internet access. 

Patients’ records can contain different types of documents such as full-text reports, 

test results, images, prescriptions, etc. This heterogeneous nature of healthcare data, 

together with increasing size and the requirement of scalability for EHR systems, are 

also considered to be a major bottleneck for EHR system implementations. Most 

current EHR systems are based on relational databases which struggled to support 

unstructured data types (Dolin et al. 2006; Guo et al. 2005; Guo et al. 2004; Jin, Deyu 

& Xianrong 2011; Schmitt & Majchrzak 2012; Takeda et al. 2000).   

Healthcare data is changing over time and the value that can be derived from an EHR 

system cannot be underestimated. Database systems used in healthcare should be able 

to support efficient parallel processing over large volumes of data to discover patterns, 

support decision-making, development of effective treatments and management of 

health policies (Goli-Malekabadi, Sargolzaei-Javan & Akbari 2016). Moreover, 

database systems should be flexible enough to adapt to the changing structure of 

healthcare data, provide high availability, and be easy to maintain in order to achieve 

a great range of benefits (Freire et al. 2016). These requirements cannot be fulfilled 

entirely by relational database systems and a new approach to data management should 

be considered in the healthcare domain to address the shortcomings of relational 

databases in relation to changing demands of healthcare data. 

A recent popular term, ‘big data’, has been defined by multiple of characteristics of 

data such as volume, velocity and variety based on a report by Laney (2001) relating 

to the challenges and opportunities of increased data . Volume refers to the scale or 

quantity of data, velocity is the speed of data and the term ‘variety’ is used to 

emphasise various forms of data generally coming from different sources. Healthcare 

data clearly shows these characteristics of big data (Kruse et al. 2016; Raghupathi & 
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Raghupathi 2014). Existing literature demonstrates that rich healthcare data and EHR 

systems have significant potential for improving clinical decision support; and for 

improving population health management using vast data analytics (Hermon & 

Williams 2014; Raghupathi & Raghupathi 2014). However, it is difficult or impossible 

to manage and analyse large healthcare datasets with traditional or common data 

management tools and methods (Raghupathi & Raghupathi 2014; Sun & Reddy 2013).  

Challenges and changing requirements for data management in general has led to the 

emergence of new forms of data-related systems to handle ‘big data’ in multiple 

aspects, including capturing, transformation, management, analysis and so on 

(MarkLogic 2014; Raghupathi & Raghupathi 2014; Stonebraker & Cattell 2011). A 

new category of non-relational databases, NoSQL databases, has emerged as a 

response to meeting big data management requirements (MarkLogic 2014; Mason 

2015; Sadalage & Fowler 2012; Stonebraker & Cattell 2011). 

2.3	NoSQL	databases	

NoSQL is a term often used to describe the category of non-relational databases (Li & 

Manoharan 2013; Sadalage & Fowler 2012). A NoSQL database, also known as a 

distributed data store, is capable of scaling large datasets with no single point of failure 

(Ferreira, Calil & Mello 2013). Data may span server nodes, racks, and even multiple 

data centres. The emergence of NoSQL databases has been heavily influenced by a 

seminal whitepaper published by Google about its BigTable system and Amazon’s 

related system called Dynamo (Cattell 2011; Featherston 2010; Li & Manoharan 2013; 

Wu 2011).  

NoSQL database technology depends on horizontal scalability which enables 

increased performance and capacity by increasing the number of nodes, rather than 

increasing the computer power of a single node (Abramova & Bernardino 2013; 

Yassien & Desouky 2016). Thus, NoSQL databases offer the high performance 

required for managing large data sets (Aboutorabi et al. 2015). NoSQL databases also 

offer another significant advantage over traditional relational databases by providing 

more data model flexibility for the types of data stored. In most cases there are no 

strict pre-defined schema requirements for NoSQL databases, in contrast to relational 

databases (Aboutorabi et al. 2015; Li & Manoharan 2013). 
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NoSQL database systems have attracted a lot of attention from industry and 

researchers due to the demand for distributed database systems capable of delivering 

high performance access to large volumes of data across geographical locations 

without requiring significant effort for scaling and tuning (Ferreira, Calil & Mello 

2013). Figure 2.2 shows how NoSQL is trending in terms of attention in contrast to 

relational databases between 2004 and 2017, based on Google searches.  

 

Figure 2.2: Google search trends NoSQL databases versus Relational Databases 

2.3.1	Types	of	NoSQL	databases	

There were more than 200 NoSQL databases available as at December 2017. Based 

on the data model used, NoSQL databases can be grouped into four main categories: 

(1) Key-value store; (2) Document store; (3) Column-family, and (4) Graph database 

(Abramova & Bernardino 2013; Edlich 2017; Haseeb & Pattun 2017; Leavitt 2010; 

Yassien & Desouky 2016).  

Although there are some other categories used for NoSQL database types such as 

multimodel, NoSQL databases mainly demonstrate characteristics of one or more of 

the four main categories listed above. Each NoSQL database type has its own data 

structure, strength, and typical use cases which are discussed in the following 

subsections.  
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2.3.1.1	Key‐Value	Store	

 

Figure 2.3: Key-Value Store representation (Adapted from Sadalage (2014)). 

In key-value stores, all data is stored as key-value pairs, in which the keys are unique 

values that are used to access the information stored in values (Moniruzzaman & 

Hossain 2013; Sadalage & Fowler 2012; Sumbaly et al. 2012; Yassien & Desouky 

2016). A key-value store is the simplest form of NoSQL databases to allow fast 

retrieval of values which can be a string, list or any other object. Redis, Amazon 

SimpleDB, Voldemort and DynamoDB are examples of key-value stores (Leavitt 

2010; Moniruzzaman & Hossain 2013).   

2.3.1.2	Document	Store	

 

Figure 2.4: A sample representation of data stored in a document store (Adapted 

from Sadalage (2014) 
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Document stores are essentially similar to key-value stores. However, the values are 

usually documents in known formats such as XML or JSON. Documents (values) can 

be a structured or unstructured document, as well as de-normalised (aggregate) 

database entries. Document stores are also known as ’aggregate databases’.  Contents 

of documents may vary between records. This allows flexibility for the types of data 

stored in document stores, a feature which has become increasingly important for 

healthcare data given its increasing volume and variety. Well-known examples of 

document stores are MongoDB and Couchbase (Abramova & Bernardino 2013; Dede 

et al. 2013; Li & Manoharan 2013; MarkLogic 2014; Moniruzzaman & Hossain 2013).  

2.3.1.3	Column	Family	

For the column family type of NoSQL databases, data is stored in columns, however 

the columns are not required to be defined at the beginning and there may be countless 

numbers of columns which may also be organized in groups called supercolumns 

(Leavitt 2010; Yassien & Desouky 2016). 

 

Figure 2.5: A sample data structure representation of column family type of 

NoSQL database (Adapted from Sadalage (2014) 

The design of column family type NoSQL databases are mainly influenced by the 

work described in Google’s Bigtable paper; and Cassandra and HBase are examples 

of known column family type NoSQL databases which have been implemented in 

practice (Li & Manoharan 2013; MarkLogic 2014).  
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2.3.1.4	Graph	Databases	
 

 

Figure 2.6: Data structure representation for a graph database (Adapted from 

Sadalage (2014) 

Graph databases are examples of data stores that can store and handle graph type of 

data such as social network relations. Neo4j and InfoGrid are examples of graph 

databases (Abramova & Bernardino 2013; Moniruzzaman & Hossain 2013; Yassien 

& Desouky 2016). 

Typical use cases and example applications for these four main types of NoSQL 

databases are presented in Table 2.1. 
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NoSQL Database Type Typical Use Case Examples 

Key-Value Real-time processing of 
extremely large data, 
horizontal scalability, high 
reliability and high 
availability, primary query 
mechanism is key-based 
lookup. 

Session management, 
real-time bidding, 
online trading 

Document Applications that need 
flexible schema, semi-
structured, nested 
hierarchical data 

Healthcare records and 
derivative securities 

Column Family Applications requiring 
flexible, evolving database 
schema, tolerance to 
network failure and 
temporary data 
inconsistency 

Mixed content 
management, stock 
trading 

Graph Applications with queries 
that require graph 
traversals 

Social media 
applications, 
recommendation 
engines 

Table 2.1. Typical Use Cases and Example Applications for NoSQL database 
types (Adapted from (Gudivada, Rao & Raghavan 2016) 

 

The data model and NoSQL database type that will be used for a particular system 

depends on the use case; and each of these NoSQL database types have their own 

characteristics, as summarised in Table 2.1. Therefore, it is essential to determine the 

most feasible data model and NoSQL database type for specific system applications. 

However, understanding the architecture of scalable databases and deciding the most 

suitable candidate database technology that satisfies the needs of an application is a 

challenging tasks due to the complexity of comparing different types of NoSQL 

databases (Gorton, Klein & Nurgaliev 2015). The data model and NoSQL database 

type considered to be most suitable for EHR systems are discussed in detail later in 

this chapter. 

2.4	Theoretical	Background		

The kernel theories and practice knowledge are discussed in the subsequent 

subsections that informed the design theory developed in the research process and 
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activities undertaken in this study to build and evaluate artefacts to solve a real world 

problem. 

2.4.1	Relational	Database	Theory	

The relational model and database theory known as a product of E.F. Codd has existed 

since the 1970s. Since then, the relational model has been adopted widely in industry 

and many of the current modern day commercial database systems are influenced by 

the work of Codd (Suciu 2001; Yassien & Desouky 2016). In database theory, Codd 

(1970) suggests that the data stored in large shared data banks can be defined and 

organised based on interrelationships of data, and redundancy and consistency 

problems can be eliminated by normalisation of data. Normalisation is a procedure for 

organising data into relational views, eliminating the need for copies of the same data 

and establishing a link between data groups using primary keys (Abiteboul, Hull & 

Vianu 1995; Codd 1970). 

Although there have been many supportive theories and models developed by 

Bernstein (1976), Fagin (1977), Mendelzon (1984) and Papadimitriou (1979), the 

fundamentals of relational databases have remained unchanged for decades (Chen 

1976; Suciu 2001; Ullman 1987). However, the link between theory and relevance in 

practice in relation to database systems has weakened over time (Abelló, Ferrarons & 

Romero 2011; Badia & Lemire 2011; Suciu 2001; Vianu 2001). The emergence of 

high-speed networks, fast commodity hardware and the increasing amounts of 

unstructured or semi-structured data has created the necessity for relational database 

theory and designs to be adapted in order to meet the needs of today’s business 

environment. The impedance mismatch between relational data structures and the in-

memory data structures of an application has driven the need for different ways of 

storing data that are not restricted by a relational model (Sadalage 2014). Using 

NoSQL databases allows applications to be developed without having to convert in-

memory structures to relational structures of a relational database. Valduriez (2011), 

Jin, Deyu and Xianrong (2011) and Konishetty (2012) explored the principles 

underpinning distributed database management systems and the practical 

implementations of NoSQL databases have helped in establishing a better link 

between theory and what is required to meet the needs of practice in terms of data 

management (Badia & Lemire 2011; Konishetty et al. 2012; Valduriez 2011; Vianu 

2001). 
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2.4.2	Advantages	of	NoSQL	document	databases	over	relational	databases	

Database systems are crucial for all sorts of data-intensive applications which store 

and manage huge amounts of data. Modern applications such as high-traffic web sites 

or large enterprise systems require new approaches to data storage in order to achieve 

higher performance and higher availability than is possible with traditional relational 

database management systems (RDBMS). This is particularly the case when it 

involves high concurrent numbers of transactions and large amounts of data (Klein et 

al. 2014; Mengchen 2011; Parker, Poe & Vrbsky 2013). NoSQL databases have 

emerged as a response to this requirement and they have significant differences 

compared to relational databases, which are summarised in Table 2.2 below. 

Relational Databases NoSQL Databases 

Structured Semi- or Non-structured 

Difficult and Manual Scaling Easy and Automatic Scaling 

Share resources Shared-nothing 

Possible Single Point of Failure High Availability 

Strong Consistency Weak Consistency 

Mostly Commercial, Expensive Many Open Source Alternatives 

Table 2.2. Comparison of Key Differences between NoSQL Databases and 
Relational Databases  

NoSQL databases adopt a shared-nothing architecture which enables easy scalability. 

Furthermore, NoSQL databases favour availability and partition tolerance over 

consistency, as opposed to strong consistency approach used in relational databases. 

NoSQL databases have many open source alternatives and they have flexible data 

schema which allows handling of semi- or non-structured data. Previous studies 

suggest that NoSQL databases have many technical and financial advantages over 

relational databases for large scale data intensive applications due to these differences 

(Borkar, Carey & Li 2012; Klein et al. 2014; Manyam et al. 2012; Meijer & Bierman 

2011). The main advantages of NoSQL databases are presented in the five following 

sub-sections: (1) Performance; (2) Scalability; (3) High Availability; (4) Flexible Data 

Model; and (5) Open Source Availability. 
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2.4.2.1	Performance	

One of the advantages of NoSQL databases is high performance in terms of higher 

number of operations per second and lower execution times of database operations. 

NoSQL databases can achieve higher performance than relational databases due to  

simpler and mostly de-normalised data structures and their distributed nature, and the 

performance difference can be significant in larger datasets depending on the use case 

(Aboutorabi et al. 2015; Freire et al. 2016). 

2.4.2.2	Scalability	

A significant advantage of NoSQL databases is that they allow scaling up to large 

datasets without any changes in the overall structure of data model or architecture 

(Ferreira, Calil & Mello 2013). Hardware requirements and costs can grow in a linear 

manner as storage requirements grow. Therefore, cost-effective scaling up is made 

possible and high initial investment in hardware requirements is avoided (Lakshman 

& Malik 2010). 

Relational database systems mostly rely on purchasing more expensive and powerful 

servers in order to increase capacity. In contrast, distributed data storage systems such 

as NoSQL database systems are based on a shared-nothing approach (Stonebraker & 

Cattell 2011). Capacity can be increased by adding more commodity servers 

dynamically. The redistribution of the data occurs on the fly and seamlessly without 

reconfiguration or a decrease in performance. This aspect is one of the most important 

advantages of NoSQL database systems over relational database systems (Pokorny 

2011).  

2.4.2.3	High	Availability	

Furthermore, achieving high availability by maintaining a number of replications, 

enabling high performance on transactions using distributed algorithms is also another 

major advantage of distributed data storage systems such as NoSQL database systems 

have over relational database systems (Featherston 2010; Mengchen 2011). In order 

to achieve this, NoSQL database systems trade-off consistency for availability, an 

aspect which is discussed in more detail later in this chapter (Dede et al. 2013). 

2.4.2.4	Flexible	Data	Model	

Data modelling in relational databases relies on tables and relations between tables, a 

pre-defined set of columns for each table and strict requirements for data stored in 
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each column. However, NoSQL databases have flexible data models where all types 

of structured, semi-structured and unstructured data can be stored and processed, 

which eliminates the requirement for a pre-defined data structure and schema. 

Therefore, NoSQL databases are often referred to as schema-less (Freire et al. 2016).  

This feature gives the flexibility to handle the changing structure of the data stored in 

NoSQL databases, which is an important requirement for managing healthcare data. 

Changing requirements and improved technologies increasingly means different forms 

of healthcare data need to be stored; and any change in information requirements can 

be easily implemented without any changes in database structure in NoSQL databases 

(Goli-Malekabadi, Sargolzaei-Javan & Akbari 2016). 

2.4.2.5	Open	Source	Availability		

In addition to these advantages of NoSQL databases over relational databases, it is 

also important to note that there are many open source NoSQL database alternatives 

available in the marketplace. This may help in reducing the overall cost of 

implementation by achieving lower cost per terabyte and making customisation of a 

database system possible as open source NoSQL database solutions provide access to 

the source code (Leavitt 2010; Stonebraker & Cattell 2011).  

2.4.3	NoSQL	Data	Modelling	versus	Relational	Data	Modelling	
 
Data modelling is an important topic when considering the suitability of NoSQL 

databases for healthcare applications such as EHR systems. Each type of NoSQL 

database has its own strengths and weaknesses, therefore it is necessary to determine 

the type and data model suitable for the use case. Figure 2.7 compares the four main 

types of NoSQL database in terms of their ability to accommodate varying degrees of 

scalability and complexity of a data model. Key value stores can accommodate the 

greatest level of scalability, while graph databases can accommodate the greatest level 

of complexity in a data model. Document databases can address the data model 

complexity of EHR systems while providing an appropriate level of scalability.  
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Figure 2.7. Comparison of NoSQL databases based on model complexity and 

scalability (Adapted from Hsieh (2014) 

Goli-Malekabadi, Sargolzaei-Javan and Akbari (2016) evaluated four main types of 

NoSQL databases to determine which NoSQL database would provide the best 

approach for storing healthcare data. The match between the characteristics of 

healthcare data and the characteristics of each type of NoSQL database are 

summarised in Table 2.3. 
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Healthcare data 
characteristics 

NoSQL database characteristics 
Key-Value Document Column 

Family 
Graph 

Mostly 
document based 

Storing key 
and value 

Storing of 
documents 

Storing key 
and its value 

Storing nodes 
and 
relationships 

Different types 
of data 

Flat data 
models 

Storing 
different types 

Storing 
different types 

Storing 
different types 

Frequent read 
and write 

Suitable for 
frequent write 
operations 

Suitable for 
frequent read 
and write 
operations 

Suitable for 
frequent read 
from different 
columns 

- 

Query in several 
fields 

Query by key Query by any 
field 

Query by 
limited 
number of 
columns 

Query by nodes 

Table 2.3. Comparison of healthcare data and NoSQL database characteristics 
(Adapted from Goli-Malekabadi, Sargolzaei-Javan and Akbari (2016)) 

Consistent with suggested examples provided by Gudivada, Rao and Raghavan 

(2016), Goli-Malekabadi, Sargolzaei-Javan and Akbari (2016) also concluded that 

document databases are suitable for storing healthcare records. 

A whitepaper by Couchbase (2016), provides a good example of how a document data 

model compared to a relational data model can be developed for storing a user as an 

entity as shown in Figure 2.8, Figure 2.9 and Figure 2.10. 

Storing imaginary user data in a relational data model requires normalisation and 

would require six rows in three tables as visualised in Figure 2.8. 
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Figure 2.8: Diagram showing a sample user data in relational model (Adapted 

from Couchbase (2016) 

As the data is split into three tables, reading this data would require generation of the 

following result set in Figure 2.10 that has 6 rows and duplicate values and requires 

filtering to achieve intended results. 

 

Figure 2.9: Initial result set for querying a sample user data in relational model 

(Adapted from Couchbase (2016) 

In contrast, in a document-oriented NoSQL database, the same sample user data can 

be stored in one JSON document, as presented in Figure 2.10, and can be queried as a 

single record—which eliminates overheads and simplifies application development. 

 

Figure 2.10: Result set for querying a sample user data in document data model  

(Adapted from Couchbase (2016) 

Vera et al. (2015) compared conceptual data models for relational databases with 

conceptual data models for document-oriented NoSQL databases. They named the 
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nested data model for a NoSQL database (shown in Figure 2.11) an embedded 

document model. 

 
Figure 2.11: Related and Nested Document Database Models compared to 

Relational Database Model for sample user data (Adapted from Segleau (2016)) 

As this research focuses on evaluating the performance of database operations, 

scalability, EHR sharing and data analysis (complex querying) capability, an 

embedded document data model is considered as an appropriate data modelling 

approach. An embedded document model allows all of the required details saved into 

one document, thus eliminating the relations for document sections. Therefore, 

NoSQL data model used in this research is based on an aggregate oriented, embedded 

document model. This research focuses on one NoSQL database type that is most 

suitable for storing EHR data in conducting a performance evaluation of a NoSQL 

document database in terms of basic database operations and scalability, EHR sharing 

and data analysis (complex querying) comparative to a relational database. 

2.4.4	Determining	EHR	data	elements	for	NoSQL	and	Relational	Data	
Models	
 
An important requirement for data models is that they need to be established based on 

the type of information needed be stored. As this research focuses on the Australian 

healthcare domain, relevant datasets and data elements related to Australian healthcare 

domain were identified. The Australian Institute of Health and Welfare has published 

the National Health Data Dictionary (NHDD) on their website, which helps in 
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establishing standards for data collection and reporting for Australian healthcare 

providers (AIHW 2015). In the NHDD, national minimum data sets, along with their 

attributes, are defined and these guided the establishment of an appropriate document 

data model and a relational data model in line with the main aims of this research. 

There are various archetype-based EHR models such as openEHR, ISO 13606 and 

HL7-CDA (Frade et al. 2013; Sundvall et al. 2017).  

The literature suggest that using multilevel archetype-based models such as openEHR 

that involve complex data structures causes difficulties on the database operations of 

storing, retrieving and querying of EHRs (Frade et al. 2013; Freire et al. 2016). 

Furthermore previous studies have compared performance of NoSQL and relational 

databases using archetype-based EHR models by storing EHRs as XML documents in 

relational databases due to the complexity of the document structure of EHRs and 

requirement of data transformation in order to store non-relational data in a relational 

database (Sundvall et al. 2017).  

Therefore, in this study, a simpler data structure justified as this allowed for a 

meaningful comparison of the performance of both a NoSQL document database and 

a relational database and is sufficient to cover the NHDD minimum datasets  used 

instead of archetype-based systems. 

After establishing data models for NoSQL and relational databases based on the 

NHDD minimum data sets, relevant publicly-available healthcare statistics are 

identified (AIHW 2015, 2016). Using these statistics, random healthcare data is 

generated to populate the data models based on the NHDD minimum data sets which 

reflect the data characteristics of the Australian healthcare domain. 

2.4.5	CAP	Theorem	and	NoSQL	Databases	

NoSQL database systems have received much attention from the research community 

(Cattell 2011; Escriva, Wong & Sirer 2012; Floratou et al. 2012; Lee, Tang & Choi 

2013; Schram & Anderson 2012). The previous literature suggests that current 

research focuses on the scalability, fault-tolerance and performance advantages of the 

NoSQL/distributed database systems, while criticising the weak consistency approach 

of these types of database systems (Agrawal, Das & El Abbadi 2011). The issue of 

consistency with NoSQL databases is explained in the context of CAP (consistency, 
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availability, and partition-tolerance) theorem (Agrawal, Das & El Abbadi 2011; 

Bermbach & Tai 2011). 

CAP theorem, introduced by Eric Brewer in 2000, suggests that there is always a trade-

off between consistency, availability and partition-tolerance. In the context of CAP 

theorem, consistency means that each server returns the right response to each request; 

availability means that each request will eventually receive a response; and partition-

tolerance means that the service can continue operating normally even when 

communication between some of the nodes are lost. The underlying idea in this 

theorem is that the communication between servers is prone to network errors and 

failures, thus it is not possible to have all three features (consistency, availability, 

partition tolerance) working together perfectly (Gilbert & Lynch 2012). 

2.4.6	ACID	Properties	and	NoSQL	Databases	

Gray (1981) suggested a number of properties for database systems to achieve reliable 

transaction processing, commonly known as Atomicity, Consistency, Isolation and 

Durability (ACID). Atomicity means a transaction is either completed entirely or 

failed, i.e. there is no partial completion in any transaction. Consistency is the property 

that guarantees that every transaction changes a database into a valid new state, 

incorporating all rules, constraints and triggers, etc. Isolation means that each 

transaction happens totally independent of each other and transactions do not affect 

each other while being executed. Durability is the property that means if a transaction 

has been completed, the new state of a database is guaranteed to be durable regardless 

of any potential failures such as power loss, network errors, etc. afterwards (Gray 

1981; Sattar, Lorenzen & Nallamaddi 2013). 

Due to their distributed nature without a coordinator or master node, and based on the 

CAP theorem, NoSQL databases cannot offer strong consistency models like 

relational databases can do. Therefore, while having many advantages such as high 

availability and easy scalability, NoSQL databases cannot have all strong ACID 

properties. NoSQL databases focus on the BASE principal instead, which stands for 

Basically Available, Soft state and Eventually consistent. The BASE principal implies 

that the system can continue working as usual in case of a failure due to the distributed 

nature of NoSQL databases. For NoSQL databases, the BASE principal ensures that 

even though there is no guarantee of consistency at any given point of time, data will 
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eventually be consistent at some point in time (Bailis & Ghodsi 2013; Moniruzzaman 

& Hossain 2013). 

Figure 2.12 summarises data models in terms of two possible combinations of CAP 

theorem to categorise the strengths of three main types of NoSQL databases 

comparative to relational databases. This emphasises the trade off against the strengths 

of a particular type of database that is made when choosing either NoSQL database or 

a relational database.   

 

 

Figure 2.12: Comparison of the three main data model types, Key-Value, Column 

Family, and Document Oriented, used in NoSQL databases with relational 

databases in terms of CAP Theorem (Adapted from Fernando (2016)  

Figure 2.12 shows that the strengths of relational data models are in being able to 

deliver consistency and, to a lesser extent, availability; whereas strengths of NoSQL 

key value, column oriented, tabular and document oriented data models are in being 
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able to deliver consistency and partition tolerance or availability and partition 

tolerance. 

In an eventually consistent NoSQL database, data read by clients immediately after 

being updated may be an out-dated version as all nodes have not been updated at once. 

However, some NoSQL databases such as Cassandra offers different levels of 

consistency and users can select the level of consistency they require for each 

transaction. Furthermore, previous studies have shown that the inconsistency windows 

for many NoSQL databases are less than a second. Therefore, eventual consistency 

model suggested by NoSQL databases is claimed to be sufficient in most use cases 

(Bailis & Ghodsi 2013)  

Google published a paper on ‘Spanner’, Google’s globally distributed database 

system, which mentions the possibility of achieving transaction control, consistency 

and replication without sacrificing high-availability. Furthermore, there are other 

papers suggesting that it might be possible to achieve consistency and high availability 

together to an extent that distributed databases can match the properties of current 

relational databases (Bailis et al. 2013; Corbett et al. 2013).  

2.5	Suitability	of	NoSQL	databases	for	EHR	systems	

There is no unanimous agreement in the literature on the overall superiority of NoSQL 

databases over relational databases such as their generic suitability for data-intensive 

applications. However, past empirical research demonstrates that the type and the 

requirements of the application dramatically determines the suitability of the use of 

NoSQL databases (Badia & Lemire 2011; Jin, Deyu & Xianrong 2011; Parker, Poe & 

Vrbsky 2013; Vianu 2001). 

Table 2.4 summarises the main requirements of EHR systems and highlights how 

NoSQL database system features can address these requirements. Clearly the features 

of NoSQL database systems align well with the main requirements of EHR systems. 
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EHR requirement NoSQL database feature 

Size of healthcare data increased over 
time, data size is a bottleneck for EHR 
systems 

NoSQL databases based on horizontal 
scalability allows easy and automatic 
scaling 

Healthcare data includes free-text notes, 
images and other complex data. 
Heterogeneity of healthcare data requires 
new solutions 

NoSQL databases accommodate 
Flexible data models which allow 
unstructured or semi-structured data to 
be stored easily 

Healthcare data should always be 
accessible for continuity of healthcare 
services 

NoSQL databases provide high 
availability through their distributed 
nature and replication of data 

Healthcare data sharing requires access to 
EHRs from multiple locations which 
requires a high-performance system to 
respond data access request in a timely 
manner 

NoSQL databases offer higher 
performance compared to relational 
databases in many use cases because of 
their distributed and shared nothing 
architecture, and simplified method of 
data access.  

Table 2.4. Comparison of EHR requirements and NoSQL database features that 
address these requirements 

2.5.1	CAP	Theorem	and	NoSQL	Databases	in	EHR	systems	

Relational databases with strong consistency features are more suitable for an update-

intensive database application where consistency is very important, such as a stock 

exchange system that handles financial transactions from all over the world and where 

milliseconds in processing time matter. 

However, the other two aspects of CAP theorem, availability and partition-tolerance, 

are particularly important in the healthcare context. Schmitt and Majchrzak (2012) 

suggest that the nature and purpose of healthcare data requires high availability and 

distributed data management to enable access to healthcare information whenever 

needed, even in an event of crisis when data centres fail (Schmitt & Majchrzak 2012). 

Other literature emphasise significant benefits of EHR systems when data analysis 

using parallel processing is possible, such as medical research involving pattern 

recognition and effective treatment (Goli-Malekabadi, Sargolzaei-Javan & Akbari 

2016). Therefore, partition-tolerance is another key aspect for managing and 

improving the effective use of healthcare data. Availability and partition-tolerance are 
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particular strengths of NoSQL databases, hence, NoSQL databases have a good fit 

with two key requirements of healthcare systems.  

2.6	Previous	Research	on	Performance	and	Scalability	of	NoSQL	

Databases	

The review of the literature identified increasing research activity focused on 

distributed databases and the comparison of NoSQL database systems with relational 

database systems focusing on topics such as basic performance comparisons on single 

nodes for MongoDB and Microsoft SQL Server, distributed and scalable searches of 

scientific XML data, distributed spatial data context for product and price search, 

large-scale text analysis, scalable transactions on NoSQL database systems, and 

querying NoSQL database systems (Aji et al. 2013; Atzeni et al. 2013; Chen & Hsu 

2013; Dede et al. 2011; Dey, Fekete & Röhm 2013; Oliveira et al. 2013; Parker, Poe 

& Vrbsky 2013; Ruan, Zhang & Plale 2013). 

Yahoo Cloud Serving Benchmark (YCSB) is a benchmarking tool for comparing 

performance of databases using pre-defined sets and rules (Cooper et al. 2010). 

However, previous research has shown a preference for developing custom 

benchmarking tools for comparison of performance and scalability between NoSQL 

databases and relational databases in specific domains which limits the external 

validity and ability to replicate the findings of such studies. For example, Shi et al. 

(2010) in evaluating performance of cloud databases used a specific approach to 

benchmarking which focused on the architecture and query capabilities of these 

databases, rather than using a well-known performance evaluation benchmark, YCSB. 

Lungu and Tudorica (2013) and Aboutorabi et al. (2015) also developed custom 

benchmarking applications to compare performance of NoSQL and relational 

databases in order to identify and use the most efficient data access methods for each 

database. It is also observed that latency and throughput are two well regarded and 

widely used metrics for the comparison of NoSQL databases and relational databases 

in recent research (Swaroop & Vijit Gupta 2016). It is also observed that latency and 

throughput are two main metrics used in the comparison of NoSQL databases and 

relational databases in recent research  (Swaroop & Vijit Gupta 2016). Throughput is 

measured as an average number of database operations completed per second and 

latency is measured as an average execution time for each database operation. These 
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two metrics form the basis of the performance evaluation of a NoSQL document 

database comparative to a relational database in a large scale EHR system.  

2.6.1	Previous	Research	on	Evaluation	of	NoSQL	Databases	in	Healthcare			

Research and industry projects focusing on storing healthcare information in NoSQL 

databases are being driven by practical experience (Jin, Deyu & Xianrong 2011). This 

demonstrates that the relational approach for storing healthcare records has become a 

bottleneck for healthcare systems as the structure and size of the healthcare data have 

changed considerably over time. There is also an increased emphasis on better utilising 

healthcare information to deliver better healthcare outcomes and NoSQL databases 

can play an important role in achieving this aim because of their strong support for a 

distributed database environment. Medical databases can contain heterogeneous data 

including text, images, free-text physician notes, logs from medical devices, etc. which 

are difficult to handle and manage using traditional relational databases in terms of 

size and structure (Jin, Deyu & Xianrong 2011; Schmitt & Majchrzak 2012).  

One of the early developments in the use of NoSQL databases in the area of healthcare 

is the project called DIGHT (Distributed Infrastructure for Global Electronic Health 

Record Technology) of Swedish Institute of Computer Science (SICS) and Centre for 

Development of Advanced Computing (CDAC), which aims to develop a distributed 

EHR system for lifelong health records for about one billion Indian citizens (Alnuem 

et al. 2011; Drejhammar 2010). The DIGHT project focused on developing a 

customised NoSQL database at a time when there were very few NoSQL databases 

available in the marketplace. (CDAC 2009). 

Although there are industry examples of NoSQL databases being used in healthcare 

applications, there is limited empirical research on the use of NoSQL databases in 

healthcare. Lee at el. (2013), Jin et al. (2011) and Schmitt and Majchrzak (2012) have 

contributed to emerging research on the use of NoSQL databases in EHR systems by 

evaluating NoSQL databases for distributed storage of healthcare data in terms of data 

model and performance. Klein et al. (2015) compared various types of NoSQL 

databases using synthetic EHR data of one million patients. Freire et al. (2016) 

conducted a similar study to this research by comparing the performance of NoSQL 

and relational databases with a relatively small dataset using archetype-based EHR 

data. However, the design of comparative performance evaluation of NoSQL 
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databases and relational databases reported in previous empirical studies do not 

completely reflect a nationwide EHR system in size.  

