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ABSTRACT 
 

Over the current decade, the use of natural fibres as an alternative to synthetic fibres 

such as glass and carbon has been growing due to the environmental and economic 

advantages of natural fibres. In this study, the mechanical and tribological 

performance of epoxy composites based on kenaf fibres was evaluated. The 

interfacial adhesion between the kenaf fibres and the epoxy matrix was sudied and 

the effect of NaOH treatment was considered. The tensile and flexural properties of 

the untreated and treated kenaf fibre reinforced epoxy (KFRE) were determined, and 

their fracture behaviour was examined using scanning electron microscopy (SEM). 

For the tribological experiments, the adhesive wear and frictional experiments were 

performed considering three different orientations of the fibres with respect to the 

sliding of the counterface. Different operating parameters were considered, such as 

applied loads (5–200 N), sliding distances (0–5 km) and sliding velocity (0–3.5m/s) 

under dry/wet contact conditions. The prediction of the frictional performance of the 

composites was modelled using artificial neural networks (ANN) considering 

different configurations. Furthermore, the effects of sand particle size, applied load 

and kenaf fibre orientation on the three-body abrasion (3B-A) wear behaviour of 

epoxy composites subjected to high stress were investigated. ABAQUS software was 

used to develop the 3B-A model aiming to assist in understanding the damage 

features on the composite surfaces, considering different particle angles, pressures, 

and fibre orientations.  
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The results revealed that treating the kenaf fibre with 6 per cent NaOH contributed to 

the high interfacial adhesion of the fibre with the matrix, which resulted in 

significant improvements to the mechanical properties of the epoxy composites. The 

wear and frictional performance of the composites was significantly affected by the 

fibre orientation rather than the operating parameters under all the conditions tested. 

When the kenaf fibres were oriented in N-O, the wear and frictional performance of 

the composite was much better than in the other orientations and NE for both 

adhesive and abrasive wear loadings. The wear mechanisms of the composite tested 

in N-O were predominately micro-cracks under dry adhesive wear and polishing 

mechanisms under wet conditions. The presence of water at the interface helped to 

remove debris from the interface and cooled the contacted surface, which lowered 

the interaction between the aspirates at the contact interface and led to a low friction 

coefficient. The ANN approach was found to be a useful tool to predict the friction 

coefficient. However, selection of training and learning functions was key in 

controlling the error and the prediction performance of the model. The numerical 

results were found to be in strong agreement with the experimental findings, where 

the most pronounced factor affecting the wear behaviour of the composite was the 

fibre orientation.  
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CHAPTER 1: INTRODUCTION 
 

1.1 INTRODUCTION 
 
The tribological performance of materials is one of the essential considerations in 

material selection and component design. Currently, there is tremendous interest in 

using polymeric composites for tribological applications, such as bearings, gears and 

bushes. However, growing environmental awareness has aroused an interest in 

research into, and the development of, biodegradable high performance materials. 

Over the last few years, natural fibres have become a promising alternative 

reinforcement fibre to replace the synthetic fibres currently used in polymeric 

composites (Azwa et al. 2013; Shalwan & Yousif 2013; Heitzmann et al. 2013). 

Natural fibres have several advantages over synthetic fibres, such as being 

renewable, environmentally friendly, low cost, lightweight, flexible in their usage, 

naturally recyclable and biodegradable. Natural fibres such as jute, linen, banana, 

bamboo, sugarcane, coir and oil palm have been used as reinforcements in different 

types of polymers for different applications. Due to this interest and the benefits of 

using bio-reinforcements, numerous studies have attempted to evaluate the influence 

of these new reinforcement materials on composite performance under different 

loading conditions. In recent years, kenaf fibres have attracted both academic 

researchers and industries, since promising results have been obtained using kenaf 

fibres in different applications (Asumani, Reid & Paskaramoorthy 2012; Amel et al. 

2013; Meon et al. 2012). Industrial applications for kenaf-polymer composites are 

growing for automobile, housing, packaging and electronic products (Nishimura et 

al. 2012). With regard to the properties and performance of these newly developed 
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natural fibre-polymer composites, the majority of the existing research studies have 

been conducted on the mechanical performance of these composites. However, it is 

well known that the majority of these components are subjected to tribological 

loading, which may be the main reason for component failure. In other words, less 

attention has been paid to the tribological behaviour of these new composites (Yousif 

2013b; Davim 2013a). The tribological performance of polymers and their 

composites are generally dependent on operating and test conditions. Over the past 

few years, several studies have been initiated in order to investigate the effects of 

jute, linen, sugarcane and cotton fibres on the wear performances of polymeric 

composites (Chand & Dwivedi 2006a; El-Tayeb 2009; Nirmal et al. 2012; Yousif 

2009), but the potential of other natural fibres remains to be explored. This has been 

the motivation for this research study, which aims to conduct a comprehensive 

investigation of the effect of kenaf fibres on the tribo-characteristics of epoxy 

composites. A closed compressed mould was used to fabricate kenaf reinforced 

epoxy composites (KFRE). Two KFRE composites were developed, based on 

untreated or treated (with 6 per cent NaOH) kenaf fibres. In addition, neat epoxy 

(NE) was prepared to investigate the effect of each fibre on tribo-performance. The 

tribological performance of the selected materials was primarily evaluated in 

adhesive and abrasive wear modes. The composites were tested under three principal 

orientations according to the orientation of the fibres in the matrix relative to the 

sliding direction of the counterface; i.e., parallel (P-O), anti-parallel (AP-O) and 

normal (N-O). The adhesive wear tests were conducted under wet and dry contact 

conditions using the block-on-disc (BOD) technique against smooth stainless steel at 

various sliding distances (0–14 km), sliding velocities (1.1–7.8 m/s) and applied 
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loads (30–100 N). The abrasive wear characteristics were evaluated in three-body 

abrasion (3B-A) wear modes at either of two rotational speeds (50 and 100 rpm) and 

for applied loads of between 5 and 25 N. The 3B-A wear tests were performed 

against different sizes of sand particles with a flow rate of 4.5 g/s, under high stress 

conditions. 

 

The morphology of the worn surfaces of the composites was examined by scanning 

electron microscopy (SEM) in order to categorise the wear failure mechanisms. In 

addition, frictional forces and interface temperatures were recorded during the tests. 

The results of wear (i.e., specific wear rate, wear rate and weight loss), friction 

coefficients and interface temperatures were presented as functions of the operating 

parameters. The experimental results revealed many important issues that should 

largely contribute to tribological science. 

 

1.2 OBJECTIVES 
 

The main objectives of this study are to: 

• Develop new environmentally friendly polymeric composites based on 

natural fibres. This can be achieved by developing epoxy composites based 

on attractive natural fibres, such as kenaf fibre. 

• Study the mechanical properties of KFRE composites and the influence of 

NaOH treatment on the interfacial adhesion of the kenaf fibre with the epoxy 

matrix. 
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• Evaluate the adhesive wear and frictional characteristics of the natural fibre 

composites under dry/wet contact conditions when subjected to adhesive 

wear load and categorise the wear mechanisms of the composites. 

• To study the 3B-A wear performance of the selected material and explore the 

effects of the natural fibre on the tribo-performance of the composites. 

• To develop a friction coefficient prediction model using the artificial neural 

network (ANN) approach considering different operating parameters and 

output using different training and learning functions to gain the optimum 

performance. 

 

1.3 PROJECT SIGNIFICANCE AND CONTRIBUTIONS 
 

The impact of the project will be felt in different aspects: economic, environmental, 

industrial and scientific. Some of the significant aspects of the project are: 

1. Natural fibres are becoming superior alternatives to synthetic fibres as 

reinforcements for polymeric composites due to their advantages over 

synthetic fibres. Replacing synthetic fibres with natural fibres as a 

biodegradable reinforcement is a significant approach to reducing the impact 

of synthetic polymeric composites on the environment. 

2. In the recent decade, applications based on natural fibre reinforced polymeric 

composites have been found for numerous products that may be exposed to 

tribological loading during their service. For example, sugarcane, jute, coir, 

date pam fibre reinforced different types of resins such as epoxy and 

polyester have been developed for mechanical and civil components. The 

outcomes of this study will contribute significantly to our knowledge of these 
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materials and assist both industrial and basic researchers in understanding 

them. 

3. Development of a new predictive modelling system based on ANN theory is a 

new approach in tribology and mechanical science. The significance of this is 

to overcome a major issue in tribological experiments: the number of 

experiments required to evaluate the tribological performance of materials 

can be significantly reduced by predictive modelling. 

4. The findings of this study have been published in 6 articles in high-standard 

international journals, which will assist researchers working in the field of 

natural fibres, mechanical properties and the tribological characteristics of 

polymer composites. 

 

1.4 ORGANISATION OF THE THESIS 
 

The thesis contains six chapters. Chapter 1 presents a brief introduction to the 

importance of natural fibres as a reinforcing material for polymeric composites, as 

well as their benefits to the environment. Additionally, this chapter identifies on-

going work with respect to tribological investigations of polymer composites based 

on untreated and treated natural fibres. Further, it summarises the objectives of this 

study and presents a brief overview of the research efforts and the findings. Chapter 

2 introduces the history of natural fibre reinforced polymer composites and their 

applications. It presents the relevant background information that has been recently 

reported for tribo-polymeric composites. It discusses recent issues in adhesive and 

abrasive wear of synthetic and natural polymeric composites. The merits, limitations 

and arguments for the effect of natural and synthetic reinforcement on the 
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tribological performance of polymeric composites under various wear modes and 

conditions are presented. Chapter 3 describes the material fabrication processes, as 

well as mechanical, pull-out, and tribological test procedures. The development of 

ANN models and approaches are given. Further, mechanical and pull-out results are 

presented and discussed in this chapter. Chapter 4 presents the results and findings of 

the tests conducted in dry and wet adhesive wear mode experiments. The results of 

frictional prediction using the ANN model are presented in this chapter as well. At 

the end of the chapter, a summary of the results is given in order to present 

conclusions on the effect of kenaf fibres on the tribo-performance of the epoxy under 

dry/wet contact conditions. The 3B-A results are presented and discussed in Chapter 

5. Chapter 6 concludes the findings of this thesis, and gives recommendations for 

future work. 
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CHAPTER 2: LITERATURE REVIEW 
 

2.1 INTRODUCTION 
 
In this chapter, a literature review covering the most recent related research work is 

presented. This review includes studies on the tribological performance of fibre-

polymer composites, the influence of operating parameters and fibre orientation on 

performance, natural fibres as reinforcements for mechanical and tribological 

applications and ANNs in the tribology field. 

 

2.2 NATURAL FIBRES AS REINFORCEMENTS 
 
Increasing pressure from environmental activists, the necessity for the preservation 

of natural resources and the stringency of laws passed by developing countries has 

led to the invention and development of natural materials with a focus on renewable 

raw materials. As a result of this, natural fibres are drawing considerable attention as 

substitutes for synthetic fibres. Until this year, there has been a steady increase in 

papers reporting on natural fibre properties and their utilisation in applications across 

different sectors. Based on the database, www.sciencedirect.com, there is rapidly 

increasing  interest  in  the  research  field  of natural fibres as reinforcements 

(Figure 2.1). 

 

Applications for natural fibres are expanding in many sectors, such as automobiles, 

furniture, packing and construction. Natural fibres have several advantages over 
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synthetic fibres, including their low cost, low weight and good relative mechanical 

properties. They also cause less damage to processing equipment, provide an 

improved surface finish to moulded parts of composites and are abundant and 

renewable resources. 

 

Currently, plant fibres such as sisal, jute, coir and flax are the most common 

materials used as reinforcements and fillers for polymer composites, owing to their 

enhancement of the mechanical properties of polymers. These fibres improve the 

tensile, impact and flexural properties of composites, as recently reported by 

Velmurugan and Manikandan (2007), Sapuan et al. (2006), Haque et al. (2009), Rosa 

et al. (2009) and Saha et al. (2010). Despite the advantages of using natural fibres as 

reinforcements, they have several limitations, including low fire resistance, low 

moisture resistance, variety in the quality of the fibres and poor interfacial adhesion 

with synthetic fibres (Shalwan & Yousif 2013; Alsaeed, Yousif & Ku 2013). Vilay et 

al. (2008) reported that the mechanical properties of natural fibre reinforced 

composites are highly dependent on the interfacial adhesion between the fibres and 

the polymer matrix and the quality of the fibre itself. Natural fibres tend to have 

strong polarity and are hydrophilic, while polymers exhibit hydrophobicity. In other 

words, there is a significant compatibility problem between natural fibres and 

synthetic matrices, which can result in weakness in the fibre-matrix adhesion. 
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Figure 2.1 Number of publications on natural fibres as reinforcements,  
2002–2012 

*Data extracted from www.sciencedirect.com on 30 May 2013, using the keywords natural fibre, 
reinforcement and polymers. 

 

2.2.1 Interfacial Adhesion of Natural Fibres 

Surface modification of natural fibres by means of certain treatments is one of the 

largest areas of recent research aiming to improve compatibility and interfacial bond 

strength in fibre reinforced composites. Chemical treatments, such as alkali 

treatment, have been reported to enhance fibre-matrix adhesion by increasing the 

surface roughness of the fibres, stripping them of impurities and disrupting the 

moisture absorption process by coating the OH groups in the fibres (Cantero et al. 

2003; Edeerozey et al. 2007; Haque et al. 2009; Rokbi et al. 2011; Rosa et al. 2009; 

Saha et al. 2010; Torres & Cubillas 2005; Chai et al. 2010). Many investigations 

have focused on the treatment of fibres to improve their bonding with a resin matrix. 

Vilay et al. (2008) investigated the effect of fibre surface treatment (NaOH) and fibre 

loading (0–20 vol per cent) on the flexural properties of bagasse fibre reinforced 
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unsaturated polyester composites. At different fibre volume fractions, NaOH-treated 

fibre composites showed better flexural strength and modulus (an increase of 

approximately 11 per cent and 20 per cent, respectively) compared to untreated fibre 

composites. These findings were attributed to the improved fibre-matrix interaction 

as a result of the modification of the fibre surface by the alkali treatment. Rokbi et al. 

(2011) studied the effect of concentration (1–10 per cent) and time (24 h and 48 h) of 

alkali treatment on the flexural properties of alfa (Stipa tenacissima L.)-polyester 

composites (40 wt per cent, randomly oriented fibres). The flexural test results 

showed that alkali treatment of alfa fibres improved the quality of the fibre-matrix 

interface. Both the NaOH concentration and the duration of treatment had a 

significant effect on the flexural properties of alfa fibre reinforced composites. For 

fibres treated with 10 per cent NaOH for 24 h, the flexural strength and flexural 

modulus were improved by 60 per cent and 62 per cent respectively, compared to the 

untreated fibre composites. Islam and colleagues (2010) investigated the flexural 

properties of coir polypropylene composites under different treatment conditions 

with a hydroxybenzene diazonium salt. The addition of both untreated and treated 

coir fibres increased the flexural properties of the composites compared to the neat 

polypropylene. A significant improvement in the flexural strength and modulus has 

also been observed for composites based on chemically treated coir compared to 

those of untreated coir. This was attributed to better wetting of the treated coir fibres 

with the polypropylene matrix and to improved interfacial bonding between the filler 

and the matrix. Mylsamy and Rajendran (2011) studied the flexural properties of 

alkali-treated agave fibre reinforced epoxy composite (TCEC) and untreated agave 

fibre reinforced epoxy composite (UTCEC). The TCEC sample was considered to 
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have 15 per cent higher flexural strength than the UTCEC sample. These results 

showed that alkali treatment increased the area of contact between the core of the 

fibres and the matrix, which led to better fibre-matrix interaction. 

 

2.2.2 Fibre Orientation in Composites 

In polymeric composites based on natural fibres, the shape of the composite and its 

surface appearance are determined by the matrix, while the fibres act as carriers of 

load and stress (stiffness and strength) when the composite is subjected to load 

(Pickering 2008; Brahim & Cheik 2007; Ku et al. 2011; Jacob, Thomas & Varughese 

2004). Therefore, the orientation of the fibres has a significant effect and plays an 

important role in enhancing the mechanical properties of these composites (Jacob, 

Thomas & Varughese 2004; Brahim & Cheikh 2007; Ku et al. 2011; Fu & Lauke 

1996; Tungjitpornkull & Sombatsompop 2009; Herrera-Franco & Valadez-Gonzalez 

2004). Brahim and Cheikh (2007) studied the influence of fibre orientation on the 

mechanical properties of alfa-polyester composites with a 45 per cent fibre volume 

fraction. All specimens were made from unidirectional alfa fibres and tested at 

different orientation angles (α): 0°, 10°, 30°, 45° and 90°. The percentage reduction 

of tensile strength (σ) with the change of angle from 0° (longitudinal specimens) to 

45° was 78 per cent and 88 per cent at 90° (transverse direction), respectively. Jacob, 

Thomas and Varughese (2004) investigated the relationship between the mechanical 

properties of sisal/oil palm/natural rubber composites with different orientation 

angles: 0° (the longitudinal orientation), 30°, 45°, 60° and 90° (the transverse 

orientation). Maximum tensile strength of the composite was observed at the 
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longitudinal fibre orientation, where the fibres were arranged parallel to the direction 

of the load, while minimum tensile strength was observed with transversely oriented 

fibres queued perpendicular to the direction of the load. Increasing the angle of 

orientation of the fibres decreased the tensile strength of the composite. 

