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ABSTRACT

We study the amplification of shallow-water waves in the course of their propagation in a duct of a variable cross section with a spatially
inhomogeneous flow. We derive the basic set of equations for the wave propagation and present the asymptotic analysis of solutions in the
neighborhood of critical points where the wave speed coincides with the speed of the current. The considered model represents a kinematic
analog of astrophysical event horizons occurring in the vicinity of the black holes (BH) or white holes (WH). We study then the wave propa-
gation in the flow with two critical points (two horizons) when the flow transits first the BH horizon and then the WH one or vice versa. In
the former case, the region between the critical points mimics a wormhole in general relativity. The theoretical results are illustrated by
numerical calculations of wave propagation through the critical points. It is shown that the wave amplification after passing the active zone
between the horizons takes place in BH–WH arrangements only and can occur for different relationships between the subcritical and super-
critical flow velocities. The frequency dependence of the amplification factor is obtained and quantified in terms of the velocity ratio within
and outside the “wormhole domain.”
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I. INTRODUCTION

Almost all scalar wave phenomena that exist in different media
can be also reproduced or modeled by means of water waves.
Moreover, the majority of wave effects can be observed in water by the
naked eye. Since that time when Unruh1 demonstrated the similarity
between the equations of general relativity describing wave phenom-
ena in the proximity of black holes (BH) and acoustic waves in non-
uniform flows, the study of such processes was developed into a whole
scientific direction called analogue gravity (see, e.g., Refs. 2–5 and
references therein). However, the analogy between the set of hydrody-
namic equations and Einstein’s equations for space–time is not too
deep due to the difference between them. Nevertheless, many research-
ers employ the kinematic analogy to demonstrate that long water
waves propagating on a spatially inhomogeneous flow can be treated
as the analogue for the propagation of light in the curved space–time
(see, e.g., Refs. 6–9 and references therein).

In the pioneering paper by Unruh1 for the modeling of a space–
time structure, sound waves were proposed in the potential barotropic

flow U ¼ rUðx; tÞ, where U is the hydrodynamic potential of the
fluid velocity U. Later, it was recognized that instead of sound waves,
surface gravity waves can be used on non-uniform flows in shallow
water.10 Despite the fact that, over the past three decades, the arsenal
of analog gravity has expanded significantly, the study of the effects
associated with the propagation of sound and water waves continues
to receive much attention. This is confirmed, in particular, by the
materials of the recently held discussion on the current state of
research in the field of analog gravity organized under the auspices of
the London Royal Society.11 As was pointed out in the discussion, one
of the topical problems in this field is the necessity of a further study
of the effects related to the transitions between subcritical (jUj < c)
and supercritical (jUj > c) flows, where c is the wave speed in the
medium (sound speed or speed of long linear waves on shallow water).
The features of the wave dynamics in the regions with a different char-
acter of flows should be also studied in detail. This was one of the
motivations of our work presented here. Another motivation is related
to the problem of water wave amplification per se on the inhomoge-
neous flows in hydrodynamic ducts.
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Recently, we constructed analytical solutions14 for the problem of
surface wave transformation in a one-dimensional duct with a
smoothly varying water velocity along the flow direction, U(x)> 0. All
possible relationships between the water velocity U(x) and wave veloc-
ity c have been studied in that paper for linear waves in the shallow-
water approximation. The transitions of the flow velocity from the
subcritical to the supercritical and vice versa have been studied in
detail on the basis of the solutions derived. The role of positive and
negative energy waves (NEWs) in the supercritical flow has been also
noted. However, the exact analytical solutions in Ref. 14 were based on
two assumptions that impose significant restrictions on the problem
formulation. One of the assumptions is related to the piece-wise linear
velocity profile U(x); this simplifies the derivation of analytical solu-
tions but is hardly achievable in the laboratory setups. Another
assumption presumes that the wave velocity c is x-independent; such
independence is difficult to achieve in the experiment too. In particu-
lar, in the experiments described in Refs. 8, 15, 16, the water depth H
(and the surface wave velocity c ¼ ffiffiffiffiffiffi

gH
p

with g being the acceleration
due to gravity) was not maintained constant throughout the flow.
Moreover, in some recent publications,17–19 for the simulation of the
curved space–time, the new types of flows were proposed and realized
in the laboratory. In those experiments, the current velocities U
remained constant, whereas the effective sound speed varied in space
due to the special construction of the upper duct boundary.

As follows from the aforementioned, to clarify the basic features
of the wave–current interaction, there is a necessity to study analyti-
cally wave propagation in the case when both velocities, U and c, are
x-dependent in a rather arbitrary way. To this end, we can employ the
method originally developed in the quantum theory of scattering (see,
e.g., Refs. 20 and 21) The method, in a certain sense, allows one to sep-
arate in each point of x the contributions to the total disturbance of
waves traveling in the opposite directions relative to the moving
medium. This makes physically clearer both the calculations and
results obtained. As in our previous paper,14 we will consider surface
water waves on the gradually varying flow in a shallow duct assuming
that both the fluid depthH(x) and the duct widthW(x) are slow func-
tions of x.

Being equipped with the developed powerful mathematical tool,
we will tackle the problem, which models the wave penetration
through the wormhole in the theory of relativity. The term
“wormhole” was introduced by Wheeler in the 1950s to describe a
connection between the separate parts of the Universe where the black
hole (the term also suggested by Wheeler) is connected by a tunnel
with its counterpart called the white hole (WH) (the term introduce by
Igor Novikov in the 1960s). Despite the originally suggested worm-
holes were found unstable, it was shown later that their modification
containing exotic matter possessing negative energy can stabilize
wormholes.22 The wormhole analogue in hydrodynamics can stably
exist, however, in the portion of a duct where the fluid flow is super-
critical as in the central part of the duct schematically shown in Fig. 1.
There is no necessity in the existence of “exotic matter” while at all
non-exotic NEWs exist in this region.23

As the consequence of existence of stable analogues of worm-
holes, a sort of a black hole laser with open boundaries can be realized
between the critical points of a current in a supercritical region of a
flow. Note that the black hole laser effect was theoretically predicted
by Corley and Jacobson,24 see also Ref. 25. It was studied numerically

in application to optics26 and observed experimentally in the
Bose–Einstein condensate.27 In Ref. 9, the authors studied numerically
water wave packets on a spatially varying current in the presence of a
surface tension. Using the ad hoc constructed equation for water
waves, they have demonstrated that traversable and bidirectional ana-
logue of wormholes can exist. However, surface waves in fluid with the
surface tension are subject to dispersion, which is absent in the general
relativity. Therefore, the analogy between water waves and electromag-
netic waves becomes too far, although the physical effect of wave
amplification remains qualitatively similar.