2.7	Literature	Gap	and	Research	Focus	

The discussion in the preceding sections of this chapter demonstrates that the 

requirements of evolving healthcare data needs cannot be satisfied by relational 

databases and NoSQL databases have significant potential to provide EHR systems 

with necessary functionality and capabilities. Moreover, given that the document store 

type of NoSQL databases are determined as being highly suitable for storing 

healthcare data, there is a lack of previous research that has compared the performance 

of NoSQL document databases and relational databases in a large scale realistic EHR 

system environment. 

Li and Manoharan (2013) compared the performance of Microsoft SQL Server with 

multiple NoSQL databases that are based on a key-value store implementation at a 

relatively small scale. They found that performance varied depending on the database 

operation and that not all NoSQL databases perform better than the Microsoft SQL 

Server database. 

The literature review also suggests that both relational databases and NoSQL 

databases have their suitable domains and use cases. In this regard, there are multiple 

papers suggesting that the determination of which type of database is better for a 

particular use case is directly related to the requirements of a particular use case and 

the required data model. For instance, Nance et al. (2013) mention that the problem 

that an organisation is trying to solve will determine whether to choose a NoSQL 

database or a relational database. Swaroop and Vijit Gupta (2016) suggest that the 

selection of data model and appropriate database depends on the use case.  

Limited research exists that has focused on exploring the possibility of establishing a 

healthcare data model using a NoSQL database. Other research merely tries to evaluate 

basic database performance by comparing the performance of NoSQL databases with 

relational databases. Inadequate attention has been given in prior research to 

establishing a healthcare data model and then testing the performance with realistic 

large-scale healthcare data sets. Clearly, this may lead to results which deviate from 

what can be found in a real-world scenario (Hadjigeorgiou 2013; Jin, Deyu & 
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Xianrong 2011; Lee, Tang & Choi 2013; Sattar, Lorenzen & Nallamaddi 2013; 

Schmitt & Majchrzak 2012).  

2.8	Conceptual	Model	and	Research	Questions	

Figure 2.13 provides a conceptual model of IT artefacts that will be built and 

evaluated; and activities which will be undertaken in order to provide a solution to a 

real world problem identified previously in the review of the literature. Therefore, this 

research focuses on first building a number of IT artefacts. This involves establishing 

a NoSQL document data model and a relational data model for storing electronic 

health records and then building a random healthcare data generator to generate 

synthetic EHR records. Then a prototype EHR system is built that will enable a 

performance evaluation of a NoSQL document database comparative to a relational 

database for basic database operations and scalability, EHR sharing and data analysis 

capabilities (complex querying) in a simulation of a large scale EHR system. Thus, 

the main objectives of this study can be achieved by evaluating the performance, 

scalability, EHR sharing and data analysis capabilities of NoSQL document databases 

and relational database comparatively to demonstrate the feasibility of using NoSQL 

document databases in large scale EHR systems.  
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Figure 2.13: Conceptual model of artefacts built and evaluated and associated 

research activities conducted to achieve main objectives of this study 

The research problem that provided the motivation for this study is addressed by the 

following overarching general research question. 

General RQ: How can a simulation of a large EHR system be developed so that the 

performance of NoSQL document databases comparative to relational databases can 

be evaluated? 

In order to investigate this general research question, the following specific research 

questions are investigated for proof of concept, in an Australian Healthcare context 

using a Design Science methodology. 
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RQ1: How can a NoSQL document data model and a relational data model be 

developed for an EHR system that are in line with documents published by healthcare 

authorities in Australia?  

RQ2: How can a random healthcare data generator be developed that will generate 

EHRs that are representative of the characteristics of Australian healthcare data based 

on statistics available in the public domain?  

RQ3: How can a prototype EHR system be developed that will facilitate database 

operations and measure performance and scalability for NoSQL document databases 

and relational databases?   

RQ4: How do NoSQL document databases perform compared to relational databases 

in executing basic database operations such as insert, delete and update on electronic 

health records?  

RQ5: How do NoSQL document databases scale compared to relational databases in 

electronic health record systems?  

RQ6: How do NoSQL document databases perform compared to relational databases 

in supporting electronic health record sharing through patient record retrieval in a 

distributed EHR system?   

RQ7: How do NoSQL document databases perform compared to relational databases 

in executing complex queries on electronic health records? 

2.9	Conclusion	

This chapter reviewed existing knowledge on Electronic Health Records (EHR), EHR 

systems, relational databases and NoSQL database systems as the parent literature for 

this study. The immediate literature identified the importance of NoSQL document 

databases and their suitability for large scale EHR systems were identified and 

discussed as the main focus of this study. The theoretical background to this study is 

discussed in terms of the descriptive and prescriptive theory and practical knowledge 

that informs a design science approach. The relevant theory and practical knowledge 

that provided the foundation for this study is discussed in terms of the development 

and evaluation of IT artefacts to achieve the main objectives of this study. This 

discussion was guided by kernel theories, design theory and current practice 
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knowledge. This included reviewing and identifying appropriate data modelling 

approaches for the NoSQL document databases and relational databases that were 

used in this study. CAP theorem is discussed in terms of its guidance in choosing the 

most suitable NoSQL databases for electronic health records management. Then, 

evaluation of the performance of NoSQL document databases is discussed in terms of 

relevant database performance metrics within the context of healthcare. Previous 

literature regarding the evaluation of the performance of NoSQL databases in EHR 

systems highlighted the current gap in the literature. The need for empirical research 

that addresses this gap is identified and discussed.  

In summary, the literature review demonstrates a significant gap in literature. There is 

little empirical work has been conducted to establish a reliable and complete sample 

healthcare data model for EHR systems using NoSQL document databases. 

Furthermore, there is a lack of a robust evaluation of the performance, scalability, EHR 

sharing and data analysis (complex querying) capabilities of NoSQL databases 

comparative to relational databases for large scale healthcare-specific applications 

such as a national EHR system. 

Based on this identified gap, an overarching research question and a specific set of 

research questions are presented in this chapter. 

This research conducted an empirical evaluation of a NoSQL document database in 

large scale Electronic Health Records (EHR) systems in comparison to a relational 

databases based on a healthcare data model to address these research questions and 

the identified gap in the literature. In this regard, this research contributes to the 

existing knowledge by evaluating a NoSQL document database in a particular domain, 

healthcare. 

Although NoSQL databases have significant potential for offering better solutions 

than relational databases in large scale implementations in many sectors, including 

healthcare, organisations tend to stay away from exploring them. Organisations in 

general are unfamiliar with NoSQL databases and tend to think that they are not 

knowledgeable enough to pick the correct type of NoSQL databases for their use case 

(Nance et al. 2013).  
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Therefore, by addressing the gap identified in the literature with an empirical 

evaluation of the performance of a NoSQL document database in EHR systems in the 

healthcare domain, this research also aims to contribute to practice as the key findings 

of this study will help professionals to choose the most suitable database for their use 

cases in this domain.  
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Chapter	3	‐	Methodology		

3.1	Introduction	
 
In this chapter, the research paradigm and the research design that guided the 

methodological approach used to conduct this study is described and justified. 

Although a recent methodological approach in the Information Systems discipline, 

Design Science, has been used extensively and is well-established in other reference 

disciplines such as economics, engineering and computing science. Moreover, there is 

a growing body of literature in Information Systems that provides substantial guidance 

on how to conduct research using a Design Science methodological approach in a 

rigorous and relevant manner. 

This chapter begins by describing and justifying the choice of Design Science as the 

research paradigm and philosophy that underpins the research design of this study. 

Then Design Science is justified as a sound methodological approach that meets the 

main objectives of this study. Then, the research plan is presented, which explains how 

this research was conducted in six phases. Next, the research design is assessed using 

design science evaluation principals. This is followed by the planned contribution of 

this research using a design science approach. The structure of this chapter is presented 

in Figure 3.1. 

 

Figure 3.1 Structure of Chapter 3 
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3.2	Research	Philosophy	
 
The choice of the scientific paradigm that underpins the conduct of an empirical study 

is determined by the philosophical belief of a researcher and ultimately determines the 

choice of a methodological approach (Weber 2004). A scientific paradigm is 

understood to be the distinct worldview of the researcher based on certain ontological, 

epistemological and methodological assumptions (Niehaves 2007). There are a 

number of classifications of scientific paradigms. In Information Systems the 

scientific paradigms used have been predominately positivist and interpretivist. More 

recently, there has been an increasing focus on design science as a suitable alternative 

research paradigm with the IT artefact as the key concept that is built and evaluated to 

provide a solution to a real world problem (Gregor & Hevner 2013; Hevner et al. 

2004). Furthermore, a scientific paradigm can be used to classify two distinct types of 

research: behavioural science research and design science research (Hevner et al. 

2004; March & Smith 1995). Positivist and interpretivist paradigms adopted in 

Information Systems research have tended to focus on behavioural science research 

which is a “problem understanding paradigm”; while design science research is clearly 

a “problem solving paradigm” (Hevner et al. 2004; March & Smith 1995). The choice 

of a research paradigm in turn determines the ontology, epistemology and 

methodology that will be used in a study. Furthermore, the choice of a research 

paradigm determines how knowledge and theory is generated and communicated, the 

role between theory and practice, the rigor versus relevance debate and role of the 

researcher as a participant in the research (see Table 3.1).   
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 Positivist Interpretive Critical Scientific 
realism 

Design Science 

Ontology 
 

A physical 
world where a 
single reality 
exists 
 

A social world 
where multiple 
realities are  
constructed 
through 
human 
interactions.  
 

A social  
world  where 
multiple  
realities are   
historically  
constructed   
and re-
constructed. 

An  objective    
physical  and    
social world      
independent  
of humans. 

Multiple world  
states where  
reality is socio- 
technologically  
constructed  
 

Epistemology Objective 
reality  
is investigated  
through  
structured  
instruments 
that follow 
rigorous  
empirical 
testing 

Subjective 
reality is  
investigated 
through 
accessing   
meanings that 
humans assign 
to them while  
addressing 
cultural and  
contextual 
elements  

Subjective 
reality that  
is embedded 
in social  
and historical  
practices is 
generated  
through 
critical  
evaluation of 
social systems. 

Universal  
laws and  
principles  
searched are  
based on 
distinct logic 
of discovery 
and logic of 
justification  
 

Objectively  
constrained  
reality that is  
contextually  
constructed is  
revealed 
through  
iterative  
circumscription 
 

Dominant 
Methodology 

Quantitative Qualitative Ethnography 
and historical 
studies 

Mix of 
methods 

Mix of methods 

Axiology – 
Values 

True 
knowledge:  
generating  
generalizable  
theories 

Situated 
knowledge:  
understanding 
IS phenomena 
in the social 
world 
 

Historical  
knowledge:  
understanding 
the IS 
phenomena by  
analyzing the 
historical 
dynamics 
among 
humans, tech 
and 
organizations 

Fallible  
knowledge:  
knowledge is  
continuously  
revised and  
updated 

Design  
knowledge:  
shaping the IS 
phenomena in  
the real world 
through 
creating 
artefacts 

Relationship 
between 
theory and 
practice 

Theory is used 
to produce 
desired state 
of affairs in 
the physical 
world.  

Theory cannot 
be wholly 
used to predict 
future 
situations  

Social theory 
and social 
research are  
understood as 
social critique. 

It is possible  
to discover  
universal 
laws  
that govern 
the external 
world 

Design theory 
is  
used to build 
predictably  
functioning  
artefacts. 

Role of 
researcher 

Passive/value  
neutral 
observer 

Participant 
observer  
who enacts 
social  
reality  

Participant 
observer who 
initiates 
change in 
social relations 
and  
practices.  

Objective,  
impartial 
observer, 
passive,  
value-neutral 

Participant  
observer at 
early stages 
then more value 
neutral observer 
later 

Methodology 
guidelines 

Dubé and Paré 
(2003); 
Straub, 
Boudreau and 
Gefen (2004) 

Klein and 
Myers (1999); 
Lee (1989)  

Myers and 
Klein (2011) 

 Hevner et al. 
2004 

 
Table 3.1 Summary of Research Paradigm Perspectives used in Information 
Systems (adapted from Aljafari and Khazanchi (2013)) 
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From an ontological perspective, design science research by definition changes the 

state of the world through the introduction of novel artefacts that attempt to solve real 

world problems. Hence, alternative world states are acceptable for design science 

research as an artefact is built and evaluated to solve a real world problem. In this 

research, a number of IT artefacts were built to solve a real world problem, the 

performance evaluation of a NoSQL document database in terms of basic database 

operations and scalability, data sharing and data analysis capability comparative to a 

relational database. 

Epistemologically in design science research, an artefact is developed and evaluated 

and its behaviour and outcomes are the results of interactions between components of 

the problem domain. Descriptions of the interactions are information and to the extent 

that an artefact behaves predictably, the information is true. In other words, the 

functionality that an artefact enables in providing a solution to real world problem is 

information; and measurable in the build and evaluation phases. In this research the 

functionality of three IT artefacts, a healthcare data modal (NoSQL document 

database, relational database), a random healthcare generator and a prototype EHR 

system provided the functionality that enabled the performance evaluation of a 

NoSQL document database comparative to a relational database and provided 

measurable information in building and evaluation phases of this research.  

Methodological approach in design science research is developmental where the 

impact of an artefact(s) is measurable in a composite system. One or more range of 

methodological approaches can be used in design science, depending on the nature of 

the problem which is being solved through building and evaluating artefacts. In this 

research, an experimental design was used to enable a performance evaluation of a 

NoSQL document database in terms of basic database operations, and scalability, data 

sharing and data analysis capability comparative to a relational database in a 

simulation of a large scale EHR system.  

From an axiological perspective, design science research values creative manipulation 

and control of the environment in the problem domain. Artefacts are built and 

evaluated as solutions to a specified problem which leads to improvements and better 

understanding of a problem domain where knowledge is not static and is constantly 

evolving. In this research a number of IT artefacts were built to enable a realistic 
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performance evaluation of a NoSQL document database in terms of basic database 

operations, and scalability, data sharing and data analysis capability comparative to a 

relational database in a simulation of a large scale EHR system. This provided a better 

understanding of the suitability of a NoSQL document database as a viable alternative 

to a relational database as a data management technology for a large scale EHR 

system.  

One of the key strengths of design science as a research paradigm is that the 

relationship between theory and practice is grounded in design theory and appropriate 

kernel theories and practice knowledge that inform building and evaluating functional 

artefacts to provide solutions to real world problems. In this research appropriate 

kernel theories and practice knowledge informed the building and evaluation of 

functional IT artefacts, two healthcare data models, a random healthcare data generator 

and a prototype EHR system. These IT artefacts provided proof of concept that a 

NoSQL document database as a viable solution to address the shortcomings of 

relational databases in meeting the data management needs of large scale distributed 

EHR systems  

The role of the researcher in a design science project is that of a participant observer 

who becomes a more value-neutral observer in the later phases of evaluation of an 

artefact as a solution to a real world problem and its contribution more broadly to 

theory and practice in the problem domain. In this study, the researcher was a 

participant observer who was actively involved in the design and implementation of a 

number of IT artefacts. Then, the researcher role became that of a more value neutral 

observer. These IT artefacts were then used to provide a rigorous and relevant 

performance evaluation of a NoSQL document database in terms of basic database 

operations, and scalability, data sharing and data analysis capability comparative to a 

relational database in a simulation of a large scale EHR system.  

The conduct and evaluation of design science research in Information Systems should 

be based on well-established methodology guidelines (Gregor & Hevner 2013; Hevner 

et al. 2004; Venable, Pries-Heje & Baskerville 2012). In this study, a well established 

set of methodological steps for conducting a design science research  were used. 

3.2.1	Methodological	Approach		
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The Information Systems (IS) discipline has seen increased research activity using 

Design Science Research (DSR) as a sound theoretical and methodological approach 

that emphasises both rigor and relevance. In DSR, an effective solution is suggested 

by designing and building an artefact and then the utility, quality and efficacy of an 

artefact in providing a solution to a particular IS problem is evaluated. Although there 

is increasing research activity using a DSR approach to invent or build new systems 

in the IS discipline, establishing a theoretical background and theorising using a DSR 

approach is still a challenging task (Chatterjee 2015). DSR is positioned to solve real 

world problems through design. Thus, the IS community has engaged in considerable 

discussion on the ‘relevance versus rigor’ debate and DSR is increasingly seen as a 

viable approach to ensure both rigor and relevance in IS research. 

Hevner et al. (2004), Gregor and Hevner (2013) and Goldkuhl (2004) have contributed 

to the effort of establishing guidelines for conducting rigorous and relevant DSR. 

Previous literature suggests that DSR aims to provide solutions to IS problems by 

building and evaluating artefacts which involve a design phase. Therefore, the 

research process in DSR uses kernel (reference) theories and well-established practice 

referred to as justificatory knowledge to underpin and inform the design phase of 

artefacts (Hevner et al. 2004; Kuechler & Vaishnavi 2008; Walls, Widmeyer & El 

Sawy 1992). Thus, kernel theories and practice knowledge are translated as inputs into 

the process of the development of a design theory that is relevant and may be 

explanatory or predictive resulting in the creation of an artefact(s) to solve a real world 

problem (Gregor & Jones 2007; Kuechler & Vaishnavi 2012). The evaluation of an 

artefact can then, in turn, to lead to refinement and enrichment of kernel theories and 

existing practice knowledge. Thus, design science research, from a theoretical 

perspective, provides a process for not only describing how to design an artefact but 

also for understanding why an artefact should work. The evaluation of designed 

artefacts in terms of their utility, quality and efficacy in solving a real world problem 

(Hevner et al. 2004; Gregor & Hevner 2013) leads to evidence and confirmation that 

an intended result is based on presumed cause and effect. The relationship between 

kernel theories, design theories and design process results in artefacts that provide 

solutions to real world problems, is depicted in Figure 3.2.  
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Figure 3.2: Framework for theory development in Design Science Research 

(Adapted from Kuechler and Vaishnavi (2008) 

This research provides evidence to determine to what extent NoSQL databases can 

provide a solution to the technological issues affecting large scale EHR systems by 

evaluating designed artefacts. The design phase was informed by kernel theories and 

practice knowledge which provided descriptive knowledge to guide the design and 

development of artefacts. The kernel theories and practice knowledge used in this 

study are data modelling approaches, Australian healthcare data elements and 

statistics, CAP theorem and database performance metrics. Relational database theory 

is used to guide the establishment of a relational data model; important NoSQL data 

modelling concepts such as de-normalisation and aggregation informed the 

establishment of a NoSQL document database data model. CAP theorem and practice 

knowledge helped to determine the choice of a NoSQL database that is suitable for 

EHR systems. Design theory and practical knowledge informed the non-trivial and 

innovative adaption of known knowledge and solutions regarding NoSQL document 

databases to a new problem context, data management in large scale EHR systems 

(Gregor & Hevner 2013; Kuechler & Vaishnavi 2012). Thus, a design theory was 

developed from the design and evaluation of the utility, quality and efficacy of NoSQL 

databases in large scale EHRs. Utility is the defining characteristic of an artefact which 

can be evaluated in terms of a number of dimensions including functionality, 
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performance and reliability (Helfert, Donnellan & Ostrowski 2012; Hevner et al. 

2004). In this research, the utility of the artefact is primarily evaluated by assessing 

the database performance, scalability, data sharing and data analysis capability of a 

NoSQL database comparative to a relational database in a large scale EHR system. 

3.3	Overall	Research	Design		

The research design of an empirical study is guided by the philosophical stance and 

worldview adopted by a researcher. This study is guided by the design science research 

paradigm which is a problem-solving paradigm which in turn determined the choice 

of the methodological approach used to collect data to provide answers to the seven 

research questions investigated in this research and to the IT artefacts which are built 

and evaluated in this study. 

Although theorising is not always easy when the research involves creative work, there 

are a number of research papers which provide clear guidance to researchers on how 

to rigorously conduct research that employs a design science research methodology 

(DSRM) (Chatterjee 2015; Gregor & Hevner 2013; Hevner et al. 2004). March and 

Smith (1995). Hevner et al. (2004) has written extensively about design science as a 

legitimate research methodology and provided guidelines on how to follow the steps 

of design science research in a rigorous manner (Alturki, Gable & Bandara 2011; 

Gregor & Jones 2007; March & Smith 1995). 

In the IS discipline, it is possible that the design theories may be seen to have different 

forms compared to other disciplines. The design, construction and use of artefacts 

based on information technology (IT) to solve real world problems are increasingly 

seen to be central to ensuring the relevance of IS research and still maintaining 

research rigour (Alturki, Gable & Bandara 2011; Chatterjee 2015; Gregor & Jones 

2007). The term artefact may include such things as software, formal logic, rigorous 

mathematics, and so on. Hevner et al (2004) argues that the understanding of a 

problem domain and also its solution are achieved in the process of building, and in 

the application and evaluation of the designed artefact (Hevner et al. 2004) (see Figure 

3.3 for a conceptual overview of this approach). The business needs guide the 

development and evaluation of artefacts that are relevant in addressing a real world 

problem; and the existing knowledge in terms of theories and frameworks and 

methodologies ensures rigor in the conduct of a DSR project (Hevner et al. 2004). 
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Furthermore, Chatterjee (2015) suggests that DSR needs to demonstrate that the IT 

artefacts have quality, efficacy and utility. 

Since the purpose of this research project is evaluate a suggested solution to a 

particular research problem which is underpinned by developing a number of IT 

artefacts, an experimental design used in the simulation of a large scale EHR system 

is an appropriate methodology for collecting data to answer the specific research 

questions framed by this research. Various steps have been suggested to achieve 

similar goals within a DSRM context (Alturki, Gable & Bandara 2011).  

 

Figure 3.3. Design Science Research Model (Adapted from Hevner, 2004) 

Alturki et al (2011) derived a summary table of prescribed steps for conducting Design 

Science Research based on a number of DSR articles, see Table 3.2. While it has been 

suggested that the steps for a DSRM are as simple as (1) Build and (2) Evaluate, others 

such as Gregor and Jones (2007) suggest six compulsory and two optional steps for a 

DSRM. Rossi & Sein (2003), on the other hand, identified five Design Science Steps 

in a DSRM, which are: (1) Identify a need; (2) Build; (3) Evaluate,;(4) Learn; and (5) 

Theorise (Rossi & Sein 2003). These five steps were followed in using a DSRM 

approach in this study. 
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Table 3.2 Design Science Activities/Steps Taken Distilled from Literature (adopted from Alturki, Gable & Bandara (2011) 
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Gregor and Hevner (2013) also suggest a schema for publication of the results of 

Design Science Research which includes the following sections: (1) Introduction; (2) 

Literature Review; (3) Method; (4) Artefact Description; (5) Evaluation; (6) 

Discussion; and (7) Conclusions (Gregor & Hevner 2013). This schema guided the 

overall structure of this PhD thesis and also informed the structure of methodological 

approach of this study for conducting a rigorous and relevant DSR project. 

3.3.1	Identify	research	problem	and	need	to	conduct	research		
 
An extensive review of the existing literature suggests that relational databases are not 

well adapted to modern day data-driven applications; and database design remains a 

critical problem in modern distributed systems such as EHR systems, that needs to be 

solved (Badia & Lemire 2011; Floratou et al. 2012). Recent developments in 

distributed and horizontally-scalable database systems, namely NoSQL databases, 

have been discussed previously in the literature review chapter. However, there are a 

few empirical studies such as Floratou et al. (2012) and Cattell (2011) that compare 

the performance of NoSQL and relational databases. The suitability of a database 

system depends on the purpose of the application rather than basic data access 

performances as discussed in the previous chapter. Furthermore, the results of 

comparisons between NoSQL databases and relational databases are highly associated 

with the types, versions and capabilities of the system. It is worthwhile to note that 

developments in distributed database systems are quite rapid, thus the development in 

such domains is often referred to as an ‘explosion’ (Phanishayee et al. 2012).  

The research problem is defined and scoped in terms of a general over-arching 

research question and seven specific research questions: 

Problem Definition – General Research Question: How can a simulation of a large 

EHR system be developed so that the performance of NoSQL document databases 

comparative to relational databases can be evaluated? 

Seven research questions investigated the building and evaluation of IT artefacts as a 

solution to a real world problem and determined the scope of this study. These were: 

RQ1: How can a NoSQL document data model and a relational data model be 

developed for an EHR system that are in line with documents published by healthcare 

authorities in Australia?  
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RQ2: How can a random healthcare data generator be developed that will generate 

EHRs that are representative of the characteristics of Australian healthcare data based 

on statistics available in the public domain?  

RQ3: How can a prototype EHR system be developed that will facilitate database 

operations and measure performance and scalability for NoSQL document databases 

and relational databases?   

RQ4: How do NoSQL document databases perform compared to relational databases 

in executing basic database operations such as insert, delete and update on electronic 

health records?  

RQ5: How do NoSQL document databases scale compared to relational databases in 

electronic health record systems?  

RQ6: How do NoSQL document databases perform compared to relational databases 

in supporting electronic health record sharing through patient record retrieval in a 

distributed EHR system?  

RQ7: How do NoSQL document databases perform compared to relational databases 

in executing complex queries on electronic health records? 

Hence, the unit of analysis in this research is a database management system in the 

context of a large scale EHR system. The dependent variable is the performance of a 

database management system which involved a comparative analysis and evaluation 

of a NoSQL document database management system versus a relational database 

management system in a simulation of a large scale EHR system. The independent 

variables in this study are the type of database management system, basic database 

operations (insert, update, delete), scalability, EHR sharing and data analysis (complex 

querying) capability.   
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Methodological approach used in this research 

The research paradigm adopted by the researcher, Design Science, and the nature of 

the research problem being investigated determined the methodological approach used 

in this research (Hevner et al. 2004; Venable, Pries-Heje & Baskerville 2012). In 

Design Science research, one or more of a number of different methods can be used 

based on whether the evaluation is naturalistic or artificial and ex ante or ex post. An 

artificial evaluation using a simulation suited the main objectives of this study as 

purely technical artefacts were built and evaluated; and this approach provided the 

desired rigor with control of the key variables in an efficient and cost effective manner 

(Venable, Pries-Heje & Baskerville 2012). Given that this research focuses on 

providing a technological solution to a real world problem, an experimental design 

that utilised simulation was an appropriate methodological approach. A performance 

evaluation of a NoSQL document database in terms of basic database operations, and 

scalability, data sharing and data analysis capability comparative to a relational 

database in a simulation of a large scale EHR system was conducted for the evaluation 

of the artefacts designed and built to solve a real world problem.  

A number of artefacts were designed and built based on existing knowledge and design 

theories, kernel theories and practice knowledge of the researcher (Kuechler & 

Vaishnavi 2012) to simulate a large scale EHR system in order to evaluate the 

performance of a NoSQL database comparative to a relational database in relation to 

data management of EHRs. Two data models with data structures designed for storing 

EHRs in a NoSQL document database and a relational database were developed. A 

random healthcare data generator that creates synthetic healthcare data based on the 

characteristics of Australian healthcare data and Australian Healthcare Statistics was 

developed to generate electronic health records representative of Australian healthcare 

statistics in sufficient volume for a simulation of a large scale EHR system. A 

prototype EHR system was developed to manage and capture metrics for the 

performance of database operations in a large scale EHR system simulation. The 

database operations of a NoSQL document database and a relational database that 

were evaluated for comparative performance included basic database operations 

(insert, update, delete), scalability, EHR sharing and data analysis (complex querying) 

capabilities. This prototype EHR system enabled the comparative evaluation of the 

performance of a NoSQL database with a relational database in a large scale EHR 
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system simulation. The research plan describes how each of these research activities 

was undertaken in the build and evaluation phases of this study.  

Reliability and Validity 

Reliability and validity are fundamental cornerstones of a rigorous research approach 

(Creswell 2013; Golafshani 2003). Reliability ensures that any significant results must 

be more than a one-off finding and must be inherently repeatable (Golafshani 2003). 

The results should be consistent with theoretical expectations and the researcher’s 

interpretations.  Other researchers must be able to replicate the study under the same 

conditions and generate similar results. In order to ensure the reliability of this study, 

the researcher provided a detailed description of how this research was conducted, and 

how the artefacts were built and evaluated in relation to existing knowledge in the 

problem domain.  

Validity encompasses the entire research process and establishes how the key results 

meet all of the requirements of a scientific method (such as an experimental design 

and simulation) used in an empirical study (Creswell 2013; Golafshani 2003). Internal 

validity is ensured through the rigorous application of a structured design of a research 

method. Internal validity can be defined as the ability of a method to accurately 

measure what it is intended or supposed to measure. In this study, the method used an 

experimental design to implement a simulation of database performance testing in a 

large scale EHR system environment. This involved building and evaluating a number 

of key artefacts in order to conduct a simulation of database performance testing in a 

large scale EHR system. Internal validity is an important priority in conducting 

rigorous research, however, in an applied discipline such as Information Systems 

where relevance is also a high priority it is equally important to strengthen and 

emphasise external validity (Calder, Phillips & Tybout 1982; Green 1977; Gregor & 

Hevner 2013; Victora, Habicht & Bryce 2004).  

External validity is concerned with the extent to which the results of a study can be 

generalised to other situations (Creswell 2013). No method can be completely 

successful in ensuring external validity; hence, research results can be called 

significant but not absolute truths. External validity increases the likelihood that the 

key results and findings of a study can be translated into practice (Gregor & Hevner 

2013; Victora, Habicht & Bryce 2004). This research focused on building and 
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evaluating technology based models and instantiated artefacts (data models for a 

NoSQL document database and a MySQL relational database, Random Healthcare 

Data Generator, Prototype EHR system) in a simulation of a large scale EHR system. 

Hence, the research activities and results can be reprocessed or re-calibrated so as to 

circumvent differences in context and produce generalizable results for different 

contexts such as a different country or industry setting. Furthermore, external validity 

is strengthened in this study by demonstrating practical utility and efficacy of 

artefact(s) using a design science approach so that the key findings of this study can 

be translated into IT practice in the healthcare domain (Gregor & Hevner 2013; 

Victora, Habicht & Bryce 2004). 

3.4	Research	Plan	
 
This research consisted of six phases in order to build and evaluate a number of 

artefacts which addressed the identified problem by investigating and providing 

answers to seven research questions (See Figure 3.4). These six phases are described 

and justified in this section to explain how this DSR project is conducted. 
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Figure 3.4. Research Phases used to conduct this research 

Just like any purpose-built system, such as accounting, enterprise resource planning, 

and so on, EHR systems have their own data characteristics. In order to be able to 

evaluate a NoSQL document database in a healthcare domain properly, the basic 

requirements and specifications of the healthcare data used in the evaluation phases of 

this study need to be identified. 

The first phase (PH1) of this research consists of the identification of healthcare data 

specifications and data characteristics. Using an appropriate data model that reflects 

actual real-world needs is essential to achieve higher quality research outcomes. 

Therefore, identification of healthcare data specifications such as coding systems, 

standards, minimum data sets, etc. is the first step in this project. 

The Australian Institute of Health and Welfare (AIHW) published the National Health 

Data Dictionary (NHDD) Version 16.2 in 2015. The NHDD is publicly available and 

includes definitions for data elements and national minimum data sets (NMDS), as 

well as coding standards to be used such as ICD-10-AM. Information in NHDD, 

including Admitted Patient Care NMDS, Non-Admitted Patient Emergency 

Department Care NMDS, Outpatient Care NMDS and health care client identification 

data set specification (DSS) guided establishment of the specifications and the scope 

of the healthcare data which are the main input for establishing data models in this 

research (AIHW 2015).  

Additionally, the statistical distribution of the characteristics of each data element may 

affect performance, data structure and overall evaluation results. Therefore, the next 

step in this phase of this research was to identify characteristics of healthcare data. 

Healthcare data statistics are publicly available from the Australian Institute of Health 

and Welfare. This information is sourced from AIHW publications and  guided the 

first phase of the research (AIHW 2016). 

In the second phase (PH2), data models were developed for both a NoSQL document 

database and a relational databases using known best practices in the industry, such as 

normalisation, indexing and query optimisation, foreign and primary keys for  the 

relational data model and de-normalisation and aggregation for the NoSQL document 

data model. The outcome of this phase is relational and non-relational healthcare data 
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models consisting of the data sets and data elements identified in the previous phase 

of the project. In this phase, one relational and one NoSQL database system were 

selected based on their features and availability at that time. Data models developed 

in this phase are then applied to the selected relational and NoSQL document databases 

to create the underlying data structures. At the end of phase two (PH2), the outcome 

is a relational EHR data model and a non-relational EHR data model. The structure of 

these two data models were developed using relevant data modelling theory and 

practice. The data elements in these two EHR data models were determined by 

analysing AIHW publications and selecting two data sets and associated data 

elements, as well as analysing the documentation outlining the characteristics of 

Australian healthcare data based on statistics available to the public domain.    