 

Kenaf fibres have advantageous characteristics compared to other natural fibres; long 

fibre length, small diameter and high interfacial adhesion to matrix (Aziz & Ansell 

2004). Kenaf has a long history of cultivation in certain countries, including India, 

Bangladesh, Thailand, parts of Africa, Malaysia and southeast Europe. The fibre 

from this plant has been mainly used in rope, twine, coarse cloth and paper. 

Nowadays, there is a demand for kenaf fibre as a reinforcement material for 

polymers (Nishino et al. 2003). However, the utility of kenaf fibres in polymeric 

composites, especially under mechanical loading conditions, has not been 

comprehensively assessed. This motivates the current study examining the possibility 

of using kenaf fibres as a reinforcement for tribological applications. 
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2.3 TRIBOLOGY IN MATERIAL SELECTION AND DESIGN 
 
Tribology is an important branch of the mechanical engineering sector (Nosonovsky 

& Bhushan 2012; Davim 2013b). The principle interest of tribology is the 

deterioration of surfaces as a result of friction and wear. Friction and wear are the 

most common problems encountered in industrial engineering and machine elements, 

and necessitate the replacement of components and assemblies in engineering (Unal, 

Mimaroglu & Arda 2006). Therefore, an understanding of the tribological behaviour 

of polymers is essential in polymer science and engineering (Brostow et al. 2003). 

From the economic point of view, it has been reported that an increase in economic 

loss in the United States (US) is due to wear and friction; the reduction of wear and 

friction in machines could save resources equivalent to $40 billion per year 

(Holmberg, Andersson & Erdemir 2012). Consequently, attention has recently been 

directed to the design of machine components (Yousif 2013b). Adhesive and 

abrasive wear are the fundamental wear modes that occur in machines (Davim 

2013b). Therefore, the study of the adhesive and abrasive wear characteristics of 

newly developed polymeric composites is crucial. Over the current decade, this has 

directed many tribologist researchers to concentrate on the adhesive and abrasive 

wear behaviour of polymeric composites (Singh, Yousif & Rilling 2011). 

It is well known by many researchers that tribology is response of the materials to the 

interaction between the asperities and to simulate it, this should go under several 

assumptions which make it far from the reality, (Chang et al. 2013; Li 2012; 

Martínez et al. 2012; Strickland et al. 2012).  
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2.3.1 Tribology of Fibre-Polymer Composites 

Since the 1960s, synthetic fibres have become the main resources for fibre-polymer 

composites and their usage has increased dramatically (Jawaid & Abdul Khalil 

2011). Fibre reinforced polymer composites are currently widely used due to their 

superior properties, low density and cost. Numerous applications for polymeric 

composites are found in many of the components used in the automotive and 

aerospace industries; for example, seals, bushes and cams (Bhushan 1999). 

 

In general, the adhesive wear behaviour of neat polymers is subject to many issues, 

such as high material removal, high friction coefficients, and stick/slip behaviour 

(Sharma, Rao & Bijwi 2009, Sharma; Bijwi & Mitschang 2011; Suresha et al. 2010; 

Chang & Friedrich 2010). The most common technique used to enhance the dry 

adhesive wear characteristics of polymers is to introduce synthetic fibres such as 

carbon (Sharma, Rao & Bijwi 2009; Sharma, Bijwi & Mitschang 2011; Chang & 

Friedrich 2010) or glass (Suresha et al. 2010; Yousif & El-Tayeb 2010). These 

studies have shown that the presence of synthetic fibres in different thermoplastic 

and thermoset polymer composites may improve some of the tribological 

characteristics of the polymer and worsen others. Several factors control the 

performance of synthetic fibre-polymer composites: operating parameters, contact 

conditions (dry or wet), interfacial adhesion of the fibre with the matrix, film transfer 

characteristics and the counterface surface properties. For instance, Sharma, Bijwi 

and Mitschang (2011) studied the effect of carbon fabric on the wear and frictional 

behaviour of PEEK composite subjected to dry adhesive wear loadings. Their study 
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showed that the interfacial adhesion of the carbon fibres with the PEEK matrix is the 

most important parameter affecting the friction and wear behaviour of these 

composites. An approximately 20–25 per cent improvement was achieved when the 

carbon fibres had been treated chemically; the interfacial adhesion of the fibre with 

the matrix was enhanced by chemical treatment. During the rubbing process, the high 

interfacial adhesion of the treated carbon fibre with the PEEK matrix prevented the 

pull-out and delamination of fibres in the rubbing surfaces. This was the main reason 

for the high performance of the treated carbon fibre-PEEK compared to the untreated 

carbon fibre. Similar findings have been reported when carbon fabric was used to 

reinforce a polythersulphone composite (Sharma & Bijwe 2011). 

 

Suresha et al. (2010) investigated the wear and frictional behaviour of vinylester 

composites reinforced with either carbon or glass woven fibres. Interestingly, both 

types of synthetic fibres managed to reduce the wear rate of the neat polymer. 

However, due to the brittleness of the glass fibres, high levels of damage were found 

in the composites based on glass fibres. In spite of that, there was no major 

difference on the influence of both synthetic fibres on the frictional behaviour of the 

neat polymer. These authors studied the tribological performance of the composites 

in one direction, where the fibre mats were oriented perpendicular to the applied 

force and parallel to the counterface. In this orientation, the fibre matrix did not 

provide much support to the matrix region on the contact surfaces. Therefore, high 

levels of damage could be observed on the composite surfaces. 
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To study the influence of fibre orientation in the rubbing area on wear removal 

Sharma, Rao and Bijwi (2009) tested a carbon fibre-polyethermide composite in 

different orientation (0–75o). However, in this study the fibres were parallel to the 

counterface in all the tested orientations. In other words, the ends of the fibres were 

not exposed to the rubbing process. In this study, the fibre orientation had a 

significant effect on the wear performance of the composite. When the fibres were 

parallel to the counterface and the shear force, a low wear rate was observed. 

Meanwhile, other orientations showed a higher wear rate compared to the 0o fibre 

orientation. This was primarily due to the debonding and shear forces acting on the 

surface of the composite. At the 90o orientation, the fibres were exposed to a high 

shear loading that was associated with thermo-mechanical loadings. Both effects 

deteriorated the surface of the composites. 

 

Chang and Friedrich (2010) introduced carbon in the form of nanoparticles into 

epoxy composites. The presence of the nanoparticles in the interface region 

generated a thin film on the counterface, which led to high wear removal in the 

running-in period, followed by high reduction. However, the nanoparticles greatly 

enhanced the friction behaviour (a significant reduction in the value of the friction 

coefficient); this was due to the smooth film transfer on the counterface. 

 

The adhesive wear and frictional performance of polyester composites have been 

studied by El-Tayeb and Yousif (2007) using chopped and woven glass fibres. In 
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both of these studies, glass fibres greatly enhanced the wear performance of the 

polyester, reducing the wear rate by around 20–40 per cent depending on the 

operating parameters. Applied load, sliding velocity, and fibre orientations were the 

most important parameters controlling the wear and the frictional behaviour of the 

composites. At severe conditions (high applied loads with a sliding velocity), 

deterioration was observed on the surface of the composites. In other words, a 

softening process took place on the resinous regions, which led to pull-out, 

detachment and breakage in the fibrous region. Less damage was observed when the 

ends of the fibres were exposed to the rubbing surface, which assisted in carrying the 

load out of the resinous area and resisting the shear loading. However, a high friction 

coefficient was observed, especially at high interface temperatures, due to the 

stick/slip behaviour of the composites under these conditions. 

 

2.3.2 Natural Fibres as Reinforcement for Tribo-Polymeric Composites 

Over the last decade, many researchers have studied the tribological performance of 

polymer composites reinforced with synthetic fibres. Recently, there has been 

growing concern over the increasing rate of depletion of petroleum resources, which 

has led to the enactment of new environmental regulations. This has pushed material 

designers to find substitutes for synthetic fibres that are compatible with the 

environment. Recently, natural fibres have been found to be a good alternative to 

synthetic fibres. This has been reported by many researchers (Towo & Ansell 2008). 

Natural fibres have numerous advantages over synthetics ones: they are obtained 

from abundantly available renewable resources, they are non-toxic, biodegradable, 
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low cost, flexible in usage, have high specific strength and a low density. These 

advantages, together with the current environmental issues, make natural fibres more 

attractive as reinforcement materials for polymer composites. In mechanical 

engineering, a number of researchers have attempted to study the influence of natural 

fibres on the mechanical properties of composites. However, the introduction of 

natural fibres as reinforcement in tribo-polymeric composites has not been 

comprehensively studied. Thus, there is a lack of understanding of the impact of 

natural fibres on the tribological performance of polymeric composites. A literature 

search revealed that some studies have been conducted in the adhesive and abrasive 

wear modes to examine the tribological performance of bamboo (Chand et al. 2007). 

The effect of fibre orientation on the 3B-A wear behaviour of bamboo in the abrasive 

mode with varying grit size has been investigated by Chand and Dwivedi (2006). 

Since the current research study focuses on the adhesive and 3B-A wear of 

composites, the next sections will examine these areas. 

 

It has been mentioned previously that the tribo-behaviour of polymeric composites is 

subject to many factors, including contact conditions (Yousif & El-Tayeb 2008d; 

Bijwe, Awtade & Ghosh 2006; Liu et al. 2006; Borruto, Crivellone & Marani 1998; 

Yamamoto & Hashimoto 2004; Jia et al. 2005), operating parameters (Yamamoto & 

Hashimoto 2004; Yousif & El-Tayeb 2007d) and fibre orientation. In the previous 

section, the influence of the operating parameters on the adhesive wear behaviour of 

the composites was addressed. The contact conditions (wet/dry) have an equally 

important role in influencing the tribo-performance of polymeric composites. Several 



Chapter 2  Literture Review  

20 

published studies have reported that the tribo-performance of polymeric composites 

such as PA, UHMWPE (Bijwe, Awtade & Ghosh 2006), and epoxy (Liu et al. 2006) 

were improved under wet contact conditions compared to dry conditions. This was 

due to the use of water, which served as a cleaner/polisher by removing wear debris 

from the rubbing area and helped to absorb the heat generated by friction. However, 

the wear and frictional properties of other composites, such as particle erosion in 

polyphenylene sulphide (PPS) and PEEK, were worsened under wet contact 

conditions (Borruto, Crivellone & Marani 1998). This was due to the reduction in the 

hardness of the surface layer of the composite. Further, the wear mechanism could be 

transferred from adhesive to abrasive, due to the absence of film transfer on the 

counterface, allowing the removed debris and fibres at the interface to attack both 

surfaces (Liu et al. 2006). 

 

In recent publications, Danaelan & Yousif (2008), Yousif & El-Tayeb (2007c, 

2008d) and Chauhan, Kumar and Singh (2010) have studied the influence of water as 

a lubricant on the adhesive wear performance of polyester and vinylester composites 

based on glass fibres. In these studies, the results were compared to findings under 

dry contact conditions. In general, the trend of the results under wet contact 

conditions was almost opposite to those under dry contact conditions. For example, 

under dry contact conditions, an increase in the applied load increased the friction 

and wear of the composites, while under wet contact conditions the opposite 

occurred. Significantly, the surfaces of the composites were highly damaged under 

wet contact conditions in spite of the low material removal. The reduction of thermal 
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loading in the presence of water assisted in reducing the softening process of the 

resinous regions. However, it can be concluded that debris in the contact area acted 

as a third body, contributing to the high levels of delamination, bending and breakage 

of the synthetic fibres. This was considered to be due to the fact that glass fibres are 

brittle materials. 

 

2.3.2.1 Dry Adhesive Wear 

With regard to the use of natural fibres as reinforcement for tribological applications 

in polymeric composites, few studies have investigated polyester composites 

reinforced with oil palm, jute or sugarcane (Yousif & El-Tayeb 2007b, 2008c; El-

Tayeb 2008; Chand & Dwivedi 2006b). These fibres have poor interfacial adhesion 

with polyester. The wear and frictional properties of jute fibre reinforced polyester 

composites are determined by the interfacial adhesion of the fibres with the matrix. 

Ochi (2008) reported that treated jute fibres gave better abrasive wear resistance than 

untreated fibres. In other words, stronger interfacial adhesion between the fibres and 

the matrix results in better wear performance. 

 

Yousif and El-Tayeb (2010b) studied the potential use of betelnut fibres to reinforce 

polyester composites for adhesive wear applications. In this study, the poor 

interfacial adhesion of the natural fibre led to high micro- and macro-crack 

propagation on the composite surfaces at the interface. However, the ends of the 

fibres resisted the shear force and managed to protect the polyester region. The large 
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diameter of this fibre was considered to be the main reason for the micro- and macro-

crack propagation on the rubbing surfaces. The use of fine fibres like kenaf may 

result in better performance of polyester composites. Moreover, the presence of the 

waxy layer on the betelnut fibres prevented the resin from entering the fibre during 

the curing process, and hence the fibres were empty, resulting in a highly porous 

composite. Yousif (2009) has reported similar findings when polyester was 

reinforced with coir fibres. NaOH-treated coir fibres enhanced the interfacial 

adhesion of the fibre with the matrix and reduced the porosity of the composites. 

However, some fibre debris was transferred onto the counterface, which roughened 

the surface at high applied loads and speeds and led to high friction coefficient 

(>0.9). Sabeel Ahmed et al. (2012) tried to overcome this issue by introducing 

additives such as SiC or Al2O3 to the epoxy matrix with jute fibres. The presence of 

these additives significantly deteriorated the composite surface where the 

decomposition process occurred during the rubbing process. This is mainly due to the 

brittle behaviour of these additives and the poor interaction between the additives 

and the matrix. 

 

With regards to the possibility of using kenaf fibres as reinforcements for tribological 

applications, there are recent works have been attempted to used the kenaf fibre for 

thermoplastic materials as reported by (Singh et al., 2011a), (Singh et al., 2011b, Narish et 

al., 2011). In those three articles, the polyurethane resin was reinforced with kenaf fibre 

and tested under dry and wet adhesive wear condition under different operating 

conditions. It is well known that the elasticity of the polyurethane is very high and 

reinforcing it with kenaf could not present a good result in term of mechanical 
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properties. In those works, the mechanical properties are not conducted. Further to 

this, the interfacial adhesion of the fibre with the matrix seems to be good, however, 

due to the high elasticity of the resin, the SEM observation showed pull out 

mechanism of the fibre during the dry and/or wet adhesive wear loadings. Besides 

that, the applications of the polyurethane for tribological is very limited since such 

resin is commonly used for shock absorbing components, i.e. they are subjected to 

impact loading. On the other hand, thermosets such as epoxy are very commonly 

used materials for different applications such as bearings, slidings, pumps, brake 

pads and etc, i.e. there is lack of understanding on the influence of the kenaf fibres on 

the thermoset composites. Based on this, there is a need to comprehensibly 

understand the mechanical and tribological application of the kenaf fibres for 

thermoset composites.   

 

2.3.2.2 Wet Adhesive Wear 

It is believed that the use of natural fibres in composites could result in better wear 

and frictional performance compared to glass-polymer composites under the same 

conditions. This has been investigated in recent studies such as those by Yousif and 

El-Tayeb (2008b, 2010c) and Nirmal et al. (2010a). These studies showed that oil 

palm and betelnut fibre-polyester composites exhibited higher wear and frictional 

performance under wet contact conditions compared to dry conditions. In addition, 

the damage on the surfaces appeared to be much less than that observed in glass-

polyester composites under the same conditions. This is due to the low abrasiveness 

of these natural fibres. However, debonding of the fibres was noticed at high applied 
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loads (200N). Improving the interfacial adhesion of natural fibres may play an 

important role in maintaining the wear performance of these composites under severe 

conditions. Moreover, introducing kenaf fibres to thermosets (e.g., epoxy) may result 

in much better wear and frictional performance compared to that achieved by other 

natural or synthetic fibre-thermoset composites due to the high interfacial adhesion 

of kenaf fibres. This motivates the current research study. 

 

2.3.2.3 Three-Body Abrasive Wear 

The effects of jute, sugarcane, oil palm, coir and bamboo fibres on polymeric 

composites have been investigated either in adhesive or multi-pass abrasion wear 

modes (Chin & Yousif 2009; Yousif & El-Tayeb 2007b; El-Tayeb 2008; Chand & 

Dwivedi 2006b; Shibata, Cao & Fukumoto 2006; Xue et al. 2009; Yousif 2009; El-

Sayed et al. 1995; Hashmi, Dwivedi & Chand 2007). In practical applications, 3B-A 

is far more prevalent than other types of wear modes (Shipway & Ngao 2003). 

