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ABSTRACT The objective of this paper is to develop a novel emotion recognition system from electroen-
cephalogram (EEG) signals using effective connectivity and deep learning methods. Emotion recognition is
an important task for various applications such as human-computer interaction and, mental health diagnosis.
The paper aims to improve the accuracy and robustness of emotion recognition by combining different
effective connectivity (EC) methods and pre-trained convolutional neural networks (CNNs), as well as long
short-term memory (LSTM). EC methods measure information flow in the brain during emotional states
using EEG signals. We used three EC methods: transfer entropy (TE), partial directed coherence (PDC),
and direct directed transfer function (dDTF). We estimated a fused image from these methods for each five-
second window of 32-channel EEG signals. Then, we applied six pre-trained CNNs to classify the images
into four emotion classes based on the two-dimensional valence-arousal model. We used the leave-one-
subject-out cross-validation strategy to evaluate the classification results. We also used an ensemble model
to select the best results from the best pre-trained CNNs using the majority voting approach. Moreover,
we combined the CNNs with LSTM to improve recognition performance. We achieved the average accuracy
and F-score of 98.76%, 98.86%, 98.66 and 98.88% for classifying emotions using DEAP and MAHNOB-
HCI datasets, respectively. Our results show that fused images can increase the accuracy and that an
ensemble and combination of pre-trained CNNs and LSTMcan achieve high accuracy for automated emotion
recognition. Our model outperformed other state-of-the-art systems using the same datasets for four-class
emotion classification.

INDEX TERMS Effective connectivity, electroencephalography, emotion recognition, long short-term
memory, transfer learning.

I. INTRODUCTION
Emotions are mental states that are either evoked by internal
stimuli like past memory or induced by external stimuli like
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video content [1], [2]. The emotional state can influence
important brain functions such as perception and decision-
making, which carry implications for social interactions and
societal well-being. Recently, emotion recognition has been
applied in real-world applications such as meditation, relax-
ation, and mode detection using mobile devices and smart
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watches. Many applications are developed and available on
mobile devices based on the recognition of emotions. For
example, researchers are using artificial intelligence (AI)
algorithms to detect the amount of stress using the brain
signals recorded from headsets during daily life. These
applications are aimed at improving lifestyle. For example,
by detecting anger or fear, or any other emotion of the user
on his/her watch or mobile device, feedback can be emitted
to alert to the user. Such systems can be used in the electronic
learning of students during online courses to improve the
quality of education. Indeed, recognizing emotional states
has increasingly garnered interest among researchers in neu-
roscience [3], [4] and mental disorders [5], [6], [7], [8].
The electroencephalography (EEG) is a suitable technique
used for emotions recognition [9], [10], [11], [12]. This is
because EEG has portability advantages, lower cost, better
tolerability, and higher signal temporal resolution than func-
tional magnetic resonance imaging. It is also an established
modality that has been applied in the clinic for diagnosing
mental disorders or neurological conditions [9], [13], [14],
[15], [16].

Many researchers have developed machine learning meth-
ods to classify emotions using EEG. An emotion recognition
system comprises three steps: feature extraction, feature
selection/reduction, and classification [17], [18]. In some
studies, handcrafted features in the frequency, time, and
time-frequency domains are extracted [17], [18], [19]. Func-
tional brain connectivity constitutes another feature that can
be extracted, e.g., using coherence, correlation, and mutual
information to estimate the statistical dependencies between
EEG signals from different channels [20]. For example,
Liu et al. in [21] extracted mutual information features from
EEG signals in the Database for Emotional Analysis using
Physiological signals (DEAP) dataset [1] and classified them
using support vector machine (SVM) and random forest (RF).
They attained 75.75% average accuracy for the binary clas-
sification tasks of discriminating high arousal versus low
arousal and negative valence versus positive valence states.
Principal component analysis (PCA) [17], [21], [22], [23],
[24] is the most popular feature selection/reduction methods
in emotion recognition systems. In the classification step,
SVM and k-nearest neighbor are commonly used to classify
two- or multi-class emotions [17], [23], [24].
Recently, deep learning methods like deep autoen-

coders [25], and convolutional neural networks (CNNs) [25],
[26], [27], [28], [29], [30], [31] have been applied to emotion
recognition studies. Among these, CNNs have garnered the
most success using EEG signal-based emotion recognition.
CNNs are more generalizable, versatile and can overcome
issues like non-stationary, low signal-to-noise, and inter-
subject variances associated with EEG signals [29], [30].
Khare and Bajaj in [31] used smoothed pseudo-Wigner–
Ville distribution to convert self-recorded 1D EEG signals
into time-frequency images to feed to a configurable CNN.
The latter attained the highest classification accuracy of

93.01% for emotion classes versus other pre-trained net-
works. In some studies, a combination of these methods
was used to recognize emotions. For example, CNN was
combined with a sparse autoencoder and deep neural net-
work to achieve the accuracy of 89.49% and 92.86% to
discriminate valence and arousal classes, respectively [25].
Some studies [15], [16], [30] showed the effectiveness of
adding time dependency by combining CNNs and long
short-term memory (LSTM). This combination has increased
the classification accuracy of EEG signals in neuroscience.
Yin et al. [29] used a network that was developed based
on graph CNN combined with long short-term memory
from 6-second time windows of EEG signals in the DEAP
dataset. The model attained 90.62% accuracy for binary
classification. Also, some studies demonstrated performance
improvement in the ensemble approach using the majority
voting method with deep learning techniques [30].