In the third phase (PH3) of this research the first IT (software) artefact, a Random 

Healthcare Data Generator, is built. This artefact is based on the healthcare data 

characteristics identified in the first phase. The purpose of this artefact is to generate 

random healthcare data which is used for testing and comparing the performance of a 

NoSQL document database comparative to a relational database. Thus, the complexity 

of accessing real healthcare data including the ethical issues concerned with gaining 

permission to access real world healthcare data was avoided. A feedback mechanism 

was built into the Random Healthcare Data Generator to validate the quality of the 

generated healthcare data. This ensured that the data generated by the Random 

Healthcare Data Generator reflects the Australian healthcare data characteristics. 

The outcome of the third phase is a random healthcare data generator. This artefact is 

a fundamental outcome and also a significant contribution to future researchers who 

would like to use randomly-generated healthcare data in their research to avoid the 

security and privacy issues associated with accessing real world healthcare data.  

In the fourth phase (PH4), another IT artefact, the prototype EHR system was built to 

simulate a large scale EHR system accessing and sharing EHR data generated by the 

IT artefact built in phase three. This artefact will facilitate the simulation of the data 

sharing process for EHR applications. Thus this artefact is the application interface to 

evaluate NoSQL databases and compare the performance of NoSQL database with 

relational databases in an EHR application specific role. 
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After completing these four design and build phases, IT artefacts to be used for the 

performance measurement of NoSQL databases in EHR systems in comparison to 

relational databases in EHR systems were ready to be deployed in a simulation of a 

large scale EHR system. The prototype EHR system is developed in phase four and is 

a significant contribution of this study as it facilitated basic database operations, 

scalability, EHR data sharing, and data analysis (complex querying) for a NoSQL 

document database and a relational database to complete the evaluation. 

The fifth phase (PH5) was concerned with the performance measurement and 

comparison of a NoSQL document database with a relational database in the 

healthcare domain based on four important criteria, (1) basic database performance; 

(2) scalability; (3) EHR data sharing performance; and (4) complex data query 

performance. 

For basic database performance testing, database operations such as insert, update and 

delete were evaluated using performance indicators such as execution time and 

operations per second. EHR system prototype artefact handles the execution of 

database operations, as well as recording the metrics required for the performance 

evaluation. The database nodes are run on the Amazon Web Services Elastic Compute 

Cloud (EC2) platform (Amazon 2016). This cloud computing platform enabled easy 

scaling and configuration of database and client nodes to allow execution of these tests 

on a range of number of nodes that facilitated a scalability comparison of both 

databases. 

Random Healthcare Data Generator artefact developed in phase four (PH4) is used to 

generate healthcare data, and Prototype EHR System artefact handles database 

operations for both databases (NoSQL, Relational) using generated healthcare data. 

This artefact also enabled the execution of EHR data sharing simulation which 

requires querying both databases for all EHRs of a particular person.  

In addition to the basic database operations, scalability, and EHR data sharing tests, a 

complex query is run against both relational and NoSQL databases and the data 

analysis (complex querying) performance of a NoSQL database and a relational 

database is evaluated and compared.  
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In the last phase (PH6), all outcomes derived from the performance testing completed 

in the previous phase (PH5) are individually analysed and discussed, and then 

collectively analysed and discussed to provide an overall comparison which led to a 

conclusion as to which type of database is better—NoSQL database versus a relational 

database in a distributed EHR system. 

3.5	Evaluating	Design	Science	Research	Approach	

Hevner et al. (2004) suggested a number of guidelines on how to evaluate the quality 

of a design science research. Table 3.3 describes each of these guidelines and discusses 

in the third column how this research meets each of these guidelines to ensure quality 

of a research project using a Design Science approach. 
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Guideline Description Discussion 
Design as an 
Artefact 

Design Science research 
must produce a viable 
artefact in the form of a 
construct, a model, a 
method, or an 
instantiation. 

  

There are multiple artefacts produced as a 
result of this research. The NoSQL data 
model for EHR is a model which was a 
key input to two IT artefacts instantiated, 
Random Healthcare Data Generator and 
EHR prototype which are designed to 
enable evaluation of the proposed 
solution to a particular problem. 

Problem 
Relevance 

The objective of this 
Design Science research 
is to develop technology-
based solutions to 
important and relevant 
business problems. 

  

Increasing size and complexity of 
healthcare data causes bottlenecks and 
operational issues in many cases and 
NoSQL databases have many advantages 
over relational databases in healthcare 
domain. Hence, this research develops IT 
artefacts that simulate a large scale EHR 
system running on a NoSQL database 
and a relational database. 

Design 
Evaluation 

The utility, quality, and 
efficacy of a design 
artefact must be 
rigorously demonstrated 
via well-executed 
evaluation methods. 

  

The artefacts are evaluated by conducting 
a series of performance test using 
different scenarios. These tests 
demonstrate basic database operations 
performance, scalability, EHR sharing 
performance and complex query 
performance of a NoSQL database 
comparative to a relational database 

Research 
Contributions 

Effective Design Science 
research must provide 
clear and verifiable 
contributions in the areas 
of the design artefact, 
design foundations, 
and/or design 
methodologies. 

  

This research project identified a gap in 
the existing literature, the lack of a 
comprehensive evaluation of the 
suitability of using NoSQL databases in 
large scale EHR systems and seeks to 
address the identified research problem 
using a Design Science Research 
approach. The research also designed, 
built and evaluated an NoSQL data 
model for EHR systems, Random 
Healthcare Data Generator and a 
prototype EHR system that have 
significant theoretical and practical 
contributions. 

Research Rigour Design Science research 
relies upon application of 
rigorous methods in  
construction and 
evaluation of the design 
artefact. 

The research method and steps used to 
conduct this study were based on well 
established  Design Science Research 
principles and structures  
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Guideline Description Discussion 
Design as Search The search for an 

effective artefact design 
requires utilising 
available means to reach 
desired ends while 
satisfying laws in the 
problem environment. 

The artefacts are developed based on 
existing knowledge both theoretical and 
practical utilising widely accepted best 
practices in database design and 
management such as normalisation and 
data aggregation and performance testing 
of databases with appropriate evaluation 
methods and metrics 

Communication 
of Research 

Design Science research 
must be presented 
effectively both to 
technology-oriented, as 
well as management-
oriented audiences. 

  

The research outcomes are of interest and 
useful to both technology-oriented 
management-oriented audiences by 
means of an open source solution that 
compromised of a number of artefacts 
including data models and instantiated 
artefacts to simulate database operations 
in a large scale EHR. Furthermore, the 
solution is cost effective and flexible. The 
PhD thesis will be made available to the 
public after a standard 12 months 
embargo period to allow the researcher 
and supervisory team to publish the key 
findings of this study in research and 
practice journals. 
The key artefacts developed in this study 
will also be made available through 
GitHub or similar websites. 

 
Table 3.3. Guidelines for assessment of DSR adapted from Hevner et al. (2004) 

3.6	Planned	Research	Contribution	
 
Although Design Science Research is a valid and widely-accepted methodology, 

theorising and expressing the theoretical contributions remains a challenge (Chatterjee 

2015).  Design science research contributes to IS knowledge in different ways, 

namely: invention, improvement, exaptation and routine design, depending on 

solution maturity and application domain maturity (Gregor & Hevner 2013). 

Figure  3.4  shows how these contribution types are positioned. 
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Figure 3.5. DSR Knowledge Contribution Framework (Gregor & Hevner, 2013) 

Exaptation type of research contributes to knowledge by adapting new technologies 

which have emerged in response to problems in other fields or disciplines into a new 

field. Testing and refining prior ideas new fields enables exaptation of these ideas 

(Gregor & Hevner 2013). Brendt et al (2003) present an example of an exaptation type 

of contribution. They have adapted data warehouse development methods to 

healthcare in their CATCH data warehouse research project which constitutes an IS 

research example of adapting emerging database methods that are primarily in the 

scope of computer science domain into healthcare field by developing an IT artefact 

to test and refine the proposed solution (Berndt, Hevner & Studnicki 2003). Similarly, 

this research will make a contribution to theoretical and practical knowledge by way 

of the exaptation of a new and emerging database technology, a NoSQL document 

database to data management of EHRs in a large scale EHR system.  

3.7	Conclusion	

This chapter presented and justified the Design Science research paradigm and 

philosophy adopted by the researcher which, in turn, determined the research design 

and the choice of an experimental methodology that utilised simulation as an 

appropriate approach for conducting this Design Science research. In order to address 
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the research problem and general research question identified as a gap in the literature, 

the main objectives of this study were specified in seven research questions which are 

systematically addressed in the chosen methodological approach using a six phase 

research design.  

The purpose of this research is to determine the suitability and feasibility of NoSQL 

systems in the healthcare domain by considering healthcare-specific data models and 

data characteristics, and developing and evaluating IT artefacts that are specifically 

built for healthcare applications rather than using a generic performance-measurement 

approach. In this regard, this research was well suited for using a DSR approach. The 

choice of an experimental method, a simulation of the database performance in a large 

scale EHR system in order to evaluate the performance of a NoSQL document 

database comparative to a relational database, was described and justified. The 

research problem, general research question and seven specific research questions 

were restated in this chapter. The scope of the study was clearly delineated by defining 

the unit of analysis and independent and dependent variables that were investigated in 

the seven research questions. The rigour and relevance of this design science project 

was described in terms of how reliability and validity were ensured in the research 

design and methodological approach.   

A design science research framework and a set of guidelines for conducting design 

science (Hevner et al. (2004)) was used to demonstrate that the research design used 

in this study is a rigorous and relevant approach that followed sound design science 

guidelines. The research design used six phases in order to build and evaluate artefacts 

to solve a real world problem. This included identification of the data sets and data 

elements of healthcare data (PH1) and establishment of data models for a NoSQL 

document database and a relational database based on these requirements (PH2). This 

is followed by the identification of relevant Australian public healthcare statistics and 

development of a Random Healthcare Data Generator artefact to generate synthetic 

healthcare data based on the data models and the statistics (PH3). The next phase of 

the research involved the development of a prototype EHR system that facilitated the 

performance measurement of database operations, scalability, EHR sharing and data 

analysis (complex querying) capabilities in a simulation of a large scale EHR system 

(PH4 and PH5). In the final phase (PH6), an evaluation of the performance of a 

NoSQL document database comparative to a relational database was conducted and 
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the outcomes are discussed in terms of the existing literature to determine the 

theoretical and practical contributions of this research. 
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Chapter	4	‐	Development	of	IT	Artefacts		

4.1	Introduction	
 
A Design Science Research Methodology is based on multiple steps, as explained in 

the methodology chapter 3. One of these steps is the development of artefacts. In this 

chapter, the development of the IT artefacts that are practical outcomes of this research 

are described and discussed. The IT artefacts developed in this research that are 

described and discussed are: (1) a Relational Healthcare Data Model; (2) a NoSQL 

Healthcare Data Model; (3) a Random Healthcare Data Generator which is used to 

populate EHRs; and (4) a Prototype Electronic Health Record (EHR) System.  

The first step in development of the first two IT artefacts in this research is the 

identification of healthcare data specifications and data characteristics in the 

Australian healthcare domain which provide the representative data sources for the 

Random Healthcare Data Generator to generate electronic health records that are 

representative of the Australian healthcare domain and statistics. In the following 

sections, data elements that reflect the actual real-world needs of the Australian 

healthcare domain, along with their respective specifications such as coding systems, 

standards, minimum data sets, etc., are identified. 

Following the identification of the required datasets and data elements of the 

Australian Healthcare domain, healthcare data models for a NoSQL document 

database and a relational database were developed. For the relational data model, 

known best practices in the data management industry, such as normalisation, 

indexing and query optimisation, foreign and primary keys are utilised. For NoSQL 

document data model, an appropriate type of NoSQL document database is selected 

and the data model is established considering the effect on performance while 

executing database operations. This includes the coding systems and all values from 

lookup tables being embedded into the data model.  

In subsequent sections of this chapter, the steps taken to develop the two primary IT 

(software) artefacts for this research, namely, a random healthcare data generator and 

a prototype EHR system are described and discussed. The random healthcare data 

generator generates healthcare data based on the publicly available statistics of the 

Australian healthcare domain, and prototype EHR system acts as a basic system that 
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manages the simulation of an EHR data sharing environment to conduct performance 

evaluation and comparison of a NoSQL document database with a relational database 

in such an environment. The structure of this chapter is presented in Figure 4.1. 

 

Figure 4.1 Structure of Chapter 4 

4.2	Identification	of	Australian	Healthcare	Data	Set	Requirements	
 
The first step in developing the data models required for this study was to identify 

required data elements and their attributes. This research focuses on the Australian 

healthcare domain. Therefore, datasets and data elements related to the Australian 

healthcare domain are identified and described in this section. These are essential 

inputs for the Random Healthcare Data Generator to populate the data models with 

EHR data that is representative of the Australian healthcare domain. 

The Australian Institute of Health and Welfare has published the National Health Data 

Dictionary (NHDD) on their website which helps in establishing standards for data 

collection and reporting by Australian healthcare providers (AIHW 2015). In the 

NHDD, national minimum data sets, along with their attributes, are defined. 

In this research two of the national minimum datasets are used as they are designed to 

be comprehensive enough for covering most of the basic healthcare data which is 

suitable for the context of this research—electronic health record systems. These two 

dataset are (1) Admitted Patient Care Dataset and (2) Non-admitted Patient 
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Emergency Department Care Dataset. Each of these datasets has multiple data 

elements under various categories. 

Recently, Admitted Patient Care Dataset has been amalgamated from (1) Admitted 

Patient Care; (2) Admitted Patient Mental Health Care; and (3) Admitted Patient 

Palliative Care datasets (AIHW 2015). Thus, it is concluded that this dataset is 

comprehensive enough to cover a broad range of healthcare activities that would be 

stored in an EHR system for the purpose of this research. Full details of this dataset 

are shown in Appendix F. 

The Admitted Patient Care Dataset consists of admission details, information about 

establishment (healthcare provider), demographic information about the patient and 

other relevant data. The Non-admitted Patient Emergency Department Care dataset is 

designed for cases related to emergency healthcare services and includes data elements 

related to patient details, as well as urgency status and similar episode-related data 

elements (AIHW 2015).  

In this research, the scope is limited to mandatory data elements in Admitted Patient 

Care Datasets and Non-admitted Patient Emergency Department Care datasets in the 

process of establishing the data model and generating healthcare data based on 

Australian Health Care statistics. A total number of 49 unique data elements and their 

respective categories are listed in Table 4.1. 
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Person Person identifier 
Area of usual residence 
Country of birth 
Date of birth 
Indigenous status 
Sex 
Medicare Eligibility status 
Address 
Record—identifier 

Emergency Department Stay Physical departure date 
Physical departure time 
Presentation date 
Presentation time 
Transport mode (arrival) 
Type of visit  
Urgency related group major diagnostic block 

Patient Compensable status 
Hospital insurance status 

Episode of admitted patient 
care 

Admission date 
Admission mode 
Admission urgency status 
Condition onset flag 
Intended length of hospital stay 
Number of days of hospital-in-the-home care, 
Number of leave days 
Patient election status 
Procedure 
Separation date 
Separation mode 

Episode of care Inter-hospital contracted patient status 
Mental health legal status 
Number of psychiatric care days 
Principal diagnosis 
Source of funding, patient funding source  
Funding eligibility indicator  

Establishment Australian state/territory identifier 
Geographic remoteness 
Organisation identifier (state/territory) 
Region identifier 
Sector 
Organisation identifier  

Injury Event Activity type 
External cause 
Place of occurrence 

Non-admitted patient service Episode end date 
Episode end status 
Episode end time 
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Service episode length 
Hospital Service Care type 

Table 4.1. Data elements by categories in the selected datasets: Admitted Patient 
Care and Non-admitted Patient Emergency Care (AIHW 2015) 

4.3	Development	of	Relational	and	NoSQL	Data	Models	
 
Based on the data elements identified in the previous section, two different EHR data 

models—a relational data model for relational databases and an aggregate oriented 

data model for NoSQL databases—were established.  

4.3.1	Relational	EHR	Data	Model	

Relational database theory and relational data models are fundamentally based on 

Codd’s normalisation approach (Codd 1970). Therefore, data elements are categorised 

based on their characteristics, repetition status and the requirement of a lookup list in 

order to execute normalisation. 

Fields in the datasets, at their initial setup, were not in their normalised form. If the 

datasets were used in their initial states this would have resulted in redundant data 

providing unnecessary duplication, a state not representative of best database 

management practice. In addition, normalisation helps in making additions and 

deletions of EHRs easier, which is not possible if these two datasets were kept as is in 

de-normalised form.  

For example, there are person details in Admitted Patient Care dataset. A person can 

be an admitted patient at one time and a non-admitted patient at another time. In 

addition to Person, there are additional fields such as establishment which need to be 

stored as well.  There are different establishments, therefore, it would make sense to 

split this data into a separate table having an establishment identifier and details such 

as [Establishment ID, Organisation ID, Australian state/territory identifier, 

Geographic remoteness, Region identifier, Sector]. 

Considering the data statistics and the main tables, the relational database was first 

brought into 1NF (first normal form). In 1NF, the database had only atomic values and 

there were no repeating groups. Each record was unique. 

The relational database in 1NF still had partial functional dependency in tables such 

as recurring values for region identifier, sex, etc. In order to remove them, the 
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relational database was normalized further and is in 2NF at its current state. All the 

non-key fields now depend on all components of the primary key.  

With the existing relational database in its 2NF, it has few transitional dependencies, 

but removing them will need more tables and more joins that will slow down the 

performance of the EHR relational database. Based on the statistics needed, it does not 

appear that the latest state will cause any critical insert, update or delete anomalies and 

the results produced will be efficient. Therefore, the data model for the relational 

database was considered to be most efficient if kept in 2NF. The Entity Relation 

Diagram for the relational EHR data model is shown in Figure 4.2.  
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Figure 4.2. Entity Relationship Diagram for relational data model 
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4.3.2	NoSQL	EHR	Data	Model		

Modelling healthcare data for NoSQL databases may have a significant effect on 

performance. Therefore, establishing the correct data model for storing EHRs first 

requires a comparison between available data model types for NoSQL databases. 

NoSQL databases are mainly grouped into four categories in terms of how data is 

stored, key-value stores, column family stores, document databases and graph 

databases (Abramova & Bernardino 2013; Goli-Malekabadi, Sargolzaei-Javan & 

Akbari 2016). In a recent study by Goli-Malekabadi et al. (2016) they evaluated these 

four categories of NoSQL databases for the purpose of storing healthcare data. Due to 

the nature of the healthcare data, document databases were identified as the best option 

for a NoSQL healthcare data model (Goli-Malekabadi, Sargolzaei-Javan & Akbari 

2016). 

In order to maximise the benefits and performance of document-based NoSQL 

databases, a data model should be kept in an un-normalised state which reduces 

processing complexity (Borkar et al. 2016). An aggregate oriented data model satisfies 

the requirements for healthcare data model and also provides high performance using 

de-normalisation and aggregation of all relevant data into a single document (Borkar 

et al. 2016; Sadalage & Fowler 2012). In an aggregate oriented data model, joins 

between multiple entries are avoided by including these linked data into the original 

document, whether it is a one-to-one or one-to-many relation. This approach is also 

called Embedded Documents (Vera et al. 2015). 

Based on the Australian healthcare data characteristics, storing EHRs in an aggregate 

oriented data model in a document-based NoSQL system was selected as the best 

possible option for an EHR system which was discussed and justified in section 2.4.3 

of Chapter 2 based on the previous relevant literature. 

An aggregate oriented document-based data model can be established in multiple 

formats. The document oriented-databases can store documents in formats such as 

JSON, XML and BSON, however, JSON is becoming a standard format for document 

storage, processing and sharing and many NoSQL databases, such as MongoDB and 

Couchbase, natively support JSON format for data storage and retrieval (Goli-

Malekabadi, Sargolzaei-Javan & Akbari 2016; Vohra 2015). Therefore, the minimum 
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Australian healthcare datasets are converted into an aggregate oriented JSON data 

model for storage in a NoSQL document oriented database. 

A sample JSON formatted data model is shown in Figure 4.3 and a full JSON 

representation of the EHR datasets is shown in Appendix G. 

 

Figure 4.3. A sample section of NoSQL EHR data model 

After completing these phases, the data models required for storing healthcare data in 

both relational and NoSQL databases for the purposes of this research are established. 

4.4	Identification	of	Relevant	Australian	Healthcare	Statistics	
 
Following the identification of required data sets and data elements, and the 

establishment of appropriate data models for relational and NoSQL databases, an 

underpinning basis for healthcare data generation needs to be established prior to the 

development of Random Healthcare Data Generator. The healthcare data that is used 

in the large scale EHR system simulation for this research is generated based on the 

statistics that are available from the Australian Healthcare System (AIHW 2016) 
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Generating random data based on Australian healthcare statistics ensures that the 

distribution of the data is similar to real life scenarios. This is particularly important 

for the relational database, and indexes are directly affected by the distribution—thus 

the data distribution characteristics might have a significant effect on performance of 

database operations. 

For the purpose of this research, the statistics that are only relevant to the EHR datasets 

and data elements that are mentioned in the previous sections are identified and 

included in this section.  

In a relational database approach, the datasets and data elements are represented in the 

database schema as tables and have various fields/columns. Many of the columns in 

tables are multi-value attributes that give rise to further tables. 

Australian healthcare statistics published by AIHW contain information about the data 

distribution for the data elements of the datasets that are the subject of this research 

(AIHW 2016). These Australian healthcare statistics are discussed in the following 6 

sub-sections: (1) separations; (2) age group and sex; (3) indigenous status; (4) mode 

of admission; (5) urgency of admission; and (6) principal diagnosis. 

4.4.1	Separations	

This section describes the statistics that underpin the random generation of data for 

Admitted Patient Care EHRs based mainly on Separations. A separation is an episode 

of care for admitted patients which is considered a stay between admission and 

discharge, transfer or death. The Separation statistics provided in this section comprise 

the following tables/fields: 

 Episode of Admitted Patient Care-> Intended length of hospital stay (same-

day/overnight) 

 Episode of Admitted Patient Care->Separation mode 

 Establishment -> Australian state/territory identifier 

 Establishment->Sector 

 Person -> Area/state of usual residence 

Establishment sector can be public or private. Separation Mode can be one of the 

following: 
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 Discharge/transfer to (an)other acute hospital 

 Discharge/transfer to a residential aged care service, unless this is the usual 

place of residence 

 Discharge/transfer to (an)other psychiatric hospital 

 Discharge/transfer to other health care accommodation (includes mothercraft 

hospitals) 

 Statistical discharge - type change 

 Left against medical advice/discharge at own risk 

 Statistical discharge from leave 

 Died 

 Other (includes discharge to usual residence, own accommodation/welfare 

institution, e.g. prisons, hostels and group homes providing primarily welfare 

services). 

In 2014–15, there were about 10.2 million separations in Australia’s public and private 

hospitals: about 59% (6.0 million) of these occurred in public hospitals; 94% of 

separations were for acute care and 4% for rehabilitation care (AIHW 2016). Public 

hospitals accounted for about 70% of overnight separations and 52% of same-day 

separations. For the 4.2 million separations from private hospitals, about 23% of 

separations (941,000) occurred in private free-standing day hospital facilities and the 

remainder were in other private hospitals (that can provide overnight care). 

In 2014–15, overnight separations made up almost 48% of separations in public 

hospitals and 30% in private hospitals (AIHW 2016). The proportion of overnight 

separations that were in public hospitals varied among states and territories, ranging 

from 64% in Queensland to 76% in New South Wales. The proportion of separations 

that were for same-day care varied among states and territories and between public 

and private hospitals. 

For public hospitals, the proportion of same-day separations ranged from 46% in New 

South Wales to 69% in the Northern Territory (AIHW 2016). For private free-standing 

day hospitals and other private hospitals combined, it ranged from 67% in Victoria to 

74% in New South Wales. 
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For 2014–15, about 98% of separations (9.9 million) were for people who were 

hospitalized in their state or territory of residence (AIHW 2016). However, in the 

Australian Capital Territory, almost 81% of hospital separations were for Australian 

Capital Territory residents, with most of the remainder (18%) being for residents of 

New South Wales. 

Statistics for Separation Rates 

In 2014–15, there were about 240 separations per 1,000 population in public hospitals 

and 164 per 1,000 in private hospitals (AIHW 2016). Separations per 1,000 population 

in public hospitals ranged from 208 in Tasmania to 598 in the Northern Territory. For 

private hospitals, separations per 1,000 population ranged from 143 in New South 

Wales to 207 in Queensland. 

Statistics for Same Day Separations 

The number of same-day separations may not be comparable among the states and 

territories due to variations in admission practices. Therefore, these data should be 

interpreted with caution. 

In 2014–15, there were about 241 same-day separations per 1,000 population. Public 

hospitals accounted for about 125 same-day separations per 1,000 population and 

private hospitals accounted for 116 per 1,000 (AIHW 2016). 

Rates of same-day separations in public hospitals ranged from 102 per 1,000 in New 

South Wales to 408 per 1,000 in the Northern Territory. For private hospitals, rates of 

same-day separations ranged from 105 per 1,000 in New South Wales to 144 per 1,000 

in Queensland. 

Statistics for Overnight Separations 

In 2014–15, there were about 164 overnight separations per 1,000 population. Public 

hospitals accounted for about 115 overnight separations per 1,000 population and 

private hospitals accounted for about 49 per 1,000 (AIHW 2016). 

Rates of overnight separations in public hospitals ranged from 100 per 1,000 in 

Tasmania to 190 per 1,000 in the Northern Territory. For private hospitals, rates of 

overnight separations ranged from 38 per 1,000 in New South Wales to 64 per 1,000 

in Queensland. 
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Detailed tables about the information provided in this section are provided in 

Appendices B, C, D, and E. 

4.4.2	Age	Group	and	Sex	

The information in this section provides statistics on people who received Admitted 

Patient Care. This involves the age group and sex of the patient, indigenous status of 

the patient, remoteness area of usual residence of the patient and socioeconomic status 

of the area of usual residence of the patient. The statistics provided in this section 

comprise the following tables/fields: 

• Person -> Sex 
• Person -> Date of birth 

In 2014–15, 53% of separations were for women and girls. In 2014–15, people aged 

65 and over accounted for 41% of separations (AIHW 2016). For people aged 65 to 

74, separations increased by 27% overall, an average increase of 6.0% each year. 

In 2014–15, overall there were over 5.3 million separations for females, compared 

with about 4.8 million separations for males (AIHW 2016). In particular, women 

accounted for 65% of separations for people aged 15 to 44 (the age range that includes 

most separations for childbirth). Females also accounted for more patient days than 

males (15.2 million and 13.6 million patient days, respectively). 

People aged 65 and over (who make up about 15% of the population) accounted for 

41% of separations and 49% of patient days in 2014–15 (AIHW 2016). People aged 

85 and over accounted for about 7% of separations and 13% of patient days in 2014–

15. 
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Separations and patient days, by age group and sex, all hospitals, 2014–15     

  Separations   Patient days 
Age group 
(years) Males Females Persons   Males Females Persons

0–4 219,720 159,389 379,117  676,746 538,567 1,215,359

5–9 84,680 63,642 148,323  130,481 100,350 230,832

10–14 64,532 55,277 119,811  119,825 119,752 239,583

15–19 101,356 139,281 240,640  234,719 331,471 566,206

20–24 124,197 231,036 355,237  349,992 501,704 851,795

25–29 127,805 300,140 427,946  388,299 715,378 1,103,678

30–34 150,466 359,946 510,414  449,280 890,928 1,340,210

35–39 165,743 312,328 478,071  478,181 767,095 1,245,276

40–44 216,614 302,106 518,720  569,595 683,730 1,253,325

45–49 250,427 292,103 542,535  634,240 659,974 1,294,220

50–54 319,136 350,723 669,860  773,310 783,345 1,556,660

55–59 370,644 372,601 743,248  901,259 853,899 1,755,161

60–64 448,671 410,311 858,985  1,103,734 974,989 2,078,726

65–69 537,433 458,878 996,312  1,368,543 1,163,734 2,532,278

70–74 493,250 426,272 919,525  1,316,016 1,197,705 2,513,758

75–79 461,650 395,739 857,390  1,357,846 1,314,180 2,672,027

80–84 361,038 332,447 693,486  1,251,830 1,380,710 2,632,541

85+ 310,456 380,202 690,658  1,471,907 2,199,902 3,671,809

Total(a) 4,807,825 5,342,450 10,150,367  13,575,816 15,177,442 28,753,539

 (a)       Total includes separations for which the date of birth was not reported.        
Table 4.2. Separation statistics for 2014-2015 based on age and sex (Adopted from 
AIHW 2016) 

4.4.3	Indigenous	Status	
 
The information in this section provides statistics on people based on indigenous status 

who received Admitted Patient Care. The statistics that will be provided in this section 

comprise the following tables/fields: 

• Person -> Indigenous Status 

In 2014–15, there were about 443,000 separations reported for Aboriginal and Torres 

Strait Islander people (AIHW 2016). About 90% of separations for Indigenous 

Australians were from public hospitals, compared with 57% of separations for other 

Australians. 

Indigenous Australians were hospitalised at about 2.4 times the rate for other 

Australians (950 and 393 separations per 1,000 population, respectively). 
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4.4.4	Mode	of	Admission	

The information in this section provides statistics on the mode of admission for the 

patients who were admitted to hospital. The statistics provided in this section comprise 

of the following tables/fields: 

 Episode of Admitted Patient Care -> Admission Mode 

Patients may have the following modes of admission: 

 Admitted patient transferred from another hospital 

 Statistical admission: care type change—where a new admitted patient episode 

is created as a result of a change in the clinical intent of care (for example, a 

patient’s care may move from a focus on acute care to a focus on rehabilitation 

or palliative care) within the same hospital 

 New admission to hospital—this term refers to all other planned and unplanned 

admissions (that is, the patient was not transferred from another hospital or had 

a Statistical admission in the same hospital). 

In 2014–15, most separations in both public and private hospitals had a mode of 

admission of new admission to hospital (94% and 96%, respectively) (AIHW 2016). 

Public hospitals had a higher proportion of patients transferred from another hospital 

than private hospitals (4.7% and 3.0%, respectively). For public hospitals, Western 

Australia had the highest proportion of patients transferred from another hospital and 

the Northern Territory had the lowest (6.3% and 0.1%, respectively). 

Public hospitals also reported higher proportions of the type of admission called 

‘Statistical admissions: care type change’ than private hospitals (1.6% and 0.6%, 

respectively). For public hospitals, the Australian Capital Territory had the highest 

proportion of patients with this ‘statistical admission’. 

A detailed table on admission modes is shown in Appendix E. 

4.4.5	Urgency	of	Admission	

The information in this section provides statistics on the urgency of admission for 

patients who were admitted to hospital. The statistics that will be provided in this 

section comprise the following tables/fields: 
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• Episode of Admitted Patient Care -> Admission Urgency Status 

Admissions to hospital were categorised in 2014–15 as Emergency (required within 

24 hours) or Elective (required at some stage beyond 24 hours). Emergency/elective 

status is not assigned for some admissions (for example, obstetric care and planned 

care, such as dialysis). 

Statistics: 

Separations by urgency of admission, public and private hospitals 

  2014–15 

Public hospitals   

Emergency 2,514,638 

Elective 2,384,343 

Not assigned 1,080,644 

Not reported(a) 713 

Total 5,980,338 

Private hospitals   

Emergency 213,810 

Elective 3,441,036 

Not assigned 508,984 

Not reported(a) 6,199 

Total 4,170,029 

     

Table 4.3. Separation statistics for 2014-2015 based urgency of admission 
(Adopted from AIHW 2016). 

4.4.6	Principal	Diagnosis	
 
This section presents information on the reasons for patients’ hospital admissions, 

which are described by the principal diagnosis—that is the diagnosis established after 

study (for example, at the completion of the episode of care) and chiefly responsible 

for occasioning the episode of admitted patient care. In some cases, the principal 

diagnosis is described in terms of a treatment for an ongoing condition (for example, 

care involving dialysis). The statistics provided in this section comprise the following 

tables/fields: 

• Episode of Care -> Principal Diagnosis 

Statistics 

In 2014–15, more than one-quarter of separations in public and private hospitals had 

a principal diagnosis in the Z00-Z99 chapter of ICD-10-AM—which includes Care 
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involving dialysis (over 1.3 million separations), and Care involving use of 

rehabilitation procedures, radiotherapy, chemotherapy and palliative care (AIHW 

2016). 