In our paper, we consider the amplification of shallow water
waves without a dispersion within the framework of real hydrody-
namic equations. We assume that the flow velocity U(x) can be con-
trolled by a proper variation of the duct cross section, both by the
variation of width and depth. The water depth variation solves the
problem of a zero-frequency mode (a stationary free surface deforma-
tion) mentioned in Ref. 9. Another problem mentioned in Ref. 9 and
related to the rapid damping of small-scale capillary waves is not topi-
cal for long gravity waves considered in this paper. Therefore, the vis-
cosity effects can be neglected almost everywhere in the flow except
the neighborhood of the critical points (i.e., the black or white hole
horizons) where c ¼ UðxÞ. The effect of viscosity in such points plays
an important role and is studied in detail in the Appendix. We show
that the wave amplification is directly related to the existence of
NEWs between the critical points. In this paper, we develop the gen-
eral approach to the description of linear waves on inhomogeneous
currents and demonstrate the importance of viscous effects near the

FIG. 1. Sketch of a duct of variable width W(x) and depth H(x) with a non-uniform
fluid flow U(x): (a)—the top view, (b)—the side view. The duct is sectioned by black
and white hole horizons [where cðxÞ ¼ UðxÞ] positioned at x1 and x2, respectively.
In the regions 1 and 3, the flow is subcritical [UðxÞ < cðxÞ], whereas the region 2
with the supercritical flow [UðxÞ > cðxÞ] mimics a model of a wormhole connecting
black and white holes. Letters I, R, and T denote incident, reflected, and transmitted
wave, respectively. Letters P and N denote traveling waves of positive and negative
energies, respectively.
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critical points. The developed theoretical concept is illustrated by
numerical calculations with some particular profiles of the mean flow
U(x) and the wave speed c(x).

The article is organized as follows. The problem formulation is
given in Sec. II, and the basic equations are also derived there. Section
III is devoted to the asymptotic analysis of solutions in the neighbor-
hood of the critical points, where the flow and wave velocities coincide.
Such a point is called the BH horizon (the black hole horizon) if the flow
transits from the subcritical to the supercritical regime passing through
the point. If the flow transits from the supercritical regime to the sub-
critical regime passing through the point, then it is called the WH hori-
zon (the white hole horizon). In Secs. IV and V, we study the wave
propagation in the flow with two horizons, when the flow transits from
BH to WH (BH–WH duct) or from WH to BH (WH–BH duct).
Section VI contains the results of numerical calculations of wave propa-
gation in both these arrangements illustrating the theoretical analysis
presented in Secs. IV and V. It is shown that the wave amplification can
occur when an incident wave produces a higher amplitude transmitted
wave passing through the wormhole between the BH andWH horizons.
The amplification factor is estimated in terms of the velocity ratio within
and outside the wormhole. Section VII is devoted to the discussion of
the results obtained. In the Appendix, we present calculations demon-
strating the influence of the water viscosity on the wave transformation
in the vicinity of critical points (BH orWH horizons).

II. GOVERNING EQUATIONS AND THE PROBLEM
STATEMENT

We study the surface waves propagating relative to moving shal-
low water with the speed cðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
gHðxÞ

p
and having no dispersion.

To ensure the independence of c(x) and flow velocity U(x), we assume
that the flow occurs in a duct of the width W, which smoothly varies
with x as required by the law of mass flux conservation,

UðxÞHðxÞWðxÞ ¼ const: (1)

In the hydrostatic approximation describing the propagation of
long waves in shallow water,28 the pressure can be represented as
p ¼ p0 þ qgðg� zÞ, where p0 is the atmospheric pressure, q ¼ const
is the water density, and gðx; tÞ is the deflection of the water surface
from the equilibrium position. We present the horizontal fluid velocity
as Vx ¼ UðxÞ þ uðx; tÞ, where juðx; tÞj � UðxÞ and substitute this
into the linearized Euler equation:

@u
@t
þ @ðUuÞ

@x
¼ �g @g

@x
: (2)

Equation of mass conservation for shallow-water waves is

@S
@t
þ @

@x
SðU þ uÞ½ � ¼ 0; (3)

where Sðx; tÞ ¼ ½HðxÞ þ gðx; tÞ�WðxÞ is the part of the duct cross
section occupied by water. Linearization of Eq. (3) with respect to
small perturbations u and g leads to the equation:

@g
@t
þ HU

@

@x
u
U
þ g
H

� �
¼ 0: (4)

Now, let us introduce the potential u for the perturbed fluid
velocity u ¼ @u=@x. Then, we find from Eq. (2)

�gg ¼ @u
@t
þ U

@u
@x

: (5)

Combining Eqs. (4) and (5) and bearing in mind that c2ðxÞ ¼ gHðxÞ,
we arrive to the single equation describing long surface wave propaga-
tion in terms of the velocity potential u:

@

@t
þ U

@

@x
� 2U

c0

c

� �
@u
@t
þ U

@u
@x

� �
¼ c2U

@

@x
1
U
@u
@x

� �
; (6)

where prime stands for the derivative with respect to x.
For an elementary monochromatic wave with frequency x,

u ¼ /ðxÞe�ixt , Eq. (6) reduces to the ODE (ordinary differential
equation):

ðc2 � U2Þ d
2/
dx2
þ 2U2 c

0

c
� ðc2 þ U2ÞU

0

U
þ 2ixU

� �
d/
dx

þ x2 � 2ixU
c0

c

� �
/ ¼ 0: (7)

Following Ref. 21, we seek an exact solution to Eq. (7) in the form
resembling a JWKB solution:

/ðxÞ¼AðxÞ exp ix
ð

dx
cðxÞþUðxÞ

� �
þRðxÞexp �ix

ð
dx

cðxÞ�UðxÞ

� �� �
�AðeþþRe�Þ; (8)

where functions A(x) and R(x) can be interpreted, to the certain extent,
as, respectively, the complex amplitude of a co-current propagating
wave and the relative amplitude of the countercurrent propagating
wave (i.e., “the local reflection coefficient”); e6 denotes the corre-
sponding exponential functions. Note that the second term in the
square brackets is singular at the critical points, where UðxÞ ¼ cðxÞ.
From the physical point of view, the singularities are caused by the
blocking of the wave propagating against the current, so that its phase
velocity and wavelength tend to zero at the critical point. Therefore,
the consideration of the crossing through the critical point requires
special attention.