One of the methods of the converting one-dimensional
multichannel EEGs signals to two-dimensional images for
using deep neural networks is brain connectivity. Brain con-
nectivity has three types structural, functional, and effective.
The structural determines information flow between adjacent
regions, the functional estimates the strengths of coinci-
dence of two separate regions from the point of coherence,
correlation or similar measures [20]. Effective connectivity
(EC) estimates the dependencies of distinct brain regions.
This method describes the causal information flow of dif-
ferent brain regions based on EEG channels. EEG is one of
suitable techniques for mapping brain effective connectiv-
ity [10]. Directed transfer functions (DTF), partial directed
coherence (PDC) and transfer entropy (TE) are three well
established methods of brain EC. These well-known methods
are used to convert one-dimensional multichannel EEGs to
two-dimensional images to represent emotional brain inter-
action between distinct pairs of electrodes in the point of
flow of information. The DTF determines the causal informa-
tion flows between brain regions, while direct DTF (dDTF,
extension of DTF) considers only direct flows. The PDC
estimates direct and indirect relations and provides informa-
tion about the direction of brain regions [9]. TE is based
on the information theory and estimates the nonlinear rela-
tionships of transfer of information between pairs of EEG
channels. In other words, TE is a model-free, non-parametric
and nonlinear effective connectivity measure that estimate
causality between pairs of two brain regions according to the
conditional entropy [16]. Whereas PDC and dDTF are linear
measures and, consequently, more restricted. Also, PDC and
TE discard in-directed connections. These dDTF and PDC
were used to classify emotional states from EEG using [32],
[33] and achieved accuracies above 95% on the both DEAP
andMAHNOB-HCI databases. The contribution of this study
is as follows:

- Generating a novel fused 2D image that combines three
effective connectivity measures and different overlapping
time windows obtained from 32 channels EEG signals. This
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new fused image adds time information and utilizes the
advantages of each measure, resulting in a more precise
representation of brain connectivity during emotional states.
This novel image improved our previous model [32], [33].
-Extracting novel deep features from fused connectivity

images. Our aim is to improve emotion recognition perfor-
mance by providing relevant and different information about
brain flow during desired emotional classes. We have fed
these new fused connectivity images into a more recent and
powerful set of pre-trained CNNs models and LSTM struc-
ture for classification into four emotion classes via transfer
learning for DEAP and MAHNOB-HCI databases.

-Fusion of pre-trained CNNs models and LSTM models
to improve the accuracy. We have combined CNN models
and LSTM to utilize the advantages of each deep learning
method, with LSTMs adding time dependency of sequences
to the recognition of emotion.

-Taking the final decision using ensemble CNN-LSTM
models using the majority voting method. To further improve
classification accuracy, we have presented an ensemble of
these state-of-the-art models based on the majority voting
method. This approach is particularly useful in dealing with
non-linear behavior in multi-channel recordings of EEG
signals during emotion function and the high variance in per-
formance of CNN-LSTM models due to the high number of
parameters. By combining different models, we can construct
a good model with the best achievable performance. Each
basic model may have a skill in some part of data, and the
combination of thesemodels usingmajority voting yields bet-
ter results. Overall, our study presents a promising approach
for improving emotion recognition using EEG signals and
deep learning techniques.

II. RELATED STUDIES
Yao et al. [34] proposed a method to recognize emotions
from multi-channel EEG data using multi-feature fusion.
They extracted 1D power values from each frequency band
of the EEG signals and exploited them to construct 2D spatial
image features based on the electrode locations. Then, they
combined the spatial image features for each frequency band
to create 3D multispectral images that capture the spatial
and spectral information of the EEG data. They designed a
CNN framework that uses feature fusion modules and dilated
bottleneck-based convolutional neural networks (DBCN) to
process the spatio-spectral image features and classify the
emotions.

In [35], a new method for emotion recognition from EEG
signals using holographic features and CNN was introduced.
The proposed method employed computer-generated holog-
raphy (CGH) to create 2D maps of EEG signal features
and fed them to a CNN for feature extraction. Authors
also applied ReliefF and Neighborhood Component Analysis
(NCA) to select the optimal electrodes for each gender, which
reduced the dimensionality and complexity of the EEG data.

Gao et al. [36] integrated time-domain features and
frequency-domain features for the purpose of EEG emotion

analysis. The objective of this approach was to leverage
the information present between EEG channels and the
contextual information of EEG signals to enhance emotion
recognition. The effectiveness of this method was evaluated
through emotion recognition experiments conducted on the
DEAP dataset, which resulted in high accuracy in valence and
arousal classification. Subsequently, they used a GoogleNet-
based CNN with inception modules to learn the spatial and
contextual information of EEG electrodes and used SVM to
classify the fused features.

In [37], a novel deep learning framework is presented that
is capable of recognizing emotions from subject-independent
EEG signals. The framework consists of two components: the
first component utilizes LSTM and channel-attention autoen-
coder (AE) to create a subject-invariant latent vector space
from each individual’s EEG data. The second component
employs CNN and attention structure to classify emotions
from latent space representations obtained from LSTM and
channel-attention AE. In this paper, all the experiments have
been performed on three available datasets including DEAP,
SEED and CHB-MIT.

Jana et al. [38] proposed a novel approach to integrate spa-
tial and temporal information from EEG signals in a sparse
spatio-temporal framework. The authors introduced a data
splitting technique that enables the model to learn from the
least familiar information in the problem of EEG-based emo-
tion recognition. The CapsNet architecture was trained on the
DEAP dataset to perform binary classification, and Bayesian
optimization was leveraged to fine-tune hyperparameters.
The proposed method achieved recognition accuracy that is
comparable to state-of-the-art models.

Ngai et al. [39] proposed a method to enhance the perfor-
mance of emotion classification by utilizing multimodality
features and making decisions based on the combined fea-
tures. The authors employed multi-source and heterogeneous
data, including EEG signals from two channels, eye data, and
face data, and designed a multi-branch deep convolutional
neural network. To evaluate the effectiveness of the proposed
method, extensive experiments were conducted on modality
and emotion data, which yielded promising results.

In [40], the authors introduced a novel approach that
uses spatio-temporal and self-adaptive graph convolutional
networks for single and multi-view EEG-based emotion
recognition. The proposedmethod employs a spatio-temporal
attention mechanism to automatically select the crucial tem-
poral and spatial components of EEG signals. Additionally,
a self-adaptive brain network adjacency matrix is utilized to
measure the connection strength between channels, which
can reveal distinct patterns of brain activation associated with
different emotions.