Hence, 3B-A wear has recently gained the attention of many researchers (Cenna et 

al. 2000, 2001, 2003; Suresha et al. 2007; Harsha, Tewari & Venkatraman 2003; 

Chand, Naik & Neogi 2000; Harsha & Tewari 2002, 2003). Moreover, 3B-A has 

become a major problem in agricultural machines and mining components (Suresha 

et al. 2007). 

3B-A modes are divided into high and low stresses. In both modes, the tested sample 

is pressed against a rotating or sliding counterface. During the tests, particles flow 

into the rubbing area. High stress occurs when the particles fracture during the 

rubbing process. Meanwhile, at low stress, there is no damage to the particles. 
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Experimentally, the type of counterface material can determine the type of the 3B-A 

mode; high stress occurs in the case of a metal counterface and low stress in the case 

of rubber. Many attempts have been made to understand the tribological behaviour of 

various polymeric composites under low stress conditions (Shipway & Ngao 2003; 

Cenna et al. 2000, 2001, 2003; Suresha et al. 2007; Harsha, Tewari & Venkatraman 

2003, Chand, Naik & Neogi 2000, Harsha & Tewari 2002, 2003). In general, these 

studies have revealed that the predominant wear mechanisms are matrix failure, 

pitting, cracking and grooving. The presence of glass fibres on the composite surface 

protects the composite, leading to lower wear rates compared to those of the neat 

polymers. However, carbon fibres provide poorer support for PEEK composites 

compared to glass fibres. Abrasive media affect the wear behaviour of composites, 

with the wear properties of a UHMPE-glass composite being enhanced by glass 

fibres when the abrasive medium was coal, but worsened in a mineral medium 

(Cenna et al. 2001). This was due to the reduction of the size of the soft particles 

during the test, which led to transition of the 3B-A wear mode into a two-body 

abrasion (2B-A) mode. Yousif (2010) studied the wear behaviour of a glass-polyester 

composite considering different orientations of fibres with respect to the sliding 

direction. In this study, parallel orientation of fibres resulted in better wear 

performance compared to the other orientations tested. In this orientation, the fibre 

mats are parallel to the sliding direction and the applied force, and become an 

obstacle to the sand particles during the rubbing process. In addition, continued 

exposure of the glass fibres at the interface protected the resinous regions leading to 

less material being removed from the composite surface. Similar findings have been 
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reported by Siddhartha and Gupta (2012) when glass-epoxy composites were tested 

under low stress 3B-A conditions. 

 

 

With regard to the 3B-A wear behaviour of polymeric composites based on natural 

fibres, polyester composites based on oil palm or betelnut fibres have been studied 

by Yousif and El-Tayeb (2008c) and Chai et al. (2010). In these studies, high stress 

techniques were used, where the composites were subjected to rubbing against a 

stainless steel counterface in the presence of SiC particles at the interface. This is a 

more realistic test than the low stress 3B-A test. In the case of the oil palm fibre-

polyester composite, treatment of the fibres with 6 per cent NaOH significantly 

enhanced the wear performance of the composite, especially under severe conditions 

of high load and speed. With untreated fibres, the surface of the composite was weak 

and did not resist the impact energy from the sand and the counterface, which led to 

high levels of debonding, breakage and pull-out of fibres. Treating the fibres 

strengthened the composite surface, which was then able to carry the impact load. 

Moreover, the low porosity of composites based on treated fibres also contributes to 

the better wear performance of the treated composites. The betelnut fibre-polyester 

composite was tested in a reciprocating machine in which the steel counterface 

moved linearly. As a result of the large diameter of the betelnut fibres, micro- and 

macro-cracks were the dominant wear mechanism under high stress abrasive loading. 

Thus, it can be suggested that the use of fine fibres, such as kenaf, may provide better 

support to the composite surface under high stress conditions. 
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2.4 ARTIFICIAL NEURAL NETWORKS IN TRIBOLOGY 
 
To comprehensively understand the frictional behaviour of one material against 

another, several experimental sets need to be established at different operating 

parameters (Senatore et al. 2011). This is limited by the two materials tested. Due to 

the time and expensive equipment needed to conduct such experiments, numerical 

modelling has been proposed by many researchers as an alternative approach. 

Numerical simulations have been found to be a useful tool to study various 

parameters and advanced issues in tribological loadings. However, the most recent 

works by Solar et al. (2011) and Myshkin, Petrokovets and Kovalev (2005) have 

found a number of limitations and issues associated with modelling tribological 

pairs, such as the simulation time needed, the level of complicity and the error 

percentages. In addition, each developed model is applicable to a unique tribological 

application; there is no universal simulation model to predict the frictional behaviour 

of all materials. Myshkin, Petrokovets and Kovalev (2005) state, ‘it appears 

important to study the structural changes’. In other words, simulation modelling 

cannot predict the changes in contact surfaces. This is particularly relevant for 

polymers and polymeric composites (Solar et al. 2011; Myshkin, Petrokovets & 

Kovalev 2005). In summary, experimental investigations are necessary to understand 

the frictional property of a material. On the other hand, it is possible to reduce the 

number of experiments needed by introducing intelligent modelling, such as ANNs. 

Based on the discussion in the previous sections, it is evident that the tribological 

properties of polymeric composites are strongly influenced by many operating 

parameters and contact conditions (Yousif & El-Tayeb 2007d, 2007e, 2008d), which 

require numerous experimental investigations. The ANN prediction method has been 
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used for several applications, including wear (LiuJie, Davim & Cardoso 2007; Nasir 

et al. 2010) and friction (Zhang, Friedrich & Velten 2002; Jiang, Zhang & Friedrich 

2007). ANNs have proven to be a successful tool for predicting certain tribological 

properties (Nasir et al. 2010). ANNs are a mathematical model inspired by the 

biological nervous system, and this technology has been used to solve complex 

scientific and engineering problems. The significance of this technology is that ANN 

models can be trained, based on experimental or real life data, to recognise solutions. 

Certain elements that control the ANN system performance are the training function, 

input data and number of hidden layers (Nasir et al. 2010). 

 

ANN technology has been used successfully to predict the wear behaviour of 

A365/SiC metal matrix composites (MMC) (Rashed & Mahmoud 2009). In this 

study, wear performance was influenced by SiC particle size, SiC weight percentage, 

applied pressure and testing temperature. It has been shown that considerable cost 

and time can be saved by using ANN technology to predict outcomes. In another 

study, ANN was applied to predict solid PPS (Suresh, Harsha & Ghosh 2009). A 

three-layer neural network was optimised to perform the prediction task, which led to 

an acceptable range. ANNs have also been used for frictional material performance 

prediction by Aleksendric and Duboka (2006). In this study, 15 different ANN 

models, trained with five different algorithms, were tested. The results demonstrated 

the incredible prediction capability of ANN technology, even with a large number of 

input parameters. Similar findings have been reported for the prediction of 
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temperature sensitivity of frictional material or fading performance (Aleksendrić & 

Duboka 2007). 

 
2.5 SUMMARY 
 
Growing environmental awareness has aroused an interest in research into, and 

development of, biodegradable high performance materials. This makes natural 

fibres promising candidates for bio-reinforcements for polymeric composites. 

However, there is no clear direction for the application of these fibres in industry, 

since little technical data is currently available. Further, comprehensive study is 

required to establish adequate fundamental knowledge of this reinforcement. Most of 

the components designed from these composites are subjected to tribological loading. 

Since there is a lack of understanding of the tribological behaviour of natural fibre-

polymer composites, there is a corresponding need to study the tribological 

behaviour of these materials under different operating parameters and conditions, as 

their performances are dependent on these factors. A comprehensive tribological 

evaluation of these newly developed composites is an essential point to be 

considered when designing a component and/or allocating an application.        
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CHAPTER 3: METHODOLOGY AND MATERIAL PROPERTIES 
 

3.1 INTRODUCTION 
 
In this chapter, the selection of the natural fibre and synthetic resin are addressed. 

The preparation and fabrication of the mechanical and tribological samples are 

explained, and the details of the experimental procedure and set-ups are given. 

Fundamental interfacial adhesion and the tensile and flexural properties of the 

prepared NE and its composites are discussed. 

 

3.2 MATERIAL SELECTION AND PREPARATION 
 
Currently, there is considerable interest in using natural fibres as reinforcements in 

numerous applications. One of the best-known natural fibres is kenaf, which is 

traditionally grown for the production of twine, rope and sackcloth (Nishimura et al. 

2012). In recent years there has been a high demand for, and interest in, the use of 

kenaf fibres for composites, due to their good mechanical properties. Kenaf fibre has 

thus found its way into industrial applications in a range of domains, including 

automotive, housing, packaging and electrical products (Amel et al. 2013; Shin et al. 

2012). In the light of this, kenaf fibre was selected as the reinforcement in the current 

study. 

 

Liquid epoxy (DER 331), a liquid reaction product of epichlorohydrin and disponol 

A, was used as the resin in this study. It is widely used for general purposes and is 

recognised as used in a standard form. It is suitable for applications such as casting 



Chapter 3  Methodology and Material Properties 

31 

and tooling, composites and automotive parts. The curing agent used for this epoxy 

was JOINTMINE 905-3S, a low viscosity aliphatic amine for room temperature 

curing. It has good wetting properties and impact resistance. 

 

3.2.1 Kenaf Fibre Selection and Preparation 

Raw kenaf fibres were supplied by the Malaysian Agricultural Research and 

Development Institute. The fibres had been well extracted, since they did not contain 

much dirt (Figure 3.1a). However, they were soaked in warm water for three hours 

until the fibres become yellow to indicate the cleaning process completed and then 

cleaned with fresh water. To extract the undesired substances, the fibres were 

combed and then dried for 24 hours in an oven at 40 oC. The oven contained a fan to 

aid the drying process. A micrograph of the cleaned fibres is shown in Figure 3.1b. 

Other natural fibres have a waxy outer layer that covers their inner structure. This has 

been noted with oil palm (Shinoj et al. 2011), coir (Saw, Sarkhel & Choudhury 2011; 

Tran et al. 2011), and banana fibres (Merlini, Soldi & Barra 2011). NaOH treatment 

was necessary to clean these natural fibres. For the current study, a preliminary 

investigation was performed to determine the interfacial adhesion of the fibre before 

treatment, which showed that kenaf fibres exhibit good interfacial adhesion with 

epoxy resin without treatment. However, the high volume fraction of the fibres in the 

matrix may deteriorate the bonding regions. Therefore, it is recommended to treat the 

fibres to ensure better bonding condition of the fibre in the composites during the 

loading. Despite this, treatments were performed on a portion of the cleaned fibres 
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and an evaluation of the interfacial adhesion and the tensile and flexural properties of 

the kenaf-epoxy composites was conducted with both treated and untreated fibres. 

 a) 

20.5 mm 
  

Figure 3.1 Untreated kenaf fibres: (a) Photo of the raw fibre; (b) Micrograph of 
cleaned fibres 

 

In the treatment process, a portion of the cleaned kenaf fibres were cut into an 

average length of 100 mm. A NaOH solution was prepared with a 6 weight per cent 

concentration. The selected fibres were immersed in this aqueous NaOH solution for 

24 hours at room temperature. After treatment, the fibres were washed with tap water 

and then dried for 24 hours in an oven at a temperature of 40 oC. 

 

Samples of the micrographs of the treated kenaf fibres are shown in Figure 3.2. 

Comparing Figure 3.1b and Figure 3.2, it was evident that the NaOH treatment had 

thoroughly cleaned the surfaces of the fibres, the inner bundles of the fibres were 

exposed and any undesired substances had been removed. This may result in better 

b) 
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interfacial adhesion of the kenaf fibres and the epoxy matrix, a hypothesis that was 

tested and will be discussed in Section 3.3. 

 

Figure 3.2 Micrographs of the treated kenaf fibres 

 

3.2.2 Epoxy Composite Preparation 

The fabrication process was the same for the mechanical and tribological samples, 

except for the dimension of the sample, which was controlled by the mould used in 

the fabrication process. The epoxy resin and the hardener were uniformly mixed at a 

2:1 ratio using an electric stirrer and then poured into the desired mould. The mould 

was placed in a vacuum chamber (MCP 004PLC) at a pressure of 0.5 bar to remove 

any air bubbles trapped in between the fibres. The vacuum extracted blocks were 

kept for curing at room temperature for 24 hours. The volume fraction of the fibre in 

the matrix was controlled to be approximately 48 per cent vol. A sample of the 

prepared composite is shown in Figure 3.3, a–c. Comparing Figure 3.3 b and c 

clearly shows that the NaOH treatment enhanced the bonding regions of the fibre 

with the matrix. 
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Figure 3.3 SEM micrographs of cross-sections of KFRE composites: a) Photo of 
the composite; b) Untreated kenaf fibre; c) Treated kenaf fibres 

 

3.2.2.1 Interfacial Adhesion Sample Preparation 

For studying the interfacial adhesion characteristics of kenaf fibres with the epoxy 

matrix, a single fibre pull-out test was performed, which is shown schematically in 

Figure 3.4. The samples were prepared based on the ASTM STP 1290 (Piggott et al. 

1996). For the preparation of the test samples, a metal mould with dimensions of 50 

mm × 20 mm × 20 mm was used to fabricate the interfacial adhesion specimens. 

Both ends of the fibres were mounted into the middle plane of the rubbers, which 

were placed at both ends of the mould. Pieces of rubber served to prevent the resin 

a
 

   b    c 
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from leaking out of the mould prior to solidification. A layer of wax was applied to 

the inner walls of the mould as a release agent. Epoxy mixed 2:1 with hardener was 

stirred gently and poured into the mould. The prepared samples were cured at 80 oC 

for 24 hours. The desired embedded length (20 mm) was obtained by drilling a hole 

through the specimen to cut the embedded fibre. The free end of fibre was placed 

into the clamp of the 100Q Standalone Universal Test System. The loading speed 

was set at 1 mm/min. 

 

 

20mm 

Epoxy 
Kenaf fibre 

Load  
20mm 

20mm 

40mm 

 

Figure 3.4 Schematic drawing describing the single fibre pull-out test 

 
 
3.2.2.2 Sample Preparation for The Tensile, Flexural and Tribological   

Experiments 
 
For the tensile and flexural experiments, three different materials were fabricated. 

These were NE, untreated KFRE and treated KFRE composites. The tensile samples 

were prepared according to ASTM standard D638; i.e., the samples were fabricated 

in the shape of a ‘dog bone’ with the dimensions given in Figure 3.5a. A Hounsfield 

Tensometer (250N–2500N) system was used to perform the tensile experiments, with 
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a crosshead speed of 1mm/min. Five samples were prepared and tested in each set of 

experiments. The average of the tensile strength, the modulus of the elasticity and the 

strain at fracture were determined. 

 

For the flexural samples, a metal mould (10 mm × 10 mm × 100 mm) was coated 

with a layer of release agent (WD-40). The epoxy:hardener (2:1) mixture was stirred 

and poured into the mould. The untreated and treated kenaf fibres were prepared in 

unidirectional alignment, cut into lengths of 80 mm, and then placed into the mould. 

To ensure that bubbles were not trapped between the fibres a steel roller was used on 

the composite to remove any trapped air. Finally, the composite block was pressed, 

covered with mould cover and left to cure for 24 hours. 
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Figure 3.5 Specimen geometry and dimensions for the tensile and flexural tests 

 

The same procedure was used for the treated kenaf fibres. The volume fraction of the 

fibre was determined (45–50 per cent). The amount of the fibres used was scaled and 

the resin used as well. Based on the density of both materials, the volume fraction 

was calculated. For the NE, the material was fabricated as described above without 

adding fibres. The prepared blocks were machined into specimens according to 

ASTM D790-07  standard  test  methods (80 mm × 10 mm × 4 mm), shown in 

Figure 3.5b. A three-point flexural technique was adopted in these experiments. A 
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Lloyd LR50K-Plus 50 kN Universal Testing Machine was used to perform the tests. 

The crosshead speed was set to 2 mm/min. For the tribological samples, a block of 

the treated kenaf fibre reinforced composite was prepared, then machined into small 

specimens in sizes of 10 mm × 10 mm × 20 mm. The tribological tests were 

conducted on 10 mm × 10 mm apparent contact areas. 

 

3.3 MECHANICAL PROPERTIES OF THE COMPOSITES 

3.3.1 Interfacial Adhesion and Tensile Properties 

The pull-out results for both untreated and treated kenaf fibres embedded in the 

epoxy matrix revealed good interfacial adhesion of both the untreated and treated 

fibres and the matrix. In other words, during the pull-out process breakage occurred 

in the fibre, rather than it being pulled out. This is a promising result compared to 

other published work on oil palm (Jawaid, Abdul Khalil & Abu Bakar 2011; Yousif 

2010), sugarcane (Vallejos et al. 2011; El-Tayeb, 2008) and jute (Mishra & Biswas 

2013; Jawaid et al. 2011) fibres, which demonstrate poor interfacial properties with 

different synthetic matrices. Figure 3.6 presents the micrographs of the pull-out 

samples for both untreated and treated kenaf fibres. 