The method of variation of constants provides the condition,
which relates the functions A(x) and R(x) (see, e.g., Ref. 29).
According to this method, only the exponential functions should be
differentiated when we calculate the derivative d/=dx:

d/
dx
¼ ixAðxÞ eþ

cþ U
� RðxÞe�

c� U

� �
: (9)

Then, functions A(x) and R(x) must satisfy the equation:

dA
dx
ðeþ þ Re�Þ þ A

dR
dx

e� ¼ 0: (10)

Calculating d2/=dx2 in Eq. (9) and substituting the result into
Eq. (7), we find:

dA
dx
ðc� UÞeþ � ðcþ UÞRe�½ � � A

dR
dx
ðcþ UÞe�

� A c0 þ c
U 0

U

� �
ðeþ � Re�Þ ¼ 0: (11)
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Equations (10) and (11) completely describe functions A(x) and R(x).
By resolving these equations with respect to the derivatives, we obtain:

dA
dx
¼ aðxÞð1� RðxÞe�iUðxÞÞAðxÞ; (12)

dR
dx
¼ �aðxÞ eiUðxÞ � R2ðxÞe�iUðxÞ

� �
; (13)

where

aðxÞ ¼ 1
2

c0

c
þ U 0

U

� �
� 1

2
d lnPðxÞ

dx
; PðxÞ ¼ cðxÞUðxÞ;

eiUðxÞ ¼ eþðxÞ
e�ðxÞ

; UðxÞ ¼ x
ð

aðxÞdx;

aðxÞ ¼ 1
cðxÞ þ UðxÞ þ

1
cðxÞ � UðxÞ ¼

2cðxÞ
c2ðxÞ � U2ðxÞ :

(14)

The system of Eqs. (12) and (13) has a number of useful properties
that make the analysis of wave propagation simpler and more intuitive.
First, it is clear that if in some flow region function PðxÞ ¼ const, then
both AðxÞ ¼ const and RðxÞ ¼ const; that is, waves in this region do
not experience reflection despite that c and U depend on x.

Second, the problem is reduced to the nonlinear first-order
ODE—the Riccati equation (13); after finding a solution to this equa-
tion, the amplitude equation for A(x) (12) is immediately integrated:

AðxÞ ¼ A0

ffiffiffiffiffiffiffiffiffiffi
PðxÞ

p
exp �

ð
dx aðxÞRðxÞe�iUðxÞ

� �
: (15)

Third, it is easy to see that in the flow regions that do not contain
critical points [where UðxÞ ¼ cðxÞ], Eqs. (12) and (13) have the first
integral:

E ¼ jAðxÞj
2

PðxÞ 1� jRðxÞj2
	 


¼ const: (16)

This equation can be treated as the conservation of wave action, which
is equivalent in our case to the conservation of the pseudo-energy.23,30

According to this law, the amplitude of the incident wave jAðxÞj can
be presented through the transformation coefficient jRðxÞj2 and the
“geometric factor” of the flow PðxÞ.

For the further consideration, it is convenient to introduce
the normalized amplitude that does not depend on the geometric
factor, DðxÞ ¼ AðxÞ=

ffiffiffiffiffiffiffiffiffiffi
PðxÞ

p
, and the normalized coefficient

rðxÞ ¼ RðxÞe�iUðxÞ [recall that R(x) is a complex-valued function].
These functions satisfy the following equations [see Eqs. (12)–(14)]:

dD
dx
¼ �aðxÞ rðxÞDðxÞ; (17)

dr
dx
¼ �aðxÞ 1� r2ðxÞ

	 

� ixaðxÞ rðxÞ: (18)

Then, Eqs. (8), (15), and (16) take the form:

/ðxÞ ¼ AðxÞ 1þ rðxÞ½ � exp ix
ð

dx
cðxÞ þ UðxÞ

� �
; (19)

AðxÞ ¼ A0

ffiffiffiffiffiffiffiffiffiffi
PðxÞ

p
exp �

ð
dx aðxÞ rðxÞ

� �
; (20)

E ¼ jAðxÞj
2

PðxÞ 1� jrðxÞj2
	 


� jDðxÞj2 1� jrðxÞj2
	 


¼ const: (21)

It should be noted that if at some point of flow jrðxÞj < 1, then this
inequality holds throughout the flow due to the conservation law (21)
[the same is true for jrðxÞj > 1].

In some cases, it is convenient to present a solution for r(x)
through the module and argument rðxÞ ¼ jrðxÞj eihðxÞ [note that
jrðxÞj ¼ jRðxÞj, where R(x) is a complex-valued function]; then, for
these quantities, we have the equations:

djrj
dx
¼ �aðxÞ 1� jrðxÞj2

	 

cos hðxÞ; (22)

dh
dx
¼ aðxÞ
jrðxÞj 1þ jrðxÞj

2
	 


sin hðxÞ � x aðxÞ: (23)

In Sec. III, we will consider in detail the solution in the vicinity of
a critical point and transition through the critical point.