Samavat et al. [41] propose a novel deep learning method-
ology that combines CNN and Bi-LSTM for emotion
recognition from raw EEG signals. The proposed approach
employs a two-layer CNN with varying filter sizes to extract
time and frequency features and integrates them with differ-
ential entropy feature. Furthermore, adaptive regularization
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is utilized to account for the spatial information of EEG
electrodes. The efficacy of the proposed method is evaluated
on two datasets, namely SEED and DEAP.

Zhang et al. [42] propose a two-stage framework that
leverages spatial and temporal information for emotion
recognition from EEG signals. The authors employ a hier-
archical self-attention network to model local and global
temporal information, select the most relevant segments, and
reduce noise at the temporal level. Additionally, squeeze-
and-excitation (SE) and channel correlation loss (CC-loss)
modules are utilized to select themost important channels and
extract distinctive features at the spatial level. The proposed
method is evaluated on three datasets, namely SEED, DEAP,
and MAHNOB-HCI.

Pandey et al. [43] investigated emotional responses to
EEG signal stimuli using the DEAP dataset and two feature
extraction techniques, namely variational mode decomposi-
tion (VMD) and empirical mode decomposition (EMD). The
authors subsequently utilized a DNN model to classify emo-
tions. The results of the study indicate that the DNN classifier
outperforms SVM classifiers for emotion recognition, and
the VMD-based feature method is more effective than the
EMD-based method, reducing signal complexity.

Reference [44] proposes a DL model based on meta-
transfer learning that can automatically differentiate and
classify generated EEG signals into various emotional states.
By utilizing meta-learning, the model can quickly adapt to
new subjects with minimal data, which is highly advan-
tageous in practical applications. Moreover, this approach
enhances model performance and mitigates the issue of low
accuracy after transfer. The proposed model is evaluated on
two datasets, SEED and SEED-IV, and outperforms existing
methods in terms of data accuracy and efficiency.

An improved graph convolutionmodel with dynamic chan-
nel selection by Lin et al. [45] has been suggested. The
proposed model combines the advantages of 1D Conv and
graph convolution to capture intra- and inter-channel EEG
features. Additionally, they employed functional connectivity
in the graph structure to help further simulate the rela-
tionship between brain regions. Various subject-dependent
and subject-independent experiments were performed on two
datasets, DEAP and SEED, to evaluate the effectiveness of
the model and optimization method. The experimental results
demonstrate the efficacy of the proposed approach.

In [46], Li et al. propose a fusion graph convolutional
network (FGCN) architecture for extracting and combining
various relationships in EEG data to obtain a more com-
prehensive representation for emotion recognition. FGCN
initially identifies brain connectivity features based on topol-
ogy, causality, and function. Subsequently, a local fusion
strategy is introduced to merge these three graphs, enabling
the utilization of valuable channels with strong topologi-
cal, causal, and functional relationships. Finally, a graph
convolutional neural network is employed to enhance the
representation of EEG data for improved emotion recogni-
tion. Experimental results on SEED and SEED-IV datasets

indicate the effectiveness of combining different graphs in
enhancing emotion recognition capabilities.

III. MATERIAL AND METHODS
A. EEG SIGNALS
We downloaded EEG signals from the well-known open
access DEAP [1] and MAHNOB-HCI [2] datasets, which
have been widely used for emotion recognition research.
Both datasets comprise simultaneous EEG and physiological
signals recorded while healthy subjects were shown video
clips designed to induce various emotional reactions from all
quarters of the 2D valence-arousal model [47].

In the DEAP dataset, 32-channel EEG signals were
recorded from healthy subjects (16 male, 16 female; age
range 17 to 37 years) while they were shown short music
video clips [1]. Forty music video clips thought to induce
emotions encompassing all quarters of the 2D valence-
arousal model had been selected from 120 clips by volunteer
online rating. Each music video lasted 60 seconds, and a
length deemed sufficient to induce an emotional state [48],
[49]. After watching the music video clips, subjects filled the
self-reported self-assessment manikin form, which quantified
emotional responses in valence and arousal parameters and
scored using float values between 1 (lowest) and 9 (highest).
EEGs were recorded (sampling frequency 512 Hz) using the
BioSemi system based on the 10-20 international recording
system. In the preprocessing step, EEG signals were down-
sampled to 128 Hz, and line noise, blinks, and other artifacts
were removed.

In the MAHNOB-HCI dataset, 32-channel EEG signals
were recorded from healthy subjects (11 male, 13 female;
age range 19 to 40 years) who were shown 17 emotional
video clips of lengths ranging from 34.9 to 117 seconds [2],
[50]. The subjects spoke different languages and had diverse
cultural and educational backgrounds. The video clips were
chosen to trigger emotions in all quarters of the 2D valence-
arousal model: joy, fear, disgust, sadness, amusement, and
neutral. Like the DEAP dataset, each participant filled out
self-reported questionnaires that rated valence and arousal
measures using integer values from 1 to 9. The EEG sig-
nals were recorded (sampling frequency 256 Hz) using the
BioSemi active II system based on the 10-20 international
recording system. In preprocessing step, line noise, blinks,
and other artifacts were removed from EEG signals. In brief,
the reference of the EEG signal was first changed using
the averaging method in the EEGLAB toolbox, MATLAB
2021b. The finite impulse response (FIR) low- and high-pass
filters were used to remove noise below 0.5 Hz and higher
than 45 Hz, respectively. Then, the signal was passed through
an FIR notch filter to remove 49-51 Hz power line noise. The
remaining artifacts, like blinking, were manually removed
using the EEGLAB above toolbox. The EEG signals from
four subjects (3 male, and 1 female) were excluded from
analysis due to excessive artifacts. To standardize comparison
with the DEAP dataset, the length of each EEG signal was
truncated at 60 seconds from the start of stimulation.
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FIGURE 1. 2D valence-arousal model. Various emotions are depicted in
the four quarters (Q1, Q2, Q3, and Q4) corresponding to positive and
negative valence (V) as well as low and high arousal (A).