The relative distribution of separations by ICD-10-AM chapter varied across public 

and private hospitals (AIHW 2016). For example, about 84% of separations for certain 

infectious and parasitic diseases and 82% of separations for injury, poisoning and 

certain other consequences of external causes were from public hospitals. For diseases 

of the eye and adnexa, about 73% of separations were from private hospitals. 

Separations, by principal diagnosis in ICD-10-AM chapters, public and private hospitals, 
2014–15 

Principal diagnosis 
Public 

hospitals 
Private 

hospitals Total

A00–B99 Certain infectious and parasitic diseases 125,953 24,284 150,237

C00–D48 Neoplasms 292,316 348,034 640,350
D50–D89 Diseases of the blood and blood-forming organs and certain 

disorders involving the immune mechanism 102,411 58,872 161,283

E00–E89 Endocrine, nutritional and metabolic diseases 97,936 58,849 156,785

F00–F99 Mental and behavioural disorders 204,767 190,846 395,613

G00–G99 Diseases of the nervous system 156,787 119,100 275,887

H00–H59 Diseases of the eye and adnexa 103,378 279,692 383,070

H60–H95 Diseases of the ear and mastoid process 33,148 30,726 63,874

I00–I99 Diseases of the circulatory system 339,253 150,866 490,119

J00–J99 Diseases of the respiratory system 338,772 99,193 437,965

K00–K93 Diseases of the digestive system 463,856 544,265 1,008,121

L00–L99 Diseases of the skin and subcutaneous tissue 117,422 47,032 164,454

M00–M99 Diseases of the musculoskeletal system and connective tissue 207,396 326,791 534,187

N00–N99 Diseases of the genitourinary system 271,558 199,016 470,574

O00–O99 Pregnancy, childbirth and the puerperium 353,721 136,954 490,675

P00–P96 Certain conditions originating in the perinatal period 54,605 11,141 65,746

Q00–Q99 
Congenital malformations, deformations and chromosomal 
abnormalities 27,187 11,352 38,539

R00–R99 
Symptoms, signs and abnormal clinical and laboratory findings, 
not elsewhere classified 517,019 240,540 757,559

S00–T98 
Injury, poisoning and certain other consequences of external 
causes 532,237 118,393 650,630

Z00–Z99 Factors influencing health status and contact with health services 1,638,320 1,174,076 2,812,396

  Not reported 2,296 7 2,303

Total  5,980,338 4,170,029 10,150,367

Table 4.4. Separation statistics for 2014-2015 based principal diagnosis (Adopted 
from AIHW 2016). 

4.5	Development	of	Random	Healthcare	Data	Generator	
 
In the previous sections, the identification of Australian Healthcare data elements, the 

development of Australian Healthcare data models for relational and NoSQL 

databases and identified publicly available Australian healthcare statistics used to 
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populate these data elements are described. Based on this information, a Random 

Healthcare Data Generator is developed as an artefact in this research. 

The Random Healthcare Data Generator is used to populate a NoSQL document 

database and a MySQL relational database with synthetic EHR data in a simulation of 

a large scale EHR system. This Random Healthcare Data Generator was developed to 

generate random, anonymised healthcare data having characteristics and distribution 

similar to the publicly available Australian healthcare data. This simulated Australian 

Healthcare data enabled a simulation of a large scale EHR system so that the 

performance of NoSQL databases could be assessed and compared to relational 

databases in a distributed EHR system. 

The Random Healthcare Data Generator uses publicly available healthcare statistics 

discussed in the preceding section as an input to generate data for the datasets selected. 

The artefact is developed in C# .NET. This input, tables of healthcare statistics, are 

stored as in-memory arrays in the artefact to allow randomised generation of values 

for the relevant data elements using a data distribution algorithm which is described 

in detail in the next subsection. 

The data distribution algorithm used in the Random Healthcare Data Generator based 

on the Australian healthcare statistics identified in the previous section is described in 

the following subsection. 

Following the establishment of the distribution algorithm used in the Random 

Healthcare Data Generator, trial data generation was conducted and results for this 

data generation are validated against the original healthcare data statistical tables. This 

was to make sure the data distribution algorithm is performing correctly and data 

generation is valid and the results represent the Australian healthcare domain. 

4.5.1	Data	distribution	algorithm	

Establishing a data distribution algorithm that enables generating data based on 

Australian healthcare statistics is a fundamental requirement for the Random 

Healthcare Data Generator artefact. Publicly available Australian healthcare data 

statistics described in the previous section is mostly presented in data element pairs, 

such as age and sex, establishment type and principal diagnosis, and so on. These 

Australian healthcare statistics, in general, can be described using a multinomial 
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distribution and probability theory. For instance, for any given patient X, the 

probability of being in the age group of 0 to 4, P(0-4), can be roughly calculated as 

0.0373500, which is the number of persons in the relevant age group divided by the 

total number of persons. Thus, using a multinomial distribution simulation, a random 

number between 0 and 1 can be generated and then mapped to a value according to 

the probability distribution (Chen 2010; Siegrist 1997) 

A mathematically equivalent representation of this probability distribution helps avoid 

probability calculations for each statistical table. This can be achieved by generating 

a list of possible values and their respected weights. The weighted values are 

cumulatively added and expressed as minimum-maximum value pairs for each item in 

the list. For instance, if there are two items in the values list with respected weights of 

10 and 90, the first item will have values of 1 and 10, and the second item will have 

values of 11 and 100 as lower and upper boundaries. Then a random number is 

generated based on the minimum of the first and maximum of the last item in the list, 

1 and 100 in this example. Then the item for which the random number falls within 

the lower and upper boundaries is selected. For instance, if the random number is 50, 

then item 2 will be selected. Given enough rounds of random generation, distribution 

of the results will be similar to the distribution of the sample set given at the beginning. 

This algorithm may further be expanded to a second dependent value to accommodate 

Australian statistics by simply executing as multiple steps. 

A simple example will be explained using the values expressed in Table 4.5. 

Age Group Lower boundary Upper boundary 
0-4 1 379117 
5-9 379118 527441 

Table 4.5. An example table for lower-upper boundaries for age group statistics. 
 
In the first step, a random number will be generated between 1 and 527441 to 

determine the age group using the above table. For instance, if the number is 500000, 

then the age group will be selected as 5-9. In the next step, sex distribution for the age 

group of 5-9 will be used in accordance with the distribution presented in Table 4.6. 

 
Sex Lower boundary Upper boundary 
Male 1 84680 
Female 84681 148322 
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Not specified 148323 148323 
Table 4.6. An example table for lower-upper boundaries for sex statistics. 
 
Subsequently, a random number between 1 and 148323 will be generated. If the 

number is 10000, for instance, value “Male” will be selected as sex. As a result, 

generated value will be a male within the age group of 5-9. 

Another possible approach would be combining the possible value pairs, which 

renders into a table as shown in Table 4.7: 

Age-Sex Lower boundary Upper boundary 
0-4, Male 1 219720 
0-4, Female 219721 379109 
0-4, Not specified 379110 379117 
5-9, Male 379118 463797 
5-9, Female 463798 527439 
5-9, Not specified 527440 527440 

Table 4.7. An example combined table for lower-upper boundaries for age group 
and sex statistics. 
 
Using this combined table, only one round of random number generation is sufficient 

to determine the selected values of sex and age, thus this is a more efficient approach 

for these elements. However, there are multiple statistics based on one type of variable, 

for example, the establishment type being public or private is correlated with both 

urgency status and principal diagnosis. It is not practical to generate a combined 

distribution table for more than two related elements. Therefore, the combined table 

approach will only be applied wherever feasible. 

The generation and selection procedure described above may be programmatically 

represented in two different ways: (1) store upper and lower boundaries in a structure 

and select the relevant value by scanning the list for upper-lower boundaries that the 

generated number falls in between. This can be executed either using probabilities or 

actual values, or  (2) generate an array with the size of the highest upper boundary of 

actual numbers and assign the relevant value to each of the array elements according 

to their distribution, then directly accessing the value after random number generation 

(arr[number]). 

In the first method, a very low memory usage occurs, despite the selection requiring 

comparison operation in each execution, while in the second method more memory 

will be required—however the selection of the value will be faster due to direct access. 
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In the context of this research, data generation speed is considered a more important 

aspect than the total memory size. Therefore, a small .NET application is developed 

to test the alternative methods. 

The statistics presented in the previous section has 28 million as a total number at 

most. Therefore the test application has been developed to test 30 million lookup 

operations. 

For the first approach, a dictionary having the key of cumulative probabilities and the 

value of corresponding string value for 8 possible values is created. It took an average 

of 60 seconds for 30 million random value selections based on the random number 

between 0 and 1 and the value in the dictionary relevant to that particular random 

number. 

For the second approach, an array or 30 million items has been created and, for each 

item, a string value of “value + item number” has been assigned. In the test 

environment, it is seen that 1.2 GB of RAM is used for the resulting array which is 

below the .NET maximum size limit of 2 GB, and it took less than 6 seconds for 30 

million lookups. The total memory consumption is estimated using 

GC.GetTotalMemory function and the result of this function has been confirmed using 

Windows Task Manager. 

The computer used in this test had the following specification: Intel Core i7-4510U 

CPU @ 2.6 GHz, 2 cores, 4 virtual processors, 64-bit Windows 8.1 OS, 8GB of RAM, 

and 512 GB SSD disk. 

Therefore, it is concluded that the second approach of creating an array and assigning 

values number of times relative to their actual distribution is the simplest yet far more 

effective approach. Furthermore, reducing memory size is also possible by using 

percentage values of distribution rather than the actual numbers wherever appropriate. 

4.5.2	Validation	of	the	random	data	generation	algorithm		

The data distribution method demonstrated in the previous section needs validation in 

order to make sure that the data generated by the random data generator artefact is 

actually similar in characteristics to the Australian Healthcare statistics used as input. 
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This validation is confirmed by generating a sample set of data based on one of the 

tables provided in the previous section and comparing the test results with the actual 

input. Urgency status table is used as a test input which has the values based on 

establishment status and urgency status. A combined table is established and given as 

an input to the random data generator.  

Data has been generated three times, and the average of group totals are calculated 

based on the results as well as the difference between the actual input values and the 

results. 

Table 4.8 shows the actual input value, calculated values based on three tests, their 

averages, difference between the actual and generated results and the percentage value 

of the difference based on the actual values. 

Item Name Actual 
value 

Test 1 
value 

Test 2 
value 

Test 3 
value 

Test avg 
value 

Diffe
rence 

Differe
nce 
(%) 

Private Hospital - 
Elective 

3441036 3440924 3440394 3438426 3439915 -1121 -0.03% 

Private Hospital - 
Emergency 

213810 213688 214240 213163 213697 -113 -0.05% 

Private Hospital - Not 
assigned 

508984 508627 508651 509528 508935 -49 -0.01% 

Private Hospital - Not 
reported(a) 

6199 6203 6236 6076 6172 -27 -0.44% 

Public Hospital - 
Elective 

2384343 2386138 2384633 2386577 2385783 1440 0.06% 

Public Hospital - 
Emergency 

2514638 2515068 2512879 2513928 2513958 -680 -0.03% 

Public Hospital - Not 
assigned 

1080644 1079013 1082642 1081907 1081187 543 0.05% 

Public Hospital - Not 
reported(a) 

713 706 692 762 720 7 0.99% 

Table 4.8. Validation test for random data generation algorithm based on actual 
urgency of admission statistics. 
 

In this validation test, total memory used for 10150367 items was 403 MB and the 

average run time for three tests was 2828 milliseconds, using the same computer 

having the specifications described in the array creation test. 

Results of the data generation test were satisfactory as the highest discrepancy was 

less than 1% which occurred in a very small value of 713, which represents a small 
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minority in a total result set of more than 10 million items. This validation test 

demonstrates that the method used to generate random data is quite accurate in a high 

number of generated items, and more than 99% accurate in a lower number of items. 

Therefore, it is concluded that the random data generator developed in this research 

can serve the purpose of generating Australian healthcare data that is representative of 

Australian healthcare data statistics. 

4.6	Development	of	Prototype	EHR	System		

Following the development of the Random Healthcare Data Generator, a prototype 

EHR System was required to manage the simulation of database operations as well as 

data sharing and complex query for a performance comparison of a NoSQL database 

with a relational database in a distributed EHR system environment. Couchbase 

database has been selected as the NoSQL document database and MySQL database 

has been selected as the relational database for this research and this selection is 

discussed later in Chapter 5. This artefact is developed using C# .Net Framework 4.0. 

MySQL Connector/Net version 6.9.9 and Couchbase SDK 1.3.9 is used from relevant 

vendors.  

The Prototype EHR System is responsible for receiving the generated healthcare data 

from the Random Healthcare Data Generator and assigning the data a unique identifier 

and inserting the data into NoSQL and relational databases. 

This artefact also facilitates data sharing simulation which requires querying the 

relevant EHRs from both databases. Performance related measurements are also 

included as part of this artefact to minimize the measurement of operational overhead 

for data manipulation in order to enable more accurate comparison between NoSQL 

and relational databases in an EHR system.  

For the purpose of this research, EHRs are generated by the Random Healthcare Data 

Generator and then processed by the Prototype EHR System. Each EHR is converted 

into INSERT, UPDATE, DELETE T-SQL statements for relevant operations on the 

relational database and into a JSON document for inserting or updating on the NoSQL 

database by the Prototype EHR System artefact. GET, SET, and GETVIEW 

operations are used for Couchbase database and T-SQL insert, update, delete and 

select statements are used for MySQL database. 
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A unique key is assigned to each EHR which will enable data lookup for data sharing 

function as well as update operations on the records. This unique key is called National 

Healthcare Document ID (NHDID) in this research. 

A separate in-memory list is created for storing execution times for each database and 

a stopwatch is started at the beginning of the database operation and stopped after the 

execution. The resulting value, i.e. time in milliseconds of database operation, is added 

to the corresponding in-memory list called ConcurrentBag. 

There are lists to store execution times for the following operations: (1) Insert; (2) 

Update; (3) Delete; and (4) Query. Separate lists are created for both relational and 

NoSQL databases and the results are saved to filesystem after each test. 

This artefact is implemented as a Windows Service and it interacts with the selected 

databases and the file system to store the test results. The execution of the tests are 

triggered simultaneously on all client nodes using built-in REST endpoints of the 

artefacts by making HTTP requests with query string of requested test scenario 

parameters such as the operation, record count, etc. to be tested. Log files are generated 

in each client node and then merged into a single log file to be analysed. The relation 

between Random Healthcare Data Generator, Prototype EHR system, log files and 

database nodes are presented in Figure 4.4. 
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Figure 4.4. The relationship between IT artefacts (Random Healthcare Data 

Generator, Prototype EHR System) and database nodes 

The following methods are used in the Prototype EHR System: (1) Insert; (2) Update 

by NHDID; (3) Delete by NHDID; and (4) Query – Patient Identifier. For the purpose 

of querying the databases for data sharing purposes, Patient ID is sent to the Prototype 

EHR System as input and all relevant healthcare records are queried against the 

databases and returned to the client. This simulates the scenario of a physician or an 

emergency crew accessing the previous healthcare history of a particular patient from 

a distributed EHR system.   

4.7	Conclusion	

This chapter described the design and development of the IT artefacts used in this 

research to evaluate the performance of a NoSQL database in managing EHRs in a 

distributed environment comparative to a relational database as a crucial step in the 
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Design Science Research Methodology used in this study. Minimum data sets and 

relevant data element specifications have been identified for the Australian healthcare 

domain and a relational and a NoSQL healthcare data model has been established for 

the purpose of this research. 

Based on the data elements identified for the NoSQL and relational data models, and 

relevant healthcare statistics that are made publicly available by the Australian 

Institute of Health and Welfare, the Random Healthcare Data Generator artefact is 

developed to generate synthetic EHRs that will represent the data characteristics of the 

Australian healthcare domain. Sample healthcare data was generated by executing the 

Random Healthcare Data Generator and the data generated by this artefact was 

validated against the original public healthcare statistics. It is observed that the 

generated healthcare data demonstrates a similar statistical distribution to the real-

world data. Therefore, the Random Healthcare Data Generator artefact has been found 

to be valid and sufficient for the requirements of this research. 

Finally, another important artefact for the purposes of this study—prototype EHR 

system—was developed. This artefact handled the database operations and recorded 

associated performance metrics in a simulation of a large scale EHR system in order 

to conduct a performance evaluation of a NoSQL database comparative to a relational 

database in such an environment. The relational and NoSQL data models, Random 

Healthcare Data Generator and distributed prototype EHR system (software artefacts) 

developed and discussed in this chapter enabled the evaluation and comparison of the 

performance of insert, update and delete operations and EHR sharing, as well as 

scalability and complex query capabilities of NoSQL databases and relational 

databases in an Australian healthcare context.  
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Chapter	5 –	Simulation	and	Evaluation		

5.1	Introduction	
 
The next step in a Design Science Research Methodology following the development 

of the IT artefacts is the evaluation of the IT artefacts solving an identified real world 

problem. Therefore, this chapter reports on the main results of the evaluation of the 

performance, scalability, EHR sharing and data analysis capability of NoSQL 

databases in comparison to relational databases. After designing appropriate relational 

and document data models with data structures for storing EHRs, this PhD study 

developed two software artefacts: a Random Healthcare Data Generator to generate 

synthetic EHRs; and a Prototype EHR System to simulate the database operations in 

a large scale EHR system, as described in the previous chapter four.  

An appropriate relational database (MySQL) and an appropriate NoSQL database 

(Couchbase) were chosen because of their suitability for a performance evaluation in 

a distributed EHR system, which was one of main objectives of this research. A cloud 

environment on Amazon Elastic Compute Cloud was established as the testing 

platform for the evaluation of the performance of NoSQL database comparative to a 

relational database in a distributed EHR system by creating nodes using pre-

configured images. Using this environment helped to provide easy scaling and 

configuration of database nodes. The simulated healthcare data required for the 

performance, scalability, EHR sharing and complex query testing was generated by 

the Random Healthcare Data Generator artefact. The tests are performed by sending 

this synthetic data to the prototype EHR system. This IT artefact managed the 

execution of database operations and recording of the performance metrics for the tests 

chosen to evaluate a NoSQL database comparative to a relational database in a 

distributed EHR system environment. Structure of this chapter is presented in Figure 

5.1. 
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Figure 5.1. Structure of Chapter 5 

5.2	Database	Selection	
 
There are numerous products available for both relational and NoSQL databases that 

include commercial, free and open-source databases. Oracle, Microsoft SQL Server, 

MySQL, PostgreSQL and DB2 are the most widely used relational databases (SolidIT 

2016). MongoDB, Cassandra and Couchbase are well-known NoSQL databases that 

are backed by either a commercial company or a well-established community (Avalon 

Consulting 2016). 

This research assessed the performance of a NoSQL document oriented database 

comparative to a relational database using simulation generated EHRs with tests run 

on the Amazon Web Services Elastic Compute Cloud environment. Therefore, a 

relational database alternative that is capable of running in a clustered architecture and 

supporting sharding is considered suitable. MySQL has been chosen as a relational 

database to be tested in this research as it is a widely adopted database alternative that 

satisfies the requirements of this study and also performs well compared to other 

candidate relational databases that are freely available (Oracle 2011; Souley & 

Mohammed 2013). For the MySQL database, the Record Identifier and Person 

Identifier fields in the main tables such as tblPerson, tblPatient, 

tblAdmittedPatientCare, tblNonAdmittedPatientEmergencyCare are used as shard 

keys for data distribution across multiple nodes. 

For the NoSQL database, a document oriented database is a better choice as the EHR 

is actually a document consisting of healthcare related information given the business 

domain for testing is a simulation of a large scale EHR system. The suitability of 
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document databases for the purpose of this research has been discussed thoroughly in 

Chapter 2. There are a number of suitable alternatives for NoSQL Databases such as 

Couchbase and MongoDB to store documents. Couchbase was chosen as the NoSQL 

document database to be tested in this research because of the following superiorities 

over other document oriented databases: (1) shared-nothing architecture requiring less 

number of nodes for similar scenarios; (2) built-in managed in-memory caching 

architecture; and (3) views for incremental MapReduce operations (Vohra 2015). 

In addition to the technical reasoning behind the database selection process, 

Couchbase is already being used in healthcare practice by the Turkish Ministry of 

Health in its National EHR System and MySQL is used by eClinicalWorks, one of the 

largest internet-based EHR systems in the United States (Oracle 2016). Therefore, 

MySQL and Couchbase are considered best choices to provide a performance 

comparison of NoSQL databases and relational databases for this research in the 

healthcare domain. 

MySQL database and Couchbase database have different architectures for storing and 

managing data and it is acknowledged by the researcher that relational databases and 

NoSQL databases are not directly comparable in technical specifications. However the 

tests conducted in this research are concerned with a performance evaluation of basic 

database operations and scalability, EHR sharing and data analysis (complex 

querying) capability of the two selected databases, a NoSQL document database 

(Couchbase) and a relational database (MySQL). Hence, the performance comparison 

of these two databases using the same test scenarios is suitable and justifiable based 

on previous literature to achieve the outcome intended in this research. 

5.3	Setting	up	the	distributed	test	environment	and	scenarios	
 
Following the selection of the database alternatives, a cloud environment was set up 

for the execution of tests in a range of scenarios.  

5.3.1	Establishing	cloud	environment	
 
Amazon Elastic Compute Cloud (EC2) has a marketplace that can provide and easily 

deploy readily-available and configured servers running particular software or 

services (Amazon 2016). These marketplace server images contain already installed 

software using best practices and configured by either professionals or the relevant 
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software vendor. Furthermore, Amazon EC2 has options to use SSD disks with 

predefined IOPS (input output per second) values which allows fine tuning of servers 

to a desired level of IO bandwidth, in addition to a wide range of CPU and memory 

options available in server configuration selection step (Amazon 2016). Therefore, a 

testing environment using readily available server images on Amazon EC2 was set up 

for all test scenarios which are identified and described in the next sub-section. 

MySQL 5.6.27 and Couchbase 4.1 Community Edition versions are used in the tests. 

5.3.2	Test	scenarios	
 
TPC-H benchmarking method is widely used, along with YCSB framework, to 

evaluate database performances (Barata, Bernardino & Furtado 2014; Thanopoulou, 

Carreira & Galhardas 2012). However, these methods and frameworks use a 

predefined set of tables and queries to be executed in various server and client 

configurations (Meinel et al. 2015). On the contrary, this research focuses on 

Australian healthcare domain where all tables, fields and data are carefully selected to 

simulate a real-life healthcare data storage and sharing environment, thereby achieving 

one of the main objectives of this research. 

TPC-H benchmarking has a well-established client, server, number of records and 

other similar configuration scenarios, besides the dataset and query definitions. 

Therefore, the following configuration alternatives for different aspects such as 

number of nodes, number of rows, etc. are derived from two sources, namely, (1) real 

life healthcare statistics and (2) TPC benchmarking in order to establish a wide 

spectrum of valuable tests for the purposes of this research (see Table 5.1). 

Configuration of  
scenarios for each 
database  
(Couchbase, MySQL) 

Number of health records stored 
for each scenario 

Number of 
scenarios 

Number of 
database nodes 
for each 
scenario 
 

1  1M 10M 100M * 3 
2 1M 10M 100M * 3 
4 1M 10M 100M * 3 
8 1M 10M 100M 500M 4 
16 1M 10M 100M 500M 4 

Table 5.1 Configuration Scenarios for Performance Tests 
By establishing these distributed EHR system configurations and scenarios setups, 

performance and scalability is compared between the selected relational and NoSQL 

databases. 
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The following parameters are measured: (1) Execution time in milliseconds; (2) 

Operations per second; and (3) Data size. 

The following operations are tested: (1) Insert; (2) Update; (3) Delete; (4) EHR 

Sharing; and (5) Complex Query. 

All results from these test scenarios are presented and described in the subsequent 

sections. 

5.4	Running	the	tests	
 
For database nodes, 64-bit m4.2xlarge EC2 instances are created which have 8 virtual 

CPUs (hyper threaded cores) with 32 GB of RAM assigned to each. These instances 

have EBS-optimised (high performance) storage and high network throughput. 256 

GB SSD disks have been mounted on each EC2 instance with 768 IOPS guaranteed 

IO rate.  

For clients, c4.4xlarge EC2 instances are created. These instances have been chosen 

due to their higher frequency 16 virtual CPUs and 30 GBs of RAM in order to facilitate 

faster data generation and storage of generated data in memory before sending it to the 

prototype EHR system for storing into databases and collecting statistical data about 

execution time, etc.  

In the following sub-sections mainly execution times and number of operations per 

second values are presented for data insertion, update and delete operations in a range 

of configurations having a different number of database nodes. 

Conducting tests for 500M records was not possible due to disk and memory 

limitations of single, 2- and 4-node Couchbase clusters. Therefore, 500M records tests 

were conducted for 8- and 16-node configurations only. 
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5.4.1	Simulation	of	data	insertion	
 
The data generated by the random healthcare generator has been saved in an in-

memory data structure using a generated key which is also used as a Patient – Record 

identifier, a unique identifier for each EHR. 

As a first step, a single node Couchbase database has been deployed as the designated 

EC2 database instance. Then EHRs are inserted into the database using a .NET API 

provided by Couchbase. The execution time for each insert operation and number of 

records inserted for each second have been saved into an in-memory structure called 

ConcurrentBag in .NET. This test has been conducted for 1M, 10M, and 100M insert 

operations. 

Similarly, the MySQL database deployed on an identical instance has been used to 

insert EHRs. T-SQL insert statements have been generated for each EHR for inserting 

relevant data into relevant relational tables. The set of insert statements are executed 

against the MySQL database in a single transaction for each EHR. Therefore, multiple 

insert statements for various tables comprise a single EHR and, thus, a single 

transaction. Although it is possible and can be more efficient to do bulk insert 

operations in relational databases, this performance test scenario required individual 

insert operations to be executed for each EHR as the test simulates healthcare service 

providers sending single EHR data for a particular patient visit to the EHR system. 

For this relational database scenario, the number of transactions per second and 

average response time for a transaction is measured.  

5.4.1.1	Insert	operations	on	single	node	
 
The data insertion operation has been executed by 8 parallel client threads as this has 

been identified as the maximum number of possible threads to insert data to a single 

Couchbase node due to the following limitations. The client threads generated around 

900 Mbits of network traffic and the Couchbase node had a 1 Gbit network connection. 

Therefore, a network limitation has occurred. In addition to this network limitation, 

the disk write queue for Couchbase has been steady at this level and the drain rate was 

equal to the fill rate. Any higher value of insertion caused the fill rate to be higher than 

the drain rate when tested on the same machine, which would eventually cause out-of-

memory errors. 
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Based on these limitations it is concluded that 8 concurrent client threads that will 

insert pre-generated EHRs to Couchbase database is the optimal configuration for the 

single node scenario. 

The results for execution times and number of operations per second for the NoSQL 

Couchbase database are presented in Table 5.2 and Table 5.3 respectively. 

 Execution time in milliseconds 

Number of records Mean SD Min Max Median CI (95%)

1M 0.153702 0.007504 0.142053 0.170902 0.154140 0.002133

10M 0.150956 0.016277 0.131827 0.314699 0.147973 0.001437

100M 0.148133 0.010493 0.129679 0.251630 0.147457 0.000305

500M n/a n/a n/a n/a n/a n/a

Table 5.2 Execution time statistics in milliseconds for data insert operations on 
single-node Couchbase database 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 20000 603 18790 22728 19972 171

10M 20186 2011 8154 44335 20239 178

100M 20070 2180 768 28703 20138 63

500M n/a n/a n/a n/a n/a n/a

Table 5.3 Number of insert operations per second on single-node Couchbase 
database 
 
Couchbase seems to be able handle about 20,000 concurrent executions successfully 

and has a mean response time of around 0.15 milliseconds in a single node 

configuration. Insertion of 500M records was not possible due to the total available 

disk and memory in this single node configuration. These values are consistent with 

the benchmarks published by Couchbase which state 1 million operations per second 

can be achieved using 50 Couchbase nodes (Biyikoglu 2016). 

Then, the data insertion operation has been executed on the MySQL database using 

the same number of client threads. Connection pooling is used to optimize 
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performance. The results for execution times and number of operations per second for 

MySQL database are presented in Table 5.4 and Table 5.5 respectively. 

 Execution time in milliseconds 

Number of rec. Mean SD Min Max Median CI (95%)

1M 35.522702 10.016451 18.958060 73.857323 33.808805 1.386193

10M 62.360366 10.341411 24.321896 110.490316 61.849190 0.373079

100M 82.523779 16.061316 33.404720 669.784922 80.987136 0.160361

500M n/a n/a n/a n/a n/a n/a

Table 5.4 Execution time statistics in milliseconds for data insert operations on 
single MySQL database instance. 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 5308 1207 1937 7428 5364 167

10M 4809 673 2373 8203 4786 24

100M 3861 633 1281 7733 3840 6

500M n/a n/a n/a n/a n/a n/a

Table 5.5 Number of transactions per second for data insertion on single MySQL 
database instance. 
 
MySQL was able to handle around 5000 transactions per second while the size of the 

database is relatively small, then started to slow down as the size of the database 

increased to 10 million and 100 million records stored, as shown in Table 5.4. While 

the average response time was around 35 milliseconds for 1M insert operations, it 

gradually increased to an average of 82 milliseconds when the number of records 

inserted was 100 million, as presented in Table 5.5.  

Each insert transaction contained multiple insert statements for various tables for a 

particular EHR for MySQL. Although the actual number of T-SQL insert statements 

executed per second was more than 50,000 on average, the number of EHRs saved 

into the MySQL database was 5,308 on average. 

In comparison to Couchbase, MySQL performed slower in both number of records 

inserted and the average response time. Figure 5.2 shows the average number of 
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records inserted per second for both Couchbase and MySQL databases comparatively 

in a single-node configuration.  

 
 
Figure 5.2. Average number of records inserted per second with standard 

deviations for Couchbase and MySQL in single-node configuration. 

 
Furthermore, the MySQL database slows down when the total number of records 

increases. The number of records inserted per second decreases, as presented in Table 

5.5, and the average execution time increases by more than 100%—as shown in Table 

5.4. 

5.4.1.2	Insert	operations	on	two	nodes	
 
Based on the limitations mentioned for the single node configuration, 16 concurrent 

client threads have been used for data insertion on two database nodes. Average 

response time and average number of records inserted per second for the NoSQL 

Couchbase database 2 node cluster is shown in Table 5.6 and Table 5.7 respectively.  
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 Execution time in milliseconds 

Number of records Mean SD Min Max Median CI (95%)

1M 0.273550 0.059515 0.154106 0.346323 0.290606 0.021103

10M 0.156874 0.007060 0.142867 0.199279 0.156266 0.000866

100M 0.153920 0.011270 0.134470 0.379438 0.152916 0.000462

500M n/a n/a n/a n/a n/a n/a

Table 5.6 Execution time statistics in milliseconds for data insert operations on 
2-node Couchbase cluster 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%

1M 29962 4405 17591 39124 29037 1562

10M 37709 2641 20554 58350 37463 324

100M 38378 3016 19417 71109 37994 124

500M n/a n/a n/a n/a n/a n/a

Table 5.7 Number of insert operations per second on 2-node Couchbase database 
 
Couchbase was able to handle around 50% more insert operations per second for the 

insertion of 1M records and performed even better when inserting higher number of 

records. The number of records that can be inserted per second in a 2-node Couchbase 

cluster for 100M records was almost double the number for a single node 

configuration. In addition to that, the average response time was similar in both 

configurations. 