III. SOLUTION IN THE VICINITY OF A CRITICAL POINT
A. The asymptotic expansion

Let x ¼ x0 be the critical point such that Uðx0Þ ¼ cðx0Þ � c0.
We consider the general case when the curves c(x) and U(x) intersect
without tangency, that is, when the quantity l ¼ U 0ðx0Þ � c0ðx0Þ is
nonzero and, moreover, not small, l ¼ Oð1Þ. Let us introduce a
parameter 0 < e� 1, put x � x0 ¼ en, and use the notation
f0 ¼ f ðx0Þ for any function f(x). Expanding functions c(x) and U(x) in
the Taylor series in the vicinity of x ¼ x0 and replacing x with n in Eq.
(18), we obtain:

n
dr
dn
¼ ix

l
r þ en

c00 þ U 00
2c0

ðr2 � 1Þ � ix
2

1
c0
� c0000 � U 000

l2

� �
r

� �
þ e2n2Sþ � � � ; (24)

where

S ¼ 1
2

c000 þ U 000
c0

� c00
2 þ U 00

2

c20

 !
ðr2 � 1Þ

"

þ ix
2

c00 þ U 00
c20

þ 2
3
c0000 � U 0000

l2
þ ðc

00
0 � U 000 Þ

2

l3

 !
r

#
:

Let us look for a solution to this equation in the form
r ¼ rð0Þ þ erð1Þ þ e2rð2Þ þ � � � and introduce a notation b ¼ x=l. In
the zero order on the parameter e, we obtain:

n
drð0Þ

dn
¼ i b rð0Þ; rð0Þ ¼ ~B0n

ib; ~B0 ¼ const: (25)

In the first order on this parameter, OðeÞ, the equation is

n
drð1Þ

dn
¼ ibrð1Þþn

c00þU 00
2c0

ð~B2
0n

2ib�1Þ� ix
2

1
c0
�c
0 0
0�U 000
l2

� �
~B0n

ib

� �
:

(26)

Solution to this equation can be readily derived:

rð1Þ ¼ nðB10 þ B11n
ib þ B12n

2ibÞ; (27)

where
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B10 ¼ �
c00 þ U 00

2c0ð1� ibÞ ; B11 ¼ �
ix
2

1
c0
� c000 � U 000

l2

� �
~B0;

B12 ¼
c00 þ U 00

2c0ð1þ i bÞ
~B
2
0:

(28)

In the second order on the parameter e, Oðe2Þ, the equation is

n
drð2Þ

dn
¼ i b rð2Þ þ n

c00 þ U 00
c0

rð0Þ � ix
2

1
c0
� c000 � U 000

l2

� �� �
rð1Þ

þ n2

2
c000 þ U 000

c0
� c00

2 þ U 00
2

c20

 !
ðrð0Þ2 � 1Þ

"

þ ix
2

c00 þ U 00
c20

þ 2
3
c0000 � U 0000

l2
þ ðc

00
0 � U 000 Þ

2

l3

 !
rð0Þ
#
:

(29)

Solution to this equation, we present in the form:

rð2Þ ¼ n2ðB20 þ B21n
ib þ B22n

2ib þ B23n
3ibÞ; (30)

where

B20¼�
1

2ð2� ibÞ
c000þU 000

c0
�c00

2þU 00
2

c20
þ ix

1
c0
�c000�U 000

l2

� �
B10

" #
;

B21¼
c00þU 00
2c0

B10þ
ix
8

c00þU 00
c20
þ2
3
c0000 �U 0000

l2
þðc

00
0�U 000 Þ

2

l3

 !" #
~B0

� ix
4

1
c0
�c000�U 000

l2

� �
B11;

B22¼
1

2ð2þ ibÞ

"
c000þU 000

c0
�c00

2þU 00
2

c20

 !
~B
2
0þ2

c00þU 00
c0

~B0B11

� ix
2

1
c0
�c000�U 000

l2

� �
B12

#
;

B23¼
c00þU 00

2c0ð1þ ibÞ
~B
2
0B12:

The solution obtained consists of two parts. One of them is the
sum of slowly varying terms that vanish at the critical point; this part
of the solution is represented by the Taylor series:

rslðxÞ ¼ B10ðx � x0Þ þ B20ðx � x0Þ2 þ � � � : (31)

Another part of the solution contains the terms with the coefficients
~B0 and Bnm (m � 1); these terms are strongly oscillating when x! x0
[see Eqs. (25), (27), and (30)]. Note that Bnm � ~B

m
0 and stress that Bnm

depends on Bi0, but Bi0 does not depend on Bnm with m � 1 (this
property holds in the higher orders of expansion too). Therefore, the
slowly varying part of the solution is entirely determined by the local
behavior of functions c(x) and U(x) in the vicinity of the critical point
and does not depend on the fast-oscillating contribution. The latter is
determined by both the boundary conditions and behavior of func-
tions c(x) and U(x) to the right or to the left of the point x0. Note, by
the way, that ~B0 and the entire quickly oscillating contribution can be
different at left and right sides of x0; therefore, the found solution is
reasonable to represent in the form:

rðxÞ ¼ rslðxÞ þ Bð6Þ0 jx � x0jib 1þ Oðx � x0Þ½ �; (32)

where the signs plus and minus pertain to the regions where x > x0
and x < x0, respectively.

The integrals in Eqs. (19) and (20) converge for x! x060, and
the asymptotic expansions for A(x) and/ðxÞ can be written as

AðxÞ ¼ c0A
ð6Þ
0 1þ c00 þ U 00

2c0
ðx � x0Þ 1� Bð6Þ0

1þ i b
jx � x0jib

 !"

þOðjx � x0j2Þ
#
; (33)

/ðxÞ ¼ c0A
ð6Þ
0 1þ Bð6Þ0 jx � x0jib þ Oðjx � x0jÞ
h i

eiw;

w ¼ x
ðx0 dx

cþ U
:

(34)

As the next step, we need to investigate how these solutions can be
extended for the transition through the critical point. This will be done
in Sec. III B.

B. Transition through the critical point

Equation (34) contains only the principal expansion terms. The
first term in the square brackets refers to the co-current propagating
wave, and the second term (that is rapidly oscillating) refers to the
countercurrent propagating wave. As shown in Ref. 14, for the correct
matching solutions through the critical point, it is necessary to take
into account a small viscosity of the medium. The details of calculation
of the viscous problem are presented in the Appendix, and here, we
summarize the final result (note in brackets that in dispersive media
there are other possibilities to match the solutions through the critical
point. The dispersion invokes causality arguments similar to those that
were considered by Hawking12 and Unruh13 for astrophysical black
holes. This option requires, however, assuming that the flow was uni-
form in the distant past).

If the current passes from the subcritical regime into supercritical,
then

AðþÞ0 ¼ Að�Þ0 ; BðþÞ0 ¼ Bð�Þ0 ¼ 0: (35)

In other words, co-current traveling waves “do not feel” that the point
is critical. The absence of countercurrent running waves is due to the
fact that on both sides of the critical point, they propagate out of this
point and, therefore, cannot reach it. Hence, for such a transition we
have [see Eqs. (31), (32), (21), and (22)]

rðx0Þ ¼ 0 and Eðx0 þ 0Þ ¼ Eðx0 � 0Þ: (36)

Therefore, we conclude that if aðx0Þ 6¼ 0 in Eqs. (22) and (23), then
functions r(x) and cos h change their signs in the course of transition
through the critical point, that is, hðx0 þ 0Þ ¼ hðx0 � 0Þ6p.