 

For both fibres, there were high adhesion signs on the fibres within the epoxy matrix, 

since there was no evidence of pull-out during the experiments. However, the 

untreated surface of the kenaf fibres was covered with a thin layer, which underwent 

either a peel-off process or tearing during the experiments. Such layers are found in 
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most of the natural fibres studied to date, including oil palm and sugarcane. NaOH 

treatment assisted in removing this layer and cleaned the fibre surface, which 

resulted in high bonding between the fibre and the matrix. On the other hand, after 

these experiments the maximum stress the fibres were subjected to were compared 

with the ultimate tensile strength of the fibres, and these were found to very close, at 

around 100 MPa and 150 MPa for the untreated and treated kenaf fibres, 

respectively. Some of the mechanical properties of these materials are summarised in 

Table 3.1. The addition of the kenaf fibres greatly enhanced the tensile strength of 

the epoxy composites, particularly when the kenaf fibres were chemically treated 

with NaOH. The ductility of the epoxy was also improved, and this indicates that the 

composites have ductile behaviour compared to the NE. On the other hand, there was 

a reduction of the modulus of elasticity. 
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a) Untreated kenaf fibre after the pull-out process 

   

b) Treated kenaf fibre after the pull-out process 

Figure 3.6 Micrographs of the pull-out samples for treated and untreated kenaf 
fibres embedded in epoxy matrix 
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Table 3.1 Mechanical properties of the prepared composites 

Property NE Untreated KFRE Treated KFRE 

Fibre volume fraction (per 
cent) 0 ≈48 ≈48 

Density (kg/m³) 1,100±2 745±5 850±2 

Modulus of elasticity (GPa) 20±2 12±2 14.5±2 

Tensile strength (MPa) 78±5 97±7 135±2 

Elongation (per cent) 3.5 ±0.2 9.2±3 6.5±2 

Thermal conductivity 
(W/m*K) 0.17 0.09 0.11 

 

3.3.2 Flexural Properties 

The flexural results are summarised in Figure 3.7 a-c, showing the average strength, 

strain and flexural modulus associated with the maximum and minimum values of 

the readings. The figure clearly shows the significant improvement in the flexural 

strength and modulus of epoxy when it is reinforced with kenaf fibres. 20 and 36 per 

cent increases in the flexural strength of epoxy were achieved with the addition of 

untreated and treated KFRE, respectively. Moreover, the flexural modulus of the 

epoxy was improved by approximately 67 per cent after the addition of untreated 

KFRE and 74 per cent after the addition of treated KFRE. In addition, it appears that 

treated kenaf fibres have a greater effect on the flexural properties of the epoxy 

composite compared to untreated fibres. This is basically due to the enhancement of 

the surface characteristics of the kenaf fibres by NaOH treatment (Figure 3.3c). In 

the treated fibres, there was no debonding of fibres from the matrix; i.e., they show 

high interfacial adhesion. 
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Figure 3.7 Bar charts of flexural properties of untreated KFRE  

and treated KFRE 
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This is due to two reasons. First, the rough surface achieved by removing the waxy 

layer on the fibre surface via NaOH treatment enhances bonding between the fibre 

and the matrix. Second, the low porosity of the treated composite is thought to also 

improve adhesion. This was confirmed in the micrographs of the fractured samples 

shown in Figures 3.8 and 3.9. In the case of the untreated fibres, the outer layer of 

the fibres prevents the epoxy entering the fibre bundles during the fabrication 

process. This weakens the interfacial adhesion of the fibre matrix. Removing of outer 

layer by treating the fibres allows the epoxy to enter the fibre bundle during the 

fabrication process, which locks the fibres in the composite and prevents debonding. 

 

 

Figure 3.8 SEM micrographs of untreated KFRE after testing 

 

On the other hand, debonding can be seen on the fracture surface of the untreated 

KFRE (Figure 3.8), which is the main reason for the poorer performance of the 

untreated KFRE. In contrast, the micrographs of the treated KFRE (Figure 3.9) show 

no debonding, detachment or pull-out on the composite surface. In addition, evidence 
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for epoxy entering the treated fibre bundles is obvious in Figure 3.9c, where the high 

magnification micrographs show epoxy debris between the fine fibres in the bundles, 

indicating that the epoxy has entered the fibres during fabrication process. This was 

absent in the case of untreated KFRE. Taken together, these results may explain the 

experimental results. 

 

 

Figure 3.9 SEM micrographs of treated KFRE after testing 

 
 
 

 a)  b) 

Epoxy debris 

  c) 
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3.4 TRIBOLOGICAL EXPERIMENTS 
 
Since the treated kenaf fibres exhibit better mechanical properties than the untreated 

ones, the treated KFRE composite was tested under tribological loading conditions 

and its performance compared with NE. Three different orientations of fibres with 

respect to the sliding direction of the counterface were considered: P-O, AP-O and 

N-O, respectively. A schematic drawing illustrating those orientations is presented in 

Figure 3.10. 

 

Parallel 

Anti-Parallel 

Normal 

 

Figure 3.10 Fibre orientations with respect to the sliding direction 

 

3.4.1 Dry/Wet Adhesive Wear Experiments 

A BOD machine was used for these experiments, and is shown in Figure 3.11. The 

composite surface specimens (10 mm × 10 mm × 20 mm) were rubbed against a 

stainless steel (AISI 304, hardness=1,250 HB, Ra=0.1 µm) counterface under 

dry/wet contact conditions. For intimate contact between the specimen and the 

stainless steel counterface, the specimen’s contact surface was polished by abrasive 

paper (Sic G2000) and then cleaned with a dry soft brush. The roughness of the 
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composite surface varied in each orientation. In the parallel and anti-parallel 

orientations, the average roughness of five measurements in different regions was 

around 0.30 µm (Figure 3.12a). Meanwhile, in the N-O, the composite roughness 

values were an average of approximately 0.70 µm (Figure 3.12b). 

 

Specimen 
Holder 

Load lever 

Load cell 

Infrared 
thermometer 

Weight indicator 
 

Counterface 

 

Figure 3.11 The BOD machine working under dry contact conditions 

 

Before and after the test, the specimens were dried in an oven at 40 oC for 12 hours. 

A Setra balance (±0.1 mg) was used to determine the weights of the specimens. The 

specific  wear rate (Ws) at each operating  condition  was determined using 

Equation 3.1: 
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DL
W
×

D
=

ρ/Ws      (3.1) 

Where: 

Ws: Specific wear rate (mm3/Nm) 

∆W: Weight loss (mg) 

p: Density (kg/m3) 

L: Applied load (N) 

D: Sliding distance (m) 

 

During the tests, frictional force was measured by a load cell, which was fixed at the 

middle of the lever that applied the loads. 
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a) P-O and AP-O, Ra=0.336 µm 

 

b) N-O, Ra=0.72 µm 

Fig. 3.12 Sample of the roughness profile of the composite surfaces in different 
orientations 

 

For the wet adhesive wear test, tap water was supplied to the interface via a pump 

with flow rate of 0.2 l/min (Figure 3.13). After each test, the worn surface was 

coated with a thin layer of gold using an ion sputtering device (JEOL, JFC-1600) and 

a scanning electron microscope (JEOL, JSM 840) was used to observe the surface. 

Each tribological test was repeated three times and the average of the measurements 

were determined. 
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Figure 3.13 The BOD tribological machine operated under wet contact 
conditions 

 

During the dry adhesive wear tests, an infrared thermometer (Extech 42580) was 

used to measure the initial interface temperature and calibration was performed to 

determine the interface temperature. In the calibration process, the infrared 

thermometer was pointed at the midpoint of interface between the specimen and the 

stainless steel counterface during the tests. The calibration of the temperature was 

carried out under stationary conditions. The counterface was heated using an external 

heat source. While the counterface was heated, a thermocouple was placed between 

the specimen and the counterface. The temperatures measured by both thermometers 

(infrared and thermocouple) were recorded simultaneously until the interface 

temperature reached approximately 80 oC. This process was repeated three times and 

the averages were determined. The measured temperatures (thermocouple) were 

plotted against each other and the fit line was determined using the calibration 

equation (Figure 3.14). 
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Figure 3.14 Calibration chart for measuring interface temperature 

 

3.4.2 Three-body Abrasion Tests 

As required for the standard test (the ASTM B 611), the prepared composite was 

machined into small specimens sized 20 mm × 25 mm × 58 mm and the tribological 

tests were conducted on 25 mm × 58 mm apparent contact areas. The high stress 3B-

A wear experiments were conducted using an ASTM B 611 machine as shown in 

Figure 3.15. 
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Figure 3.15 3B-A set-up (Yousif 2013) 

1-Counterface, 2-BOR load lever, 3-Load cells,4-Specimens, 
5-Dead weights, 6-Sand hopper 

 

The tests were performed against a stainless steel (AISI 304) counterface. The sand 

was collected from a beach in Melaka State, Malaysia. The sand particles were 

sieved (in the size ranges of 370–390 µm, 650–750 µm and 1,200–1,400 µm), 

cleaned, washed and then dried in an oven for 24 hours at 40 oC (Figure 3.16). The 

sand flow was fixed at a rate of 4.5 g/s. The 3B-A tests were conducted at a 

rotational speed of 100 rpm, corresponding to 1.152 m/s for 300 s at different applied 

loads (5–20 N). 
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370 µm 

 

a) Small size 
 

 

                       b) Intermediate                                               c) Large size 

Figure 3.16 Micrographs of three different sizes of sand particles before the 
tests 

 

Before and after the tests, the prepared samples were cleaned with a dry soft brush. A 

Setra balance (±0.1 mg) was used to determine the weights of the specimens before 

and after each test and then the weight loss was calculated. The wear rate under each 

operating condition was determined using Equation 3.2: 

N
WWr

∆
=         (3.2) 
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Where: 

Wr: Wear rate (mm3/Nm) 

∆W: Weight loss (mg) 

N: Applied load (N) 

 

During the tests, the frictional force was measured by a load cell, which was fixed in 

the middle of the lever. The composite surface morphology was studied using a 

scanning electron microscope (JEOL, JSM 840). Before using the microscope, the 

composite surfaces were coated with a thin layer of gold using an ion sputtering 

device (JEOL, JFC-1600). Each tribological test was repeated three times and the 

average of the measurements were determined. 
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3.5 DEVELOPMENT OF THE ARTIFICIAL NEURAL 
NETWORK MODEL 

 
The ANN modelling technique was employed in the current study to predict the 

influence of applied load, sliding distance and sliding velocity on the frictional 

behaviour of the KFRE composite in N-O. The experimental data was used for 

developing, training and verifying the ANN models. The data was divided into two 

groups: training data and verification data, with 70 per cent of the 1,095 frictional 

values being used for training, while the remaining 30 per cent of data were reserved 

for verification purposes. Matlab (R2010b) was used in developing, training and 

simulating the models. Simulations were performed using a multi-layer perception 

network for non-linear mapping between the input and output variables. Several 

architectures were evaluated and trained to obtain the optimum performance for the 

model. A back propagation algorithm was employed for training all ANN models, as 

recommended by authors such as Nasir et al. (2010), Zhang and Friedrich (2003), 

Zhang, Friedrich and Velten (2002) and Ray and Roy Chowdhury (2009). This 

algorithm changes each weight of the network based on its localised portion of the 

input value and the error. These changes must be relative (a scaled version) to the 

product of the input and error quantities. 

 

3.5.1 The Optimum Learning Rule and Transfer Function 

In the current study, there are three operating parameter inputs (applied load, sliding 

distance and sliding velocity) and one output (friction coefficient), as shown in 

Figure 3.17. The output layer consists of one neuron, while the input layer has three 
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neurons for each individual model. The number of neurons in the hidden layer(s) can 

be adjusted to suit the complexity of the problem and the dataset. In the initial stage 

of developing the ANN model, one hidden layer with a fixed number of neurons was 

set up. The activation function for the hidden layers was varied for each test to find 

the optimum function for these experimental sets, as shown in Figure 3.18. A scaled 

conjugate gradient (SCG) method and the Levenberg-Marquardt (LM) algorithm 

were used as learning rules. There are several types of transfer function available; for 

example, satlins, or symmetric saturation linear transfer functions; purelin, or linear 

transfer functions; Soft Max (SM) and Logsig, or log-sigmoid transfer functions. 

 

Figure 3.17 ANN configuration for prediction of the friction coefficient 
 

The average of the error percentage of the different models developed with different 

learning and transfer functions are presented in Figure 3.18 for two hidden layer 

models with different functions. Figure 3.18 shows that the optimum functions are 

the SCG for the learning rule and the log-sigmoid transfer function. A total of 1,000 
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epochs and a mean square error of 1e-4 were used to measure the model quality by 

simulating the network size and training performance. According to Akaike’s theory 

(Akaike 1974), the best performance of an ANN is determined by the smallest error. 

Based on this, the SCG learning rule and the log-sigmoid transfer function provided 

the best ANN model for this study. 

 

 

Figure 3.18 Transfer function and learning rules versus error percentage 
of ANN models 
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3.5.2 Optimum Number of Neurons 

Based on Figure 3.18, the SCG learning rule and log-sigmoid transfer function were 

used for developing the ANN model for the prediction of the friction coefficient. To 

study the influence of the number of neurons in the first hidden layer, the error 

percentage versus the number of the neurons was obtained and these are represented 

in Figure 3.19. For this study, it seems that there is an optimum number of neuron 

that produces fewer errors compared to others. In this study, 50 neurons in the hidden 

layer provided the least error, which indicates better prediction performance since the 

error was about 0.6 per cent. The final optimum model consisted of 50 neurons in the 

first hidden layer. This model will be verified and used to predict the friction 

coefficient at different operating parameters than those used in the input data. The 

details of  the steps  involved  in developing the ANN models  are given in 

Appendix A. 

 

Figure 3.19 Number of neurons versus error percentage of ANN models 
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These steps are summarised in the flow chart in Figure 3.20, which shows the 

general procedure for developing a successful ANN model. Such a flow chart has not 

been proposed in the literature (Gyurova & Friedrich 2011; Aleksendric 2010; 

Zhang, Friedrich & Velten 2002), where trial and error has generally been used 

(Aleksendric 2010). To gain a comprehensive overview of all the possibilities in 

developing an ANN model, it is recommended to follow the steps presented in 

Figure 3.20. This will assist in reducing error, selecting a suitable training function 

and generating good predictions.  



Chapter 3  Methodology and Material Properties 

59 

 

Figure 3.20 Flow chart representing the procedure for the development  
and selection of a suitable ANN model configuration 
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CHAPTER 4: ADHESIVE WEAR AND FRICTIONAL 
BEHAVIOUR OF THE COMPOSITES 

 

4.1 INTRODUCTION 
 
This chapter presents the adhesive wear results of the KFRE composites. The sliding 

wear and frictional behaviour of the composites were studied against a polished 

stainless steel counterface using a BOD machine set at different applied loads, 

sliding distances and sliding velocities. The effect of the fibre orientations (P-O, AP-

O, N-O) with respect to the sliding direction was considered, and the morphology of 

the worn surfaces of the composite was studied using a scanning electron microscope 

and the surface roughness determined. The averages of these measurements were 

determined and are presented in this Chapter. The standard deviation of the results 

for all materials, at  all sliding distances, sliding velocities and loads is listed in 

Table 4.1. 

Table 4.1 Typical experimental values of the standard deviation of Ws and the 
friction coefficient 

 
 Ws Friction coefficient 

NE ±0.30 ±0.11 

KFRE (P-O) ±0.33 ±0.21 

KFRE (AP-O) ±0.46 ±0.28 

KFRE (N-O) ±0.15 ±0.10 
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4.2 DRY ADHESIVE WEAR AND FRICTIONAL BEHAVIOUR 
 
The Ws values of the NE (NP) and KFRE composites (in three different orientations: 

P-O, AP-O and N-O) at different  operating  parameters are presented in Figures 

4.1–4.10, along with micrographs of the worn surfaces. 

 

4.2.1 Dry Adhesive Wear Behaviour 

4.2.1.1 Wear Behaviour Under Different Sliding Distances 

The adhesive wear behaviour of the composite materials at various sliding distances 

under a 50 N applied load is presented in Figure 4.1. In general, there was a 

fluctuation in the Ws values of all the materials in the first stage of sliding, which 

represented the running-in period. At this stage of rubbing, the asperities of both 

surfaces are at the initial contact stage where there is relatively high removal of 

materials for intimate contact between the asperities. This is a well-known 

phenomenon in the dry adhesive wear behaviour of most composites (Jeamtrakull et 

al. 2012; Basavarajappa & Ellangovan 2012). Other than the sudden dip and boost at 

sliding distances of 1.5 and 2 km respectively, the Ws values displayed a relatively 

steady state for all the materials. From Figure 4.1, it appears that after a sliding 

distance of around 3–4 km, a complete adoption between the asperities in contact 

was achieved. At the steady state, there may be a film transfer from the soft part 

(resin) to the hard counterface (stainless steel), which assists in steadying the wear 

behaviour and reduces the Ws. NE showed the highest Ws at all sliding distances. 