However, the situation was not similar for MySQL database. Average number of 

records inserted per second and the average response time for MySQL database 2 node 

cluster are shown in Tables 5.8 and 5.9. 
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 Execution time in milliseconds 

Number of recs Mean SD Min Max Median CI (95%)

1M 40.638814 11.995656 11.298356 70.990462 42.213457 1.299020

10M 57.137738 10.976489 16.457215 366.366510 58.107731 0.445253

100M 90.821534 17.925550 34.821367 544.997372 90.003622 0.253464

500M n/a n/a n/a n/a n/a n/a

Table 5.8 Execution time statistics in milliseconds for data insert operations on 
2-node MySQL cluster 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%

1M 6917 741 4388 8912 6965 80

10M 6632 473 4060 8547 6644 19

100M 4749 779 2142 7946 4725 11

500M n/a n/a n/a n/a n/a n/a

Table 5.9 Number of insert operations per second on 2-node MySQL database 
 

 

Figure 5.3. Average number of records inserted per second with standard 

deviations for Couchbase and MySQL in 2-node configuration. 
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Although there is an improvement in the average number of records inserted per 

second for MySQL database, it is not as significant —as can be seen in Couchbase 

scenario (see Figures 5.1 and 5.2). Response times were similar for single node and 2-

node MySQL configurations, but the improvement was around 25% in number of 

records inserted per second. MySQL also seemed to become slower when the total 

number of inserted records became higher, as shown in Table 5.8.  

5.4.1.3	Insert	operations	on	4	nodes	
 
The number of client threads were adjusted to the point that increasing the number of 

clients did not have any positive effect on performance. As a result, 32 concurrent 

client threads have been used for data insertion on a 4-node configuration, each 

running parallel operations and there is connection pooling in place. The average 

execution time and the number of records inserted per second for a Couchbase 4 node 

cluster is shown in Table 5.10 and Table 5.11. 

 Execution time in milliseconds 

Number of records Mean SD Min Max Median CI (95%)

1M 0.206894 0.044502 0.149733 0.284753 0.203810 0.019731

10M 0.166319 0.006498 0.149453 0.193299 0.166342 0.000787

100M 0.169957 0.007292 0.153517 0.210167 0.169195 0.000501

500M n/a n/a n/a n/a n/a n/a

 
Table 5.10 Execution time statistics in milliseconds for data insert operations on 
4-node Couchbase cluster 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 73106 4760 63695 82238 72826 2110

10M 71800 3204 55043 93055 71456 388

100M 88963 4268 69680 114960 88399 293

500M n/a n/a n/a n/a n/a n/a

 
Table 5.11 Number of insert operations per second on 4-node Couchbase 
database 
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In a 4-node configuration, Couchbase has performed better than it did for a 2-node 

configuration and a near linear scalability is demonstrated. The number of records 

inserted per second was almost double compared to a 2-node configuration; and 

response times were still well under one millisecond level, similar to the level 

observed for a 2-node configuration.  

MySQL also performed better in a 4-node configuration than a 2-node configuration, 

however, the improvement was not as significant as the Couchbase scenario. The 

average execution time and the number of records inserted per second for MySQL 

database 4 node cluster is shown in Table 5.12 and Table 5.13. 

 Execution time in milliseconds 

Number of recs Mean SD Min Max Median CI (95%)

1M 47.387782 21.499094 19.288564 92.749640 39.307242 3.367510

10M 69.316874 23.359773 22.240973 150.120026 68.531566 2.106103

100M 91.120392 19.308699 30.360149 172.532989 97.877772 1.151259

500M 121.847202 21.247962 46.127519 467.244158 118.454975 0.154861

Table 5.12 Execution time statistics in milliseconds for data insert operations on 
4-node MySQL cluster 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%

1M 8222 1218 5459 11151 8273 191

10M 6454 1008 3491 8950 6578 159

100M 4902 736 2745 7969 4698 44

500M 4329 597 1926 11063 4348 4

Table 5.13 Number of insert operations per second on 4-node MySQL database 
 
For MySQL in a 4-node configuration, there has been an improvement of up to 20% 

in the number of records inserted per second and the response times were similar to 

the previous configurations in MySQL. The average response time was over 120 

milliseconds for the 500M insertion test in 4-node MySQL configuration, as shown in 

Table 5.12 and the number of records inserted per second in the same test is lower 
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than all 2-node configuration tests (see Tables 5.13 and 5.9). Figure 5.4 presents the 

average number of records inserted per second for both databases comparatively. 

 

Figure 5.4. Average number of records inserted per second with standard 

deviations for Couchbase and MySQL in 4-node configuration. 

These results were consistent with the previous results which demonstrated that 

MySQL was getting slower as a result of a higher number of records. A number of 

potential reasons for performance degradation of records inserts with relational 

databases as the number of records increased include (1) the percentage of the data 

cached in memory reduces as the total size of data increases which causes more disk 

reads; (2) index fragmentation occurs for primary and foreign indexes; and (3) number 

of joins and number of concurrent operations effects the overall performance 

(Hadjigeorgiou 2013; Schmidt 2001; Souley & Mohammed 2013). 

5.4.1.4	Insert	operations	on	8	nodes	
 
The number of client threads has been adjusted for the maximum performance for 

Couchbase and MySQL respectively. Sixty-four concurrent client threads running 

parallel executions is configured for Couchbase and connection pooling for about 100 

connections per client node is configured for MySQL. 

While a consistent linear scalability is observed for Couchbase, average execution 

time for insert queries has increased in an 8-node configuration. Couchbase started 

responding slower than a 4-node configuration. Execution times for 4-node and 8-
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node insert operations are shown in Tables 5.10 and 5.14 respectively. However, while 

the number of record inserts was elevated, the average response time was still under a 

millisecond. Couchbase seemed to perform slower in the 10M records test. This might 

be related to some internal process blocking the execution for a small period of time 

as the data files in the Couchbase folder seemed to expand very quickly at that stage, 

however, it was not significant enough to cause Couchbase to perform worse than for 

the 4-node configuration. 

The average response time and the number of records inserted per second for an 8 

node Couchbase cluster is shown in Table 5.14 and Table 5.15 respectively. 

 
 Execution time in milliseconds 

Number of records Mean SD Min Max Median CI (95%)

1M 0.232728 0.054227 0.154467 0.335185 0.214209 0.026136

10M 0.550048 0.214875 0.113364 0.866355 0.553557 0.049101

100M 0.262563 0.147796 0.099792 0.812308 0.207399 0.013026

500M 0.211525 0.158407 0.066649 1.766618 0.147815 0.006818

Table 5.14 Execution time statistics in milliseconds for data insert operations on 
8-node Couchbase cluster 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 145581 11711 120755 160910 150835 5645

10M 113238 17299 86487 158969 110648 3953

100M 158681 15975 98637 202064 159892 1408

500M 154561 17069 90052 212758 156950 735

Table 5.15 Number of insert operations per second on 8-node Couchbase 
database 
 
For MySQL in the 8-node configuration, the improvement was around 100% for a 

higher number of records. Response times and the number of records inserted per 

second were better than a 4-node configuration, particularly for a high number of 

records. Execution times and the number of records inserted per second for MySQL 

database 8 node cluster is shown in Table 5.16 and Table 5.17.  
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 Execution time in milliseconds 

Number of recs Mean SD Min Max Median CI (95%)

1M 45.083707 71.569724 18.000552 970.512634 37.768134 10.13464

10M 76.885133 33.871741 22.083073 984.841746 80.966209 2.089371

100M 81.334755 13.768478 34.191082 993.905688 81.127703 0.279595

500M 80.352173 11.349797 29.416558 1000.506708 80.048438 0.170435

Table 5.16 Execution time statistics in milliseconds for data insert operations on 
8-node MySQL cluster 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%

1M 11647 1416 7412 15039 11845 200

10M 10611 899 7621 13916 10540 55

100M 9978 669 7436 12902 9969 14

500M 9518 636 6741 12264 9503 10

Table 5.17 Number of insert operations per second on 8-node MySQL database 
 

Although MySQL seemed to handle 500M records better in an 8-node configuration 

compared to a 4-node configuration based on the average number of insert operations 

per second presented in Table 5.13 and Table 5.17, it slowed down when the number 

of records increased, however, decrease in performance was not as significant as the 

previous configurations. 
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Figure 5.5. Average number of records inserted per second with standard 

deviations for Couchbase and MySQL in 8-node configuration. 

The number of records inserted per second was around 10,000 for the tests for 

MySQL, while it was around 150,000 for Couchbase—as evidenced in Figure 5.5. The 

performance gap between Couchbase and MySQL for number of records inserted has 

been found to be greater when the configuration of the database cluster involved a 

higher number of nodes (see Figure 5.5). 

5.4.1.5	Insert	operations	on	16	nodes	
 

Finally, the insertion tests have been executed on a 16-node configuration with the 

number of client threads adjusted accordingly. The performance improvement for 

Couchbase seemed to be better when the number of nodes increased from 8 to 16. 

Average response times and the number of records inserted per second for a 16-node 

Couchbase cluster is shown in Table 5.18 and Table 5.19. 
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 Execution time in milliseconds 

Number of records Mean SD Min Max Median CI (95%)

1M 0.175442 0.023516 0.138094 0.213225 0.172074 0.011006

10M 0.202226 0.039837 0.139622 0.316384 0.191291 0.014363

100M 0.324992 0.107322 0.137578 0.710155 0.319529 0.013396

500M 0.249412 0.393963 0.089050 4.415888 0.150457 0.022646

Table 5.18 Execution time statistics in milliseconds for data insert operations on 
16-node Couchbase cluster 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 281894 10307 257482 294589 284242 4824

10M 394801 38556 329670 457613 397620 13901

100M 290595 24159 228787 420065 287591 3015

500M 325040 16630 261629 376375 326831 956

Table 5.19 Number of insert operations per second on 16-node Couchbase 
database 
 
While there is an improvement of more than 100% in insertion tests for 10M and 500M 

for Couchbase, the improvement in MySQL was around 60%. However, response 

times for MySQL increased significantly in this 16 node cluster test scenario, 

particularly for higher numbers of records. The average execution time and the number 

of records inserted for MySQL database 16 node cluster are shown in Table 5.20 and 

Table 5.21. 

 Execution time in milliseconds 

Number of recs Mean SD Min Max Median CI (95%)

1M 69.10552 73.230766 23.385589 993.105480 60.412052 10.369854

10M 105.28047 38.616143 30.794788 1052.56921 104.408717 2.382029

100M 120.56583 22.304410 49.284543 1013.35603 117.729079 0.452933

500M 122.51623 21.722253 51.768716 1050.60043 119.463696 0.326193

Table 5.20 Execution time statistics in milliseconds for data insert operations on 
16-node MySQL cluster 
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 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%

1M 17589 1804 12708 22359 17715 255

10M 16579 1135 12827 20581 16513 70

100M 15418 886 12066 18972 15398 18

500M 14332 842 10699 17795 14320 13

Table 5.21 Number of insert operations per second on 16-node MySQL database 
 

EHR insertion tests are concluded with these 16 node cluster results and Couchbase 

demonstrated linear scalability, achieving 394,801 records per second for insertion 

(see Figure 5.6) and average response times of under a millisecond consistently, 

having a maximum response time of 4 milliseconds. However, in comparison, MySQL 

was only able to insert a maximum of 17,589 records per second (see Figure 5.6) while 

sometimes having a maximum of around 1000 milliseconds (1 second) response time, 

as shown in Tables 5.16 and 5.20. 

 
 
Figure 5.6. Average number of records inserted per second with standard 

deviations for Couchbase and MySQL in 16-node configuration. 
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5.4.2	Simulation	of	update	operations	
 
Once performance testing of different ranges of records written to the databases using 

insert operations was completed, testing of update operations was executed on 

randomly selected records. Update Records Tests are run on various configurations 

with different number of nodes and different number of stored records. Although total 

number of stored records are different, 1 million update operations are executed on 

each test and execution time for each update operation and the number of update 

operations per second are measured. Records on Couchbase and MySQL have been 

updated using the record identifier key field. 

Updates have been executed using the same SET operation on Couchbase, which was 

used to insert records. The key and the updated version of the relevant EHR are used 

as parameters of the SET command. 

However, update operations on the MySQL database are performed differently. EHRs 

stored on MySQL were saved into multiple tables and thus update operations are 

planned to change a random part of the data, affecting only one or some of the tables. 

Therefore, update operations on the MySQL database were expected to run efficiently. 

Furthermore, conducting tests for 500M records was not possible for 1, 2, and 4-node 

configurations due to memory and disk limitations. 

5.4.2.1	Update	operations	on	single	node	
 
As update operations are similar to insert operations for the Couchbase database, the 

same number of client threads was used for data update operations while executing 

tests on Couchbase.   

The results for update operations on Couchbase are presented in Table 5.22 and 
Table 5.23. 
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 Execution time in milliseconds 

Number of records Mean SD Min Max Median CI (95%)

1M 0.149371 0.006808 0.136411 0.163198 0.149073 0.001955

10M 0.154444 0.007620 0.140854 0.204384 0.154060 0.001034

100M 0.157729 0.009444 0.140996 0.182085 0.159075 0.002684

500M n/a n/a n/a n/a n/a n/a

Table 5.22 Execution time statistics in milliseconds for data update operations on 
single-node Couchbase database 
 
 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 20138 356 19292 20774 20188 102

10M 21022 1891 16291 27752 20353 256

100M 19714 499 18145 20500 19819 141

500M n/a n/a n/a n/a n/a n/a

Table 5.23 Number of update operations per second on single-node Couchbase 
database 
 
The single node Couchbase database seems to be able to handle a similar number of 

update operations as in insert operation tests. An average of around 20,000 update 

operations were achieved, while execution time for update operations was around 0.15 

milliseconds, which is similar to the value achieved for the insert operations as 

presented in Tables 5.22 and 5.23. 

MySQL has demonstrated a similar performance on update operations compared to 

insert operations, which was shown in Table 5.4, however, the average execution time 

was better than for insert operations. Average execution time and number of operations 

for MySQL are shown in Table 5.24 and Table 5.25 respectively. 
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 Execution time in milliseconds 

Number of recs Mean SD Min Max Median CI (95%)

1M 31.489434 135.192489 8.934383 1015.55274 11.963705 36.547649

10M 34.099787 125.445826 9.720098 1133.77026 18.670848 28.098334

100M 47.443898 48.144115 18.207891 509.45553 40.081116 8.854346

500M n/a n/a n/a n/a n/a n/a

Table 5.24 Execution time statistics in milliseconds for data update operations on 
single node MySQL cluster 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 4879 1656 1374 10697 4487 448

10M 3883 993 663 6844 3747 222

100M 3006 1020 932 6497 2973 188

500M n/a n/a n/a n/a n/a n/a

Table 5.25 Number of update operations per second on single node MySQL 
database 
 
A comparison of the average number of records updated per second for Couchbase 

versus MySQL databases on a single node configuration is shown in Figure 5.7.  

 

Figure 5.7. Average number of records updated per second with standard 
deviations for Couchbase and MySQL in single-node configuration. 
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5.4.2.2	Update	operations	on	two	nodes	
 
Update operations have been executed on both Couchbase and MySQL on a 2-node 

cluster configuration. It was not possible to conduct tests for 500M records on both 

databases due to memory and disk limitations of a 2-node cluster.  

The change in performance between single node and 2-node cluster configuration tests 

was similar for both databases. Average execution time and average number of update 

operations for Couchbase is presented in Table 5.26 and Table 5.27. 

 Execution time in milliseconds 

Number of records Mean SD Min Max Median CI (95%)

1M 0.1549886 0.005126 0.146910 0.166523 0.155630 0.002116

10M 0.1539261 0.006375 0.140988 0.165904 0.154813 0.002631

100M 0.1556281 0.007388 0.140134 0.175461 0.156387 0.002099

500M n/a n/a n/a n/a n/a n/a

Table 5.26 Execution time statistics in milliseconds for data update operations on 
2-node Couchbase cluster 
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 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%

1M 38361 2032 34807 42763 37742 839

10M 38868 1474 36563 42134 38424 609

100M 38053 1212 35552 42165 37690 345

500M n/a n/a n/a n/a n/a n/a

Table 5.27 Number of update operations per second on 2-node Couchbase cluster 
 
Execution times were around 0.15 milliseconds for update operations, which is similar 

to the single-node configuration test and the average number of records updated per 

second has been improved by around 90% with an increase from 20,000 to 38,000 on 

average. Similar improvement was observed for MySQL as well. Average execution 

time and the number of records updated per second for MySQL is shown in Table 5.28 

and Table 5.29. 

 
 Execution time in milliseconds 

Number of recs Mean SD Min Max Median CI (95%)

1M 34.579299 76.314712 9.894826 550.418276 18.771078 19.545105

10M 30.178145 117.718718 6.737242 878.199817 13.050963 32.131025

100M 35.877078 123.591271 12.857745 1061.08678 20.568325 29.253577

500M n/a n/a n/a n/a n/a n/a

Table 5.28 Execution time statistics in milliseconds for data update operations on 
2-node MySQL cluster 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%

1M 9120 2630 4933 16447 8630 674

10M 8530 2470 4676 15276 8358 674

100M 7111 1675 4897 12944 6872 397

500M n/a n/a n/a n/a n/a n/a

Table 5.29 Number of update operations per second on 2-node MySQL database 
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Execution time for update operations were about 32 milliseconds on average for a 2 

node MySQL database cluster, as shown in Table 5.29. However, the improvements 

for execution time and number of records updated per second were better for higher 

numbers of records stored compared to a single node configuration as shown in the 

results presented in Table 5.25. Although the performance improvement for 

Couchbase was around 90%, it was 130% for MySQL in the scenario having 100M 

records stored. It is also observed that the performance of MySQL for update records 

operations has decreased for the higher number of records stored in the database as 

was the case for the insert operations test.  

 
 
Figure 5.8. Average number of records updated per second with standard 

deviations for Couchbase and MySQL in 2-node configuration. 

 
Furthermore, performance for MySQL seems to be better for update operations 

compared to insert operations as insert operations involve data addition to multiple 

tables (see Tables 5.9 and 5.29), while in a relational database such as a MySQL 

database, update operations change only some of the tables. Therefore, it can be 

expected for a relational database such as MySQL that partial updates could be 

executed slightly faster than inserts. 

5.4.2.3	Update	operations	on	4	nodes	

In the 4-node configuration, update operations are executed using a higher number of 
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to Couchbase to achieve maximum performance. As in insert operation tests, number 

of clients has been increased to the point that the marginal performance increase is 

zero for any additional client threads. Both MySQL and Couchbase demonstrated 

linear scalability and the performance increased significantly for the 4-node scenario 

compared to the 2-node scenario (see average number of records updated for 2-node 

configuration and 4-node configuration in Figure 5.8 and Figure 5.9 respectively). 

The average execution time and number of records updated per second for three test 

scenarios for a 4 node Couchbase cluster is presented in Table 5.30 and Table 5.31. 

 
 Execution time in milliseconds 

Number of records Mean SD Min Max Median CI (95%)

1M 0.157392 0.003790 0.149789 0.164877 0.157317 0.001499

10M 0.162747 0.030386 0.143539 0.528638 0.154635 0.002757

100M 0.159543 0.012444 0.147914 0.217290 0.157191 0.005026

500M n/a n/a n/a n/a n/a n/a

Table 5.30 Execution time statistics in milliseconds for data update operations on 
4-node Couchbase cluster 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 94043 2322 90880 99682 93582 919

10M 94730 6218 72179 138721 94799 564

100M 93208 949 91458 95280 93131 383

500M n/a n/a n/a n/a n/a n/a

Table 5.31 Number of update operations per second on 4-node Couchbase cluster 

It is observed that Couchbase was able to respond consistently when performing data 

update operations. The average response times were around 0.16 milliseconds and the 

number of records updated per second increased by more than 100% compared to 2-

node configuration (see Tables 5.27 and 5.31). A similar performance improvement is 

also observed for a 4 node MySQL database cluster. The average execution time and 

the average number of update operations for MySQL is presented in Table 5.32 and 

Table 5.33. 
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 Execution time in milliseconds 

Number of recs Mean SD Min Max Median CI (95%)

1M 48.740752 186.48895 6.521561 1166.43691 7.428957 55.380385

10M 35.334547 160.76209 6.511512 1105.30389 7.366239 38.332368

100M 20.189276 6.128679 11.161256 42.254836 19.82484 1.909831

500M 15.640881 49.518282 8.110318 512.282202 10.30020 9.677833

Table 5.32 Execution time statistics in milliseconds for data update operations on 
4-node MySQL cluster 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 21453 4526 14181 31169 20481 1344

10M 20464 4510 11653 31034 20738 1075

100M 16675 2756 11381 24808 16849 859

500M 14397 4299 5556 23426 14321 840

Table 5.33 Number of update operations per second on 4-node MySQL database 
 
MySQL has performed significantly better, having around 130% increase in the 

number of records updated per second compared to a two node MySQL database 

cluster. Furthermore, mean execution time has dropped to 15.6 milliseconds in the 

500M records test. The average number of records updated per second decreases by 

the number of records—stored which is also consistent with the results of the insert 

tests for MySQL. 
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Figure 5.9. Average number of records updated per second with standard 

deviations for Couchbase and MySQL in 4-node configuration. 

5.4.2.4	Update	operations	on	8	nodes	
 
Update operations were executed for Couchbase and MySQL on an 8-node 

configuration. Couchbase seems to have increased response times, however it 

preserved near linear scalability for the average number of records updated. MySQL 

has also demonstrated a good scalability performance with around double the number 

of records updated per second and even smaller response times. The average execution 

time and the average number of update operations for Couchbase is presented in Table 

5.34 and Table 5.35. 

 
 Execution time in milliseconds 

Number of records Mean SD Min Max Median CI (95%)

1M 0.122928 0.036114 0.052263 0.188523 0.124145 0.012041

10M 0.130890 0.013708 0.105906 0.168181 0.130123 0.004506

100M 0.101203 0.015948 0.075321 0.133392 0.097706 0.005564

500M 0.133138 0.017851 0.097745 0.172253 0.133185 0.005867

Table 5.34 Execution time statistics in milliseconds for data update operations on 
8-node Couchbase cluster 
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 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%

1M 168031 13908 145000 206844 166779 4637

10M 172153 11082 148334 197933 172841 3643

100M 176259 7457 163512 208036 175891 2602

500M 169740 11128 148469 200237 170156 3658

Table 5.35 Number of update operations per second on 8-node Couchbase cluster 
 
Couchbase was able to handle a maximum number of around 200,000 update 

operations per second at times, however, mean was around 170,000 records per 

second—which is about an 88% increase from the 4-node configuration performance, 

as shown in Tables 5.31 and 5.35. However, the average execution times for all 8-

node tests were between 0.10 and 0.13 milliseconds as presented in Table 5.34—which 

is still well below the one millisecond level.  

MySQL has also demonstrated around 90% performance increase compared to a 4-

node configuration. The average execution time and the average number of records 

updated for MySQL is shown in Table 5.36 and Table 5.37. 

 Execution time in milliseconds 

Number of recs Mean SD Min Max Median CI (95%)

1M 17.797026 21.342206 7.067944 138.624876 11.23545 6.411908

10M 14.251006 20.487896 6.949741 138.621010 8.413221 5.822596

100M 13.284667 25.954801 6.805793 182.998415 7.995805 7.620615

500M 12.881169 10.818246 7.613767 94.863891 10.41849 2.347703

Table 5.36 Execution time statistics in milliseconds for data update operations on 
8-node MySQL cluster 
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 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 39465 7177 22305 53751 37398 2156

10M 37307 9062 20332 54522 34504 2576

100M 30596 7897 11801 49157 31149 2319

500M 28471 8325 13800 44291 29359 1807

Table 5.37 Number of update operations per second on 8-node MySQL database 
 

Although MySQL has performed significantly better in terms of average execution 

time compared to a 4-node configuration as shown in Tables 5.36 and 5.32, this was 

still 100 times higher than the execution times for Couchbase. MySQL also 

demonstrated consistently lower performance on higher number of stored records, 

while a higher number of records had no significant effect on the performance of 

Couchbase for update operations or insert operations. 

It is also observed that the performance degradation between 100M and 500M stored 

records test that occurred in 8-node MySQL cluster is not as significant as the 

degradation observed between 100M and 500M stored records test in a 4-node 

configuration. The number of records stored has no significant effect for Couchbase 

(see Figure 5.9 and Figure 5.10). 

 
 
Figure 5.10. Average number of records updated per second with standard 

deviations for Couchbase and MySQL in 8-node configuration. 
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5.4.2.5	Update	operations	on	16	nodes	
 
In the final update operations test, 16 nodes have been configured to handle the update 

operations load. The results of the update operations for a 16 node Couchbase cluster 

were quite similar to the 8-node test for Couchbase, demonstrating a near linear 

scalability. The average execution time and the average number of records updated 

per second for Couchbase is shown in Table 5.38 and Table 5.39. 

 
 Execution time in milliseconds 

Number of records Mean SD Min Max Median CI (95%)

1M 0.265266 0.021060 0.218065 0.298339 0.270838 0.010151

10M 0.145795 0.030815 0.112220 0.240975 0.139003 0.015324

100M 0.139815 0.031652 0.100709 0.225849 0.128105 0.015256

500M 0.119642 0.009769 0.105036 0.138452 0.116983 0.004858

Table 5.38 Execution time statistics in milliseconds for data update operations on 
16-node Couchbase cluster 
 
 
 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 327908 22875 299620 387371 323316 11026

10M 335469 28615 299567 432730 328361 14230

100M 344284 22672 322870 421041 339613 10927

500M 367093 34777 340071 484526 354592 17294

Table 5.39 Number of update operations per second on 16-node Couchbase 
cluster 
 
Couchbase achieved a mean of around 367,000 records updated per second, with a 

maximum of 484,000 records updated per second for a 16 node cluster, as shown in 

Table 5.39. The response time for each record update was affected significantly, being 

around 0.12-0.14 milliseconds for most of the cases (see Table 5.38).  

MySQL showed around a 60% increase in the average number of records updated per 

second while almost preserving the average execution times for a 16 node cluster. The 
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average execution time for a record update and the average number of records updated 

per second for MySQL is shown in Table 5.40 and Table 5.41. 

 Execution time in milliseconds 

Number of recs Mean SD Min Max Median CI (95%)

1M 19.404544 38.095892 7.051670 260.722528 9.378034 11.445273

10M 14.129704 19.517664 7.006595 138.898273 8.766027 5.546859

100M 13.977971 25.736622 7.038544 171.317033 8.229623 7.642833

500M 12.136113 7.475673 7.792066 52.773793 10.33582 1.622320

Table 5.40 Execution time statistics in milliseconds for data update operations on 
16-node MySQL cluster 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 65647 9972 46935 89341 64160 2996

10M 63051 10322 43342 84786 61671 2933

100M 49967 10412 27370 74785 48167 3092

500M 45108 11970 26132 68690 45159 2598

Table 5.41 Number of update operations per second on 16-node MySQL database 
 

 
 
Figure 5.11. Average number of records updated per second with standard 

deviations for Couchbase and MySQL in 16-node configuration. 
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The average number of records updated per second for Couchbase and MySQL in a 

16-node configuration are presented comparatively in Figure 5.11 which demonstrates 

that the performance of the Couchbase database is not affected by the number of 

records stored, however, the performance of MySQL database degrades for the tests 

which involve a higher number of records stored. 

5.4.3	Simulation	of	delete	operations	
 
Following the insert and update operations, tests for delete operations are executed 

using a number of different configurations in terms of the number of nodes for both 

Couchbase and MySQL databases. The number of operations per second and 

execution time were measured and reported for each configuration (number of nodes). 

The number of client threads was adjusted based on the configuration to maximize the 

performance of both databases. 

The number of records stored in the databases has an effect on the total items stored 

in memory (active items cached in RAM), therefore, deletion test was executed in a 

number of different test scenarios using different numbers of nodes and different 

numbers of records stored. However, conducting tests for 500M records was not 

possible for 1, 2, and 4-node configurations due to memory and disk limitations. 

5.4.3.1	Delete	operations	on	single	node	
 
In contrast to insert and update operations, delete operations do not send large amounts 

of data to databases. Therefore, a network bandwidth bottleneck did not apply to delete 

operations. A higher number of client threads are used to delete data for both 

Couchbase and MySQL. It is found that any additional number of client threads above 

32 did not cause any improvement for the measured values on Couchbase database. 

The number of records mentioned in the test results indicates the total number of 

records stored in the relevant database before delete operations are executed. 

For MySQL, delete operations demonstrated slower performance compared to update 

operations which only affect some tables. For MySQL, a delete operation results in an 

operation on all related tables to delete a single EHR. Conversely, for Couchbase—

because of the way EHR data is stored in the data model of a document database—a 
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significantly higher number of records can be deleted per second compared to insert 

and update operations.  

The average execution time in milliseconds and the average number of records deleted 

per second for Couchbase are presented in Table 5.42 and Table 5.43 respectively. 

 Execution time in milliseconds 

Number of records Mean SD Min Max Median CI (95%)

1M 0.183945 0.048137 0.145628 0.281925 0.158758 0.030585

10M 0.175649 0.034750 0.145874 0.268797 0.164056 0.022079

100M 0.268597 0.021036 0.242225 0.324657 0.264606 0.015048

500M n/a n/a n/a n/a n/a n/a

Table 5.42 Execution time statistics in milliseconds for delete operations on 
single-node Couchbase database 
 
 
 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 74141 9469 60385 84215 77279 6017

10M 78003 8022 60214 89268 79102 5097

100M 65088 2943 63439 72516 63735 2105

500M n/a n/a n/a n/a n/a n/a

Table 5.43 Number of delete operations per second on single-node Couchbase 
cluster 
 
Couchbase is able to delete around 70,000 records per second, which is a higher value 

compared to single-node insert and update operations as shown in Tables 5.3, 5.23 and 

5.43. The average response times were around 0.18 milliseconds for 1M and 10M 

records stored, however, it was 0.27 milliseconds when the number of records stored 

was 100M (see Table 5.42). In contrast, MySQL has demonstrated significantly lower 

performance when deleting records. The average execution times and the number of 

records deleted for MySQL in a single-node configuration is shown in Table 5.44 and 

Table 5.45.  
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 Execution time in milliseconds 

Number of recs Mean SD Min Max Median CI (95%)

1M 26.324059 75.464050 10.442080 980.387595 19.05796 11.672151

10M 35.588544 57.655111 13.632901 963.092700 29.82108 6.794830

100M 43.264956 73.023233 13.595287 1087.97424 24.52064 6.905395

500M n/a n/a n/a n/a n/a n/a

Table 5.44 Execution time statistics in milliseconds for data delete operations on 
single-node MySQL cluster 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 3165 1122 1734 7363 2854 174

10M 2188 896 724 7163 2001 106

100M 1364 425 83 2203 1401 40

500M n/a n/a n/a n/a n/a n/a

Table 5.45 Number of delete operations per second on single-node MySQL 
database 
 

The average number of records deleted per second for Couchbase and MySQL 

databases in a single node configuration is presented in Figure 5.12.  

 
 
Figure 5.12. Average number of records deleted per second with standard 

deviations for Couchbase and MySQL in single-node configuration. 
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The average number of delete operations per second on MySQL was significantly 

lower compared to insert and update operations (see Tables 5.5, 5.25 and 5.45). The 

average response time was similar to the single-node insert and update operations (see 

Tables 5.4, 5.24 and 5.44), however, a maximum of about 1000 milliseconds is 

observed at times. Furthermore, a minimum of 83 delete operations per second is also 

observed for 100M records test. These results demonstrate that delete record 

operations are executed much slower in MySQL compared to insert and update 

operations; and MySQL has also slowed down when the total number of records stored 

increase for a delete operation test. 

5.4.3.2	Delete	operations	on	two	nodes	
 
Similar to the previous delete records operations tests, the number of client threads is 

adjusted for the maximum possible performance for both Couchbase and MySQL. 

Couchbase could handle 64 client threads, however, MySQL slowed down on any 

additional threads over 16. 

Both Couchbase and MySQL have performed better for 2-node configurations, 

however, the increase in the number of records deleted per second was higher for 

Couchbase. MySQL demonstrated a performance increase of around 58% for delete 

records operations, while the performance increase in delete records operations for 

Couchbase was about 71%. The average execution times and the number of records 

deleted for Couchbase in a 2-node configuration is shown in Table 5.46 and Table 

5.47. 

 Execution time in milliseconds 

Number of records Mean SD Min Max Median CI (95%)

1M 0.248538 0.038607 0.193474 0.353560 0.248568 0.023330

10M 0.309964 0.080658 0.233900 0.502251 0.276355 0.046571

100M 0.203230 0.035639 0.173989 0.274356 0.188020 0.023942

500M n/a n/a n/a n/a n/a n/a

Table 5.46 Execution time statistics in milliseconds for delete operations on 2-
node Couchbase cluster 
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 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 132559 8035 116942 151199 133318 4856

10M 129047 9765 119584 158947 127272 5638

100M 110994 8538 98544 127541 111623 5736

500M n/a n/a n/a n/a n/a n/a

Table 5.47 Number of delete operations per second on 2-node Couchbase cluster 
 
Couchbase was able to delete around 130,000 records per second in 1M and 10M 

records tests, however, it slowed down to 110,000 for 100M records test as presented 

in Table 5.47. The average execution time was slightly higher than the previous tests, 

increasing to around 0.25 on average (see Table 5.46). 