On the contrary, in the course of the transition from the super-
critical to the subcritical regime, the countercurrent propagating waves
run to the critical point and, approaching it with a decreasing wave-
length, are completely absorbed in its viscous neighborhood. Their rel-
ative amplitudes BðþÞ0 and Bð�Þ0 depend on their propagation
prehistory in the different flow regions and, therefore, are not related
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to each other, whereas AðþÞ0 ¼ Að�Þ0 . The energy flux in the course of
the transition through the critical point is not generally conserved,

Eðx0 � 0Þ ¼ jA
ð�Þ
0 j

2

Pðx0Þ
ð1� jBð�Þ0 j

2Þ 6¼ Eðx0 þ 0Þ

¼ jA
ðþÞ
0 j

2

Pðx0Þ
ð1� jBðþÞ0 j

2Þ;

and it can either decrease or increase (see Ref. 14).

IV. WAVE PROPAGATION IN THE BH–WH DUCT MODEL
A. The flow model and preliminary analysis

Consider the flow on the left (�1 < x < x1) and right
(x2 < x < þ1) ends of which the flow is subcritical, 0 < UðxÞ
< cðxÞ, and within the middle part, for x1 < x < x2, supercritical,
UðxÞ > cðxÞ, as shown in Fig. 1. Here, x1 and x2 are the critical
points such that Uðx1Þ ¼ cðx1Þ � c1 and Uðx2Þ ¼ cðx2Þ � c2.
We assume that in both critical points, the differences of slopes,
l1;2 � U 0ðx1;2Þ � c0ðx1;2Þ, are not small (see Fig. 2) and use in this
section the dimensionless variables

~x ¼ x
K
; ~U ð~xÞ ¼ UðxÞ

c1
; ~cð~xÞ ¼ cðxÞ

c1
; ~x ¼ x

l1
; K ¼ c1

l1
:

(37)

In what follows, tildes will be omitted for brevity.

Let us assume that a plane wave of frequency x arrives from the
left. Its propagation in the inhomogeneous zone will be described in
terms of functions D(x) and r(x). At the critical point, x ¼ x1, and
when x !þ1, there is no wave traveling upstream, and therefore,
solution to Eq. (18) must satisfy the boundary conditions:

rðx1Þ ¼ 0; rðþ1Þ ¼ 0: (38)

Therefore, we can conclude that, first, in the entire flow jrðxÞj < 1 [as
it follows from the conservation law (21)] and, second, Eq. (18) should
be integrated into the upstream direction in the subcritical areas and
downstream—on the supercritical section x1 	 x < x2.

Further, we suppose that for x ! 61 functions, c(x) and U(x)
tend to their nonzero limiting values, and let Dð�1Þ ¼ 1. Then, from
Eq. (20) and the matching conditions (35), AðþÞ0 ¼ Að�Þ0 , we find the
amplitude of the downstream propagating wave as the function of x:

DðxÞ ¼ exp �
ðx
�1

aðx0Þ rðx0Þ dx0

2
64

3
75; �1 < x <1: (39)

Then, we can define the transmission ratio KðxÞ � jDðxÞj and present
it as

KðxÞ ¼ exp �
ðx
�1

aðx0ÞRe ðrðx0ÞÞ dx0

2
64

3
75

¼ exp �
ðx
�1

aðx0Þjrðx0Þj cos hðx0Þ dx0

2
64

3
75: (40)

As can be seen from Eqs. (22) and (40), the reflection coefficient jrðxÞj
and transmission ratio K(x) both increase and decrease simultaneously
depending on the sign of the product aðxÞ cos hðxÞ. Finally, in those
regions where a(x)¼ 0, that is, PðxÞ ¼ const, they are constant too
and, as already noted, waves running in the opposite directions do not
interact, but the phase difference between them hðxÞ changes due to
the difference in the directions of propagation and difference in the
wavelengths [i.e., because aðxÞ 6¼ 0—see Eq. (23)].

In accordance with the flow structure and conservation law (21),
it is convenient to distinguish three stages for the downstream propa-
gating wave. In the interval x < x1, the transmission ratio K(x)

decreases from unity to Kðx1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jrð�1Þj2

q
. In the supercritical

interval, the amplitude increases, and Kðx2Þ ¼ Kðx1Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jrðx2 � 0Þj2

q
, and in the last interval, x > x2, K(x) decreases

again to Kðþ1Þ ¼ Kðx2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jrðx2 þ 0Þj2

q
[recall that in the gen-

eral case jrðx2 � 0Þj 6¼ jrðx2 þ 0Þj, therefore the increase and subse-
quent decrease in K are independent]. Thus, we can conclude that
K(x) can vary non-monotonically in any of these three intervals. As
the result, in each interval of the flow, its integral transmission ratios
are presented by the formulas:

K1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jrð�1Þj2

q
	 1; K2 ¼ 1� jrðx2� 0Þj2

	 
�1=2 � 1;

K3 ¼ 1� jrðx2þ 0Þj2
	 
1=2 	 1;

(41)
FIG. 2. The flow models with two critical points: (a)—flow (66), M¼ 1:5; (b)—
flow (69), c2 ¼ 2c1 ¼ 2, d¼ 1; and (c)—reflectionless flow with
PðxÞ � cðxÞUðxÞ ¼ 1.
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and the total transmission ratio (the transmission coefficient) is
T � Kðþ1Þ ¼ K1 � K2 � K3. It can be increased by (i) reducing the
transformation of the co-current propagating wave into reflected
waves in the subcritical intervals of the flow and (ii) increasing its
transformation into the NEW in the supercritical interval. Details of
the concept of NEW can be found in Refs. 23 and 31. Here, we only
recall that a wave whose phase velocity is less than the local flow veloc-
ity is attributed as the NEW. Such a wave cannot propagate against
the flow because the flow is so strong that it pulls the wave in the direc-
tion of the flow.