B. EMOTION CLASSES
Russell first introduced the 2D valence-arousal model to
characterize the emotions [47]. Valence embodies the pleas-
antness of the induced feeling, which can range from positive
to negative. For example, sadness is negative, whereas happi-
ness and entertainment are positive. Arousal denotes the level
of evoked emotion, ranging from low to high. For example,
when a person becomes angry, the arousal level is higher than
sad or bored. In the DEAP dataset, each subject’s emotional
class when watching each video clip was stratified into one
of four quarters (Q) of the 2D valence-arousal model using
self-assessed valence and arousal scores: Q1, valence, and
arousal ≥ 4.5; Q2, valence < 4.5 and arousal ≥ 4.5; Q3,
valence, and arousal < 4.5; and Q4, valence ≥ 4.5 and
arousal < 4.5 (FIGURE 1).

In the MAHNOB-HCI dataset, each subject’s emotional
class when watching each video clip was stratified into one
of four quarters (Q) of the 2D valence-arousal model using
self-assessed valence and arousal scores: Q1, valence, and
arousal ≥ 5; Q2, valence ≤ 4 and arousal ≥ 5; Q3, valence
and arousal ≤ 4; and Q4, valence ≥ 5 and arousal ≤ 4
(FIGURE 1).

C. EFFECTIVE CONNECTIVITY METHODS
1) TE
TE is a nonlinear EC measure that estimates the causal
interactions between two signals or anatomical brain regions
based on conditional entropy. It has the advantage of
not requiring a priori assumption of connectivity patterns.
TE measures have been applied to detect schizophrenia [21],
diagnose Alzheimer’s dementia and mild cognitive impair-
ment [51], detect drowsiness [52], as well as recognize
emotions [24].

If we have two signals of x(t) and y(t) from a Markov
process, where xmt = (xt , xt+1 . . . , xt−m+1) and ynt =

(yt , yt+1 . . . , yt−n+1) are m and n memory (or embedding
dimension) of Markov processes in x and y, respectively. The

directed information flow, TE relation, is calculated from the
time series xt to yt as Eq. (1) [53]:

TEX→Y

=

∑
yt+1,y

dy
t ,xdxt

p
(
yt+1 | y

dy
t , xdxt

)
log

p
(
yt+u | y

dy
t , xdxt

)
p

(
yt+u | y

dy
t

)

(1)

where t is the time-index (discrete value); and u the pre-
diction time (discrete value). y

dy
t and xdxt denote dy- and

dx-dimensional delay vectors are defined as in Eq. (2) and (3),
wherein τ represents the time delay and is autocorrelation
time of the signal.

xdxt = (x (t) , x (t − τ) , . . . , x (t − dx − 1) τ ) (2)

y
dy
t =

(
y (t) , y (t − τ) , . . . , y

(
t − dy − 1

)
τ
)

(3)

TE is estimated in MATLAB 2021b using the HERMES
connectivity toolbox, version 2020. The number of neigh-
bors (note: TE is calculated through the K-Nearest Neighbor
estimator), the embedding dimension, and the time delay to
estimate TE was set at 4, 3, and 10, respectively.

2) DDTF
dDTF is a linear parametric EC measure that estimates com-
mon frequency components between two EEG channels [54],
[55]. dDTF from jth channel to ith channel is estimated using
Eq. (4):

dDTF ij =
|Hij(f )|2∑

f
∑M

k=1 |Hik (f )|2
×

Ŝij (f )√
Ŝii (f ) Ŝjj (f )

(4)

where H (f ) is the transfer matrix of the system; and S (f );
spectral density matrix of a multi-variable auto-regressive
model that is estimated from x(t), i.e., S (f ) = X (f )X (f )∗ =

H (f )6H (f )∗. dDTF was estimated in MATLAB 2021b using
the source information flow toolbox, version 0.1a. The model
order was set at 10.

3) PDC
PDC is a linear parametric EC measure in the frequency
domain that estimates the causal influences between two
EEG signals. PDC of ith EEG channel from jth channel at
frequency component f is estimated using Eq. (5) [55], [56],
[57]:

πij (f ) =
Āij (f )√∑N

m=1 Āmj (f )Ā
∗
mj(f )

(5)

where Āij (f ), is the frequency component of the autoregres-
sive coefficients of A (aij); and is computed using Eq. (6):

Āij (f ) = δij −
∑p

r=1
aij(r)e−j2π fr (6)

where p is model order. PDC is estimated inMATLAB 2021b
using the HERMES connectivity toolbox, version 2020. The
model order was set at 10.
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D. PRE-TRAINED CONVOLUTIONAL NEURAL NETWORKS
CNN is an effective deep learning method with an integrated
structure for extracting, selecting, and classifying features
that are known to yield high performance among contem-
porary machine learning methods [26]. In a CNN, several
convolution operations extract low- and high-level features
in the convolutional layer to create feature maps. Rectified
linear unit is the activation function after each convolu-
tional layer. In the pooling layer, maximum and average
operations reduce feature map size using filter masks. After
the fully connected layer, the softmax function calculates
the probability of each sample for each class, while cross-
entropy computes the loss function. Batch normalization and
dropout techniques are used to regularize values and prevent
overfitting. In this work, pre-trained CNNs were used as
transfer learning models. These pre-trained CNNs had been
trained on the large public ImageNet database, comprising
more than one million images of animals, objects, etc., with
1,000 classes [58]. Transfer learning is done by considering
a powerful deep network to extract comprehensive features
along with its pre-trained weights on large datasets and then
adapt the network weights on the target task that has limited
training data. Transfer learning with pre-trained CNNs over-
comes the need a lot of data for good training and prevent
overfitting. This is because the pre-trained CNN model has
already learned to extract informative features from natural
images, which can then be a starting point to learning new
study-specific tasks using a smaller dataset of the training
set. Accordingly, transfer learning with pre-trained CNN
networks is better than training a custom CNN model with
randomweights. The pre-trained CNNs were previously used
for the detection of schizophrenia [16], etc.