Although performance on a 2-node configuration was better for MySQL compared to 

a single-node configuration, it was not more than 60% for the average number of delete 

operations per second. The performance improvement observed between single node 

and 2-node configuration for 100M records stored was only 33%. The average 

execution time for a record deletion operation and the average number of delete 

operations per second for MySQL are shown in Table 5.47 and Table 5.49. 

 
 Execution time in milliseconds 

Number of recs Mean SD Min Max Median CI (95%)

1M 34.992382 118.04716 12.825939 1069.02556 17.74394 25.011804

10M 27.609866 40.411903 10.374970 490.412335 22.82184 6.680461

100M 42.959680 88.981196 16.944667 1667.97833 25.98346 7.922546

500M n/a n/a n/a n/a n/a n/a

Table 5.48 Execution time statistics in milliseconds for data delete operations on 
2-node MySQL cluster 
  



135 
 

 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 5118 1110 3091 8005 5081 235

10M 3910 1550 653 7470 4065 256

100M 1826 351 647 2766 1869 31

500M n/a n/a n/a n/a n/a n/a

Table 5.49 Number of delete operations per second on 2-node MySQL database 
 

 
Figure 5.13. Average number of records deleted per second with standard 

deviations for Couchbase and MySQL in 2-node configuration. 

Similar to single-node delete test, Couchbase has significantly outperformed MySQL 

in the delete operation test run on a 2-node configuration as well, as shown in Figure 

5.13. The number of delete operations that MySQL database could execute also 

decreased as the number of the total records stored increased. 

5.4.3.3	Delete	operations	on	4	nodes	
 
Tests for delete operations have been executed on Couchbase and MySQL in a 4-node 
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Couchbase and MySQL was significant. Couchbase was able to handle about 190,000 

delete operations per second, while the average for MySQL was around 6,000. 

The average execution times and the number of records deleted for Couchbase in a 4-

node configuration are shown in Table 5.50 and Table 5.51. 

 

 Execution time in milliseconds 

Number of records Mean SD Min Max Median CI (95%)

1M 0.165020 0.004263 0.158787 0.170642 0.165178 0.003564

10M 0.258348 0.025178 0.229078 0.312813 0.255580 0.015215

100M 0.208812 0.010120 0.183337 0.219864 0.211394 0.006430

500M n/a n/a n/a n/a n/a n/a

Table 5.50 Execution time statistics in milliseconds for delete operations on 4-
node Couchbase cluster 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 230106 10959 219588 252439 226823 9162

10M 170398 11197 154325 193210 168531 6766

100M 179125 9985 163825 204118 177329 6344

500M n/a n/a n/a n/a n/a n/a

Table 5.51 Number of delete operations per second on 4-node Couchbase cluster 
 
Couchbase was able to perform executions of delete record operation well under the 

millisecond level and performing around 250,000 executions per second at times 

while, conversely, MySQL was only able to achieve a maximum of 23,500 executions 

for the same delete records operation test scenario (See Table 5.53). The average 

execution time and the average number of delete operations per second for MySQL is 

shown in Table 5.52 and Table 5.53. 
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 Execution time in milliseconds 

Number of recs Mean SD Min Max Median CI (95%)

1M 20.780450 96.923433 6.782082 1105.81183 9.586021 15.429978

10M 22.811614 87.611905 7.945793 1039.52318 13.61861 10.536997

100M 33.875315 110.50461 12.918372 1002.45094 18.04231 21.596977

500M 32.807602 124.53444 9.446510 910.307648 14.99437 24.460885

Table 5.52 Execution time statistics in milliseconds for data delete operations on 
4-node MySQL cluster 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 12028 3510 5710 23571 11216 559

10M 6459 2731 2757 17069 5622 328

100M 2664 477 1578 4087 2678 93

500M 1917 473 547 3244 1859 93

Table 5.53 Number of delete operations per second on 4-node MySQL database 
 
The average number of records deleted per second for Couchbase and MySQL 

databases in a 4-node configuration is presented in Figure 5.14.  

 
 
Figure 5.14. Average number of records deleted per second with standard 

deviations for Couchbase and MySQL in 4-node configuration. 

0

50000

100000

150000

200000

250000

300000

1M 10M 100M

N
u
m
b
e
r 
o
f 
o
p
e
ra
ti
o
n
s/
se
c

Number of records

Couchbase MySQL



138 
 

 
Although there is a significant increase in the number of records deleted per second, 

execution times for delete operations were at around 1000 millisecond level at times 

for MySQL, as shown in Table 5.52. Furthermore, the average number of records 

deleted per second significantly decreased as the total number of records stored in 

MySQL increased from 1 Million, 10 Million through 100 Million in the delete record 

test scenario (see Table 5.53). 

5.4.3.4	Delete	operations	on	8	nodes	
 

The Delete records operations tests were executed on an 8-node configuration for both 

MySQL and Couchbase database. The average execution times for a delete record 

operation and the number of records deleted for Couchbase in an 8-node configuration 

is shown in Table 5.54 and Table 5.55. 

 
 Execution time in milliseconds 

Number of records Mean SD Min Max Median CI (95%)

1M 0.154722 0.005239 0.144562 0.167790 0.154121 0.002031

10M 0.153492 0.005035 0.144792 0.164437 0.153596 0.001992

100M 0.153437 0.006596 0.143241 0.167675 0.152423 0.002463

500M 0.154561 0.005164 0.145423 0.167968 0.152939 0.001964

Table 5.54 Execution time statistics in milliseconds for delete operations on 8-
node Couchbase cluster 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%

1M 306003 34014 180033 348455 313337 13189

10M 275208 25591 219976 333088 274434 10123

100M 289799 23689 236241 326736 286070 8846

500M 309081 29751 250820 382439 311216 11317

Table 5.55 Number of delete operations per second on 8-node Couchbase cluster 
 
Couchbase was able to delete around 300,000 records per second and the average 

response time was consistent at 0.15 milliseconds, as shown in Tables 5.54 and 5.55. 
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In contrast, response times for MySQL were quite variable, ranging between 6 and 

1119 milliseconds (see Table 5.56). The average execution time and the average 

number of delete operations per second for MySQL is shown in Table 5.56 and Table 

5.57.  

 Execution time in milliseconds 

Number of recs Mean SD Min Max Median CI (95%)

1M 20.491357 14.894490 7.661936 150.323271 17.65293 2.647627

10M 20.999945 70.741330 8.602682 1110.51504 13.38604 8.572796

100M 19.931986 70.963426 7.694629 1113.40727 12.98694 7.547685

500M 24.597611 104.83407 6.802336 1119.83917 11.95452 13.866245

Table 5.56 Execution time statistics in milliseconds for data delete operations on 
8-node MySQL cluster 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 23722 4648 12640 35251 23868 826

10M 13663 3986 6153 23516 13396 483

100M 6182 2365 1581 15492 5515 252

500M 3550 1162 623 7736 3324 154

Table 5.57 Number of delete operations per second on 8-node MySQL database 
 
MySQL was able to delete 23,700 records per second for 1M records stored, however, 

this number significantly drops to 3,500 for 500M records. The performance increase 

in MySQL was around 100% by the means of number of records deleted per second 

compared to the 4-node configuration. 
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Figure 5.15. Average number of records deleted per second with standard 

deviations for Couchbase and MySQL in 8-node configuration. 

Although Couchbase has performed around 50% better in this 8-node configuration 

compared to the 4-node configuration, Couchbase has significantly outperformed 

MySQL in delete records operations, as shown in Figure 5.15.  

5.4.3.5	Delete	operations	on	16	nodes	
 
Final performance tests for delete operations were executed on a 16-node 

configuration. Response times for Couchbase were similar to the previous 

configurations and even better in some cases. The average number of records deleted 

per second has increased 67% on average with 81% improvement for 500M records 

stored. The average execution times and the number of records deleted for Couchbase 

in a 16-node configuration is shown in Table 5.58 and Table 5.59. 

 Execution time in milliseconds 

Number of records Mean SD Min Max Median CI (95%)

1M 0.323179 0.022473 0.271631 0.366165 0.321886 0.013580

10M 0.197337 0.010646 0.183903 0.216813 0.194736 0.006764

100M 0.217867 0.047175 0.171414 0.346600 0.201658 0.028508

500M 0.181790 0.003608 0.176479 0.189423 0.181767 0.002773

Table 5.58 Execution time statistics in milliseconds for data delete operations on 
16-node Couchbase cluster 
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 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 462038 34723 407005 539753 460242 20983

10M 467789 41466 421811 561765 452283 26346

100M 479979 32315 456126 582952 469497 19528

500M 559991 24641 533711 617140 553382 18941

Table 5.59 Number of delete operations per second on 16-node Couchbase cluster 
 

Couchbase was able to delete more than 550,000 records per second, which eventually 

resulted in the test being completed in less than 2 seconds (see Table 5.59). MySQL 

has also performed better with improvements above 100% for higher number of 

records stored. The average execution time and the average number of delete 

operations per second for MySQL are shown in Table 5.60 and Table 5.61. 

 Execution time in milliseconds 

Number of recs Mean SD Min Max Median CI (95%)

1M 23.251341 54.000756 8.653422 566.343375 15.14417 9.599112

10M 25.940480 86.689914 7.397691 973.351270 16.48033 15.409899

100M 20.173944 75.880972 7.468597 1113.42958 12.92544 9.968792

500M 27.509758 124.20507 7.505406 1135.97802 9.998260 26.629623

Table 5.60 Execution time statistics in milliseconds for data delete operations on 
16-node MySQL cluster 
 

 Number of operations per second 

Number of records Mean SD Min Max Median CI (95%)

1M 38681 5718 26347 53431 38781 1017

10M 24444 4311 15562 37263 24549 766

100M 14126 3600 8466 29219 13300 473

500M 7310 2638 3450 15123 6435 566

Table 5.61 Number of delete operations per second on 16-node MySQL database 
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The average number of records deleted per second for Couchbase and MySQL 

databases in a 16-node configuration is shown comparatively in Figure 5.16.  

 
 
Figure 5.16. Average number of records deleted per second with standard 

deviations for Couchbase and MySQL in 16-node configuration. 

 
MySQL was able to execute delete operations in about 25 milliseconds on average. 

However, for higher number of records, the execution time was more than one second 

at times—as presented in Table 5.60. The maximum number of delete operations 

executed per second across all tests was 53,431 for MySQL, while this number was 

617,140 for Couchbase—as shown in Table 5.61 and 5.59 respectively. 

5.4.4	Simulation	of	EHR	sharing	through	retrieval	of	patient	EHRs	
 
This research focused on healthcare specific data while executing the performance 

tests of a NoSQL database comparative to a relational database in a distributed EHR 

system environment. In the previous tests reported in this chapter, single record 

operations such as insert, update and delete are executed using the generated 

healthcare data to measure the performance. In this section, results of simulation of a 

data retrieval operation of patient’s EHRs that supports EHR sharing functionality for 

a NoSQL database comparative to a relational database are presented.  

EHR sharing requires finding multiple EHRs for a single person (Bergmann et al. 

2007; Huang et al. 2009; Narayan, Gagne & Safavi-Naini 2010). Therefore, instead of 
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finding records by record identifiers, records are queried by person identifiers. This 

operation requires finding the relevant EHRs using a person identifier, sourcing these 

EHRs and all required values from lookup tables where applicable to generate a 

response containing the required EHRs. This EHR sharing test is executed using a 

single query on a MySQL database using multiple joins, and is executed using a two-

step operation on a Couchbase database that is to (1) find record identifiers by person 

identifier and (2) obtain relevant documents. 

This EHR sharing test was executed on the cluster having the highest number of (16) 

nodes with the highest number of (500M) records stored to simulate realistic EHR data 

sharing on a large scale EHR system. 

For MySQL, a single query returning all relevant rows based on the patient identifier 

is used. The query included the lookup tables to identify the values stored by keys, 

such as Indigenous Status, Sex and Admission Mode to enable generating a 

meaningful response. It is aimed at returning a response containing the values 

corresponding to the identifiers to make sure interoperability and human-readability 

is achieved. For Couchbase, as documents already contain the relevant values as 

objects, there was no other join or enrichment required to achieve this. 

However, EHRs are stored as documents identified by EHR Identifiers in a NoSQL 

database (Couchbase). This led to the requirement of establishing an index to query 

EHR identifiers using person identifiers.  The results for the EHR sharing simulation 

are presented in Table 5.62 and Table 5.63. 

 Execution time in milliseconds 

Database Mean SD Min Max Median CI (95%)

MySQL 22.7549 101.0860 2.0435 528.4742 2.8469 39.9883

Couchbase 17.7056 31.0887 4.5703 197.9042 11.0846 10.0778

Table 5.62 Execution time statistics in milliseconds for EHR sharing simulation 
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 Number of operations per second 

Database Mean SD Min Max Median CI (95%)

MySQL 11429 2307 6298 16131 11598 913

Couchbase 14624 3344 8240 21403 14288 1084

Table 5.63 Number of operations per second for EHR sharing simulation 
 
The average number of EHR sharing operations per second is significantly lower and 

the average execution time is also significantly higher for Couchbase compared to the 

previous insert, update and delete record tests. However, MySQL performed similar 

to other database operations of insert, update and delete in both of the measured 

parameters. Therefore the performance difference between Couchbase and MySQL 

was minimal in the EHR sharing test. This was primarily caused by the 

time-consuming operation of identifying the document keys of the EHRs for a 

particular person. After identifying the document keys, the rest of the process 

execution time was taken up with retrieving the required documents by these keys. 

The results for Couchbase are consistent with the YCSB benchmark published on the 

Couchbase blog in July 2016 and the results of a study by Borkar et al. (2016), in 

which a special hardware used. The YCSB benchmarking results in Borkar et al. 

(2016) study demonstrated that the number of operations per second is significantly 

lower for YCSB Workload E compared to YCSB Workload A. YCSB Workload E 

contains complex operations comparable to EHR sharing simulation and YCSB 

Workload A is a mixed load of 50/50 reads and writes (Borkar et al. 2016; Zhu 2016). 

Therefore, the results for EHR sharing simulation in this study is consistent with the 

previous findings of a similar YCSB testing (Borkar et al. 2016).   

Despite being significantly higher than the insert, update and delete tests, the average 

response times for Couchbase database was still lower than the average response times 

for MySQL database in this EHR sharing test. Figure 5.17 demonstrates the 

comparative performance in terms of number of operations per seconds for Couchbase 

and MySQL databases. 
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Figure 5.17. The average number of EHR sharing operations per second for 

Couchbase and MySQL. 

5.4.5	Data	Size	
 
The size of the data stored in both MySQL and Couchbase 16 node cluster 

configurations has been measured for 1M, 10M, 100M and 500M records respectively. 

Data size for Couchbase has been measured after manually executing a compaction 

operation. However, it is worth noting that Couchbase requires at least 30% more 

space than the original data size to function properly. This is due to the design of the 

Couchbase data handling process that triggers a compaction for the data files at the 

configured fragmentation threshold which is 30% by default.  

The size for the data files grow linearly by the number of the records for both 

databases, however, the number of nodes did not have any significant effect on file 

size. Therefore, data sizes for both databases are shown in Table 5.64 in GBs. 
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Number of records Couchbase Data Size (GB) MySQL Data Size (GB)

1M 1.9 0.88

10M 20 8

100M 190 90

500M 940 440

Table 5.64 Size of the data by the number of records stored for Couchbase and 
MySQL 

It is observed from Table 5.64 that Couchbase needed more than double the amount 

of space required by MySQL to store the same amount of EHRs for a 16 node cluster 

configuration. Data sizes for both databases are also shown comparatively in Figure 

5.18 for the range of different numbers of records used in this EHR sharing simulation. 

 

  

Figure 5.18. Size of the data by the number of records stored for Couchbase and 

MySQL. 
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For the last test in the evaluation of a NoSQL document database comparative to a 

relational database in a distributed EHR system environment in this research, a 

complex query was executed on both the Couchbase database and the MySQL 
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database when the number of stored records was 500M and the number of nodes was 

16. 

The query is expected to return average date of birth per principal diagnosis. The result 

of this query was achieved using a ‘group by’ query in MySQL. On the other hand, a 

map function that selects the relevant data with a built-in reduce function called 

“_stats” is used for the same purpose in the Couchbase database. Views in Couchbase 

database are similar to materialised views in relational databases. A view is essentially 

a distributed index created as a result of a Map Reduce operation that can then be 

queried (Borkar et al. 2016). Materialised views are not supported in MySQL database 

and therefore query tests in this research do not include materialised view approach in 

relational databases. However this test is to evaluate complex query capabilities and it 

is valid to compare the Couchbase initial view creation to the MySQL query returning 

the same results. 

It took 4375 seconds for Couchbase database to create the initial view, however, as 

this is a one-time operation any other subsequent updates on the data are almost 

instantly reflected in the views. On the other hand, this query can be executed on the 

MySQL database without any need for particular indexes for the selected fields and 

the MySQL database was able to return the query result in 5149 seconds. An index 

was created on the MySQL database for principal diagnosis which also contains record 

identifier. Index creation took 601 seconds and after the creation of index, original 

query took 3884 seconds to execute. 

The Couchbase database and MySQL database demonstrated similar execution times 

for this complex query. However, after the initial view creation, querying the view on 

the Couchbase database takes less than 100 milliseconds on average. This duration is 

similar to the average execution time for the EHR sharing test. Therefore, it is 

observed that the Couchbase database is better at performing pre-defined queries after 

the initial view creation has been conducted, while MySQL performs better on ad-hoc 

queries when there are relevant indexes in place.  

5.5	Conclusion	

This chapter presented the key results of the evaluation phase of a simulation of a large 

scale EHR system in this study. The selection of a specific NoSQL database and a 

specific relational database, and a cloud environment to conduct the simulations tests 
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to evaluate the performance of a NoSQL database comparative to a relational database 

was determined. Couchbase was selected as the NoSQL database and MySQL was 

selected as the relational database for the purpose of this research. Amazon Web 

Services (AWS) was used to setup the test cloud environment for the evaluation of the 

performance of a NoSQL database comparative to a relational database in a simulation 

of a large scale EHR system. 

Test scenarios have been identified for relevant database operations and for a range of 

different configurations of number of nodes and numbers of records to simulate a large 

scale EHR system. Test scenarios simulate the real life EHR system functionalities. 

Insert tests have been conducted to simulate receiving EHR data from healthcare 

facilities and saving into databases. Update and delete tests simulate the relevant 

operations by healthcare facilities. Furthermore, one of the main aspects of EHR 

systems, EHR sharing, is simulated by querying records using person identifiers. In 

addition, data sizes for databases are presented comparatively and a sample complex 

query has been executed on both databases to understand and compare complex query 

capabilities for both databases. 

All test results are summarised in tables and provide descriptive statistics for the 

average number of operations per seconds and the average response time for both types 

of databases.   

Test results in this chapter demonstrated that the Couchbase database outperformed 

MySQL database in most of the performance tests. Furthermore, Couchbase database 

was able to demonstrate near linear scalability which was better than the scalability 

capabilities demonstrated by the MySQL database. Couchbase has also performed 

slightly better than MySQL database in data retrieval operation for EHR sharing 

simulation. However, test results also suggest that the MySQL database has better 

analysis performance for ad-hoc queries and stores data more efficiently using less 

storage space compared to the Couchbase database. In the following chapter, chapter 

6, the results of this chapter and chapter 4 are discussed in detail in relation to each of 

the research questions investigated in this study and the existing literature. Then this 

study as a whole is evaluated and discussed using design science research guidelines. 
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Chapter	6	–	Discussion	and	Evaluation	of	this	Research		

6.1	Introduction	
 
In this chapter, the results from the EHR system simulation are discussed in relation 

to each of the seven research questions investigated in this study. Then the research 

activities conducted in this study are evaluated and discussed using seven guidelines 

for evaluating design science research. For research question one, the key findings 

regarding database selection and development of the data models for each selected 

database are then discussed. For research question 2, the key findings regarding the 

development of the Random Healthcare Data Generator artefact that was used to 

populate each database and its underlying data structures in order for the EHR System 

Prototype simulation tests to be conducted are discussed. Next, for research question 

3, the key findings regarding the development of the EHR System Prototype 

simulation tests conducted for the selected NoSQL database (Couchbase) and the 

selected relational database (MySQL database) are discussed. For research question 4, 

the key findings regarding the performance evaluation of database operations (insert, 

update, delete records) for the selected NoSQL database and selected relational 

database are compared and discussed. For research question 5, the key findings 

regarding the performance evaluation of scalability for the selected NoSQL database 

and selected relational database are compared and discussed. For research question 6, 

the performance evaluation of EHR sharing for the selected NoSQL database and 

selected relational database are compared and discussed. For research question 7, the 

performance evaluation of complex querying for the selected NoSQL database and 

selected relational database are compared and discussed. Finally, to conclude this 

chapter, the research activities conducted to complete this design science study are 

evaluated and discussed using seven design science research guidelines (Hevner et al 

2004). The structure of this chapter is shown in Figure 6.1. 
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Figure 6.1. Structure of Chapter 6 

 

6.2	Discussion	of	Key	Findings		
 
The key results from chapters 4 and 5 are discussed in relation to each of the research 

questions investigated in this study and the existing literature in the following 

subsections. 

6.2.1	Development	of	Relational	and	NoSQL	Data	Models	‐	Research	
Question	1	
 
RQ1: How can a NoSQL document data model and a relational data model be 

developed for an EHR system that are in line with documents published by 

healthcare authorities in Australia?   

In this research, relational and NoSQL (document) data models which provided the 

data structures for storing EHRs in a NoSQL document database and a relational 

database were developed based on the activities undertaken and described in Chapter 

4 – Development of IT artefacts. Data sets and data elements are based on the National 

Health Data Dictionary published by the Australian Institute of Health and Welfare 

(AIHW 2015). The data model for the relational MySQL database was developed as 

multiple tables based on normalisation theory (Codd 1970) (see Chapter 4 for 

relational database data model). The data model for the NoSQL Couchbase database 

was developed based on a document model as aggregate oriented, nested document 

model (Goli-Malekabadi, Sargolzaei-Javan & Akbari 2016; Gudivada, Rao & 

Raghavan 2016) as discussed in Chapter 2 Sections 2.3.1 and 2.4.3.  
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The document data model contained all information as nested objects in JSON format 

along with all required code and values. However, the values for codes that are a part 

of a medical coding system, such as ICD-10-AM for principal diagnosis (AIHW 

2016), are stored in separate lookup tables for relational databases. The different 

design of each data model caused the overall data size to be smaller in relational 

databases compared to NoSQL databases—an aspect which is discussed in more detail 

later in this chapter. 

6.2.2	Random	Healthcare	Data	Generator	–	Research	Question	2	
 
RQ2: How can a random healthcare data generator be developed that will 

generate EHRs that are representative of the characteristics of Australian 

healthcare data based on statistics available in the public domain? 

The first software artefact developed for this research was the Random Healthcare 

Data Generator. This artefact generated the test data used in this research. One of the 

key contributions of this research, this artefact, is able to generate synthetic healthcare 

data which eliminates the possible ethical issues of obtaining access to patient EHRs.  

The Australian Institute of Health and Welfare (AIHW) publishes the healthcare 

statistics for Australian health system, which are the main inputs for the Random 

Healthcare Data Generator artefact (AIHW 2016). This is a fundamental requirement 

to generate synthetic data that will show similar data distribution characteristics to the 

healthcare statistics for the Australian health system. 

The data generated as the output of this artefact has been compared with the source 

data that is publicly available from healthcare statistics provided by AIHW. The 

distribution characteristics of the generated data were shown to be similar to the source 

data (Australian healthcare statistics) as described in Chapter 4 section 4.5.2. 

Therefore, it is observed that the data generation for a particular dataset is possible 

based on the relevant statistical publications. This is an approach that is applicable to 

domains where such statistics and data dictionaries are available.  

EHRs are created and then inserted into each database. Thus, the data models 

established as a response to the previous research question provide the data structures 

for storing EHRs in each database (NoSQL database, Relational database). 
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6.2.3	EHR	System	Prototype	–	Research	Question	3	
 
RQ3: How can a prototype EHR system be developed that will facilitate database 

operations and measure performance and scalability for NoSQL document 

databases and relational databases?      

The second software artefact, a prototype EHR system, was developed to act as an 

intermediary between the Random Healthcare Data Generator IT artefact and the 

selected NoSQL document database (Couchbase) and the selected relational database 

(MySQL). This IT artefact was used to evaluate the comparative performance of two 

selected databases (NoSQL document database; MySQL database) through execution 

of database operations and collection of relevant metrics about the executions, namely 

execution time and number of executions per second.  

The data generated by the Random Healthcare Data Generator is processed by this 

prototype EHR system and inserted into NoSQL and relational databases for a number 

of different node configurations. This simulates a national EHR system that receives 

data from a healthcare service provider and stores that data in a database. This artefact 

executed insert record, update record and delete record operations and collected 

relevant metrics on the performance of each database operation. 

Another key function of the prototype EHR system is to enable simulation of the EHR 

sharing operation. This operation requires identification of all EHR documents of a 

particular person in the NoSQL database or joining all relevant tables to find out all 

relevant data in multiple tables in the relational database, and returning the results to 

the client. This functionality simulates the scenario of a healthcare service provider—

either a hospital or emergency services—requesting EHRs for a particular patient. This 

artefact has also collected the same database performance metrics for EHR sharing 

simulation tests. 

Furthermore, this EHR system prototype has also executed complex query tests on 

both NoSQL and relational databases and recorded the performance metrics for the 

complex query simulation tests. 
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6.2.4	Performance	evaluation	for	basic	database	operations	(insert,	update,	
delete)	for	NoSQL	and	relational	databases	–	Research	Question	4	
 
RQ4: How do NoSQL document databases perform compared to relational 

databases in executing basic database operations such as insert, delete and update 

on electronic health records? 

Results of the performance evaluation of a NoSQL database comparative to a 

relational database (presented in chapter 5) is based on two commonly used database 

performance metrics: (1) average number of database operations per second; and (2) 

average execution time (milliseconds) of a database operation (Barata, Bernardino & 

Furtado 2014; Meinel et al. 2015; Thanopoulou, Carreira & Galhardas 2012). These 

two metrics are calculated to measure the performance of insert, update and delete 

records operations using different number of records stored and node count 

combinations. A summary table for the average number of operations per second by 

node count for each operation, independent of number of total records stored, is 

presented in Table 6.1. 

Number 
of Nodes 

INSERT UPDATE DELETE 

Couchbase MySQL Couchbase MySQL Couchbase MySQL
1 Node 20,085 4,659 20,292 3,923 72,411 2,239
2 Nodes 35,350 6,099 38,427 8,254 124,200 3,618
4 Nodes 77,956 5,977 93,993 18,247 193,210 5,767
8 Nodes 143,015 10,438 171,546 33,960 295,023 11,779
16 Nodes 323,082 15,980 343,688 55,943 492,449 21,140

Average 119,898 8,631 133,589 24,065 235,459 8,909

Table 6.1. Average number of operations per second by the number of nodes and 
operation type for Couchbase database and MySQL database. 
 
The Couchbase database outperformed the MySQL database in all node configurations 

for insert, update and delete operations. While the best performance for the Couchbase 

database is observed in delete operations, the MySQL database performed better in 

update operations compared to other types of operations. The Couchbase database was 

able to execute 5 to 26 times more operations per second compared to the MySQL 

database. The results presented in Table 6.1 also indicate that the Couchbase database 

has an ability to scale out at a rate exponential to relational databases, which has 

significant performance implications that are discussed in the next section. 
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The second measure of database performance was average execution time in 

milliseconds for each insert, update and delete record operation. A summary table for 

this measure is presented in Table 6.2. 

Number 
of nodes 

INSERT UPDATE DELETE 

 
Couchbase MySQL Couchbase MySQL Couchbase MySQL

1 Node 0.15 60.14 0.15 37.68 0.21 35.06
2 Nodes 0.19 62.87 0.15 33.54 0.25 35.19
4 Nodes 0.18 82.42 0.16 29.98 0.21 27.57
8 Nodes 0.31 70.91 0.12 14.55 0.15 21.51
16 Nodes 0.24 104.37 0.17 14.91 0.23 24.22

Average 0.22 76.14 0.15 26.13 0.21 28.71

Table 6.2. Average execution times by the number of nodes and operation type 
for Couchbase database and MySQL database. 
 
Couchbase database was able to complete the execution of insert, update and delete 

operations in less than a millisecond on average. Conversely, MySQL was able to 

execute insert operations in 76 milliseconds, update operations in 26 milliseconds and 

delete operations in 29 milliseconds on average. Furthermore, in some tests, MySQL 

completed executions of some operations in around 1,000 milliseconds. In contrast, 

the maximum duration for executions on Couchbase database was 4.4 milliseconds 

and it also demonstrated a predictable high performance during the tests. The 

difference in average execution times between Couchbase database and MySQL 

database was highly significant as Couchbase database was able to execute operations 

more than 300 times faster than the MySQL database for some tests. 

Insert, update and delete operations are all single EHR operations. Couchbase database 

has performed significantly better than MySQL database in both average number of 

operations per second and average execution time measures in these operations. The 

results are consistent with previous studies where NoSQL databases demonstrate a 

better performance for different workloads in various setups (Biyikoglu 2016; Cooper 

et al. 2010; Freire et al. 2016; Li & Manoharan 2013). The results for the operations 

dealing with multiple EHRs such as EHR sharing simulation are discussed in the next 

sections. 

In terms of the number of records stored while executing the operations on the 

databases, Couchbase and MySQL have demonstrated different results. Table 6.3 
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summarises the average number of operations per second for different numbers of 

stored records in both databases. The table shows the mean value of average number 

of operations per second for 8 and 16 nodes, for which storing 500M records were 

possible. 

Number of 
records 

INSERT UPDATE DELETE 

 
Couchbase MySQL Couchbase MySQL Couchbase MySQL

1M 213,738 14,618 247,970 52,556 384,021 31,202
10M 254,020 13,595 253,811 50,179 371,498 19,053
100M 224,638 12,698 260,272 40,281 384,889 10,154
500M 239,801 11,925 268,416 36,790 434,536 5,430

Average 233,049 13,209 257,617 44,951 393,736 16,460

Table 6.3. Average number of operations per second for the number of stored 
records and operation type for Couchbase database and MySQL database. 
 

Couchbase database was able to handle the number of operations per second on or 

above the overall average for 1M, 10M, 100M and 500M stored records in all 

operation types. However, for MySQL database, the average numbers of operations 

per second for 100M and 500M stored records were lower than the overall average 

number of operations per second for MySQL database. For instance, the overall 

average number of insert operations for MySQL was 13,209, while it was 12,698 for 

100M records test and 11,925 for 500M records test. 

This demonstrates that the performance for MySQL database decreases by the number 

of stored records in all cases, while the total number of records stored does not have 

any significant impact on the Couchbase database. This is consistent with previous 

studies showing similar performance degradation on relational databases over time—

as mentioned in the previous chapter (Hadjigeorgiou 2013; Schmidt 2001; Souley & 

Mohammed 2013). 

In summary, Couchbase database demonstrated a predictable and significantly higher 

performance than MySQL database in operations dealing with a single EHR. 

Moreover, Couchbase database also preserved the high performance in a higher 

number of records in contrast to MySQL which slowed down considerably as the 

number of records stored increased from 1M, 10M, 100 M and 500 M. 
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6.2.5	Scalability	capabilities	of	NoSQL	document	database	and	 relational	
database	–	Research	Question	5	
 
RQ5: How do NoSQL document databases scale compared to relational 

databases in electronic health record systems? 

In addition to performance evaluation of basic database operations for the selected 

NoSQL document database and relational databases, scalability capabilities of each 

database are also compared as an important part of this research.  

The tests were executed on different numbers of nodes to evaluate scalability 

capabilities of both databases. The Couchbase database had identical nodes, however, 

MySQL database had a specified number of data nodes in addition to SQL and API 

nodes. Therefore, for instance, when Couchbase database had 4 nodes, MySQL 

database had 5 nodes, 4 data nodes and one node running API and SQL node which 

handles the coordination and execution of T-SQL statements with data nodes. Thus, 

MySQL requires more hardware than Couchbase in order to run on the same number 

of data nodes. 