The first condition can be fulfilled at once for all frequencies if
in the subcritical regions the reflectionless wave propagation occurs
with aðxÞ � 0 [i.e., cðxÞUðxÞ � const], then K1 ¼ K3 ¼ 1. Note that
this condition does not prevent the change of the Mach number
MðxÞ � UðxÞ=cðxÞ along the flow [see, e.g., Fig. 2(c)]. Another way
to do it is based on the effect similar to that of anti-reflective coating in
the optics. Its principle is that waves reflected from the different flow
intervals add up in anti-phase and extinguish each other. As can be
seen from Eq. (22), the quenching is complete if:

rð�1Þ ¼
ðx1
�1

aðxÞ 1� jrðxÞj2
	 


cos hðxÞ dx ¼ 0; (42)

rðx2 þ 0Þ ¼
ð1
x2

aðxÞ 1� jrðxÞj2
	 


cos hðxÞ dx ¼ 0: (43)

Since in those intervals where a(x)¼ 0, function hðxÞ continues to
vary, the fulfillment of Eqs. (42) and (43) can be ensured by variation
of hðxÞ due to “inserts” with a(x)¼ 0 of the required length in the
proper intervals of the flow. However, since for a¼ 0 dh=dx � x [see
Eq. (23)], the choice of the positions of such inserts and especially their
lengths significantly depends on the wave frequency.

As will be shown below, both the selection of inserts and the dif-
ference in the speeds of wave propagation at the ends of the supercriti-
cal interval (both with c1 < c2 and c1 > c2) contribute to this, but the
increase in wave frequency prevents to this.

To simplify further analysis, let us strengthen the previously
formulated condition of fast convergence of c(x) and U(x) to their
limiting values when x! 61, assuming that c and U are con-
stants and, respectively, a(x)¼ 0 for x < x� < x1 and x > xþ > x2.
Below, we perform the analysis for two limiting cases, when x� 1
and x
 1.

B. The low-frequency limit, x� 1

Settingx ¼ 0 in Eq. (18), we get:

dr0
dx
¼ � P0ðxÞ

2PðxÞ ð1� r20Þ ) r0ðxÞ ¼
R0 �PðxÞ
R0 þPðxÞ ;

R0 ¼ ciUi
1þ r0i
1� r0i

;

(44)

where ci, Ui, and r0i are the values of c(x), U(x), and r0ðxÞ in some
starting point x ¼ xi. If xi coincides with the first critical point x1, then
r0i ¼ 0; R0 ¼ 1 and

r0ðxÞ ¼
1�PðxÞ
1þPðxÞ �

1� cðxÞUðxÞ
1þ cðxÞUðxÞ ¼ 1� 2cðxÞUðxÞ

1þ cðxÞUðxÞ : (45)

Next, we look for a solution in the form: rðxÞ ¼ r0ðxÞ þ x r1ðxÞ
þx2r2ðxÞ þ � � �. In the lowest order on the frequency,OðxÞ, we have

dr1
dx
¼ P0ðxÞ

PðxÞ r0ðxÞr1ðxÞ � i aðxÞr0ðxÞ:

Integrating this equation with the initial condition r1ðxiÞ ¼ 0 and
using Eq. (44), we get

r1ðxÞ ¼ �
2 iPðxÞ

R0 þPðxÞ½ �2
ðx
xi

r0ðnÞ
UðnÞ

R0 þPðnÞ½ �2

c2ðnÞ � U2ðnÞ dn: (46)

In the next order on the frequency, Oðx2Þ, we have the following
equation:

dr2
dx
¼ P0ðxÞ

2PðxÞ 2r0ðxÞr2ðxÞ þ r21ðxÞ
	 


� i aðxÞr1ðxÞ:

Its solution subject to the initial condition r2ðxiÞ ¼ 0 is

r2ðxÞ ¼ �
4PðxÞ

R0 þPðxÞ½ �3
ðx
xi

1
UðnÞ

R0PðxÞ þP2ðnÞ
c2ðnÞ � U2ðnÞ dn

�
ðn
xi

r0ðgÞ
UðgÞ

R0 þPðgÞ½ �2

c2ðgÞ � U2ðgÞ dg: (47)

The integral in the right-hand side of Eq. (46) can be evaluated in
the vicinity of the point x2; when x ! x2, we have

IðxÞ ¼
ðx
xi

r0ðnÞ
UðnÞ

R0 þPðnÞ½ �2

c2ðnÞ � U2ðnÞ dn

¼ I1i �
R2
0 � c42
2l2c

2
2

ln jx � x2j þ Oðjx � x2jÞ;

where I1i ¼ const, l2 ¼ U 02 � c02. The integral converges if r0ðx2Þ ¼ 0
(i.e., if R0 ¼ c22), and otherwise, it logarithmically diverges.

Similarly, one can evaluate the integral in the right-hand side of
Eq. (47):

ðx
xi

1
UðnÞ

R0PðxÞ þP2ðnÞ
c2ðnÞ � U2ðnÞ

ðn
xi

r0ðgÞ
UðgÞ

R0 þPðgÞ½ �2

c2ðgÞ � U2ðgÞ dg

0
B@

1
CA dn

¼ I2i �
R0 þ c22
2l2

I1i ln jx � x2j �
R2
0 � c42
4l2c

2
2

ln2jx � x2j
" #

þ Oðjx � x2jÞ;

where I2i ¼ const. Therefore, when x! x2, the solution is

rðxÞ ¼ R0 � c22
R0 þ c22

1þ ix
l2

ln jx � x2j �
x2

2l2
2
ln2jx � x2j þ � � �

" #

� 2ix c22I1i
ðR0 þ c22Þ

2 1þ ix
l2

ln jx � x2j þ � � �
� �

� 4x2c22I2i
ðR0 þ c22Þ

3 þ Oðjx � x2jÞ: (48)
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On the other hand, setting in Eq. (32) x0 ¼ x2 and l ¼ l2, we
obtain for jx � x2j � 1 and xj ln jx � x2jj � 1:

rðxÞ ¼ rslðxÞ þ Bð6Þ0 jx � x2jix=l2 1þ Oðjx � x2jÞ½ �

¼ rslðxÞ þ Bð6Þ0 1þ ix
l2

ln jx � x2j �
x2

2l2
2
ln2jx � x2j þ � � �

" #

� 1þ Oðjx � x2jÞ½ �:

Matching of this solution with solution (48) shows that when
x ! x260, the solution should be as this:

rðxÞ ¼ rslðxÞ þ
Rð6Þ0 � c22
Rð6Þ0 þ c22

� 2 ix c22I
ð6Þ
1i

ðR0 þ c22Þ
2 þ Oðx2Þ

" #
jx � x2jix=l2

� 1þ Oðjx � x2jÞ½ �; (49)

where rslðxÞ is determined by the series (31) with x0 ¼ x2. It was
taken into account that R0 and I1i can be different on the left and
right of point x2, because according to the boundary conditions
(38), they are calculated through the integration of Eq. (18) in the
different flow regions. Therefore, if r0ðx260Þ 6¼ 0 (i.e., Rð6Þ0 6¼ c22),
then the reflection coefficient and transmission ratios are as
follows:

jrðxÞj !
����R
ð6Þ
0 � c22

Rð6Þ0 þ c22

����
1=2

¼ Oð1Þ;

K2 � 1�
����R
ð�Þ
0 � c22

Rð�Þ0 þ c22

����
2

" #�1=2
; K3 � 1�

����R
ðþÞ
0 � c22

RðþÞ0 þ c22

����
2

" #1=2
:

(50)

Otherwise, jrðxÞj is of the order of Oðx2Þ.
It should be emphasized that for x! x260, the quantity

r0ðx260Þ ¼ Rð6Þ0 � c22
Rð6Þ0 þ c22

;

determined by Eq. (44) does not describe the limiting value of r(x)
(or its main part), but, as seen from Eq. (49), the amplitude of
the rapidly oscillating part of the solution. Note that oscillations
are concentrate in the exponentially narrow neighborhood of
the point x2,

jx � x2j ¼ Oðe�1=xÞ: (51)

This allows us, first, to consider r0ðx260Þ as the main part of the inter-
mediate asymptotic of the solution, and, second, greatly complicates
detection of oscillations in the numerical solution even in the case of
not very small x (see Sec. VI and Fig. 4).

Based on these results, we will consider wave propagation within
each section of the flow. Let us start from the left interval,
�1 < x < x1, where UðxÞ < cðxÞ. Given that aðxÞ 6¼ 0 only in the
interval r ¼ ðx�; x1Þ, we consider two options. The first option is that
x1 � x� ¼ Oð1Þ and aðxÞ ¼ Oð1Þ in the entire interval r. Then, tak-
ing into account the boundary condition (38), we obtain [see Eqs.
(45), (22), and (41)]:

r� � rðx�Þ ¼
1�P�
1þP�

þ OðxÞ;

K1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1�P�

1þP�

� �2
s

þOðxÞ; P� ¼ Pðx�Þ:
(52)

The subcritical flow simulates the “ordinary” space–time, with
the quite natural constancy of the wave velocity, c � 1. Then,
P� ¼ Uð�1Þ < 1, and there is necessarily a reflected wave; the
transmission rate is K1 < 1. The reflectionless propagation with
P� ¼ 1 is possible only in a more complex model, where c(x)> 1 for
x !�1 and decreases to 1 as we approach the critical point x1 (BH
horizon)—see, for example, Fig. 2(c).

In the second option, we compose the interval r from two inter-
vals of the length O(1) each, r1 ¼ ðx�; xaÞ and r2 ¼ ðxb; x1Þ. In these
intervals, function aðxÞ ¼ Oð1Þ; the intervals are separated by the
insert r0 ¼ ðxa; xbÞ where aðxÞ � 0. Then, Eq. (45) gives r0ðxbÞ
¼ ð1�P0Þ=ð1þP0Þ, where P0 ¼ PðxaÞ ¼ PðxbÞ. As a � 0
within the insert, therefore, jrðxÞj ¼ const, and only the phase differ-
ence of waves hðxÞ varies with x; however, this variation affects the
transmission rate. Indeed, in the case of the “phase inverting insert,”
when

hðxaÞ � hðxbÞ ¼ x
ðxb
xa

aðxÞ dx ¼ ð2nþ 1Þp; (53)

where n is natural, r0ðxaÞ ¼ �r0ðxbÞ, so that in accordance with Eq.
(44), R0 ¼ P2

0 and

r0ðx�Þ ¼
P2

0 �P�
P2

0 þP�
; K1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� P2

0 �P�
P2

0 þP�

 !2
vuut : (54)

As a result, the waves reflected in the intervals r1 and r2 cancel out
each other upon the condition P2

0 ¼ P�, which can be easily imple-
mented even in traditional flow models with c � 1 [see Fig. 2(a)], if in
the insert section, UðxÞ ¼ Ua ¼ Ub ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uð�1Þ

p
[in this case,

Uð�1Þ < Ua < 1]. This equality sets the position of the anti-
reflective insert; its length is determined by Eq. (53) and is very long,
since it is proportional to x�1.

In conclusion, we note that wave propagation in the interval
x2 < x <1 does not differ qualitatively from that just described.
Indeed, since a(x)¼ 0 for x > xþ, then Pþ � PðxþÞ ¼ Pðþ1Þ and
integration of Eq. (18) starts at x ¼ xþ with rðxþÞ ¼ rðþ1Þ ¼ 0. If
xþ � x2 ¼ Oð1Þ and aðxÞ ¼ Oð1Þ, then

r0ðx2 þ 0Þ ¼ Pþ �P2

Pþ þP2
; K3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Pþ �P2

Pþ þP2

� �2
s

þ OðxÞ;

(55)

and the condition of suppression of the reflected wave, Pþ ¼ P2, is
satisfied if cðþ1Þ > c2, that is, requires an increase in the wave speed
downstream from the critical point x2 [see Fig. 2(c)]. Yet, it is possible
to suppress the reflected wave using the above-described “anti-reflec-
tive optics effect,” that is, with the help of inverting insert with
a(x)¼ 0 in such point x¼ xa where P2ðxaÞ ¼ P2Pþ.