The addition of the kenaf fibres to the epoxy reduced the Ws at all fibre orientations, 

as shown in Figure 4.1. Moreover, orienting the fibres normally to the counterface 
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(N-O) resulted in the lowest Ws value; i.e., the composite in N-O possessed the 

highest wear resistance. In summary, an approximately 83 per cent reduction in Ws 

was achieved when kenaf fibres were used as a reinforcement. This reduction in Ws 

may be attributed to a number of reasons, including mechanical and/or thermo-

mechanical reduction in the loading at the interface. This will be explained in the 

following sections. In term of specific wear trends, similar trends have been reported 

with different materials such as glass fibre-polyester (Yousif 2013a), betelnut-

polyester (Nirmal et al. 2010b) and jute-epoxy (Mishra & Biswas 2013). 

 

 

Figure 4.1 Ws versus sliding distance at a 50 N applied load 
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4.2.1.2 Dry Adhesive Wear At Different Applied Loads 

To understand the influence of the applied load on the wear behaviour of the 

composites, Ws was determined under different applied loads. Figure 4.2 illustrates 

the trend and variation of the Ws value of NE and its composites against applied 

loads of 30–100 N at a sliding velocity of 2.8 m/s. There was an increase in the Ws 

values of NE and the KFRE composites (in AP-O and N-O) at the lower range of 

applied load (30–50 N). An increase in the applied load of more than 50 N had no 

significant effect on the Ws values, especially for the KFRE composite in N-O. 

Moreover, the composites in all three orientations had better wear performances than 

NE. Thus, kenaf fibres assist in reducing the Ws of the epoxy, especially when the 

fibres are oriented in N-O. In this orientation the wear performance of the NE was 

enhanced by about 85 per cent. A similar finding was reported in the previous 

section, in which the KFRE (N-O) showed better performance compared to other 

materials at different sliding distances. 

 

The applied load has been reported to have no influence on the adhesive wear 

behaviour of betelnut fibre reinforced polyester composites (Nirmal et al. 2010b). 

Moreover, the Ws of synthetic fibre reinforced thermoset polymers such as carbon 

fibre-polyetherimide (Bijwe & Rattan 2007), glass fibre-polyester (Yousif 2013a) 

and glass-epoxy (Arhaim, Shalwan & Yousif 2013) has been demonstrated to exhibit 

similar trends at different applied loads, especially at higher ranges of applied loads. 

The reason for these findings may be that less modification occurs on the contact 

surfaces when the applied load is increased; in other words, the applied load has little 
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influence on the material removal rate. The stability of the film transfer onto the 

counterface and the smaller change in the roughness value of this film may be the 

main reason for this finding. Further explanation of this hypothesis will be given 

later in this chapter, with the assistance of roughness profile and SEM data. 

 

Figure 4.2 Ws versus applied load after sliding distance of 3.36 km at a sliding 
velocity of 2.8 m/s 
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O showed better wear performance at all sliding velocities, followed by the 

composites in AP-O and P-O. In most reported studies of synthetic fibre-polymer 

composites, such as glass-epoxy (Arhaim, Shalwan & Yousif 2013), glass-polyester 

(El-Tayeb & Yousif, 2005; El-Tayeb, Yousif & Yap 2006) and carbon-

polyetherimide (Tiwari, Bijwe & Panier 2011), an increase in either the applied load 

and/or the sliding velocity leads to a high Ws. The current findings show that sliding 

velocity has no influence on the wear behaviour of kenaf-epoxy composites in any of 

the selected orientations. This could be due to the fact that kenaf fibres are less 

abrasive than the synthetic fibres, especially glass fibres, which in turn reduces their 

effect on the stability of the contacted surfaces. In the case of the glass fibre-

polyester composites, there is a significant increase in the roughness of the 

counterface at higher sliding velocities, which leads to the low wear resistance of the 

composites at the higher range of sliding velocities (El-Tayeb, Yousif and Yap 

2006). This argument will be supported with evidence from the roughness profile 

data presented later in this chapter. 
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Figure 4.3 Ws versus sliding velocity at 50 N applied load 
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common in both natural fibre-polymer and synthetic fibre-polymer composites, since 

there is a high shear force in the contact zone in the first stage of the adoption 

process between the asperities in contact. After this stage, a steady state friction 

coefficient is achieved if there is no change in the contacted surfaces. For synthetic 

fibre-polymer composites, stability of the friction coefficient has been reported in 

studies of carbon-epoxy (Zhou, Sun & Wang 2009), glass or a carbon-aramid hybrid 

weave-epoxy and three-dimensional braided carbon fibre-epoxy (Wan et al. 2006). 

The instability of the friction coefficient of the synthetic fibre-polymer composites is 

mainly due to the modifications that occur on the track surface of the counterface 

(Yousif 2013a). 

 

 

Figure 4.4 Sample of the frictional data showing the coefficient versus sliding 
distance of KFRE in N-O at a sliding velocity of 2.8 m/s 
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To examine the influence of the applied load on the friction coefficient and frictional 

behaviour of the composites, the average of the friction coefficient after a 5 km 

sliding distance was determined for all materials under different applied loads and is 

presented in Figure 4.5. NE and KFRE in N-O exhibited higher friction coefficients 

(0.5–0.75) than the other composites. KFRE in AP-O exhibited a relatively low 

friction coefficient (0.32–0.42). From the wear behaviour (see Section 4.2.1), the 

wear resistance in the KFRE composite in N-O is higher than that of other 

composites, which indicates high resistance at the interface and reflects the high 

friction coefficient at this fibre orientation. In the case of the NE, the wear property 

was much lower than its composites and hence the frictional behaviour of NE is 

relatively poor compared to its composites. It appears that the film transfer on the 

counterface has high adhesion characteristics, which causes stickiness between the 

asperities and leads to a high friction coefficient. This is followed by detachment of 

the film, resulting in high levels of material removal. This is illustrated in Figure 4.6 

and will be discussed further in a later section. 
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Figure 4.5 Friction coefficient versus applied load for NE and KFRE at  
different orientations 

 

 

Figure 4.6 Film transfer behaviour of epoxy against stainless steel 
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temperatures were produced compared to KFRE composites in P-O and AP-O. 

Despite the high interface temperatures, the maximum temperature did not reach the 

Tg of the epoxy (approximately 125 oC). However, the presence of the heat 

associated with the shear loading at the interface may combine with the load at the 

interface to become thermo-mechanical and then cause deterioration of the soft 

surface. A plastic deformation and/or softening process may be expected to take 

place in the resinous regions of the composites during sliding. 

 

 

Figure 4.7 Interface temperature versus applied load 
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demonstrates that fibre orientation has a significant influence on the wear 

characteristics of KFRE composites. This can be further explained by the proposed 

wear mechanism for the KFRE composite in the three tested orientations depicted in 

Figure 4.8. In this study, it was found that the damage features in the fibrous regions 

are different in each orientation; they are dependent on the sliding force with respect 

to the fibre direction. In P-O (Figure 4.8a) two damage features can be seen; 

breakage or bending of fibres along the sliding direction. This is controlled by the 

interfacial adhesion characteristics of the fibres with the matrix. If the interfacial 

adhesion is strong enough to prevent bending and/or debonding of the fibres, tear and 

breakage may occur. However, if the side force is higher than the interfacial 

adhesion, debonding, bending and then detachment of the fibres may take place. This 

can be seen when the KFRE composite is oriented in AP-O (Figure 4.8b). On the 

other hand, in the case of N-O, when the ends of the fibres are exposed to the 

counterface (Figure 4.8c), there is no possibility of detachment due to the deep 

embedding of the fibres (20 mm) in the bulk of the composite. However, there is a 

possibility of generating cracks close to the fibres and perpendicular to the sliding 

direction, due to the side shear force (Figure 4.8c). This can be further clarified by 

observing the worn surface of the composite. 
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a) Parallel orientation (P-O) 

Debonding 
and bending  

Breakage and 
tearing in fibres 

Sliding direction of the 
stainless steel counterface 

 

b) Anti-parallel orientation (AP-O) 

Debonding 

Breakage and 
tearing in fibres 

Sliding direction of the 
stainless steel counterface 

 

 

c) Normal orientation (N-O) 

Cracks 

Epoxy debris transfer to the 
cross-section of the fibres Sliding direction of the 

stainless steel counterface 

 

Figure 4.8 Proposed wear mechanisms of the KFRE composite in three different 
orientations 

 

The worn surfaces of the KFRE composites and NE at different operating parameters 

are shown in Figures 4.9–4.11. The worn surface of the KFRE composite in N-O 

under a 50 N applied load and a sliding velocity of 2.8m/s (Figure 4.9a) showed that 

the resinous regions were deformed and softened. Meanwhile, the fibre ends were 

still well adhered in the matrix and there was no sign of debonding or pull-out. The 

cross-section of the fibres was covered with an epoxy layer generated by either back-

transfer film or debris transformation from the resinous regions, which in turn 
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reduces material removal from the composite surface, leading to lower Ws (Figure 

4.1). At a higher applied load (70 N) Figure 4.9b showed debonding of fibres. This 

is due to the high thermo-mechanical loading, which increases the rate of material 

removal from the resinous regions and weakens the interfacial area between the 

fibres and the matrix. Despite this, the fibre ends appear to carry some of the load 

during the sliding. In addition, there was no sign of pull-out of fibres. At a higher 

applied load (100 N), micro-cracks appeared on the surface, due to the high side 

force. This indicates the high wear resistance of the composite at the rubbing zone. 

This can also be seen at the higher sliding velocity of 3.9 m/s (Figure 4.9d). Under 

severe conditions (high load and/or velocity) the wear mechanism of the KFRE 

composite in N-O is dominated by micro-cracks, which confirms the proposed wear 

mechanism (Figure 4.9c) in this orientation. 

 

When the KFRE composite in P-O was tested at a lower applied load of 50 N and a 

sliding velocity of 2.8 m/s (Figure 4.10a), the damages seen were similar to those 

observed when the composite was tested at the same applied load in N-O (Figure 

4.9a); i.e., the epoxy regions were softened and deformed, while the fibres were still 

in good condition. At the higher sliding velocity of 3.9 m/s under an applied load of 

50 N, debonding of fibres was evident (Figure 4.10b). However, there was no sign 

of fibre detachment, which indicates the higher interfacial adhesion property of kenaf 

fibres with the matrix. The worn surfaces of NE showed deformation and softening 

of the epoxy due to the high interface temperature, associated with high side force 
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(Figure 4.11). This deteriorated the surface and micro-cracks could be seen under 

severe condition (Figure 4.11b). 

 Fibre Ends 

a) At 50 N applied load and 2.8 m/s 
sliding velocity for a 3.36 km sliding 

distance 

b) At 70 N applied load and 2.8 m/s 
sliding velocity for a 3.36 km sliding 

distance 

c) At 100 N applied load and 3.9 m/s 
sliding velocity for a 3.36 km sliding 

distance 

 

d) At 70 N applied load and 3.9 m/s 
sliding velocity for a 3.36 km sliding 
distance 

Figure 4.9 Worn surface of the KFRE composite tested in N-O at different 
operating parameters 
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a) At 50 N applied load and 2.8 m/s 
sliding velocity for a 3.36 km sliding 

distance 

 

b) At 50N applied load and 3.9 m/s 
sliding velocity for a 3.36 km sliding 

distance 

Figure 4.10 Worn surface of the KFRE composite tested in P-O at different 
operating parameters 

 

 Fine softened debris 

a) At 50 N applied load and 2.8 m/s 
sliding velocity for a 3.36 km sliding 

distance 

 
Micro-cracks  

b) At 50 N applied load and 3.9 m/s 
sliding velocity for a 3.36 km sliding 

distance 

Figure 4.11 Worn surface of the NE at different operating parameters 

 

The effect of the composites sliding on the roughness of the stainless steel 

counterface is shown in Figure 4.12 under two conditions: before and after cleaning 

the wear track with acetone. It should be mentioned that the initial roughness of the 

counterface (before the tests) was about Ra=0.11 µm. The wear track roughness 

increased after the tests of all the materials. This indicates that either some debris or 
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film transfer was generated on the wear track. After cleaning, the roughness was 

reduced, which confirmed the generation of a film transfer on the counterface during 

the sliding. Further, the film transfer appeared to be rough when NE was tested 

(Ra=0.21 µm), and this was clear in the case of the KFRE in P-O as well. This could 

be one of the reasons for the high Ws of NE and the low Ws of KFRE in N-O 

compared to the other orientations. On the other hand, KFRE in N-O and AP-O 

showed less effect on the roughness of the counterface. 

 

 

Figure 4.12 Counterface roughness after tests:  
                    before cleaning and after cleaning 
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Due to the changes in the roughness of the wear track, the roughness of the 

composite surface was also modified. Averages of five readings (before and after the 

tests) are displayed in Figure 4.13. Samples of the roughness profiles of the 

composite surfaces after the tests are shown in Figure 4.14. The surface roughness of 

the composites (in the three orientations) and NE was significantly increased. Figure 

4.14 shows that the roughness of the composite surfaces and NE increased, except 

for that of KFRE tested in N-O. 
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Figure 4.13 Composite roughness after tests 
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a) NE, R=1.033 µm 

 

b) KFRE N-O, Ra=0.7 µm 

 

c) KFRE AP-O, Ra=1.558 µm 

Figure 4.14 Roughness of the worn surface of the composite and NE  
                 after tests at a sliding velocity of 2.8 m/s under a 50 N  

              applied load and 3.36 km sliding distance 
 

4.3.1 Dry Adhesive Wear Behaviour in the Published Literature 
 
Table 4.2 summarises the ranges of Ws values and friction coefficients of polymeric 

composites based on natural (jute, sugarcane and oil palm) and synthetic (glass) 

fibres from the literature and from this study. In general, one can say that polymeric 

composites based on kenaf fibres have a better wear and frictional performance than 

the other composites. Polymeric composites based on cotton, oil palm and jute fibres 
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exhibited very high friction coefficients, which led to higher interface temperatures, 

causing greater deformation and softening in their resinous regions. In addition, pull-

out, breakage and detachment of these fibres have been reported. In contrast, in the 

current study, epoxy composites based on kenaf fibres show high interfacial 

adhesion, leading to the high wear resistance. Moreover, kenaf fibres have given 

promising results in replacing glass fibres for tribological applications when 

compared to sugarcane, oil palm and jute fibres. 

 

Table 4.2 Ws values and friction coefficients of some previous studies 
 

Fibre-polymer 
composites 

Range of Ws, 
mm3/N.m 10-5 

Friction 
coefficient Remarks 

Kenaf in N-O 0.15–2 0.52–0.68 Low wear, no pull-out or 
delamination of fibres 

Cotton-polyester, 
(Hashmi, Dwivedi & 
Chand 2007)  

0.1–6.0 0.6–1.0 Low wear, very high 
friction 

Oil palm-polyester, 
(Yousif & El-Tayeb 
2007a) 

35–60 06–0.92 Moderate wear, high 
friction 

Jute-polyester, (El-Sayed 
et al. 1995) Not available 0.75–1.0 High friction 

Sugarcane-polyester, 
(El-Tayeb 2008) 5,000–10,000 0.02–0.25 

Very high wear, low 
friction, pull-out and 
delamination of fibres 

Glass fibres-polyester, 
(Yousif & El-Tayeb 
2007e) 

0.2–0.6 0.4–0.6 Low wear, moderate 
friction 
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4.4 WET ADHESIVE WEAR AND FRICTIONAL BEHAVIOUR 
 
The adhesive wear and frictional characteristics of the KFRE composites with 

different fibre orientations were investigated under wet contact conditions with 

different applied loads (50–200 N) and sliding distances (0–30 km). It should be 

noted that the applied loads and sliding distances selected for wet contact conditions 

are much higher than the operating parameters for the dry contact conditions. This is 

primarily due to the fact that no weight loss can be measured at low values of loads 

and/or sliding distance. A summary of the Ws values of NE (NP) and the KFRE 

composites in the three different orientations is presented in Figures 4.15–4.18. 