In this work, six powerful pre-trained CNNs–ResNet-
50, Inception-v3, Xception, DenseNet-201, EfficientNetB0,
and NasNet-Mobile–were incorporated as transfer learning
models to classify four emotion classes. We selected these
pre-trained CNNs as they are designed in various archi-
tectures and were used in the previous studies [7], [16],
[30], [32], [33] on EEG signals and demonstrated high
performance.

In CNNs, the classification layers, which each consisted of
1,000 neurons to classify the 1,000 classes of the ImageNet
database, were modified to four neurons each to classify
four emotion classes. Loss function was the cross-entropy,
and an adaptive moment estimation optimizer algorithm was
deployed in the optimization phase.

1) RESNET-50
ResNet-50 belongs to the residual network family of CNNs,
which won the ImageNet Large Scale Visual Recognition
Challenge 2015 [59]. It consists of one convolutional layer
with several 7 × 7 filters and 16 residual units that each
contains two or three stacked convolutional layers (several
3×3 filters) with shortcut from the beginning to end of them.
It has one max pool layer at the start and one fully connected

TABLE 1. Attributes of the pre-trained CNNs.

layer at the end. This network inputs 224 × 224 × 3 images
and outputs 25.6 million weighted parameters after training
on the ImageNet database (TABLE 1).

2) DENSENET-201
DenseNet contains a sequence of 5, 12, 48, and 32 stacked
residual blocks that are separated by batch normaliza-
tion, pooling, and one simple convolutional layer, respec-
tively [60]. These residual blocks are constituted using
several 3×3 and 1×1 filters. This network inputs 224×224×

3 images and outputs 20 million parameters after training on
the ImageNet database (TABLE 1).

3) EFFICIENTNETB0
EfficientNetB0 was initially designed for light devices like
mobile phones [61]. EfficientNetB0 starts with a stem unit
that comprises the input, rescaling, normalization, zero-
padding, convolutional, batch normalization, and activation
layers. To this are added seven mobile inverted bottleneck
blocks of convolutional layers with 3 × 3 and 5 × 5 kernels.
This network inputs 224 × 224 × 3 images and outputs
5.3 million weighted parameters after training on the Ima-
geNet database (TABLE 1).

4) INCEPTION-V3
Inception-v3 contains five convolutional layers with several
3 × 3 filters and two max-pooling layers [62]. To this are
added eleven Inception units, which are multiple parallel
convolutional layers with various filter sizes, and batch nor-
malization layer to reduce overfitting. This hierarchical and
compact structure contributes to the efficiency of Inception-
v3, which was awarded runner-up in the ImageNet Large
Scale Visual Recognition Challenge 2015. This network
inputs 299 × 299 × 3 images and outputs 23.9 million
weighted parameters after training on the ImageNet database
(TABLE 1).

5) XCEPTION
Xception is an advanced version of Inception that was
designed by Google [63]. It contains two simple convolu-
tional layers with multiple 3 × 3 filters and twelve separable
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convolutional units (instead of an Inception unit with short-
cuts like in residual networks). Separable convolutional units
contain stacked groups and simple convolutional layers with
various filter sizes, and each unit has a residual short-
cut. Xception inputs 299 × 299 × 3 images and outputs
22.9 million weighted parameters after training on the Ima-
geNet database (TABLE 1).

6) NASNET-MOBILE
NasNet-Mobile, designed by Google, possesses the largest
and deepest architecture among the pre-trained CNN mod-
els [64]. NasNet-Mobile has stem units that contain many
separable groups of convolutional layers with nested 11×11,
5 × 5, 7 × 7, and 3 × 3 filters. This network uses a search
strategy to evolve the best architecture. It inputs 224×224 ×

3 and outputs 20 million weighted parameters after training
on the ImageNet database (TABLE 1).

E. PROPOSED EMOTION RECOGNITION SYSTEM BASED
ON COMBINED PRE-TRAINED CNN AND LSTM MODELS
EEG signals from the DEAP and MAHNOB-HCI datasets
were input into the model. TE (nonlinear nonparametric EC
measure in the time domain) and PDC and dDTF (linear para-
metric ECmeasures in the time and frequency domains) were
used to estimate the causal influences between two EEG sig-
nals. We chose these EC measures based on their successful
individual performances in extracting features from multi-
channel EEG signals [55], [56], [57]. In the feature extraction
phase of our model, TE, PDC, and dDTF EC measures were
first estimated from 5-second time windows of 1D EEG sig-
nals from every one of the 32 channels and used to create 2D
images. To add temporal information, the 2D images derived
from EC measures estimated from three consecutive overlap-
ping 5-second time windows were arranged horizontally in
series. The series of time-resolved 2D image representations
for the dDTF, PDC, and TE functions were then stacked
vertically (dDTF, PDC, and TE from top to bottom) to form
a novel three-dimensional connectivity image that effectively
fuses the serial three-phase timewindows of all three ECmea-
sures (FIGURE 2). The input signal length was 60 seconds.
There was 80% overlap between pairs of consecutive time
windows. Accordingly, 56- time frames and 32 × 32 ×

56 arrays for each EC measure and 18 (= 56-time frames/3)
fused connectivity images with size 96 × 96 were obtained
from the simultaneous 32-channel EEG signals during each
viewed video clip. These 18 fused connectivity images effec-
tively capture the spatial and time-resolved directionalities of
all three EC measures estimated from multichannel 1D EEG
signals acquired in response to each experimentally induced
emotional state. EC measures were computed in MATLAB
2021b programming environment–TE and PDC using HER-
MES connectivity toolbox, version 2020; and dDTF, source
information flow toolbox plugin to EEGLAB toolbox–on a
laptop with Intel (R) Core (TM) i7-6500U and @2.50 GHz
2.60 GHz CPU.