Table 6.1 in section 6.2.4 summarises the average number of operations per second 

for various number of nodes which evaluates the scalability capabilities of Couchbase 

and MySQL databases for insert, update and delete operations. Both the Couchbase 

database and MySQL database demonstrated scalability capabilities, which are 

presented as a percentage change in the number of average operations that can be 

executed for each increase in the node count in Table 6.4. 

Change in 
node count 

INSERT UPDATE DELETE 

Couchbase MySQL Couchbase MySQL Couchbase MySQL
1 -> 2 75.99% 30.90% 89.37% 110.41% 71.52% 61.57%
2 -> 4 120.53% -2.01% 144.60% 121.08% 55.56% 59.40%
4 -> 8 83.45% 74.66% 82.50% 86.11% 52.70% 104.25%
8 -> 16 125.91% 53.08% 100.35% 64.73% 66.92% 79.47%

Average 101% 39% 104% 96% 62% 76%

Table 6.4. Percentage change in average number operations per second per 
change in node count by operation type for Couchbase database and MySQL 
database. 
 
Couchbase demonstrated a linear scalability for insert and update operations, as the 

average number of operations per second is increased by around 103% on average 
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when the node count is doubled. The improvement in performance was 62% on 

average for delete operations, however, the number of delete operations was 

significantly higher than the insert and update operations on each configuration. 

The average numbers of operations for all node counts per operation type for the 

Couchbase database are plotted in Figure 6.2. 

 
Figure 6.2. Average number of operations per second per node count for 

Couchbase database. 

 
On the other hand, MySQL also demonstrated some scalability, but the increase in 

performance was 39% for insert operations on average when the node count is 

doubled. The increase in performance was 96% for update operations which required 

change in some tables, while the other operations require changes in all relevant tables 

as the values in a single EHR are stored across multiple tables after normalisation 

process is applied to the relational database. The improvement in delete operations 

was better than the improvement for insert operations for the relational database. 

However, improvements as the number of nodes was increased to scale up the 

relational database operations were not as good as the improvement seen for the 

Couchbase database. The average numbers of operations per second for all node 

counts per operation type for the MySQL database are plotted in Figure 6.3. 
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Figure 6.3. Average number of operations per second per node count for MySQL 

database. 

 
The average improvements in performance as the Couchbase database and the MySQL 

database are scaled up across an increasing number of nodes is presented in Table 6.4 

and in Figure 6.2 and Figure 6.3. The trends in Table 6.4 and Figures 6.2 and Figure 

6.3 clearly demonstrate that Couchbase database has a near linear scalability for insert 

and update operations, while MySQL can scale up in update operations only. The 

improvement was 89% on average for Couchbase database when the number of nodes 

doubled; and 70% for MySQL. Therefore, Couchbase has demonstrated a better 

overall scalability on a much larger number of database operations executed per 

second.  

Furthermore, while Couchbase has no limitation in maximum number of nodes 

mentioned in its documentation, maximum number of vbuckets—which are the 

storage files and therefore building blocks for data storage for Couchbase—is limited 

to 1024 (nodes). In contrast, the MySQL Cluster with NDB engine can only scale up 

to 255 nodes, including data and SQL nodes. As a result, Couchbase database is 

capable of scaling to a much higher number of nodes than the MySQL database. 
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6.2.6	EHR	Sharing	Simulation	–	Research	Question	6	
 
RQ6: How do NoSQL document databases perform compared to relational 

databases in supporting electronic health record sharing through patient record 

retrieval in a distributed EHR system? 

Despite the significant performance difference between the Couchbase database and 

MySQL database for insert, update and delete operations, both databases demonstrated 

similar performance for the EHR sharing simulation. 

The data retrieval for EHR sharing simulation requires more operations on databases 

compared to insert, update and delete operations. A single person can have multiple 

EHRs, and EHR sharing requires access to this person’s previous EHRs. Therefore, in 

Couchbase tests, it is necessary to identify the EHR document keys for a particular 

person before fetching these EHRs. This leads to a two-step operation involving a 

query by a person identifier rather than the document key. Furthermore, in order to 

include all the necessary information, such as the values (meanings) of the codes to 

make it inter-operable and human readable, the result set is generated by joining 

multiple tables in MySQL database. 

A two-step operation is a requirement for Couchbase database and joining lookup 

tables to fetch the full result set is a requirement for MySQL database. These 

requirements cause higher execution times resulting in a lower average number of 

operations per second for both databases. Couchbase database had an average 

execution time of 17.8 milliseconds, while MySQL database was able to execute the 

simulation queries in 22.7 milliseconds on average. The average number of operations 

for a Couchbase database was 14,624 and 11,429 for a MySQL database. 

As a result, Couchbase database was able to handle 28% more executions and 

responded 29% faster than MySQL database in this EHR sharing simulation. 

6.2.7	Complex	Query	–	Research	Question	7	
 
RQ7: How do NoSQL document databases perform compared to relational 

databases in executing complex queries on electronic health records? 

In order to assess the performance of NoSQL databases comparative to relational 

databases when the test scenario involves a complex ad-hoc query, a sample query has 
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been established to simulate the high-level statistic that shows the average date of birth 

for principal ICD10 –medical diagnosis- codes. The query is established as a T-SQL 

statement for MySQL database and a view for Couchbase database.  

The tests have demonstrated that initial view creation for Couchbase took longer than 

MySQL query execution duration. However, after the creation of the view, Couchbase 

database was able to respond to subsequent queries within the same view in around 

100 milliseconds. Therefore, it is concluded that if the complex query is ad-hoc and 

query conditions are changing, the MySQL database can perform better than the 

Couchbase database. However, if the query is pre-defined, the Couchbase database is 

able to respond to queries in a relatively small execution time after the initial view 

creation has occurred. 

6.2.8	Data	Size	
 
In addition to the main research questions, an additional aspect, the data size of each 

database (NoSQL versus relational), is compared within the scope of this research. 

The total size for both the Couchbase database and the MySQL database is for 1M, 

10M, 100M and 500M EHRs respectively for the different test scenarios. It is observed 

that the total size has grown linearly by the increasing number of records for both 

databases in the simulated EHR system environment. 

However, Couchbase database needed more disk space to store the same number of 

EHRs compared to MySQL database. The main reason for this difference is the data 

structure underpinning the databases. Couchbase database has stored the EHRs as 

JSON documents including all values resulting in a readable and understandable, 

complete document. On the other hand MySQL database has stored EHRs using a 

normalised approach in multiple tables.  

For instance, Person section of the EHR documents stored in a JSON object format 

takes 553 bytes (without spaces) as shown below: 
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 "Person": { 
  "Person identifier": "123456789", 
  "Area of usual residence": { 
   "METeOR identifier": "469909", 
   "code": "31701144631446", 
   "value": "Darling Heights" 
  }, 
  "Country of birth": { 
   "METeOR identifier": "459973", 
   "code": "5101", 
   "value": "Myanmar" 
  }, 
  "Date of birth": "01012000", 
  "Indigenous status": { 
   "METeOR identifier": "291036", 
   "code": "4", 
   "value": "Neither Aboriginal nor Torres Strait Islander origin" 
  }, 
  "Sex": { 
   "METeOR identifier": "287316", 
   "code": "1", 
   "value": "Male" 
  }, 
  "Medicare Eligibility status": { 
   "METeOR identifier": "481841", 
   "code": "1", 
   "value": "Eligible" 
  }, 
  "Address": "Address Information Sample", 
 }, 
 

The same data stored in a MySQL database in a Person table is shown below (column 

headers for information only, not are included in data size): 

Person 
Identifier 

Area Of 
Usual Residence 

Country Of Birth Date Of Birth 

123456789 31701144631446 5101 2000-01-01 
Indigenous Status Sex Medicare Eligibility 

Status 
Address 

4 1 1 Address Information 
Sample 

 
Based on the table statistics available in MySQL, one row in the Person table requires 

around 190 bytes of disk storage on average. All sections in EHRs have similar 

differences between MySQL database storage and Couchbase database storage. 
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Therefore, in summary, Couchbase database requires around 100% more disk size 

compared to MySQL database to store the same number of EHRs. 

6.3	Evaluation	of	this	Research	using	Design	Science	Guidelines	
 
Design Science research is defined as a ‘problem solving paradigm’ As discussed in 

Chapter 3, this research fits in the Design Science research paradigm in terms of its 

main outcome being a solution to a particular problem for which four IT artefacts are 

designed and implemented to enable the evaluation of the solution (Hevner et al. 2004; 

March & Smith 1995). In this section, research activities and contributions of this PhD 

Thesis are presented and discussed in the context of seven Design Science guidelines 

proposed in a seminal MISQ paper on Design Science (Hevner et al. 2004). 

6.3.1	Design	of	IT	Artefacts	in	this	Study	
 
The first guideline is that Design Science research needs to produce an artefact. This 

artefact can be a construct, a model, a method, or an instantiation (Hevner et al. 2004, 

p. 347). 

In the course of this research four artefacts are developed as instantiations. A Random 

Healthcare Data Generator overcame the ethical issues and operational issues related 

to accessing sufficient healthcare data for the purposes of this study. This allowed a 

simulation of database operations such as insert, update and delete records and 

scalability and complex querying to be evaluated across multiple nodes (1 to 16) and 

large numbers of EHRs (1 Million to 500 Million).  The second artefact Prototype 

EHR System managed the simulation of these database operations for a NoSQL 

document database (Couchbase) and a relational database (MySQL) in a large scale 

EHR system, including capturing the performance metrics of these database 

operations for each database. These artefacts are built on two data models developed 

in this study with data structures designed for storing EHRs in each database 

(Couchbase, MySQL). These data models were defined in the context of the Australian 

healthcare domain. These artefacts can be applied to similar research areas requiring 

performance testing that need synthetic healthcare data or an EHR sharing 

environment.  

6.3.2	Problem	Relevance	of	this	Study	
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The second guideline is that “the main objective of design-science research is to 

develop technology-based solutions for important and relevant business problems” 

(Hevner et al. 2004, p. 347).  An extensive review of the literature demonstrated that 

the modern day requirements for storing healthcare data has changed significantly 

from the requirements of previous decades (Goli-Malekabadi, Sargolzaei-Javan & 

Akbari 2016; Kruse et al. 2016). The size and heterogeneity of healthcare data has 

changed significantly over time and traditional relational databases cause a bottleneck 

in healthcare information systems (Freire et al. 2016; Jin, Deyu & Xianrong 2011; 

Lee, Tang & Choi 2013; Raghupathi & Raghupathi 2014; Schmitt & Majchrzak 2012). 

There is limited research in the area and most of the previous studies lack enough 

scope to identify and solve the problem of healthcare data management and storage. 

This research evaluated the performance of a NoSQL document database (Couchbase) 

solution comparative to a relational database (MySQL) using synthetic healthcare data 

in a simulation of large scale EHR system. The research problem is identified and 

extensively discussed in Chapter 2. In this research the proposed solution to this 

research problem is developed and evaluated using IT artefacts which constitute a 

‘technology-based solution’ that is relevant and can inform real world practice. 

6.3.3	Design	Evaluation	of	IT	Artefacts	in	this	Study	
 
The third guideline is that “the utility, quality, and efficacy of a design artefact must 

be rigorously demonstrated via well-executed evaluation methods” (Hevner et al. 

2004, p. 347). The performance of a NoSQL database in healthcare data management 

is evaluated using the artefacts developed in this research to enable a simulation of a 

large scale EHR system. A simulation is considered a viable way to evaluate the utility, 

quality and efficacy of a design artefact (Hevner et al. 2004; Gill & Hevner 2013). The 

evaluation is based on generating healthcare data and measuring and evaluating the 

performance of database operations such as insert, update and delete records, 

scalability, EHR sharing and complex querying comparatively for NoSQL and 

relational databases. Therefore, a realistic prototype EHR system was developed to 

facilitate database operations for a NoSQL document database (Couchbase) and a 

relational database (MySQL) on EHRs. The simulated EHR data is provided by the 

Random Healthcare Data Generator at the scale of 1 Million, 10 Million, 100 Million 

and 500 Million records. These two artefacts were built on two data models developed 

for this study with data structures designed for a NoSQL document database and 
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MySQL relational database with data elements based on Australian Healthcare data 

and statistics. The database performance metrics used for evaluation of the 

performance of a NoSQL document database comparative to a MySQL relational 

database are well established metrics based on the execution times of database 

operations (per second) and the number of records handled per second for database 

operations. Data size used by each database for different configurations of number of 

nodes (1, 2, 4, 8, 16) and number of records (1M, 10M, 100M, 500M) was also 

evaluated. This approach was justified as being suitable to evaluate the performance 

of a NoSQL document database comparative to a relational database in large scale 

EHR Systems based on Australian healthcare data specifications. 

The performance, scalability, EHR sharing and analysis capabilities for the selected 

NoSQL document database and relational database are evaluated comparatively using 

different configurations and test scenarios to demonstrate the benefits of using NoSQL 

databases in healthcare data management in large scale EHR systems. 

6.3.4	Research	Contributions	
 
The fourth guideline is that “effective design-science research must provide clear and 

verifiable contributions in the areas of the design artefact, design foundations, and/or 

design methodologies” (Hevner et al. 2004, p347). This research has made a number 

of important contributions to theory and practice. The main focus of this study was to 

evaluate NoSQL databases in the context of the Australian healthcare domain, which 

required developing IT artefacts and a simulation environment. Therefore, the 

principal contributions are the Random Healthcare Data Generator and NoSQL based 

EHR System prototype artefacts for the simulation of a large scale EHR system 

running on a cloud computing platform, AWS. These IT artefacts enabled the 

researchers to conduct the performance evaluation of database operations, scalability, 

EHR sharing and complex querying for a Couchbase database comparatively to a 

MySQL relational database. According to Hevner et al. (2004), the artefact(s) must 

provide a solution to unsolved problems. As discussed in Chapter 3, Gregor and 

Hevner (2013) identified a number of ways that design science research contributes to 

the Information Systems domain of knowledge (Gregor & Hevner 2013). This 

research contributes to knowledge by way of exaptation, adapting a new and emerging 

technology—NoSQL databases—which have been emerged in response to significant 
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data management problems in other fields or disciplines to another field and industry 

sector, healthcare. Therefore, this research applies existing knowledge about NoSQL 

document databases to the healthcare domain by developing artefacts to enable a 

performance evaluation of a NoSQL document database for data management in large 

scale EHR systems, which aligns with the research contribution of an exaptation 

(Gregor & Hevner 2013).  

A comparison of the performance and scalability features, EHR sharing and analysis 

capabilities for a NoSQL document database and a relational database are evaluated 

using quantitative performance measures, along with descriptive statistics of the test 

results. Therefore, a solid comparative evaluation of the performance of database 

operations such as insert, update and delete, scalability, record sharing and complex 

querying for a NoSQL document database and a relational database are established for 

the healthcare domain. This also leads to an EHR system design based on a NoSQL 

document database to solve the healthcare data storage and handling problems 

identified and discussed in Chapter 1 and Chapter 2. Thus, this research has made 

significant and important contributions to both theory and practice. 

6.3.5	Research	Rigour	
 
The fifth guideline is that “Design Science research relies upon the application of 

rigorous methods in both the construction and evaluation of the design artefact” 

(Hevner et al. 2004, p. 347). In this research, the empirical work has been carried out 

by developing and then applying and evaluating a solution to the research problem 

using the Design Science steps suggested and discussed in Chapter 3 Methodology 

(Gregor & Hevner 2013). Following the identification of the problem based on 

literature review, IT artefacts are constructed based on Australian healthcare dataset 

requirements and publicly available Australian healthcare statistics.  

In the evaluation phase of the IT artefacts, quantitative data was collected using well-

established performance metrics. The results of all performance tests are presented 

comparatively for a NoSQL document database and a relational database and 

discussed extensively. Sufficient details about the environment, test cases and other 

technical information are provided to allow other researchers to replicate the research. 

Best practice, based on previous literature, was followed when establishing the data 
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models and executing the simulation tests. The results of the evaluation are discussed 

in section 6.2 of this chapter.  

6.3.6	Design	as	a	Search	Process	in	this	Study	
 
The sixth guideline is that “the search for an effective artefact requires utilizing 

available means to reach desired ends while satisfying laws in the problem 

environment” (Hevner et al. 2004, p. 347). The IT artefacts developed in this research 

are the results of a detailed search process. All datasets and data elements, as well as 

coding references used in the Random Healthcare Data Generator, are based on the 

National Health Data Dictionary (NHDD) published by the Australian Institute of 

Health and Welfare and publicly available national healthcare statistics (AIHW 2015, 

2016). The required information is gathered from these sources to generate synthetic 

healthcare data needed for the database operations simulation tests in a large scale 

EHR system. After a detailed review of the available NoSQL databases and relational 

databases, Couchbase, a document database was chosen as the most suitable NoSQL 

database and MySQL was chosen as the most suitable relational database for the 

purposes of this study within the scope of a PhD study.   

The prototype EHR system is based on the data models developed using the NHDD 

definitions and data structures designed to meet the unique requirements for each 

selected database (NoSQL document database, Couchbase; relational database, 

MySQL). Details of the research activities undertaken to design and evaluate these 

artefacts are described and justified in Chapter 3. The artefacts were designed and 

developed to maximise the alignment with the problem identified and seven research 

questions specified in Chapter 2, and the requirements of the healthcare domain. In 

this regard, the IT artefacts developed and evaluated in this research constitute 

valuable and promising solutions to the research problem. 

6.3.7	Communication	of	this	Research	
 
The seventh guideline is that “Design Science research must be presented effectively 

both to technology-oriented and management-oriented audiences” (Hevner et al. 2004, 

p. 347).  The researcher, although working fulltime as an IT practitioner with his own 

IT Consulting company, has published and presented one research paper from this 

study on the feasibility of NoSQL databases for data management of EHRs at the 25th 
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Australasian Conference on Information Systems in December 2014 in Auckland, 

New Zealand. This research paper has been uploaded to ResearchGate and has gained 

considerable interest from both academics and practitioners, with over 1500 reads as 

at September 2017.  As a result of this paper, the researcher has been contacted by a 

number of practitioners seeking advice on how to implement a NoSQL database 

solution for EHR systems. This paper has also been cited by other academics, as 

evidenced by the citations statistics in Scopus (5 citations) and Google Scholar (9 

citations). 

This PhD thesis will be published in the public domain after a standard 12 months 

embargo. Consequently, this research will be freely available to other researchers who 

wish to build on the foundations established in this study. 

The source code for two key artefacts developed in this research, Random Healthcare 

Data Generator and Prototype Electronic Health Records System will be made 

available in the public domain via GitHub for interested researchers and practitioners 

to download and adapt and use for their own purposes. 

As an outcome of this research, a NoSQL based EHR system for large scale 

(particularly national) implementation is proposed and evaluated and found to be 

feasible. In many aspects, including cost reduction and high availability, this solution 

would be of benefit to the healthcare industry. A significant step has already been 

taken with this research, as demonstrated in the development of IT artefacts to enable 

a simulation of a large scale EHR system. Moreover, the evaluation of the database 

performance of a NoSQL document database versus a relational database provides a 

proof of concept that works in a realistic test environment. Therefore, key findings of 

this research would benefit both technology-oriented audiences and management-

oriented audiences.  
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6.4	Conclusion	
 
In this chapter, the key findings of this study are discussed in relation to each of the 

IT artefacts developed in this study and research questions 1, 2 and 3. The 

development of two primary IT artefacts for this research, a Random Healthcare Data 

Generator and a Prototype EHR system, are underpinned by the development of 

another two IT artefacts, two data models with data structures designed for storing 

EHRs in a NoSQL document database and a relational database. The Random 

Healthcare Data Generator enabled this research to generate EHRs representative of 

Australian Healthcare characteristics and statistics at scale of 1 Million, 10 Million, 

100 Million and 500 Million records. These randomly generated healthcare data sets 

were used by the Prototype EHR system to facilitate a performance evaluation of a 

NoSQL document database versus a relational database in a simulation of a large scale 

EHR system. The key findings regarding the evaluation of the performance of a 

NoSQL document database comparative to a relational database in large scale EHR 

system simulation are discussed in relation to research questions 4, 5 6 and 7. The 

performance evaluation focused on database operations including insert, update and 

delete of EHRs, scalability, EHR sharing and complex querying. The test scenarios 

were configured by the Prototype EHR system for 1, 2, 4, 8 and 16 nodes and 1 

Million, 10 Million, 100 Million and 500 Million records to simulate the performance 

evaluation in a large scale EHR system. The detailed discussion of the key findings 

regarding research questions 4, 5, 6 and 7 demonstrated that a Couchbase database has 

performed better than a MySQL database in most of the tests, however, MySQL 

database has superior analysis performance for ad-hoc queries and stores the data 

using less space compared to Couchbase database. 

Then the research as a whole is evaluated using Design Science research assessment 

guidelines (Hevner et al. 2004). Each of these assessment criteria is discussed in 

relation to the relevant stage of this study. This research satisfies the design science 

assessment guidelines and contributes to theory and practice by suggesting a feasible 

solution to a real world research problem. 

  



169 
 

Chapter	7	–	Conclusion	

7.1	Introduction	
 
Data management is a significant challenge in data intensive applications (Cattell 

2011; Konishetty et al. 2012; Valduriez 2011). EHR systems and their underlying data 

management systems are attracting increased attention from academics and industry 

as high availability, high performance and scalability are sought-after features in 

healthcare information systems (Goli-Malekabadi, Sargolzaei-Javan & Akbari 2016; 

Klein et al. 2014; Kruse et al. 2016; Raghupathi & Raghupathi 2014). However, 

literature suggests that the feasibility of using NoSQL databases depends on the actual 

use case and there is limited empirical research that has empirically evaluated the 

usage of NoSQL databases in the healthcare domain (Hadjigeorgiou 2013; Li & 

Manoharan 2013; Nance et al. 2013). 

This research investigated the feasibility of the usage of NoSQL databases in large 

scale EHR systems using a Design Science Research Approach. Results of this 

empirical research were conclusive, as the selected NoSQL document database, 

Couchbase, was shown to outperform its chosen relational database alternative, 

MySQL, in most of the test cases for database operations and also demonstrated 

significantly better scalability capabilities.  

In this final chapter, the research focus and key findings are presented. Then, the 

research activities are summarised and presented in relation to each of the research 

questions. This is followed by a discussion of the contributions this research has made 

to theory and practice. The limitations of this study are acknowledged and future areas 

of research are highlighted. Finally, in the concluding section of this chapter, a brief 

summary of this PhD study is presented. The structure of this chapter is shown in 

Figure 7.1. 
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Figure 7.1 Structure of Chapter 7 

7.2	Summary	of	Study	
 
7.2.1	Research	Problem	

In a broad sense, the aim of this research was to explore the feasibility of the usage of 

NoSQL document databases in large scale EHR systems. Hence this study addresses 

the following general research question: 

How can a simulation of a large EHR system be developed so that the performance 

of NoSQL document databases comparative to relational databases can be evaluated? 

Past empirical research suggests that the expanding size of healthcare systems in 

general is a major obstacle for EHR systems. Moreover, for EHR systems to be able 

facilitate exchange of health information, these types of systems should be scalable 

and flexible (Blobel 2006; Freire et al. 2016; Lee, Tang & Choi 2013; Orfanidis, 

Bamidis & Eaglestone 2004). Furthermore, the heterogeneous nature of healthcare 

data is also considered a bottleneck for EHR system implementations. Most of the 

current EHR systems are based on relational databases which do not support a flexible 

data schema (Dolin et al. 2006; Guo et al. 2005; Guo et al. 2004; Jin, Deyu & Xianrong 

2011; Schmitt & Majchrzak 2012; Takeda et al. 2000).   

As discussed in Chapter 2, data storage systems are crucial for all sorts of data 

intensive applications which increasingly need to store and manage huge amounts of 

data. Modern applications such as high-traffic web sites or large enterprise systems 

require new approaches to data storage in order to achieve higher performance and 

higher availability than is possible with traditional relational database management 
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systems (RDBMS). This is particularly the case when it also involves unstructured 

data or when flexible data models are a requirement. Therefore, using NoSQL 

document databases has significant potential to lead to better EHR applications in 

terms of scaling, flexibility and high availability (Jin, Deyu & Xianrong 2011; Lee, 

Tang & Choi 2013; Schmitt & Majchrzak 2012). 

Previous studies suggest that NoSQL databases have many technical and financial 

advantages for large scale data intensive applications (Borkar, Carey & Li 2012; 

Manyam et al. 2012; Meijer & Bierman 2011; Mengchen 2011). However, there is no 

unanimous agreement in the literature on the overall superiority of NoSQL databases 

over traditional relational databases in all cases, or generic suitability for data-

intensive applications. 

Previous research in the healthcare domain on this topic is largely limited to evaluating 

basic database performance of NoSQL databases in comparison to relational 

databases. However, inadequate attention has been given to establishing a healthcare 

data model and testing the performance with realistic healthcare data sets in terms of 

size for a large scale implementation to validate the comparison between NoSQL 

databases and relational databases. Clearly, this may lead to results which deviate from 

what would be obtained in a real-world scenario. 

Hence, first this research attempted to demonstrate how a large scale EHR system can 

be established using NoSQL databases by selecting the right NoSQL database type, 

document store and establishing a realistic healthcare data model. Secondly, this 

research aimed to demonstrate how well NoSQL document databases perform 

compared to relational databases in terms of performance, scalability, data sharing and 

analysis capabilities in a real life-like scenario. Relational databases currently are 

predominately used in healthcare. 

7.2.2	Research	Methodology	–	Design	and	Evaluation	Activities	
 
Design Science Research was described and justified as a suitable research paradigm 

and methodological approach for this study. Design Science is defined as being a 

problem solving paradigm and, as a methodological approach, establishes a solid basis 

for contributing to the existing literature by developing and evaluating IT artefacts to 

derive useful and relevant conclusions by providing solutions to real world problems. 
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To address the identified gap in the literature, using a Design Science approach, in the 

first phase, healthcare data requirements for the EHR system were determined based 

on Australian healthcare minimum data sets; and then data models are established for 

a NoSQL document database and a relational database using relevant data modelling 

practices for NoSQL document databases and relational databases. Then, an IT 

artefact referred to as a Random Healthcare Data Generator was developed to generate 

synthetic EHR data based on publicly available Australian healthcare statistics.  

NoSQL database types were evaluated in the context of the requirements of data 

models for storing EHRs in the healthcare domain, and a document based NoSQL 

database, Couchbase, was found to be suitable for the main objectives and specific 

research questions investigated in this research. In order to conduct a comparative 

evaluation, a relational database, MySQL, was selected because of its ability to run as 

a cluster. Furthermore MySQL databases are already being used in healthcare practice 

and are supported by a number of significant vendors.  

Following these steps, a second artefact, an EHR system prototype, was developed as 

the facilitating system between the Random Healthcare Data Generator and the 

underlying NoSQL document database and relational database, Couchbase and 

MySQL. This artefact enabled this study to conduct a simulation of a large scale EHR 

system to evaluate the performance of a NoSQL document database comparative to a 

relational database. This artefact is designed to handle database operations including 

insert, update, delete operations, EHR sharing and complex querying in a simulation 

of a large scale EHR system. This artefact is designed to run in a distributed 

environment to enable sufficient concurrent client operations; and also was 

responsible for measuring the performance metrics for the operations and logging of 

the results. The details of the establishment of the two EHR data models for Couchbase 

and MySQL and the development of these two artefacts were presented in Chapter 4. 

Through the development of these artefacts, a crucial step in a Design Science 

Research approach is achieved (Hevner et al. 2004; March & Smith 1995; Rossi & 

Sein 2003). Then, the next step, the evaluation, was executed by running a number of 

tests for database operations such insert, update and delete of EHRs, scalability, EHR 

sharing and complex queries for both Couchbase database and MySQL database. This 

enables this study to determine whether NoSQL databases are superior to relational 
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databases in multiple aspects of EHR in a distributed data management environment 

(Hevner et al. 2004). 

In Chapter 5 the detailed results of the evaluation phase are presented for each test 

executed on different numbers of nodes (1, 2, 4, 8, 16), as well as different data sizes 

(1M, 10M, 100M and 500 M records) for both databases. The key findings from the 

results of these tests are discussed in detail in Chapter 6. The Couchbase database has 

been found to perform better than MySQL database in most of the tests, however, the 

MySQL database showed its strength in data analysis capabilities, particularly for ad-

hoc queries and it also required less disk storage space than the Couchbase database 

to store the same number of EHRs. 

In terms of performance, the Couchbase database outperformed the MySQL database 

in all node configurations for insert, update and delete operations, as well as in EHR 

sharing simulation that involves retrieval of all EHRs for a particular patient. The 

Couchbase database has demonstrated better response times and the average number 

of executions per seconds was significantly higher than the MySQL database for 

insert, update and delete operations. For the EHR sharing simulation the Couchbase 

database also performed better than the MySQL database, however, the difference was 

less significant. 

Furthermore, the Couchbase database demonstrated 30% better scalability than 

MySQL database. It should be noted that the MySQL database has limitations in terms 

of design on scaling, while Couchbase database is designed to scale better. 

The MySQL database performed better on ad-hoc complex queries than the 

Couchbase database, which is another aspect of this research. Although the Couchbase 

database can respond to pre-defined queries (views) almost instantly, the time taken 

by Couchbase to execute a complex query for the first time was much longer than for 

the MySQL database. Couchbase needed to generate the view for a query first up, 

which took more time than for the MySQL database to return a response to a query. 

Moreover, there is no requirement to define the query beforehand for MySQL 

database. 

The results presented and discussed in Chapter 6 clearly demonstrate that NoSQL 

document databases are promising alternatives to be used as an underlying primary 
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data store for large scale EHR implementations. However, for further analysis of 

healthcare data, a relational database or a data warehouse could be a better option as 

NoSQL databases did not perform better on the data analysis of EHRs when ad-hoc 

queries are executed. It is also worth noting that the same number of EHRs took around 

double the amount of disk space for storage when using the Couchbase database 

compared to the MySQL database. This result was due to the differences in the 

approach and design of the two EHR data models. 

Following the discussion of the test results, this research in terms of process (research 

activities) and product (output – artefacts) is evaluated using assessment guidelines 

for Design Science Research proposed by Hevner et al (2004), to assess the alignment 

of  the research design of this study with the key objectives of a Design Science 

Research Approach. 

In the following section, the key findings in relation to each research question are 

summarised to demonstrate how each research question was addressed in this study. 

7.3	Summary	of	Key	Findings	for	each	Research	Question	
Investigated	
 
RQ1: How can a NoSQL document data model and a relational data model be 

developed for an EHR system that are in line with documents published by healthcare 

authorities in Australia?  

The National Health Data Dictionary (NHDD) published by the Australian Institute of 

Health and Welfare is used to determine the healthcare data that is stored in EHRs for 

the purpose of this study (AIHW 2015). The NHDD contains National Minimum Data 

Sets, which are used as the basis for establishing the key data elements in the data 

models. A total number of 49 unique data elements are identified and the details are 

presented in Section 4.2. Based on previous studies, a document data model was 

determined as suitable for storing healthcare data in a NoSQL document database. 

Thus, an aggregate oriented data model for a NoSQL document database was 

established and a relational data model for a relational database was established for 

this research, as outlined in Section 4.3 of chapter 4. 
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RQ2: How can a random healthcare data generator be developed that will generate 

EHRs that are representative of the characteristics of Australian healthcare data based 

on statistics available in the public domain?  

A Random Healthcare Data Generator artefact is developed using publicly available 

statistics for the Australian healthcare system. Multiple statistics are identified as 

relevant for populating the two established data models (Document, Relational) with 

EHRs based on minimum data sets. A multinomial distribution drawing on probability 

theory was used to generate random data based on these statistics. The Australian 

Healthcare statistics used to generate the characteristics of EHRs are presented in 

Section 4.4 of Chapter 4 and the details of the design of the Random Healthcare Data 

Generator artefact are presented in Section 4.5 of Chapter 4.  

RQ3: How can a prototype EHR system be developed that will facilitate database 

operations and measure performance and scalability for NoSQL document databases 

and relational databases?   

After the Random Healthcare Data Generator was developed, another artefact, an EHR 

system prototype, is developed to facilitate the simulation of a large scale EHR system 

and database operations to be executed in the context of this research. This artefact 

was responsible for data sharing executions on both NoSQL and relational databases 

and measurement of the metrics for evaluation. Details of the design of this artefact 

are presented in Section 4.6 of chapter 4. 

RQ4: How do NoSQL document databases perform compared to relational databases 

in executing basic database operations such as insert, delete and update on electronic 

health records? 