 

4.4.1 Wear Behaviour Under Wet Contact Conditions 

Figure 4.15 shows the relationship between Ws and the sliding distance. A decrease 

in the Ws values of all materials was observed with increasing sliding distances, 

since the running-in process occurs from the start of rubbing until a sliding distance 

of approximately 20 km. Under dry contact conditions, the steady state was reached 

at around 4–5 km, while this is achieved at approximately 20 km under wet 

conditions. This is normal behaviour, since under wet contact conditions the adoption 

between the asperities required to reach the steady state is interrupted by the presence 

of the water at the interface. Further, the presence of the water helps in cleaning 

away the debris at the interface and cooling the contact areas, which in turn prevents 

the  film  transfer  found  under  dry  contact  conditions.   This is illustrated in 

Figure 4.16. 
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Figure 4.15   Ws results of the epoxy composites at different sliding distances at 
2.8 m/s sliding velocity and 100 N applied load  

 

 

 

Figure 4.16 Adhesive wear behaviour under wet and dry contact conditions 
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Figure 4.15 shows that while the addition of kenaf fibres assisted in reducing the Ws 

of the epoxy, this was not the case for all fibre orientations, and the orientation of the 

fibres greatly influenced the wear behaviour of the composite. The KFRE composite 

performed more poorly than NE when the kenaf fibres were oriented in AP-O. The 

cooling and cleaning mechanisms associated with the water were found to make the 

NE very competitive with the composites in terms of wear resistance. On the other 

hand, the KFRE composite exhibited better wear performance in N-O compared to 

the other orientations, with an improvement of 35–57 percent. In N-O, the ends of 

the fibres are exposed to the rotating counterface while the fibres are embedded in 

the bulk of the matrix. In this orientation, pulling out or detachment of fibres is not 

possible. In contrast, when the fibres are parallel or perpendicular to the shear force, 

they are subject to detachment, bending, tearing and breakage, as shown in the 

scanning electron micrographs. 

 

Figure 4.17 shows the Ws values of the materials at different applied loads. At the 

low applied load of 30 N, the Ws values appeared to be low due to the fact that there 

is less pressure at the interface in the presence of the water. An increase in the Ws 

values was noticed at an applied load of 50 N, which subsequently reduced at higher 

applied loads for all materials. Hence, it seems there is relatively low material 

removal from the surface at higher applied loads. This could be due to the high stress 

at the interface, which stabilises the surfaces and prevents the occurrence of 3B-A. 

Previous studies have suggested that under wet contact conditions the removed 

material could act as a third body at the interface (Wu & Cheng 2006; Shekar et al. 
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2010), which in turn transforms the adhesive wear into 3B-A wear and results in high 

levels of material removal. This may explain the high Ws values seen at 50 N applied 

load. Similar behaviour has been reported when glass fibre reinforced polyester 

composites and date palm fibre reinforced polyester composites were tested under 

the same conditions (Yousif & El-Tayeb 2010a, 2010b). 

 

 

Figure 4.17 Ws results of the epoxy composites at different applied loads at  
2.8 m/s sliding velocity for 30 km sliding distnaces  
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0.05, which was very low compared to the dry contact conditions. The averages of 

the friction coefficients associated with the maximum and minimum values are 

presented  in  Figure 4.18  for  different   sliding   distances    under  an  applied  

load of 150 N and at a sliding velocity of 2.8 m/s. From this figure it is evident that 

the trends in the friction coefficient of all the materials are almost the same, and that 

increasing the sliding distance gradually reduced the friction coefficient. Higher 

friction coefficients were exhibited by the KFRE composites in the N-O and AP-O 

orientations. However, the values of these friction coefficients (0.035–0.045) are 

very low due to the presence of the water at the interface, which assists in removing 

any trapped debris from the rubbing zone. This leads to low interactions between the 

asperities in contact and results in a low friction coefficient. 

 

Figure 4.18 Averages of the friction coefficient of the composites at different         
sliding distances under 150 N applied load at a sliding  

velocity of 2.8 m/s 
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This hypothesis was confirmed by the SEM micrographs presented in the next 

section. These results are in high agreement with previous studies on glass-PEEK 

(Shekar et al. 2010) and glass-polyester composites (Yousif & El-Tayeb 2010a). 

 

4.4.3 Surface Observation of Worn Surfaces Subjected to Wet Adhesive Wear 

Figure 4.19 displays the scanning electron micrographs of the worn surfaces of the 

KFRE composites in different orientations and applied loads. In AP-O, Figures 4.19 

a and b clearly show that the predominant wear mechanisms were the debonding of 

fibres (marked as ‘De’) and abrasive in nature (marked as ‘Ab’). Debonding occurred 

due to the shear force in the rubbing area that was exposed to the debonding region, 

leading to weakening of the interfacial adhesion of the fibres with the matrix. The 

abrasion observed in the resinous regions of the surface was due to debris rolling at 

the interface, which is in agreement with the arguments given to explain the low 

friction coefficient (Figure 4.18). Both debonding and abrasion increased the 

material removal from the composite surface. This explains the poor wear results of 

the composite in AP-O, as shown in Figure 4.15 and Figure 4.17.  

 

In P-O (Figure 4.20), the wear mechanism was peeling of fibres (marked as ‘Pe’), 

which  can be observed in the fibrous regions for both applied loads of 150 N and 

200 N. Peeling took place due to the parallel direction of the shear force, which 

attempted to tear and peel the fine fibres from the bulk of the kenaf fibre. However, 

the less abrasive nature of the P-O surfaces compared to the AP-O surface resulted in 

lower levels of wear removal from the surface and a better wear performance for the 
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composite in P-O compared to AP-O, as reported in the experimental data given in 

the previous section. Further, the smooth surface appearance of the composite in P-O 

(at a load of 200 N) in the resinous area (marked as ‘Ss’) could explain the lower 

friction coefficient of the composite in this orientation. 

 

Figure 4.21 showed that there was less damage on the KFRE surface oriented in N-

O compared to that seen on the P-O and the AP-O surfaces. In N-O, the ends of 

fibres were still well adhered in the matrix and no debonding, pull-out and/or peeling 

was evident, especially at the load of 150 N. Interestingly, the end of the fibres 

resisted the rubbing process and protected the resinous regions. This showed that 

kenaf fibres oriented in N-O support the epoxy composite well. However, at an 

applied load of 200 N, debonding appeared at a portion of the edge of the fibre 

(Figure 4.21b). Nevertheless, high resistance to the shear force was evident at the 

fibre ends. In spite of the slight debonding of the fibres, no significant surface 

damage was observed. On the other hand, some of the removed materials acted at the 

interface and attempted to damage the end of the fibre. The high resistance of the 

composite in this orientation could explain its high friction coefficient compared to 

that of the composite in P-O (Figure 4.18). This resistance aided in maintaining the 

surface characteristics of the composite and prevented high removal of the materials, 

resulting in the low Ws values of the composite in N-O, as shown in Figure 4.15 and 

Figure 4.17. 
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Figure 4.19 Micrographs of KFRE worn surface at AP-O after a 30 km sliding 
distance 

 

 

Figure 4.20 Micrographs of KFRE worn surface at P-O after a 30 km sliding 
distance 

 

 

Figure 4.21 Micrographs of KFRE worn surface at N-O after a 30 km sliding 
distance 
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To explore the possibility of replacing synthetic fibres with kenaf fibres for 

tribological applications, the results of this study can be compared with previously 

reported studies of glass-polyester composites that have been tested under the same 

conditions (Wu & Cheng, 2006; Yousif & El-Tayeb 2010c). The Ws value of the 

glass-polyester composite was in the range of 0.7–3.0 × 10-6 mm under wet contact 

conditions with the same operating parameters used in the current study. This range 

is almost similar to the Ws of KFRE (1.2–3.5 × 10-6 mm) tested in N-O. This 

suggests that kenaf fibres have strong potential as a replacement for glass fibres for 

tribological applications under wet contact conditions. 

 
4.5 ARTIFICIAL NEURAL NETWORK RESULTS 

4.5.1 Comparison of the Experimental and ANN Results 

The derivation of an optimum ANN model based on the log-sigmoid transfer 

function and SCG learning rule with 50 neurons in the first hidden layer was outlined 

in Section 3.5. The model was then trained and run to predict the results at the same 

operating parameters. Figure 4.22 displays samples of the experimental and ANN 

results of the determination of the friction coefficient under different applied loads 

and sliding distances at a sliding velocity of 2.8 m/s. In general, the predicted 

frictional value is very close to the experimental ones which indicate good agreement 

between the experimental results and those of the ANN model especially for the 

10 N and 100 N applied load. 

At applied loads of 30 N, 50 N, 70 N and 90 N, the correlation coefficient (R) 

between the experimental and ANN results were 0.953, 0.934, 0.975 and 0.981 
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respectively. In a recent study using an ANN model for tribological applications, the 

sliding friction of polyphenylene sulphide composites was evaluated by Gyurova and 

Friedrich (2011). They found that the ANN prediction profiles for the characteristic 

tribological properties of these composites exhibited good agreement with the 

experimentally measured results since there is less than 1% error. However, their 

study did not give clear information on how their model was developed. Similar 

findings have been recently reported for different materials (Yang et al. 2013; Nasir 

et al. 2010). 

 

 

Fig. 4. 22 continued 
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Fig. 4. 22 continued 
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Figure 4.22 Experimental measurement and modelling of the  
friction coefficient of KFRE composite at different  

applied load at a sliding velocity of 2.8 m/s 
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4.5.2 Verification of the ANN Model 

To evaluate the ANN model, the experimental data was used for verification 

purposes. For this investigation, different numbers of neurons were used in the 

evaluation and the correlation between the experimental and the predicted values of 

friction coefficients are displayed in Figure 4.23, which also shows the square errors 

and the trendline equations. This figure clearly shows that 50 neurons exhibit better 

correlations than the other models, since the R2 value is approximately 0.97, which 

represents a very high correlation between the experimental and the ANN results. 

 

Figure 4.23 Correlation between the experimental and ANN friction coefficients 
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4.5.3 Prediction of the Friction Coefficient Using Artificial Neural Networks 

Figure 4.24 shows the predicted friction coefficient values of the composites plotted 

against the sliding distance for operating parameters other than those selected for the 

experiments. The figure shows that the friction coefficient is relatively high at higher 

sliding velocities, which is in agreement with the frictional data obtained, where 

higher sliding velocities resulted in high interface temperatures and sticking 

phenomena at the interface.  

 

 

Figure 4.24 Prediction results of the KFRE friction coefficient at different 
orientations 
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4.6 SUMMARY 
 
From the results obtained and the observations of the surface morphology of the 

composites after testing, several conclusions can be drawn: 

1. The operating parameters have less influence on the wear and friction 

behaviour of the composites than the orientation of the fibres does. The 

KFRE composite exhibited high wear performance in N-O; in this orientation 

the wear performance of the epoxy could be improved by approximately 85 

per cent under dry contact conditions. The high resistance at the interface in 

the composite in N-O resulted in the generation of micro-cracks; however, 

debonding of the fibres and deformations in the resinous regions were 

observed when the composites were tested in P-O. 

2. The presence of water at the interface reduced the friction coefficient to a 

range of 0.03–0.045, which is very low compared to the dry frictional values. 

This was mainly due to the removal of debris in the interface and cooling of 

interface by the water, which led to the low interaction between the aspirates. 

3. The ANN results revealed that this model was able to predict the friction 

coefficient of the composites since low error (<0.1) exhibited when the ANN 

results compared with the experimental data.  
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CHAPTER 5 THREE-BODY ABRASION BEHAVIOUR OF THE 
EPOXY COMPOSITE 

 

5.1 INTRODUCTION 
 
The chapter aims to address the effects of sand particle size, applied load, sliding 

distance and kenaf fibre orientation on the 3B-A wear behaviour of epoxy 

composites subjected to high stress. Experiments were conducted using a dry 

sand/steel wheel apparatus at different applied loads (5–20 N) and sliding distances 

(0–0.18 km). The tests were performed at a rotational speed of 100 rpm 

(corresponding to 1.152 m/s). The sizes of the sand particles were in the ranges of 

370–390 µm, 650–750 µm and 1,200–1,400 µm, with a fixed flow rate of 4.5 g/s. 

The composite was tested in three different orientations: P-O, AP-O and N-O. SEM 

was used to observe the damage features on the worn surfaces of the composite. 

 

5.2 WEAR BEHAVIOUR OF THE COMPOSITE UNDER THREE 
BODY ABRASION 

 
Most of the studies on the abrasive wear performance of similar composites reported 

in the literature have presented wear data in the form of wear data and wear rate. For 

the comparative purposes, the abrasive wear data in this study is presented as the 

wear rate and weight loss at the sliding distance or applied load tested. 
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5.2.1 Three-Body Abrasive Behaviour at Different Sliding Distances 

The wear rate of NE and its KFRE composites in different orientations plotted 

against sliding distance is presented in Figure 5.1 for the three particle sizes 370–

390 µm, 650–750 µm and 1,200–1,400 µm. In general, all these materials showed a 

similar trend, since in each case a reduction in the wear rate was observed with an 

increase in the sliding distance. This is due to the increase in the contact area of the 

materials with the counterface. In the first stage of the sliding process, the contact 

between the materials and the stainless steel counterface is in line. As material is 

removed from the interface the contact between the bodies increases, allowing more 

particles into the interface. Since the applied load is fixed with the increase of the 

sliding distance and the contact area, there is a load distribution on the numbers of 

particles. In other words, there is a reduction in wear rate with the increase of the 

sliding distance, since there are more particles and they share the stress. Figure 5.2 

illustrates this argument, which is supported by the literature (Harsha 2011; 

Koottathape et al. 2012; Molazemhosseini et al. 2013). 
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Figure 5.1 Wear rate versus sliding distance with different particle  
sizes and an applied load of 20 N 

0

5

10

15

20

25

30

35

0 0.05 0.1 0.15 0.2

W
r, 

m
g/

km
 

Sliding distance, km 

a) Small 370-390 mm 

Parallel

Anti-parallel

Normal

Neat

0
5

10
15
20
25
30

0 0.05 0.1 0.15 0.2

W
r, 

m
g/

km
 

Sliding distance, km 

b) Intermediate 650-750 µm 

Parallel

Anti-parallel

Normal

Neat

0
5

10
15
20
25
30

0 0.05 0.1 0.15 0.2

W
r, 

m
g/

km
 

sliding distance, km 

c) Large 1,200-1,400 µm 

Parallel

Anti-parallel

Normal

Neat



Chapter 5  Abrasive Wear 

98 

 

 

Figure 5.2 Schematic drawing showing the contact and the  
number of particles in the interface at short and longer  

sliding distances 
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5.2.2 Three-Body Abrasion Behaviour at Different Applied Loads 

The wear rate of the KFRE composites and NE versus applied load is presented in 

Figure 5.3 for the three different size ranges of particles sizes after a 0.18 km sliding 

distance. The figure indicates that increasing the applied load reduces the wear rate 

for all materials at all particle sizes. This behaviour has been reported in other studies 

(Yousif & El-Tayeb 2008a; Trezona & Hutchings 1999; Allsopp, Trezona & 

Hutchings 1998). Other published studies have shown that the applied load does not 

have a significant influence on the wear rate in low stress 3B-A (Shipway & Hodge 

2000). With regard to the effect of the orientation of the kenaf fibres on the 

performance of the epoxy composites, when kenaf fibres in N-O were included there 

was reduction of approximately 50–75 per cent in the wear rate compared to that of 

the NE. On the other hand, with intermediate and large particles sizes, the 

performance of the composites in P-O and AP-O was poorer than that of the NE. 

This is clearly shown in Figure 5.4, which gives a summary of the wear results, 

showing that particle size affects the wear behaviour of the materials differently. At 

low applied loads, KFRE composites showed a high wear rate when the composites 

was tested in AP-O and P-O with intermediate and large sized particles. Meanwhile, 

the NE and the KFRE in N-O showed lower wear rate values when intermediate and 

large particles were used compared to those seen with small particles. Hence, both 

fibre orientation and particle size have a significant effect on the wear behaviour of 

the materials. 
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Figure 5.3 Wear rate versus applied load with different particle sizes after a 
0.18 km sliding distance 
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Figure 5.4 Wear rate of the materials with different particle sizes  
             under 5 N and 20 N applied loads after a sliding  

distance of 0.18 km 
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5.3 FRICTIONAL RESULTS OF THE COMPOSITES UNDER 
THREE-BODY ABRASION 

 
In the previous chapter, the friction coefficients of the composites under dry adhesive 

were always above 0.3, most likely due to the direct interaction between the two 

rubbed surfaces. Under wet contact conditions, the water assisted in reducing the 

interaction between the asperities in contact, leading to a reduction of the friction 

coefficient, which became less than 0.1. In this chapter, there is a third body in the 

interface; the sand particles, and thus there are two possibilities for the way the 

materials will behave. The first is that the particles will roll in the interface, which 

will lead to a very low friction coefficient. The second is that the particles will slide 

after penetrating the soft surface, which may lead to a high friction coefficient. This 

issue will be addressed and clarified in the following sections. 

 

5.3.1 Three-Body Abrasion Frictional Behaviour at Different Sliding Distances 

The friction coefficient was captured at each test for different applied loads, sliding 

distances and particle sizes. Plots of the friction coefficient versus the sliding 

distance at all applied loads showed a similar trend. Samples for the friction 

coefficient versus the sliding distance are presented in Figure 5.5 for different sand 

particle sizes and composite orientations. From these, it is immediately evident that 

all materials showed an increase in the friction coefficient with an increase in the 

sliding distance, with all the sizes of sand particles used. 
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Figure 5.5 Friction coefficient versus sliding distance with different particle 
sizes at an applied load of 20 N 
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Figure 5.1 showed that the wear rate reduces with increased sliding distance; i.e., 

there was high resistance at the interface at longer sliding distances. This can be 

explained by the fact that large numbers of particles are present in the interface at 

later stages of sliding compared to the initial stage. This also explains the friction 

coefficient results, since the increase in the value of the friction coefficient at longer 

sliding distances indicated high resistance and a lower wear rate. This finding is in 

agreement with other recently published works (Boissonnet, Duffau & Montmitonnet 

2012; Harsha 2011). 