FIGURE 2. Creation of a new fused connectivity image of size 96 ×

96 based on the fusion of a series of three-time windows of 2D image
represents converted from 1D 32-channel EEG signals using three
different EC measures (PDC, dDTF, and TE). Each window is an EC measure
with a size of 32 × 32. Three consecutive 5-second windows from each EC
measure were arranged horizontally, and PDC, dDTF, and TE were
arranged vertically to construct an input fused EC image.

Six pre-trained CNNs–ResNet-50, Inception-v3, Xception,
DenseNet-201, EfficientNetB0, and NasNet-Mobile–were
deployed as transfer learning models to classify fused EC
images derived from multichannel EEG signals in the DEAP
and MAHNOB-HCI datasets into four emotion classes of
the 2D valence-arousal model using leave-one-subject-out
(LOSO) cross-validation. The fused EC images were input
to each pre-trained CNN model separately to fine-tune its
parameters. As the size of each fused EC image was 96 ×

96 and not matched to the pre-trained CNN model’s input,
these images were expanded to the required input image
sizes of the individual pre-trained CNNs (Table 1). A simple
ensemble model based on a majority voting algorithm [30],
[50] of results was deployed to select the best results by pre-
trained CNN networks.

As we know, LSTM is a RNN that learns the dependency
of time series to apply classification [28], [29]. This method
achieved good performance in schizophrenia detection [15]
and emotion recognition [28], [29] studies. Hence, it is a
good choice to improve recognition of four emotional classes.
Combining pre-trained CNN and LSTM can increase deci-
sion ability by using deep extracted features from CNN and
considering the dependency of time samples from the LSTM
model. In this study, every five sequential fused images
(size = 224 × 224 × 3) were used as input to the CNN-
LSTM model. Then, the Time Distributed layer of CNN
models was used to handle all five images across the temporal
dimension. 128 features were extracted from each sample
input. Bidirectional LSTM layers used in this study exploited
the most advantageous features from each input sample by
analyzing it in both directions of the temporal dimension.
32 features were extracted from the first and second bidirec-
tional LSTM layers. Then, the sigmoid activation function
classified in to four classes (Q1, Q2, Q3, and Q4). After
that, another ensemble approaches using the same method
vote decides the final class. The training was run on a GPU
with 1.08 GB/12.68 GB RAM from Google Colaboratory
on Python programming. Python programs are available
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FIGURE 3. Block diagram of the proposed emotion recognition system based on fused
connectivity images and ensemble of combined pre-trained CNN-LSTM models.

on GitHub link (https://github.com/SARAHbagh65/fused-
effective-connectivity-and-pre-trained-cnns). FIGURE 3
depicts the workflow of the proposed emotion recognition
system.

F. STATISTICAL METRICS
LOSO cross-validation was used to evaluate the classifica-
tion performance of the four classes of emotions, i.e., Q1,
Q2, Q3, and Q4. At each repetition, data from all subjects
except for one subject were used to train the model; and
data from the latter to test the model. This process was
performed 32 and 20 times for the DEAP and MAHNOB-
HCI datasets, respectively, corresponding to the number of
analyzable subjects. For the DEAP dataset, 22,320 images
(18 fused EC images per each of 40 videos in 31 subjects)
were used as the training set for each model per repetition;
and 720 images (18 fused EC images per each of 40 videos
in one subject) were used for testing. For the MAHNOB-
HCI dataset, 5,814 images (18 fused EC images per each of
17 videos in 19 subjects) were used as the training set for each
model per repetition; and 306 images (18 fused EC images
per each of 17 videos in one subject) were used for testing.

TABLE 2. Details of DEAP and MAHNOB-HCI databases.

The means and standard deviations of standard perfor-
mance metrics–accuracy, sensitivity, precision, and F-score
[66]–were calculated to evaluate the model. TABLE 2 sum-
marizes the two final datasets used in the manuscript,
including the total number of 2D fused images generated and
used to train and evaluate the performance of the model.

IV. RESULTS
FIGURE 4 shows examples of fused EC images of the four
emotion classes from one subject each in the DEAP and
MAHNOB-HCI datasets. The four-class emotion recognition
classification performance of the six pre-trained CNNmodels
based on fused connectivity images and, by comparison,
the individual TE, PDC, and dDTF measures separately, for
the DEAP and MAHNOB-HCI datasets are summarized in
TABLES 3 and 4, respectively. For the DEAP dataset, the
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TABLE 3. Performance metrics of individual pre-trained CNN models and the ensemble of best model results, stratified by use of fused connectivity
images or individual TE, PDC, dDTF measures, for the classification of four emotion classes in the DEAP dataset using LOSO Cross-Validation. Values are
presented as means ± standard deviations.

ensemble of NasNet-Mobile, EfficientNetB0, and ResNet-50
yielded the best results for fused connectivity images, attain-
ing accuracy and F-score of 97.91% and 97.99%, respec-
tively. For the MAHNOB-HCI database, the ensemble of
NasNet-Mobile, EfficientNetB0, and ResNet-50 yielded the
best results for fused connectivity images, attaining accuracy
and F-score of 98.03% and 98.03%, respectively.

Pre-trained on the ImageNet database, the fully connected
layers of the used CNNmodels contained 1,000 neurons nec-
essary for classifying the 1,000 classes in ImageNet. These
were changed to four neurons to perform the classification of
four emotion classes in this work, and the classification layers

were replaced by new ones to match the new fully connected
layers. In addition, weight learns rate factor and bias learn
rate factor values were increased from 1 to 20 to accelerate
the fine-tuning process in both layers compared with the
transferred (unchanged) layers. The training curves–average
accuracy for LOSO cross-validations with increasing num-
bers of training epochs–for all pre-trained CNN models on
the DEAP (FIGURE 5) and MAHNOB-HCI (FIGURE 6)
datasets show exponential behavior before plateauing to
reaching the highest accuracy rates, which implies stability
of all models. The initial learning rate was set at 0.0004 for
the five pre-trained CNN models (at single approach and
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TABLE 4. Performance metrics of individual pre-trained CNN models and the ensemble of best model results, stratified by use of fused connectivity
images or individual TE, PDC, dDTF measures, for the classification of four emotion classes in the MAHNOB-HCI dataset using LOSO Cross-Validation.
Values are presented as means ± standard deviations.

combination approach), and squared gradient decay factor,
max epochs, and mini-batch size were set at 0.99, 40, and
32, respectively.