The Couchbase database was selected as the NoSQL document database and the 

MySQL database was selected as the relational database to be evaluated in a 

simulation of a large scale EHR system in this research. For the basic database 

operations of insert, update and delete record, the Couchbase database demonstrated 

5 to 26 times better performance compared to the MySQL database. In addition to this 

significant difference in performance, the Couchbase database also demonstrated 

predictable performance in terms of response time and average number of executions 
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per second, while MySQL showed a higher range of variation in terms of response 

time and average number of executions. 

RQ5: How do NoSQL document databases scale compared to relational databases in 

electronic health record systems?   

In addition to the results regarding the performance of basic database operations, the 

Couchbase database has also demonstrated better scalability than the MySQL 

database. The improvement in average number of executions per second was 89% for 

the Couchbase database and 70% for the MySQL database when the number of nodes 

was doubled. In addition to that, the MySQL database had design limitations on the 

number of nodes that can be added to a cluster.  

RQ6: How do NoSQL document databases perform compared to relational databases 

in supporting electronic health record sharing through patient record retrieval in a 

distributed EHR system?   

The Couchbase database performed better than the MySQL database in the data 

retrieval for EHR sharing simulation test. However, the difference between databases 

was around 29%—which was not as significant difference as the results of the basic 

database operations tests due to the complex nature of retrieving multiple EHRs for 

EHR sharing purpose as discussed in Section 6.2.6 of chapter 6.  

RQ7: How do NoSQL document databases perform compared to relational databases 

in executing complex queries on electronic health records?  

This research question was addressed by running complex query tests. It is possible to 

generate views with the Couchbase database using complex map-reduce codes written 

in JavaScript. These views enable the results of a query to be displayed almost 

instantly after the initial execution of the code (Couchbase 2015).  However, initial 

execution of the view code for the complex query test took more time than the same 

query executed on MySQL database because the required indexes needed to be 

created. The Couchbase database was able to provide fast access to the results of pre-

defined queries, however, this can only be achieved after the initial view creation 

process was completed which takes much longer to run than the same query in the 

MySQL relational database. Thus, the Couchbase database demonstrated limited 

capabilities when running arbitrary ad-hoc queries compared to the MySQL database. 
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Therefore, it is concluded from this study that relational databases or data warehouse 

applications could be used as complementary systems to NoSQL document databases 

for data analysis purposes. 

7.4	Research	Contributions	to	Theory	and	Practice	

7.4.1	Contribution	to	Theory	
 
Healthcare is one of the important domains of electronic data exchange. The literature 

review suggests that the current problems of electronic data exchange in healthcare 

have not been effectively and completely addressed. Thus, more practical and relevant 

research is needed to address this important topic by developing and evaluating real 

world solutions. First and foremost, this research provides a sound basis for other 

potential researchers to study healthcare data sharing issues by creating awareness of 

the potential opportunities and challenges of using emerging technologies such as 

NoSQL databases and by developing and evaluating a solution to a particular problem. 

It has been identified that there is a need for more clarity on whether it is better to use 

NoSQL document databases for large scale EHR system implementations in terms of 

performance, scalability, data sharing and data analysis aspects in the healthcare 

domain.  

In this research, a framework is established for evaluating the performance of NoSQL 

document database systems in terms of performance, scalability, data sharing and data 

analysis features in the context of large scale EHR systems. The researcher believes 

that a document-based NoSQL database model is a more appropriate approach that 

meets the current and emerging data requirements of EHRs rather than the traditional 

approach based on the relational database model. This study has contributed to closing 

the gap in the literature by conducting an extensive empirical evaluation of the 

promising NoSQL document database technology in the important field of healthcare.  

There are number of theoretical contributions that are specified for Design Science 

research in terms of the IT artefact (Gregor & Hevner (2013). This research made a 

number of important theoretical contributions that were achieved by adapting new 

technologies that have emerged in other fields into a new field, which is referred to as 

an ‘exaptation’. These included the development and evaluation of a number of 

important and interdependent artefacts which were essential in achieving the main 

objectives of this research. These were a data model for storing EHRs in a NoSQL 
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document database, a random Healthcare data generator for generating synthetic EHR 

data, and a prototype EHR system to facilitate database operations and EHR sharing 

in a simulation of a large scale EHR system.  

A document based NoSQL data model is established in the course of this research 

based on the Australian National Health Data Dictionary published by the Australian 

Institute of Healthcare and Welfare (AIHW 2015). This data model is designed based 

on best practice and uses an aggregate oriented approach where EHRs are stored in 

JSON format (Goli-Malekabadi, Sargolzaei-Javan & Akbari 2016; Vera et al. 2015). 

This document data model provides an important theoretical contribution to the kernel 

theory of data modelling. This research used an aggregate oriented approach for the 

data modelling of EHRs for NoSQL document databases which are considered to be 

highly suitable for the data management of EHRs (Gudivada, Rao & Raghavan 2016). 

The second IT artefact developed and evaluated for this research is a Random 

Healthcare Data Generator. The method used to develop and evaluate this artefact 

made an important contribution to the design theory of building and evaluating an 

artefact for generating synthetic EHR data to simulate a large scale EHR system 

(AIHW 2015, 2016).  

This IT artefact can help future research to avoid ethical issues in dealing with domain-

specific data when privacy is a concern, such as is the case with healthcare data. This 

approach can be applied to any domain, including healthcare, when the data model 

can be established based on published industry data sets and elements; and statistics 

are available to identify data characteristics of data sets and data elements in a 

particular industry domain. The development and evaluation of the random healthcare 

data generator as a critical component in the simulation of a large scale EHR system 

is a significant contribution of this research. This IT artefact for which the source code 

will be made available in the public domain via Github enables researchers to easily 

generate random data at big data scale based on public data sets and their elements 

with characteristics that are statistically representative a range of domains where such 

required information is available in the public domain. 

The main contribution of this research is the development and evaluation of a third IT 

artefact, an EHR system prototype that enabled the performance evaluation of NoSQL 

document databases comparative to relational databases. This artefact enabled the 
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simulation of a large scale EHR system for the main purpose of evaluating the 

performance of a NoSQL document database. The prototype EHR system managed 

the execution of database operations for insert, update and delete operations, EHR data 

sharing, and execution of complex queries, as well as capturing the measurement of 

performance metrics for each test case. It is expected that the key findings of this 

research will encourage both academics and practitioners to adapt, test and use NoSQL 

technologies in healthcare-related research and applications. The main theoretical 

contribution of this empirical research to design theory was the design and evaluation 

of a prototype EHR system for simulating database management operations in a large 

scale EHR system environment. This artefact demonstrates through a simulated 

performance evaluation that a NoSQL document database has significant and proven 

performance advantages over relational databases in most of the database management 

test cases. Hence this study demonstrated the utility and efficacy of a NoSQL 

document database in the simulation of a large scale EHR system. 	

7.4.2	Contribution	to	Practice	
 
This research has made a number of important contributions to practice foremost is 

that the IT artefacts (namely, a data model for storing EHRs in a NoSQL document 

database, a random healthcare data generator and a prototype EHR system) developed 

and evaluated in this research can be readily adopted by practitioners. The research 

activities undertaken to develop and evaluate these artefacts is described and justified 

in this PhD Thesis which will be made available in the public domain after a one year 

embargo. The design of the data model for storing EHRs in a NoSQL document 

database and the source code for the random healthcare data generator and the source 

code for the prototype EHR system will be made available online via a GitHub 

repository.  

Another important practical contribution of this research is that it is based on the open 

source availability of many NoSQL database alternatives. Hence, this research will 

encourage developing and under-developed countries to establish their own cost-

effective national EHR systems without the restrictions, limitations, complexity or 

complications of similar proprietary relational database systems. The approach and 

solutions of this research will also help healthcare providers with multiple 

establishments delivering healthcare services to different locations to develop their 
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own central data storage and data sharing systems without the requirement of big 

initial investments and difficult implementation processes to achieve high availability. 

7.5	Limitations	and	Future	Research	
 
Both healthcare and database systems are major areas of research involving many 

different aspects. Therefore, it is not possible to cover all related matters regardless of 

how comprehensive a research is. The security and privacy concerns on EHR sharing, 

issues about interoperability, data standardisation, coding systems and many other 

healthcare related topics are out of the scope of this PhD study. Furthermore, ACID 

or BASE properties, replication and consistency considerations, compression and 

encryption features of database systems are also not covered in this research. 

One of the major limitations of this project is the identification of the data model. 

Although EHRs could contain many different types of information, structured or free-

text, this study is based on the minimum data sets and mandatory data elements 

published by the Australian Institute of Health and Welfare. While establishing a 

sound basis on what needs to be included in the proposed data model, it also limits the 

overall data model to an administrative perspective for data collection rather than a 

medical perspective. However, as discussed in Chapter 2, NoSQL databases offer 

flexible data models. Thus, the effect of including medical data elements which are 

more complex in nature and require significantly more data storage space than the 

current data model is expected to have minimal impact on the outcome of the NoSQL 

document database test results. Flexible data models of NoSQL databases would also 

be a prime area for future research to more extensively test the performance of NoSQL 

document databases using healthcare data that includes medical imaging results and 

free-text physician notes. 

The researcher also acknowledges that the selection of the database system for both 

NoSQL and relational databases can be considered as a limitation of this research. 

There are numerous commercial vendor offerings of NoSQL database systems and the 

number of available NoSQL database systems is increasing rapidly. Therefore, before 

the completion of this research, some alternative database solutions or newer versions 

of the database systems selected in this research may have emerged. 
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Furthermore, the researcher acknowledges that a NoSQL document database and a 

relational database cannot be considered as fully equivalent for a comparison as their 

underlying technical design are different. However, the same configurations were used 

for each of the test scenarios for Couchbase database and MySQL database to make 

the outcome as accurate as possible in terms of an overall performance comparison in 

the context of their fitness for the use case of data management of EHRs from an IS 

perspective. 

Another limitation of this research is that the test environment was the cloud 

environment (Elastic Compute Cloud) provided by Amazon Web Services. The tests 

could also have been conducted in a number of different environments, such as using 

local hardware or other cloud vendors, using different or newer versions of database 

software, different database configuration and tunings or even different databases. It 

is not practically possible to conduct the tests on all possible environments and 

configurations within the scope of a three year PhD program. Therefore, the selection 

of software and test configurations in this research is justified within reasonable 

grounds where possible. It is also noteworthy to mention that the improvements of 

database systems and cloud environments are rapid and it is not always possible to 

keep up with the speed that these types of technology evolve and advance over the 

duration of a three year PhD-level research program. 

In this research it is observed that NoSQL databases document cannot perform 

significantly better than relational databases when executing arbitrary ad-hoc queries 

required for further data analysis using relevant applications such as Business 

Intelligence tools. Therefore, exploring or enhancing data analysis capabilities of 

NoSQL document databases seems to be an area worthy of further research given the 

increasing uptake of NoSQL databases in mainstream IT practice. Moreover, using a 

relational database or a data warehouse application together with a NoSQL document 

database might be a promising way of implementing large-scale and distributed data 

management systems requiring significant operational capabilities, as well as rich 

query environment. Thus, extracting data from NoSQL databases using pre-defined 

queries and aggregating or summarising the raw data and saving the results into a 

relational database or a data warehouse application is another area that can be 

evaluated and is an area worthy of future research in healthcare—or any other domain 

for that matter. This can be achieved using batch or streaming processing and analytics 
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as tools such as Kafka to support the transformation of the data between SQL tables 

and JSON documents effectively (Mitchell & Tucker 2017). 

Furthermore, the research also mentions the flexible data model and distributed 

parallel processing capability of NoSQL databases that have great potential of the 

technology from a clinical perspective by enabling clinical decision support and 

effective management of heterogeneous unstructured clinical data both of which may 

be areas of future research. 

Moreover, in this research the performance evaluation of EHR sharing as a technical 

operation that was limited in scope to the data retrieval of patient’s EHRs in the  

simulation of a large scale EHR system. The literature also highlights the importance 

of addressing security and privacy concerns with data encryption in considering EHR 

sharing in conjunction with the emerging database technologies like NoSQL document 

databases. While privacy and security concerns associated with EHR sharing and data 

encryption as a technical solution is beyond the scope of this research it is another area 

of EHR sharing worthy of further research to complement and build on foundations 

established by this research.    

7.6	Summary	
 
This research has demonstrated the feasibility and potential benefits of using NoSQL 

databases in large scale EHR systems through the evaluation of the performance of a 

NoSQL document database comparative to a relational database in the healthcare 

domain, which made important contributions to both theory and practice. A Design 

Science Research approach was used to undertake and complete this research. The 

performance evaluation of a NoSQL database was conducted by developing and 

evaluating IT artefacts specifically designed for achieving the main objectives of this 

study by investigating seven research questions. The research activity and outputs of 

this study were evaluated using the DSR evaluation guidelines identified in the 

relevant literature and the results and contribution of this research are presented in the 

context of the Design Science paradigm. NoSQL document databases have promising 

features and their performance, scalability, data sharing and analysis capabilities were 

evaluated thoroughly in this research.  
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The research has demonstrated that NoSQL document databases outperform relational 

databases in a simulation of a large scale EHR system for basic database operations 

such as insert, update, and delete, and EHR sharing. However the selected relational 

database, MySQL, has shown superior performance in executing complex ad-hoc 

queries compared to the selected NoSQL document database, Couchbase. 

The gap in the literature is addressed by the empirical evaluation of performance and 

scalability of a NoSQL document database compared to a relational database in large 

scale EHR systems context. Furthermore, as a practical contribution, the data models 

and IT artefacts developed in this research also provide guidance to industry and 

enable researchers to conduct similar researches using the approaches and artefacts 

presented in this research. 

Therefore, the research has met its objectives and the outcomes of this research 

provides a solid basis for industry and researchers to undertake future research 

activities complementing the usage of NoSQL document databases in large scale EHR 

systems, such as data warehousing applications, encryption and privacy protection 

approaches. 
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Appendix	A.	Separation	statistics,	public	and	private	hospitals,	states	and	territories,	2014–15	(Adopted	from	
(AIHW	2016))	
 

  NSW Vic Qld WA SA Tas ACT NT Total 

Separations                   

Public hospitals           

Public acute hospitals 1,808,679 1,587,510 1,202,496 599,474 420,870 118,419 100,784 132,283 5,970,515 

Public psychiatric hospitals 5,319 441 302 1,249 1,425 1,087 . . . . 9,823 

Total public hospitals 1,813,998 1,587,951 1,202,798 600,723 422,295 119,506 100,784 132,283 5,980,338 

Private hospitals           

Private free-standing day hospital facilities 254,859 223,434 228,431 143,825 76,091 n.p. n.p. n.p. 940,703 

Other private hospitals 929,680 785,903 804,526 336,915 239,765 n.p. n.p. n.p. 3,229,326 

Total private hospitals 1,184,539 1,009,337 1,032,957 480,740 315,856 n.p. n.p. n.p. 4,170,029 

Public acute and private hospitals 2,993,218 2,596,847 2,235,453 1,080,214 736,726 n.p. n.p. n.p. 10,140,544 

All hospitals 2,998,537 2,597,288 2,235,755 1,081,463 738,151 n.p. n.p. n.p. 10,150,367 

Overnight separations                   

Public hospitals           

Public acute hospitals 978,234 671,847 558,108 275,409 221,688 54,875 47,316 41,243 2,848,720 

Public psychiatric hospitals 5,118 439 302 1,237 1,044 1,071  . . . . 9,211 

Total public hospitals 983,352 672,286 558,410 276,646 222,732 55,946 47,316 41,243 2,857,931 

Private hospitals           

Private free-standing day hospital facilities 69 4 0 1,813 0 n.p. n.p. n.p. 1,886 

Other private hospitals 310,023 332,192 316,233 139,249 91,852 n.p. n.p. n.p. 1,240,837 

Total private hospitals 310,092 332,196 316,233 141,062 91,852 n.p. n.p. n.p. 1,242,723 

Public acute and private hospitals 1,288,326 1,004,043 874,341 416,471 313,540 n.p. n.p. n.p. 4,091,443 

All hospitals 1,293,444 1,004,482 874,643 417,708 314,584 n.p. n.p. n.p. 4,100,654 

Same-day separations                   

Public hospitals           

Public acute hospitals 830,445 915,663 644,388 324,065 199,182 63,544 53,468 91,040 3,121,795 

Public psychiatric hospitals 201 2 0 12 381 16 . . . . 612 
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Total public hospitals 830,646 915,665 644,388 324,077 199,563 63,560 53,468 91,040 3,122,407 

Private hospitals           

Private free-standing day hospital facilities 254,790 223,430 228,431 142,012 76,091 n.p. n.p. n.p. 938,817 

Other private hospitals 619,657 453,711 488,293 197,666 147,913 n.p. n.p. n.p. 1,988,489 

Total private hospitals 874,447 677,141 716,724 339,678 224,004 n.p. n.p. n.p. 2,927,306 

Public acute and private hospitals 1,704,892 1,592,804 1,361,112 663,743 423,186 n.p. n.p. n.p. 6,049,101 

All hospitals 1,705,093 1,592,806 1,361,112 663,755 423,567 n.p. n.p. n.p. 6,049,713 

Same-day separations as % of total                   

Public hospitals           

Public acute hospitals 45.9 57.7 53.6 54.1 47.3 53.7 53.1 68.8 52.3 

Public psychiatric hospitals 3.8 0.5 0.0 1.0 26.7 1.5 . . . . 6.2 

Total public hospitals 45.8 57.7 53.6 53.9 47.3 53.2 53.1 68.8 52.2 

Private hospitals           

Private free-standing day hospital facilities 100.0 100.0 100.0 98.7 100.0 n.p. n.p. n.p. 99.8 

Other private hospitals 66.7 57.7 60.7 58.7 61.7 n.p. n.p. n.p. 61.6 

Total private hospitals 73.8 67.1 69.4 70.7 70.9 n.p. n.p. n.p. 70.2 

Public acute and private hospitals 57.0 61.3 60.9 61.4 57.4 n.p. n.p. n.p. 59.7 

All hospitals 56.9 61.3 60.9 61.4 57.4 n.p. n.p. n.p. 59.6 
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Appendix	B.	Separations,	by	state	or	territory	of	usual	residence	and	establishments,	2014–15	(Adopted	from	
(AIHW	2016))	

  State or territory of hospitalisation 
Separations 

per 1,000 
population State or territory of usual residence NSW Vic Qld WA SA Tas ACT NT Total 

Public hospitals 

New South Wales 1,781,294 32,744 12,460 682 1,825 252 17,940 395 1,847,592 226.7 

Victoria 4,145 1,541,375 3,038 731 2,080 378 317 372 1,552,436 249.1 

Queensland 12,113 1,689 1,177,069 678 494 263 203 735 1,193,244 244.7 

Western Australia 622 688 795 594,432 334 72 43 3,462 600,448 230.9 

South Australia 771 2,317 631 333 414,846 70 57 3,014 422,039 225.4 

Tasmania 308 2,226 393 114 72 118,318 19 47 121,497 212.1 

Australian Capital Territory 3,537 260 245 30 58 28 81,717 25 85,900 227.8 

Northern Territory 241 348 552 220 1,883 8 6 123,926 127,184 572.9 

Other Australian territories(a) 1,230 1,590 0 293 0 0 0 3 3,116 n.p. 

Not elsewhere classified/Not reported(b) 9,737 4,714 7,615 3,210 703 117 482 304 26,882 . . 

Total public hospitals 1,813,998 1,587,951 1,202,798 600,723 422,295 119,506 100,784 132,283 5,980,338 240.2 

Private hospitals 

New South Wales 1,160,016 10,285 37,252 228 1,828 n.p. n.p. n.p. 1,218,177 146.8 

Victoria 8,583 993,317 1,693 226 1,628 n.p. n.p. n.p. 1,005,689 159.6 

Queensland 4,384 1,197 991,070 386 260 n.p. n.p. n.p. 997,487 200.4 

Western Australia 467 622 397 479,387 109 n.p. n.p. n.p. 481,100 184 

South Australia 264 713 394 124 310,367 n.p. n.p. n.p. 312,097 157.7 

Tasmania 300 1,908 362 46 70 n.p. n.p. n.p. 91,041 152.7 

Australian Capital Territory 2,700 231 288 19 42 n.p. n.p. n.p. 38,517 102.4 

Northern Territory 373 479 804 151 1,296 n.p. n.p. n.p. 16,721 79.7 

Other Australian territories(a) 6,531 25 0 134 0 n.p. n.p. n.p. 6,690 n.p. 

Not elsewhere classified/Not reported(b) 921 560 697 39 256 n.p. n.p. n.p. 2,510 . . 

Total private hospitals 1,184,539 1,009,337 1,032,957 480,740 315,856 n.p. n.p. n.p. 4,170,029 164.4 

All hospitals 2,998,537 2,597,288 2,235,755 1,081,463 738,151 n.p. n.p. n.p. 10,150,367 404.6 

(a)       Includes Cocos (Keeling) Islands, Christmas Island and Jervis Bay Territory. (b)       Includes Resident overseas, At sea and No fixed address.   
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Appendix	C.	Separations	per	1,000	population,	public	and	private	hospitals,	states	and	territories,	2014–15	
(Adopted	from	(AIHW	2016))	
 

  NSW Vic Qld WA SA Tas ACT NT Total 

Public hospitals                   

Public acute hospitals 221.9 254.8 246.6 230.5 224.8 206.1 267.2 598.0 239.8 

Public psychiatric hospitals 0.7 0.1 0.1 0.5 0.9 2.1 . . . . 0.4 

Total public hospitals 222.6 254.9 246.7 231.0 225.6 208.3 267.2 598.0 240.2 

Private hospitals                   

Private free-standing day hospital facilities 30.8 35.5 45.6 55.3 36.8 n.p. n.p. n.p. 37.0 

Other private hospitals 112.2 124.6 161.8 128.5 122.9 n.p. n.p. n.p. 127.4 

Total private hospitals 143.0 160.2 207.4 183.9 159.7 n.p. n.p. n.p. 164.4 

All hospitals 365.5 415.0 454.0 414.9 385.3 n.p. n.p. n.p. 404.6 
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Appendix	D.	Same‐day	and	overnight	separations	per	1,000	population,	states	and	territories,	2014–15	
(Adopted	from	(AIHW	2016))	
 
 
Same-day separations 

  NSW Vic Qld WA SA Tas ACT NT Total

Public hospitals 101.5 147.0 131.7 124.6 106.6 108.2 143.1 408.3 125.1

Private hospitals 105.2 108.3 143.7 130.0 112.9 n.p. n.p. n.p. 115.5

All hospitals 206.7 255.3 275.4 254.6 219.5 n.p. n.p. n.p. 240.6

 
 
Overnight separations 

  NSW Vic Qld WA SA Tas ACT NT Total

Public hospitals 121.1 107.9 115.0 106.4 119.0 100.1 124.1 189.7 115.1

Private hospitals 37.7 51.9 63.6 53.9 46.8 n.p. n.p. n.p. 48.9

All hospitals 158.9 159.8 178.6 160.3 165.8 n.p. n.p. n.p. 164.0
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Appendix	E.	Separations	by	mode	of	admission,	public	and	private	hospitals,	states	and	territories,	2014–15	
(Adopted	from	(AIHW	2016))	
 
 
 

 NSW Vic Qld WA SA Tas ACT NT Total 

Public hospitals 

New admission to hospital(a) 1,673,721 1,496,384 1,135,367 555,553 396,114 113,267 94,519 130,465 5,595,390 

Admitted patient transferred from another hospital 96,949 75,239 42,316 37,559 20,886 3,157 3,439 196 279,741 

Statistical admission: care type change 35,065 15,849 25,115 7,611 4,288 1,975 2,826 1,622 94,351 

Not reported 8,263 479 0 0 1,007 1,107 0 0 10,856 

Total public hospitals 1,813,998 1,587,951 1,202,798 600,723 422,295 119,506 100,784 132,283 5,980,338 

Private hospitals 

New admission to hospital(a) 1,134,239 970,013 998,018 469,438 308,854 n.p. n.p. n.p. 4,001,858 

Admitted patient transferred from another hospital 43,556 35,171 25,686 8,438 6,337 n.p. n.p. n.p. 123,647 

Statistical admission: care type change 5,412 4,153 9,253 2,864 533 n.p. n.p. n.p. 23,646 

Not reported 1,332 0 0 0 132 n.p. n.p. n.p. 20,878 

Total private hospitals 1,184,539 1,009,337 1,032,957 480,740 315,856 n.p. n.p. n.p. 4,170,029 

All hospitals 

New admission to hospital(a) 2,807,960 2,466,397 2,133,385 1,024,991 704,968 n.p. n.p. n.p. 9,597,248 

Admitted patient transferred from another hospital 140,505 110,410 68,002 45,997 27,223 n.p. n.p. n.p. 403,388 

Statistical admission: care type change 40,477 20,002 34,368 10,475 4,821 n.p. n.p. n.p. 117,997 

Not reported 9,595 479 0 0 1,139 n.p. n.p. n.p. 31,734 

Total 2,998,537 2,597,288 2,235,755 1,081,463 738,151 n.p. n.p. n.p. 10,150,367 

(a)    New admission to hospital is equivalent to Other in the mode of admission definition. It refers to all planned and unplanned admissions except transfers from other hospitals and statistical admissions. 
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Appendix	F.	Admitted	Patient	Care	National	Minimum	Dataset	
Details	(Adopted	from	(AIHW	2015))	
 
Admitted patient care NMDS 2014-15 

Metadata item type: Data Set Specification 

METeOR identifier: 535047 

Registration status: Health, Standard 11/04/2014 

DSS type: National Minimum Data Set (NMDS) 

Scope: The purpose of the Admitted patient care national minimum data set (APC 

NMDS) is to collect information about care provided to admitted patients in Australian 

hospitals. 

The scope of the APC NMDS is episodes of care for admitted patients in all public 

and private acute and psychiatric hospitals, free standing day hospital facilities and 

alcohol and drug treatment centres in Australia. Hospitals operated by the Australian 

Defence Force, corrections authorities and in Australia's off-shore territories may also 

be included. Hospitals specialising in dental, ophthalmic aids and other specialised 

acute medical or surgical care are included. 

Hospital boarders and still births are not included as they are not admitted to hospital. 

Posthumous organ procurement episodes are also not included. 

Collection and usage attributes 

Statistical unit: Episodes of care for admitted patients 
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Collection methods: Data are collected at each hospital from patient administrative 

and clinical record systems. Hospitals forward data to the relevant state or territory 

health authority on a regular basis (e.g. monthly). 

National reporting arrangements 

State and territory health authorities provide the data to the Australian Institute of 

Health and Welfare for national collation, on an annual basis. 

Metadata items in this Data Set Specification 

Metadata item Obligation Max 
Occurs 

Elective surgery waiting times cluster Conditional 99 

Activity when injured Mandatory 99 

Additional diagnosis Conditional 99 

Admission date Mandatory 1 

Admitted patient election status Mandatory 1 

Area of usual residence (SA2) Mandatory 1 

Australian postcode (address) Mandatory 1 

Australian State/Territory identifier (establishment) Mandatory 1 

Care type Mandatory 1 

Condition onset flag Mandatory 99 

Contract establishment identifier Mandatory 1 

Country of birth Mandatory 1 

Date of birth Mandatory 1 

Duration of continuous ventilatory support Conditional 1 

Establishment number Mandatory 1 

Establishment sector Mandatory 1 

External cause Mandatory 99 

Funding source for hospital patient Mandatory 1 

Geographic remoteness—admitted patient care Mandatory 1 

Hospital insurance status Mandatory 1 

Indigenous status Mandatory 1 
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Intended length of hospital stay Mandatory 1 

Inter-hospital contracted patient Mandatory 1 

Length of stay in intensive care unit Conditional 1 

Medicare eligibility status Mandatory 1 

Mental health legal status Mandatory 1 

Mode of admission Mandatory 1 

Mode of separation Mandatory 1 

Number of days of hospital-in-the-home care Mandatory 1 

Number of qualified days for newborns Conditional 1 

Person identifier Mandatory 1 

Place of occurrence of external cause of injury (ICD-10-
AM) 

Mandatory 99 

Principal diagnosis—episode of care Mandatory 1 

Procedure Mandatory 99 

Record identifier (80 character maximum) Mandatory 1 

Region code Mandatory 1 

Separation date Mandatory 1 

Sex Mandatory 1 

Source of referral to public psychiatric hospital Conditional 1 

Total leave days Mandatory 1 

Total psychiatric care days Mandatory 1 

Urgency of admission Mandatory 1 

Weight in grams (measured) Conditional 1 
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Appendix	G.	JSON	representation	of	aggregate	oriented	data	model	
 
{ 
 "Person": { 
  "Person identifier": "123456789", 
  "Area of usual residence": { 
   "METeOR identifier": "469909", 
   "code": "31701144631446", 
   "value": "Darling Heights" 
  }, 
  "Country of birth": { 
   "METeOR identifier": "459973", 
   "code": "5101", 
   "value": "Myanmar" 
  }, 
  "Date of birth": "01012000", 
  "Indigenous status": { 
   "METeOR identifier": "291036", 
   "code": "4", 
   "value": "Neither Aboriginal nor Torres Strait Islander origin" 
  }, 
  "Sex": { 
   "METeOR identifier": "287316", 
   "code": "1", 
   "value": "Male" 
  }, 
  "Medicare Eligibility status": { 
   "METeOR identifier": "481841", 
   "code": "1", 
   "value": "Eligible" 
  }, 
  "Address": "", 
  "Record—identifier": "abcd-1234" 
 }, 
 "Emergency Department Stay": { 
  "Physical departure date": "01082016", 
  "Physical departure time": "1120", 
  "Presentation date": "01082016", 
  "Presentation time": "1000", 
  "Transport mode (arrival)": "", 
  "Type of visit": "", 
  "Urgency related group major diagnostic block": "" 
 }, 
 "Patient": { 
  "Compensable status": "", 
  "Hospital insurance status": { 
   "METeOR identifier": "270253", 
   "code": "9", 
   "value": "Unknown" 
  } 
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 }, 
 "Episode of admitted patient care": { 
  "Admission date": "01082016", 
  "Admission mode": { 
   "METeOR identifier": "269976", 
   "code": "3", 
   "value": "Other" 
  }, 
  "Admission urgency status": "", 
  "Condition onset flag": "", 
  "Intended length of hospital stay": "2", 
  "Number of days of hospital-in-the-home care,": "0", 
  "Number of leave days": "0", 
  "Patient election status": { 
   "METeOR identifier": "326619", 
   "code": "1", 
   "value": "Public" 
  }, 
  "Procedure": [], 
  "Separation date": "02082016", 
  "Separation mode": { 
   "METeOR identifier": "270094", 
   "code": "9", 
   "value": "Other (includes discharge to usual residence, own 
accommodation/welfare institution (includes prisons, hostels and group homes 
providing primarily welfare services))" 
  } 
 }, 
 "Episode of care": { 
  "Inter-hospital contracted patient status": "", 
  "Mental health legal status": "", 
  "Number of psychiatric care days": "1", 
  "Principal diagnosis": { 
   "METeOR identifier": "514273", 
   "code": "V00", 
   "value": "Pedestrian conveyance accident" 
  }, 
  "Source of funding, patient funding source": "", 
  "Funding eligibility indicator": "" 
 }, 
 "Establishment": { 
  "Australian state/territory identifier": { 
   "METeOR identifier": "269941", 
   "code": "3", 
   "value": "Queensland" 
  }, 
  "Geographic remoteness": { 
   "METeOR identifier": "539871", 
   "code": "1", 
   "value": "Inner regional Australia" 
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  }, 
  "Organisation identifier (state/territory)": "", 
  "Region identifier": "", 
  "Sector": { 
   "METeOR identifier": "269977", 
   "code": "1", 
   "value": "Public" 
  }, 
  "Organisation identifier": "12345" 
 }, 
 "Injury Event": { 
  "Activity type": { 
   "METeOR identifier": "514277", 
   "code": "V00", 
   "value": "Pedestrian conveyance accident" 
  }, 
  "External cause": { 
   "METeOR identifier": "514295", 
   "code": "Y93.9", 
   "value": "Activity, unspecified" 
  }, 
  "Place of occurrence": { 
   "METeOR identifier": "514302", 
   "code": "Y92.41", 
   "value": "Street and highway as the place of occurrence of the 
external cause" 
  } 
 }, 
 "Non-admitted patient service": { 
  "Episode end date": "01082016", 
  "Episode end status": "", 
  "Episode end time": "1220" 
 }, 
 "Hospital service": { 
  "Care type": { 
   "METeOR identifier": "491557", 
   "code": "1", 
   "value": "Acute care" 
  } 
 } 
} 
 