 

5.3.2 Influence of Particle Size and Applied Load on Three-Body Abrasion 
Frictional Behaviour 

 
The friction coefficient of the materials was determined at different applied loads and 

sliding distances. The friction coefficient reached its steady state after a sliding 

distance of approximately 72 m. The averages of the friction coefficients of the 

materials  under  the  different applied loads and particle sizes are presented in 

Figure 5.6. In general, the friction coefficient values were low at all applied loads 

and particle sizes. This indicates that the particles at the interface are rolling rather 

than sliding. Particle size did not appear to have a significant effect, particularly in 

the case of the composite in AP-O. The lowest friction coefficients were seen for the 

NE, which may be due to its homogeneous surface compared to the composites. This 

would result in fewer obstacles preventing the particles from rolling rather than 

sliding. The presence of fibres on the composite surface may disturb particle 

movement, leading to a higher friction coefficient, especially in P-O and AP-O. 
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Further explanation of this hypothesis is given in the next section, where the SEM 

micrographs of the worn surfaces are presented. 

 

Figure 5.6 Averages of the friction coefficients associated with maximum  
                   and minimum values at different applied loads and particle sizes 
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5.4 DISCUSSION OF THE THREE-BODY ABRASION RESULTS 

5.4.1 Rolling and/or Sliding of Particles 

The 3B-A wear results revealed that the KFRE composite performed better in N-O 

compared to the other orientations, as well as the NE. It is important to understand 

the way that particles behave at the interface in the different composite orientations. 

There is an ongoing discussion in the literature that attempts to explain this (Yousif 

et al. 2010; Yousif & El-Tayeb 2010b; Wang & Essner 2001; Trezona & Hutchings 

1999; Qiu & Chen 2010; Osara & Tiainen 2001). In these studies, the tests were 

performed on neat polymer, randomly oriented fibres and/or composites in one 

orientation (P-O). To clarify this issue, it is proposed that the way particles move at 

the interface is a key factor determining a material’s wear performance, along with 

the material’s characteristics. 

 

Figure 5.7 illustrates the possible movement of the particles at the interface when 

different orientations of KFRE are exposed to the rubbing area. It proposes that when 

the particles move on the composite surface, their movement direction can be 

disturbed by transfer from the resinous (epoxy) phase to the fibrous (kenaf) phase. In 

the case of N-O, the particles may either move on the end of the fibres or on the hard 

part of the composite in the epoxy regions. Since the surface is uniform along the 

sliding pathway; i.e., both at the ends of the fibres and in the resinous regions, there 

are fewer obstacles to the movement of the particles and the possibility of rolling is 

higher than that of sliding. This results in less removal of materials (Figure 5.1) and 
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a low friction coefficient (Figure 5.5). These factors could explain the results 

obtained for KFRE in N-O. 

 

 

Figure 5.7 Proposed particle movements on the composite surface for fibres in 
three different orientations 
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accumulation of particles at the interface. This will lead to high levels of material 

removal from the surface, which may explain the poor performance of the KFRE 

composites in P-O. This wear behaviour and mechanism can also be applied to the 

composite in AP-O. Moreover, the fibres are oriented perpendicular to the particle 

sliding direction, which increases the disturbance of particle movement and can 

result in more material removal in this orientation; KFRE has the poorest behaviour 

in AP-O (Figure 5.3). Further, particle size may control the movement behaviour of 

the particles at the interface as well. In the next section, scanning electron 

micrographs of the collected sand particles and worn composite surfaces after the 

tests will help to explain these arguments. 

 

5.4.1.1 Morphology of The Sand Particles After The Tests 

The sand particles were collected after each test and some were observed using the 

SEM. Samples of the collected particles are presented in Figure 5.8, which shows 

the micrographs of the different sized sand particles after a test conducted at an 

applied load of 20 N with a sliding distance of 0.18 km. After all tests, particularly 

those at high applied loads, the particles showed fracturing during the sliding 

process. This can be seen in the intermediate and large (Figure 5.8 b&c) particles, 

which confirms that high stress 3B-A occurred when the intermediate and large 

particles were used. With particles in this size range (650–1,400 µm), fewer are 

present at the interface than when smaller particles (370–390 µm) are used, which 

means that fewer particles carry higher stress loads. The presence of this high stress 

at the interface leads to fracture of the particles; i.e., a 3B-A process is taking place. 
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In contrast, the small particles (370–390 µm) (Figure 5.8a) exhibited no obvious 

reduction in their size and there was no evidence of fracturing. This is due to the 

large number of particles at the interface, with the stress being evenly distributed 

between them, allowing them to maintain a relatively well preserved shape compared 

to the larger particles under the same conditions. Despite the fact that the rubbing 

process occurs between polymer and stainless steel in the presence of sand particles, 

it appears that with the smaller particles, a low stress 3B-A process takes place. This 

is in agreement with the study by Gates (1998), who reported that high stress 3B-A 

occurs when particles fracture during the rubbing process. Meanwhile, under low 

stress there is no damage to the particles. Similar findings have been reported 

elsewhere (Yousif et al. 2010). Therefore, 3B-A tests using a metal counterface do 

not necessarily produce high stress conditions. Investigation of particle morphology 

is strongly recommended after testing to determine the type of 3B-A mechanism. 
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a) Small size 

 

b) Intermediate size 

 

 

c) Large size 

Figure 5.8 Micrographs of three different sizes of sand particles  
after the test at an applied force of 20 N 
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5.4.2 Worn Surface of the Composites after the Three-Body Abrasion Tests 

5.4.2.1 Observations on KFRE at AP-O 

The micrographs of the composite surface after the tests at AP-O under different 

operating parameters are shown in Figures 5.9–5.11 for all three sizes of sand 

particles. In general, severe damage was seen in both the resinous and the fibrous 

regions when the composite was tested in AP-O (Figure 5.9a). While the particles 

were moving perpendicular to the fibres, breakage, delamination and pulling out of 

fibres occurred, as shown in Figure 5.9b. Moreover, the resinous regions were 

exposed to pitting (‘Pt’), sliding (‘Sl’) and sand penetration processes. This can be 

observed in both micrographs (applied loads of 5 N and 20 N). It is proposed that 

when small sand particles are used, there are a large number of particles at the 

interface and the stress is distributed evenly between them. Despite this, there were 

high levels of damage on both the resinous and the fibrous regions in the presence of 

small sand particles. This was mainly due to the orientation of the fibres, where 

obstacles to the particles’ movements result in penetration of the particles and 

damage to the bonding of the fibres with the matrix. Despite this, the small particles 

did not demonstrate any fracturing. As reported in Section 5.4.1.1, the particles 

released their energy and impact on the composite surface. Further, it is well known 

that sand particles are much harder than the epoxy matrix, kenaf fibres and steel, 

which allows the particles to preserve their shape and size while damaging the 

composite surface. Suresha et al. (2013) reported similar findings when carbon fabric 

reinforced epoxy composites were tested against small sand particles. In their study, 

the orientation of the carbon fibres was similar to the AP-O used in the current work. 
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Despite the fact that carbon fibre is much stronger than kenaf fibre, the damage to the 

epoxy composites based on carbon fibres was similar to that seen in the current 

study. Hence, it appears that small particles damage the composite surface because 

the particles are harder than the composites. 

 

a) At a load of 5 N, particle size of 
370–390 µm 

 

b) At a load of 20 N, particle size of 
370–390 µm 

 

Figure 5.9 SEM micrographs of KFRE composites in AP-O tested under         
different conditions against a particle size of 370–390 µm 

 (Br: Breakage; Pt: Pitting; Sl: Sliding) 
 

Figure 5.10 a&b presents the micrographs of the KFRE composite worn by 

intermediate sized particles (650–750 µm) at applied loads of 5 N and 20 N 

respectively. Pitting, fractures and defragmentation occurred during the 3B-A test, 

particularly in the epoxy regions. This indicates the presence of fatigue loading at the 

interface, which represents a rolling movement of the particles at the interface, 

associated with deep penetration. This may explain the poor wear and frictional 

performance of the composites in this orientation (Figures 5.3 and 5.5). Further, the 

large sand particles (1,200–1,400µm) cause greater damage on the surface of the 

composites in AP-O, as can be seen in Figure 5.11. At the low applied load of 5 N, 

  Br 
  Pt 

  Sl 
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Figure 5.11a shows the ploughing caused by the sand particles on the surface of the 

composite. At the higher applied load of 20 N, ploughing processes were taking 

place since deep penetration of the particles in the surface was evident, followed by 

sliding and then rolling. This resulted in detachment and peeling of the fibres, 

leading to high levels of material removal and poor wear performance (Figure 5.3c). 

Since there are fewer intermediate and large particles at the interface, they carry a 

high stress and energy load, leading to the deep penetration associated with the 

ploughing process. This behaviour has been reported in the literature under both high 

and low stress 3B-A. Under high stress 3B-A, glass fibre reinforced polyester 

composites exhibited similar damage, despite the presence of hard reinforced fibres 

such as glass at the interface (Yousif & El-Tayeb 2010b). Further, severe detachment 

and delamination of the glass fibres was seen, which is in agreement with the current 

study. It appears that the brittleness of the glass fibres significantly worsened the 

polyester composite surface. The wear rate of the glass-polyester composites was 

above 5 mg/N at similar operating parameters to those of the current study, which 

showed that KFRE has a wear rate of less than 1 mg/N. In other words, natural fibres 

such as kenaf help to absorb the 3B-A load more efficiently than glass fibres, and 

confer high levels of protection to the resinous regions of the matrix. 
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a) At a load of 5 N, particle size 
of 650–750 µm 

 

b) At a load of 20 N, particle size 
of 650–750 µm 

Figure 5.10 SEM micrographs of KFRE composites in AP-O tested under          
different conditions against a particle size of 650–750 µm 

 (Pt: Pitting)  

 

 

a) At a load of 5 N, particle size of 
                 1,200–1,400 µm 

 

b) At a load of 20 N, particle size 
of 1,200–1,400 µm 

 
Figure 5.11 SEM micrographs of KFRE composites in AP-O under different 

conditions against a particle size of 1,200–1,400 µm 
(Dt: Detachment) 
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5.4.2.2 Observations on KFRE at P-O 

In the case of composite in P-O, the fibre is parallel to the sliding direction and 

directs the sand particles in a way that is different from that seen in the AP-O. The 

composite in AP-O may distribute the movement of the particles, while the P-O 

cannot. Figure 5.12 shows the micrographs of the KFRE composite in P-O subjected 

to 3B-A with fine sand particles (370–390 µm). At applied loads of 5 and 20 N, there 

were clear signs of a ploughing process during the sliding, which were very apparent 

on the resinous regions. The surface was exposed to fracture loading in the initial 

stage of the sliding process, generating grooves on the surface. This was followed by 

particles sliding and rolling, leading to the ploughing process. Moreover, since the 

particles were relatively small, they were able to penetrate between the fibres, where 

the damage was more pronounced than in the epoxy regions. Despite this, the fibres 

were still well adhered to the matrix, and there was no evidence of delamination or 

pull-out of fibres. Thus, it appears that the high level of material removal from the 

resinous regions is the main reason for the low performance of the composites in this 

orientation. 

 

When particle sized between 1,200 and 1,400µm were used the damage was more 

severe than that caused by the small particles (Figure 5.13). This is due to the high 

pressure caused by the particles, which caused debonding of the fibres and deep 

penetration of the particle into the composite surface. Figure 5.13a shows the 

composite surface after testing with the low applied load of 5 N and the large sand 
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particles. Defragmentation and fracture in the resinous areas, particularly those 

covering the fibres, was evident, since the fibres are exposed. 

 

a) At a load of 5 N, particle size 
of 370–390 µm 

 

b) At a load of 20 N, particle size 
of 370–390 µm 

 
Figure 5.12 SEM micrographs of KFRE composites in P-O tested at different 

conditions against particles of 370–390 µm 
(F: Fibre; Sl: Sliding; Fr: Fracture) 

 

 

a) At a load of 5 N, particle size 
of 1,200–1,400 µm 

 
b) At a load of 20 N, particle size 

of 1,200–1,400 µm 
 

Figure 5.13 SEM micrographs of KFRE composites in P-O tested under 
different conditions against particles sizes of 1,200–1,400µm 

(De: Debonding; Fr: Fracture; Df: Defragmentation) 
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5.4.2.3 Observations on KFRE at N-O 

In the previous sections, the micrographs of the worn surfaces of the composites in 

P-O and AP-O showed severe damage, including delamination, debonding and pull-

out of fibres, in the resinous regions of the composites. In these orientations, the 

whole fibres are exposed to the high stress 3B-A and this exposure results in the 

detachment and the damage to the fibres. Further, in the case of the P-O, the sand 

particles create a pathway by ploughing the resinous regions, which results in 

damage to the composite surface. 

 

When the composite is oriented in N-O, the ends of the fibres are exposed to the 

rubbing area while the whole fibres are in the bulk of the composite, which makes 

pull-out and detachment of the fibres difficult compared the other orientations. 

Figure 5.14 displays the micrographs of the composite in N-O tested with fine 

particles. Micro-cracking on the fibre ends, combined with slight debonding of a 

small area and pitting, especially with the high applied load of 20 N, was evident, 

although there was no detachment or pull-out of fibres. With the intermediate sized 

of particles, similar wear mechanisms occurred (Figure 5.15). At the higher applied 

load and with larger particles, pitting and penetration of the particles was found, as 

depicted in Figure 5.16. However, the damage appeared to be much less significant 

than that exhibited when the composites were tested in P-O and AP-O. This 

strengthens the argument outlined in Figure 5.7. Moreover, there was no sign of 

particle sliding, implying that the particles were in a rolling movement. This supports 
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the lower friction coefficient and wear rate of the composite in this orientation 

(Figures 5. 3 and 5. 5). 

 

a )At a load of 5 N, particle size of 
370–390 µm 

 

b) At a load of 20 N, particle size of 
370–390 µm 

 
Figure 5.14 SEM micrographs of KFRE composites in N-O under different 

conditions against a particle size of 370–390 µm 
( Ro: Rolling; De: Debonding; Cr:Crack) 

 

 

a) At a load of 5 N, particle size 
of 650–750 µm 

 

b) At a load of 20 N, particle size 
of 650–750 µm 

 
Figure 5.15 SEM micrographs of KFRE composites in N-O tested under 

different conditions against a particle size of 650–750 µm 
( Pt: Pitting; Ro: Rolling) 

 

Pt 

Cr 
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a) At a load of 5 N, particle size 
of 1,200–1,400 µm 

 

b) At load of 20 N, particle size  
               of 1,200–1,400µm 

 

Figure 5.16 SEM micrographs of KFRE composites in N-O tested at different 
conditions against a particle size of 1,200–1,400 µm 

( Pt: Pitting; Ro: Rolling) 
 

 

5.5 SIMULATION OF THE DAMAGE MECHANISM TO THE 
COMPOSITE SURFACE 

 
In this section, an attempt to study the high stress 3B-A wear behaviour of polymeric 

composites based on kenaf fibres was made by simulation. A simulation model was 

developed using ABAQUS software to study the damage features on the composite 

surface at different pressures and particle angles in three different fibre orientations. 

The pressure was determined by the flow rate and the applied load observed during 

the experiments, with the load assumed to be static. The contact between the fibre 

and the matrix is bonded. Finite element analysis was performed by constructing a 

simple model consisting of a sand particle under five different pressures and attack 

angles (θ) (Figure 5.17). Because the model is downscaled, the particle was set to 

travel at a lower velocity than the actual speed with respect to the orientation of the 

Pt 
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fibre; for example, perpendicular to the fibre under N-O and parallel to the fibre 

under P-O. The boundary of the composite model was set to ENCASTRE (fix) at the 

bottom and sides (Figure 5.18).  

 

 

θ=90 

Applied pressure 

 
                Composite body 

Sand 
Particle 

 

Figure 5.17 Attack angle θ of sand particle 

 
a) 

 

 b) 

 

 
Figure 5.18 Boundary conditions for a) N-O and b) P-O 
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In the material properties input, the materials assumed to have elastic behaviour with 

isotopic characteristics. At the young’s modulus and Poisson’s ratio, yield strength 

and plastic strain used as input for the fibre, matrix and the sand particle. Contact 

between the fibre and the matrix was controlled by the interaction technique and 

properties in the Abaqus software, in which surface to surface option was used. 

Under this assumption, the master surface is the matrix since the matrix is fixed in 

the boundary conditions. Meanwhile, the slave surface is the outer layer of the fibre. 

With regards to the mesh generation for each part, different mesh was obtained by 

the software. For the matrix, the approximate global size was 0.05 mm and curvature 

controlled at maximum deviation factor of 0.1. For the fibres, the size was much 

smaller to about 0.005 and the maximum deviation factor was 0.01; similar to this 

the mesh for the particle was developed.  