Then, the fusion of pre-trained CNN models and LSTM
was performed to improve the accuracy of the best results
of the previous phase, i.e., on fused images obtained from
three connectivity measures of TE, PDC, dDTF. All the
CNN-based models were trained under same condition.
TABLES 5 and 6 show the results obtained for vari-
ous CNN-based models using DEAP and MAHNOB-HCI
databases, respectively. It can be observed from both tables

that the highest accuracy of 96.83% and 97.12%was obtained
using a combination of NasNet-Mobile-LSTM for DEAP and
MAHNOB-HCI databases, respectively. Also, using ensem-
ble model the accuracy increased to 98.76% and 98.86% for
DEAP and MAHNOB-HCI, respectively.

V. DISCUSSION
In this research, a new fused connectivity image constructed
from multichannel EEG signals using nonlinear TE and lin-
ear PDC and dDTF methods were combined with transfer
learning and applied for the automatic classification of four
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FIGURE 4. Example fused connectivity images in the emotion classes Q1
(a, e), Q2 (b, f), Q3 (c, g), and Q4 (d, h) from one subject each in the DEAP
(a to d) and MAHNOB-HCI (e to h) datasets. EC measures were extracted
from 5-second 1D EEG signals to create 2D images corresponding to the
time windows. Each individual time window occupying one-third was an
EC measure with a size of 32 × 32. EC values assigned to the individual
elements represented the causal influences between all pair
combinations of the 32 simultaneous EEG signal channels at any one time
window. The fused connectivity images were created from the fusion of
three consecutive time windows of all three EC measures (PDC, dDTF, and
TE) and therefore have a size of 96 × 96.

emotional classes. Six powerful CNN models–ResNet-50,
Inception-v3, Xception, DenseNet-201, EfficientNetB0, and
NasNet-Mobile–pre-trained on the huge ImageNet database
were deployed to extract deep features from the novel
fused connectivity images for downstream classification.
To enhance the model’s accuracy and stability, the predic-
tions of these pre-trained CNN models were merged, and the
best ensemble results were subsequently selected by majority

FIGURE 5. The training process for EfficientNetB0, NasNet-Mobile,
ResNet-50, Xception, Inception-v3 and DenseNet-201 on the DEAP
dataset. The vertical axis depicts accuracy values, and the horizontal axis
shows epochs for every pre-trained CNN model during the training
process.

FIGURE 6. The training process for EfficientNetB0, NasNet-Mobile,
ResNet-50, Xception, Inception-v3 and DenseNet-201 on the
MAHNOB-HCI dataset. The vertical axis depicts accuracy values, and the
horizontal axis shows epochs for every pre-trained CNN model during the
training process.

voting. As a result, the ensemble of EfficientNetB0, NasNet-
Mobile, and ResNet-50 yielded superior performance with
fused connectivity images, attaining average accuracy rates
of 97.91% and 98.03% on the DEAP and MAHNOB-HCI
datasets, respectively. Also, the combination of CNNs and
LSTM improved the final accuracy and achieved 98.76%
for the DEAP database and 98.86% for the MAHNOB-HCI
database. It means the time dependency that LSTM added
to good features of CNNs improved the performance of our
proposed emotion recognition system.

Without fused connective image, among the three indi-
vidual EC methods, TE measures attained the best average
four-class classification accuracy in terms of ensemble results
and individual pre-trained network performance for both
datasets (TABLES 3 and 4). A potential explanation for this
superior performance compared with PDC and dDTF is that
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TABLE 5. Performance metrics (means ± standard deviations) obtained for various combinations of CNN-based models using DEAP database with LOSO
cross-validation strategy.

TABLE 6. Performance metrics (means ± standard deviations) obtained for various combinations of CNN-based models using MAHNOB-HCI database
with LOSO cross-validation strategy.

TE is based on the information theory and estimates the
nonlinear relationships of transfer of information between
pairs of EEG channels. In contrast, PDC and dDTF are linear
measures and unable to extract hidden nonlinear information
from the data. In the absence of ensemble majority voting,
the NasNet-Mobile network yielded the best performance
among individual pre-trained CNN models, attaining accu-
racy rates of 96.25 and 96.40% on fused connectivity images
in the DEAP and MAHNOB-HCI datasets, respectively
(Tables 3 and 4). This pre-trained CNNmodel uses reinforce-
ment learning to seek out the best architecture of cells and is
comparatively lightweight computationally, despite its deep
architecture.

The main contribution of this work is a novel method that
fuses three established brain EC measures–dDTF, PDC, and
TE–to represent spatially and temporally resolved multichan-
nel 1D EEG signals as compact images that can be input
to pre-trained CNN models for downstream classification
using transfer learning. By way of comparison, time-spectral
methods [67], [68] such as wavelet transform, is the classical
time-frequency method used to convert 1D signals into 2D
image representations of the derived time-frequency image
to feed to pre-trained CNN transfer learning models. The
EC methods employed in this study have been successfully

applied to process EEG signals for the detection of various
mental conditions [55], [56], [57]. In the current work, these
measures are distinguished by their ability to provide linear
and nonlinear high-level contents related to emotional state-
induced time-resolved information flow between spatially
distributed signal channels located at separate brain regions.
The excellent classification performance of the proposed
model conclusively demonstrates its effectiveness for emo-
tion recognition.