 

Setting the appropriate boundary condition for this model is important to generate an 

accurate approximation. In order to simplify the analysis, whereby an infinite of 

direction can be randomly travelled by the sand particle, and only three orientations 

were considered in this analysis. For the parallel orientation and antiparallel 

orientation, which declared in the finite element analysis, it is difference from the 

actual experiment. In the finite element analysis, each orientation declared is 

referring to the direction travel by the particle with respect to the fiber orientation.  
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The sand particle is set to travel normal to the fiber orientation. For the parallel 

orientation, the sand particle set to travel parallel to the orientation of the fiber and 

antiparallel to the orientation of the fiber for the antiparallel orientation. The 

assumptions made in the analysis are as follows  

• The model particle is isolated from the rest 

• The particle moves at 1 m/s across the surface 

• The model particle only has a degree of freedom at the direction at which it 

travels 

• Model composite is isolated from the rest of the composite     

• Poisson effect is ignored for maximum effect of the analysis. 

• Interfacial between the fiber and the matrix is frictionless in order to obtain 

worse situation. 

 

5.5.1 Results of the Simulation 

Different geometries of composites subjected to sand particles at different attack 

angles were developed to investigate the influence of the fibre orientation, pressure 

and attack angle on the 3B-A damage behaviour of the KFRE composite. For each of 

the geometries developed, the results of the stress were collected on both fibrous and 

resinous regions before failure (see Appendix B). The resistances of the composites 

to the stress induced by the particles were then determined. 
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For each geometry, each part was separated and the stress distribution and maximum 

value was determined. Samples of the results are presented in Figure 5.19, which 

shows the stress distribution on the composite surface in N-O and P-O, the fibres, the 

sand and the surface of the composites with the sand particles hidden. Different 

angles of attack by the sand and the stress subjected by the composite were selected 

and the required data were determined. A summary is presented in Figure 5.20, 

showing the influence of the attack angle and the stress induced by the sand for 

different KFRE orientations. This figure presents useful information on the 

maximum stress that the composite can be subjected to before failure. With regard to 

the effect of attack angle, the greater the angle, the lower the stress that the surface 

can carry. When the composite was oriented in either P-O or AP-O, there were no 

major differences since less stress could be carried by the surface at these 

orientations compared to N-O. At all selected attack angles and stress values, the 

composite in N-O was able to carry more stress than those in P-O and AP-O. These 

results strongly support the experimental results, which showed that the KFRE 

composites performed better when the fibres were oriented normally with respect to 

the counterface. A sample of the stress distribution on the composite surface oriented 

in N-O is given in Figure 5.21. Penetration of the sand particle is evident and can be 

found on the fibre ends, which generates a high stress region in the bonding area 

(Figures 5.14 b and 5.16 b). Despite this, the deep bonding area still has a less 

stressed region in which the fibre was still well adhered, and there is no damage in 

the bonding region in the depth of the composites (Figure 5.21 c and d). In Figure 

5.21b, maximum stress can be observed at the top ends of the fibres while the 

remaining portion of the fibre is still intact. 
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a) Normal 90o 15 MPa 

 

b) Parallel 30o 25 MPa 
 

Fig. 5.19  continued 

 

c) Fibres 

 

Figure 5.19 Stress distribution in the composites 

 

d) Sand 

e) Composite 
surface 
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From the simulation, it can be concluded that to obtain high wear resistance from 

fibre-polymer composites, it is highly recommended to orient the fibres normally 

with respect to the counterface. From the literature, composites in which the fibres 

were oriented either parallel or anti-parallel to the counterface e.g. carbon-epoxy and 

glass-epoxy composites (Suresha et al. 2007), and glass-vinyl ester composites 

(Suresha & Chandramohan 2008), suffered from high material removal from the 

surface due to the orientation of the fibre, i.e. weak bonding reagion and surface 

strength. The numerical results are in highly agreement with the experimental data 

given in Figure 5.5, in which oriented the fibre normally introduces better 

tribological performance to the epoxy composites compared to the others. Fig. 5.20b 

shows that the composites can be exposed to high stress at the 55 degrees since the 

stress can reached up to 275 MPa. This suggests that the composite in normal 

orientation performs better than the others which are in agreement with the 

experimental data in Figire. 5.5.  
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Figure 5.20 Maximum stress versus attack angle at different pressures  
and composite orientations 
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Figure 5.21 Stress distribution on the composite surface in N-O: fibre, bonding 
area and the resinous regions, a) the fibre embedded in the matrix, b) the fibre 

alone; c) the matrix without the fibre and d) inner surface of the matrix showing 
the stress distribution. 

 

5.6 COMPARISON WITH PREVIOUS STUDIES 
 
There is only one published study on high stress 3B-A of a polymeric composite 

based on natural fibres: that of Yousif and El-Tayeb (2008a) investigating a polyester 

composite based on treated/untreated oil palm fibres. Table 5.1 summarises the 

range of the wear rates and their trends for the current study and that of Yousif and 

El-Tayeb (2008). The table indicates that kenaf fibre provide better support to the 

polymer matrix than the oil palm fibres; i.e., the KFRE composites are in the low 

a) b) 

c) d) 
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wear rate range. This is primarily due to the high interfacial adhesion of the kenaf 

fibres compared to that of the treated/untreated oil palm fibres. The latter showed 

high removal of materials during the rubbing process due to poor interfacial 

adhesion. Moreover, in that study, the oil palm fibres were randomly distributed 

within the matrix, another reason for the poor performance of the oil palm fibres 

compared to the kenaf fibres, which were normally oriented. 

 

Table 5.1 3B-A wear results of KFRE (in N-O), untreated oil palm/polyester 
(UT-OPRP) and treated oil palm/polyester (T-OPRP) composites at 50 rpm 

rotational speed 
 

Materials 3B-A wear rate range 
(mg/N) and its trend 

Wear performance of the 
composite with respect to 

others 

Kenaf (N-O)-Epoxy 
[current]   

0.5–0.22 

Best 

Treated oil palm-
polyester (Yousif & 

El-Tayeb 2008a) 
  

4.2–2.25 

Moderate 

Untreated oil palm-
polyester (Yousif & 

El-Tayeb 2008a) 
  

5–4.2 

Poor 
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5.7 SUMMARY 
 

• Fibre orientation has a significant influence on the 3BA wear and frictional 

behaviour of the KFRE composite. When the composite was tested in N-O, 

better wear and frictional performance were achieved. In N-O, the composite 

performs better than NE and the reduction in the wear rate was approximately 

50–75 per cent. In contrast, the presence of the kenaf fibres in parallel and 

anti-parallel orientations worsened the wear and frictional performance of the 

epoxy under certain conditions. 

• The predominant wear mechanisms were detachment and breakage of fibres 

and fracture and defragmentation in the epoxy regions when the composites 

was tested in P-O and AP-O. Meanwhile, micro-cracks at the ends of the 

fibres was the dominant wear mechanism in N-O. 

• It is strongly recommended to assess the morphology of the particles after 

testing to determine whether high or low stress 3B-A has taken place. The 

current study showed both types. When small particles were used, low stress 

3B-A occurred and there was no damage evident on the particles after the 

tests. On the other hand, tests with intermediate and large particles showed 

high stress 3B-A, since the particles were fractured after the tests. 

• Numerical analysis using ABAQUS FEM software has enabled a better 

understanding of the wear mechanisms under high stress 3B-A. Both the 

particle attack angle and the applied pressure influence the damage features 

that occur on the composite surface. The most important factor affecting the 

wear behaviour of the composite is the fibre orientation, with normally-

oriented fibres generating higher stress on the composite surface. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 
 

6.1 CONCLUSIONS 
 
Epoxy composites based on natural kenaf fibres were developed in order to examine 

the possibility of using natural fibres as reinforcements for tribological applications. 

The mechanical properties and interfacial adhesion of the untreated and treated 

KFRE composites were evaluated. Adhesive wear tests were performed against a 

smooth stainless steel counterface under wet and dry contact conditions at different 

operating parameters and fibre orientations with respect to the sliding direction. 

Abrasive wear tests were carried out using the 3B-A technique against a steel 

counterface to simulate high stress 3B-A of the kenaf-epoxy composites. An ANN 

model was developed to predict the friction coefficient of the composites under 

adhesive dry contact conditions, with different operating parameters and fibre 

orientations as input data. ABAQUS software was used to assist with the analysis of 

the stress on the composites under high stress 3B-A. From these mechanical, 

adhesive and abrasive wear results, the following conclusions may be drawn: 

1. From the mechanical point of view, treating the kenaf fibres with 6 per cent 

NaOH contributed to the high interfacial adhesion of the fibres with the 

matrix, resulting in a significant improvement in the mechanical properties of 

the epoxy composites. 

2. Under dry contact conditions, the operating parameters had a relatively small 

influence on the wear and frictional performance of the composites. However, 

the orientation of the fibres strongly influenced the wear and frictional 
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behaviour of the KFRE composites. When oriented in N-O, kenaf fibres 

enhanced the wear performance of the epoxy by about 85 per cent. The wear 

mechanisms of the composite were predominated by micro-cracks (in N-O) 

and debonding (in P-O) in the fibrous regions and deformation in the resinous 

regions. 

3. Under wet contact conditions, the presence of water at the interface resulted 

in very low friction coefficients, in the range of 0.035–0.045. This is largely 

due to the removal of the debris at the interface and cooling of the contacted 

surfaces, which lowers the interaction between the asperities in contact. The 

SEM observations revealed the abrasive nature of the wear mechanism and 

peeling of fibres when the composites were tested in AP-O and P-O. 

Meanwhile, in N-O, the ends of the fibres resisted the sliding process and 

protected the resinous regions, which was the main reason underlying the 

better wear performance of the composite in this orientation. 

4. From the ANN results, it was shown that an ANN model can be developed 

with different training and learning functions to control the error and 

predictive performance of the model. In the current study, a log-sigmoid 

transfer function and the SCG learning rule with two hidden layers proved to 

give the optimum configuration to predict and obtain low error (<0.1) with an 

experimental data set of about 1,095 points. 

5. Under 3B-A, the fibre orientation and particle size determines the wear and 

the frictional behaviour of the KFRE composites. The presence of kenaf 

fibres in P-O and AP-O worsened the wear and frictional performance of the 

epoxy under certain operating parameters. Meanwhile, in N-O, better wear 
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and frictional performance were achieved, since a 50–75 per cent reduction in 

the wear rate was achieved compared to the NE as well as the composites in 

the other orientations. 

6. Under 3B-A, surface observations revealed different wear mechanisms that 

were highly dependent on the fibre orientation and particle size. When the 

composite was tested in P-O and AP-O, the dominant wear mechanisms were 

detachment and breakage of fibres and fracture and defragmentation in the 

epoxy regions. Meanwhile, the most pronounced wear mechanism observed 

in the composite in N-O was micro-cracks at the ends of the fibres. The 

movements of the particles at the interface determine the type of damage to 

the surface. In the case of particle rolling, pitting and fracturing could be 

found in both the resinous and the fibrous regions. However, high levels of 

damage occurred with sliding movements, since detachment and breakage 

were observed in the fibrous regions along with ploughing in the resinous 

regions. 

7. Numerical analysis of the 3BA type can aid in understanding the wear 

mechanisms occurring during high stress 3B-A. In this study, the attack angle 

and applied pressure influence the damage mechanisms on the composite 

surface. The numerical results were in strong agreement with the 

experimental findings, where the dominant factor affecting the wear 

behaviour of the composite was the fibre orientation. The N-O resulted in 

higher stress resistance on the composite surface compared to the other 

orientations, and is the main reason for the high wear resistance of the 

composite in N-O compared to those in P-O and AP-O.  
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6.2 RECOMMENDATIONS FOR FUTURE WORK 
 
The areas deserve further investigation are listed below: 

• Since kenaf fibres were found to be a good alternative candidate for synthetic 

fibres, and have better characteristics than other natural fibres, a better 

understanding of the degradation of these fibres is strongly recommended to 

assist the commercialisation process. 

• Incorporation of solid lubricant additives may overcome the problem of the 

high adhesive friction coefficient of the KFRE under dry contact conditions, 

an important question that merits further investigation. 

• In some applications, composites may be subjected to 3B-A and/or 2B-A 

loadings in the presence of liquids (such as water) at the interface; for 

example, water pumps in mining. Consequently, 3B-A and 2B-A under wet 

contact conditions should be studied to investigate the behaviour of KFRE 

composites under these conditions. 
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APPENDIX A: ARTIFICIAL NEURAL NETWORKS 
DEVELOPMENT STEPS 

 

A.1 MATLAB WORKSPACE AND TOOLBOX 

A1.1 Input data 

The captured frictional force against the sliding distance at different operating 

parameters for the KFRE composite at N-O were collected for three tests at each 

operating parameter. The average of the three readings after each 100m sliding 

distance was determined. Figure A.1 shows the arrangement of the frictional data for 

the KFRE at N-O before it was exported to the Matlab workspace. 

 

In the Matlab workspace, the input and the target data were imported from the Excel 

file as can be seen in Figures A.2a and A.2b. This step was then followed by 

developing the ANN model. At this stage there are several ways of developing the 

ANN model; i.e., though the Simulink, toolbox or writing the script. In this study the 

toolbox and the script were used for developing the model. Two methods are 

available in the toolbox for developing the ANN. The basic method is by following 

the steps shown in Figure A.3. The steps for training the model are also given in Fig. 

A.3. Figure A.4 shows the detailed steps involved in training one of the developed 

models. The script of the ANN in Matlab is given in Section A.2. 
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Fig. A.1 Sample of the Excel Frictional Data 
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a) Importing the input data, consisting of 3×365 values of the operating parameters, 
sliding velocity, sliding distance and the applied load. 

 

b) Importing the output data, consisting of 1×365 values of the friction coefficient at 
the operating parameters given in Part a) of this Figure. 

Fig. A.2 Importing the Frictional Data to the Matlab Workspace 
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a) Selecting the ANN prediction method. 

 

b) Selecting the input and target data. 

 

Fig. A.3 continued 
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c) Selecting the percentage of training and verification data. 

 

 
d) Selecting the number of neurons. 

Fig. A.3 Steps for Developing the ANN Using the Matlab Toolbox 
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a) Training the data. 

 

b) Checking the training performance and error. 

 

Fig. A.4 continued 
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c) Checking the training performance and error. 

Fig. A.4 Steps for Training the ANN and Obtaining the Performance Indication 
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A.2 MATLAB SCRIPT 
 
% Solve an Input-Output Fitting problem with a Neural Network 

% Script generated by NFTOOL 

% Created Fri Jun 07 10:28:52 GMT+10:00 2013 

%% This script assumes these variables are defined: 

%%   Input - input data. 

%   Target - target data. 

inputs = Input; 

targets = Target; 

% Create a Fitting Network 

hiddenLayerSize = 50;  

net = fitnet(hiddenLayerSize); 

% Choose Input and Output Pre/Post-Processing Functions 

% For a list of all processing functions type: help nnprocess 

net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'}; 

net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'}; 

% Setup Division of Data for Training, Validation, Testing 

% For a list of all data division functions type: help nndivide 

net.divideFcn = 'dividerand';  % Divide data randomly 

net.divideMode = 'sample';  % Divide up every sample 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

% For help on training function 'trainlm' type: help trainlm 

% For a list of all training functions type: help nntrain 
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net.trainFcn = 'trainlm';  % Levenberg-Marquardt 

% Choose a Performance Function 

% For a list of all performance functions type: help nnperformance 

net.performFcn = 'mse';  % Mean squared error 

% Choose Plot Functions 

% For a list of all plot functions type: help nnplot 

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 

'plotregression', 'plotfit'}; 

% Train the Network 

[net,tr] = train(net,inputs,targets); 

% Test the Network 

outputs = net(inputs); 

errors = gsubtract(targets,outputs); 

performance = perform(net,targets,outputs) 

% Recalculate Training, Validation and Test Performance 

trainTargets = targets .* tr.trainMask{1}; 

valTargets = targets  .* tr.valMask{1}; 

testTargets = targets  .* tr.testMask{1}; 

trainPerformance = perform(net,trainTargets,outputs) 

valPerformance = perform(net,valTargets,outputs) 

testPerformance = perform(net,testTargets,outputs) 

% View the Network 

view(net) 

% Plots 

% Uncomment these lines to enable various plots. 
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%figure, plotperform(tr) 

%figure, plottrainstate(tr) 

%figure, plotfit(net,inputs,targets) 

%figure, plotregression(targets,outputs) 

%figure, ploterrhist(errors) 
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APPENDIX B : SAMPLE OF ABAQUS SIMULATION RESULTS 
 
B.1 KFRE IN THE ANTI-PARALLEL ORIENTATION 
 

• 90 degree under 5 Pa 
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• 90 degree under 10 Pa 
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B.2 KFRE IN THE PARALLEL ORIENTATION 
• 65 degree under 10 Pa 
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• 65 degree under 20 Pa 
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