We performed a non-systemic literature review to compare
our model performance with recent related studies on EEG
signal-based emotion recognition using the same datasets.
The results are summarized in TABLE 7. Our proposed
model clearly outperformed related studies in the literature.
Our models spent more computational time and load in the
training phase in comparison of traditional machine learning
methods like SVM or decision tree, but they are quick in
front of unknown samples (test set). Therefore, improvements
around 1% and 3% on accuracy rates have its worth to be
applied in real-World scenario. In summary, the excellent
performance provides support for (1) the ability of our pro-
posed fusion EC method to construct discriminative images
from multichannel EEG signals that accurately represent
the comprehensive spatially and temporally resolved brain
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TABLE 7. Recent studies (in chronological order) of EEG-based emotion recognition on the DEAP and MAHNOB-HCI datasets.

connectivity during induced emotional states; (2) the use of
pre-trained transfer learning models; (3) the use of majority
voting algorithm to enhance model accuracy and stability;
and (4) the combined pre-trained transfer learningmodels and
LSTM is used to improve model accuracy.

The main limitation of the study is the small sample size,
which can render the developed deep learning model vulner-
able to bias and less generalizable. In this study, we mitigated
this problem using transfer learning, in which the CNNs were
pre-trained on the large ImageNet database. Another limita-
tion of our proposed model is the high computational cost
associated with the fine-tuning and evaluation steps involved
in LOSO cross-validation. While the ensemble results on
the fused connectivity images were the best, almost similar
results were obtainedwith the comparatively computationally
lightweight NasNet-Mobile network, which may be more

suitable for real-world implementation. Lastly, the ground
truth of the four emotion classes in the 2D valence-arousal
model for both DEAP and MAHNOB-HCI datasets was
established through self-reported questionnaires and not by
experts. However, this practice has been long-established.
The final drawback of this study is that our emotion recog-
nition systems do not recognize individual emotions per se
(e.g., we cannot state that our system predicts with 98% accu-
racy that the subject is angry). These models classify signals
according to differences in their level of valence/arousal, and
those levels are associated with different emotional states.

A. LIMITATIONS OF STUDY
In this paper, pre-trained models for emotion recognition
using EEG signals are presented. The study uses two datasets,
DEAP and MAHNOB-HCI, which have a limited number
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of subjects for emotion recognition. Due to this limitation,
advanced DLmodels like self-supervised learning techniques
cannot be employed. In some medical research, it has been
shown that emotion recognition is crucial in the diagno-
sis of some brain disorders such as schizophrenia (SZ),
although currently available EEG datasets for diagnosing
such disorders have not been provided based on emotion
recognition, which is another limitation. In the processing
step of this work, three effective connectivity techniques
including TE, PDC and dDTF have been exploited and fused
with each other. Although these methods perform better than
functional connectivity techniques, they have a higher com-
putational cost. As mentioned in the previous sections, the
fusion of TE, PDC and dDTF images is the first novelty
of this work, making this section more complex than using
functional connectivity methods. In the following, the latest
pre-trained architectures are used, which is another novelty
of this paper. These networks have achieved satisfactory
results with low input data, but their initial training takes
some time, and they cannot be used for 1D EEG signals.
These architectures are trained on ImageNet dataset, but if
they are trained on medical data, their results can be more
reliable.

VI. CONCLUSION
In this study, we proposed a new method to represent
multichannel 1D EEG signals as images using fusion of
three well-known brain EC measures (dDTF, PDC, and TE).
Then, the fused images were fed to pre-trained CNN mod-
els to classify four emotional classes via transfer learning.
NasNet-Mobile outperformed other base pre-trained mod-
els, attaining accuracy rates of 96.25 and 96.40% using
fused connectivity images of EEG signals from the DEAP
and MAHNOB-HCI datasets, respectively. Then, an ensem-
ble model based on the best pre-trained CNN models
(EfficientNetB0, NasNet-Mobile, and ResNet-50) on fused
connectivity images yielded the best performance, attain-
ing average accuracy rates of 97.91% and 98.03% on the
DEPA and MAHNOB-HCI datasets, respectively. Finally,
the individual pre-trained CNNs are combined with LSTM
models to improve the accuracy of recognition of emo-
tional classes. ensemble of the outputs of the three best
models (EfficientNetB0-LSTM, NasNet-Mobile-LSTM, and
ResNet-50-LSTM), increased the accuracy to 98.76% and
98.86% for DEAP and MAHNOB-HCI databases, respec-
tively. The excellent performance achieved in this study
demonstrates the discriminative utility of the model com-
pared to other deep and machine learning studies, and lends
support to its real-world implementation for automated emo-
tion recognition.
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APPENDIX

Algorithm Pseudocode of the proposed method based on
the fusion of effective connectivity measures and pre-trained
CNN models to classify emotional states.
Input: 32 EEG channels from DEAP and MAHNOB-HCI
databases
Output: four emotional classes

1- Preprocess 32 EEG channels
2- for i= 1 to 32do
3- for j= to 40 video clips do (this number pertains to DEAP;
the corresponding number is 17 for MAHNOB-HCI)
4- Estimate TE, PDC and dDTF from five-second windows
5-Build images based on fusion of the three estimation meth-
ods from step 4
6-end for j
7-Fine-tune six pre-trained CNNs of DenseNet-201,
ResNet-50, NasNet-Mobile,
Inception-v3, Xception, EfficientNetB0 using LOSO cross-
validation separately,
%% [In LOSO cross-validation, CNNs are trained on images
of 31 subjects (this number pertains to DEAP; the corre-
sponding number is 19 for MAHNOB-HCI) and tested on
images of the remaining one at each repetition]
8- Evaluate six pre-trained CNNs on images of the one unseen
participant
9- Calculate final means and standard deviations of accuracy,
precision, sensitivity, and F-score
10- end for i
11- Vote emotion classes based on majority from outputs
from three or five pre-trained CNNs toward increasing final
decision
12- Calculate final means and standard deviations of accu-
racy, precision, sensitivity and F-score
13- Combine pre-trained CNNswith a designed LSTMmodel
14- Calculate final means and standard deviations of accu-
racy, precision, sensitivity and F-score
15-Vote emotion classes based onmajority from outputs from
three or five pre-trained CNN-LSTMs toward increasing final
decision
16- Calculate final means and standard deviations of accu-
racy, precision, sensitivity, and F-score
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