Let us now turn to the region x1 < x < x2 where the flow is
supercritical. If x2 � x1 ¼ Oð1Þ and aðxÞ ¼ Oð1Þ, then Eq. (45) gives:
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r0ðx2 � 0Þ ¼ 1� c22
1þ c22

;

K2 ¼ 1� 1� c22
1þ c22

 !2
2
4

3
5
�1=2

þ OðxÞ ¼ 1þ c22
2c2

þ OðxÞ:
(56)

In the case when the wave speeds at the ends of the region are the
same (c2 ¼ c1 ¼ 1), r0ðx2 � 0Þ ¼ 0, and K2 ¼ 1þ Oðx2Þ is almost
not differs from one. Again, one can significantly increase the trans-
mission ratio using an inverting insert. Indeed, since P1 ¼ P2 ¼ 1,
there is a point x ¼ xm at which PðxÞ reaches extreme (maximum or
minimum) value of Pm. Here, a(x) changes sign, and the growth of
jrðxÞj2 is replaced by a decrease, which leads to a decrease in the
amplitudes of waves of both positive and negative energy. Changing at
this point (more precisely, on the inverting insert with a¼ 0) the sign
of cos h (and with it the r sign), we will continue to grow jrðxÞj2,

r0ðxm � 0Þ ¼ 1�Pm

1þPm
! r0ðxm þ 0Þ ¼ �r0ðxm � 0Þ

! r0ðx2 � 0Þ ¼ P2
m � 1

P2
m þ 1

; (57)

and amplitudes of both waves. As the result, K2 � ðP2
m þ 1Þ=

ð2PmÞ > 1, and to the greater extent, the more strongly Pm differs
from 1 [to either way, since K2ðPmÞ � K2ðP�1m Þ].

If c2 6¼ 1, then K2 > 1 and without an inverting insert, and, in
addition, K2ðc2Þ ¼ K2ðc�12 Þ up to OðxÞ. In other words, amplification
of a wave of positive energy due to its transformation into a NEW is
promoted by both a decrease and an increase in speed of waves in the
supercritical section of the flow.

C. The high-frequency limit, x
 1

Let us turn now to waves with x
 1. This limiting case can be
still consistent with the shallow-water approximation because, in the
dimensional variables, the inequalities x=l1 ¼ OðkKÞ 
 1 and
kH � 1 are consistent when K
 H. As follows from the analysis
carried out in Sec. III, in the vicinity of the critical point x1, function
r(x) is defined by the series (31) of the coefficients of which have the
order of Oðx�1Þ. Therefore, it is natural to assume that solution to Eq.
(18) has the same order. Setting rðxÞ ¼ iPðxÞ=x where jPj ¼ Oð1Þ,
but jdP=dxj ¼ OðxÞ, we get the equation:

1
x

dP
dx
¼ �i aðxÞP þ i aðxÞ 1þ P2

x2

� �
:

Neglecting the term Oðx�2Þ in this equation, we arrive at the linear
non-homogeneous equation whose solution subject to the boundary
conditions (38) is

PðxÞ ¼ ix e�ixWðxÞ
ðx
x0

aðnÞ eixWðnÞ dn ; where WðxÞ ¼
ð

aðxÞ dx;

(58)

and x0¼ x1 when x < x2 and x0 ¼ xþ when x > x2.
In Eq. (58), when calculating the integral of a rapidly oscillating

function, we take into account that dW=dx ¼ aðxÞ has no zeros on

the real axis, and therefore, there are no stationary phase points, but
aðxÞ has poles at x ¼ x1;2. Hence, the main contribution to the inte-
gral comes from a neighborhood of the upper limit of integration (see,
e.g., Ref. 32) and then, we have

ðx
x0

aðnÞ eixWðnÞ dn � �i aðxÞ
xaðxÞ e

ixWðxÞ ¼ Oðx�1Þ: (59)

We see that indeed PðxÞ ¼ Oð1Þ in general. However, PðxÞ ¼ oð1Þ
when x! x260 because of the presence of aðxÞ in the denominator.
Thus, in the high-frequency limit K1 differs from unity by Oðx�2Þ,
whereas K2 and K3 differ from unity even less, only by oðx�2Þ.
Therefore, both the wave reflections in the subcritical regions of the
flow and wave amplification in the supercritical region diminish.

V. WAVE PROPAGATION IN THE WH–BH DUCT MODEL

Let us consider now a duct with a supercritical flow
[UðxÞ > cðxÞ] in the outer domains (left: �1 < x < x1 and right:
x2 < x < þ1) and subcritical in the inner domain (x1 < x < x2). In
this section, we make scaling in the same way as in Eq. (37), namely,
with the use of flow parameters on the BH horizon (x¼ x2), so that, in
dimensionless variables,

U2 ¼ c2 ¼ 1; l2 ¼ U 02 � c02 ¼ 1: (60)

In this case, the physical statement of the problem is not so evi-
dent as for the BH–WH duct considered in Sec. IV; we will present the
detail discussion of this delicate issue in Sec. VII. Here, we study a
restricted problem of wave propagation only in the rightmost domain
where x > x1. Let us start again with the BH horizon (at the point x
¼ x2 rather than at x ¼ x1) because at this point both the reflected
wave and NEW vanish. Assume that the co-current propagating wave
arriving from the domain where x < x1 has the amplitude Dðx2Þ ¼ 1.
Then, in the domain x1 < x <1 [cf. Eqs. (39) and (40)], we have

DðxÞ ¼ exp �
ðx
x2

aðx0Þ rðx0Þ dx0
2
64

3
75; (61)

KðxÞ ¼ exp �
ðx
x2

aðx0ÞRe ðrðx0ÞÞ dx0
2
64

3
75

� exp �
ðx
x2

aðx0Þjrðx0Þj cos hðx0Þ dx0
2
64

3
75; (62)

and the integral transmission ratios of sub- and supercritical domains
are [cf. Eq. (41)] as follows:

K2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jrðx1Þj2

q
	 1; K3 ¼ 1� jrðþ1Þj2

	 
�1=2 � 1;

Kðþ1Þ ¼ K2 � K3:
(63)

It should be borne in mind that the oscillating component of r(x)
develops with the distance from x2 rather than from x1.

Scaling as per Eq. (60) yields P2 � c2U2 ¼ 1, and therefore, the
scattering of low-frequency waves in the subcritical domain is
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approximately described by Eq. (45). Then, the transmission ratio in
this domain is

K2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� c21

1þ c21

 !2
vuut þ OðxÞ ¼ 2c1

1þ c21
þ OðxÞ: (64)

From this formula, it follows [bearing in mind a small contribution of
the last term OðxÞ] that K2 is only slightly less than unity if the wave
velocities in the ending points of the domain are the same,
c1 ¼ c2 ¼ 1, but K2 decreases when c1 deviates from c2 in the either
side. It should be also noted that K2ðc1Þ � K2ð1=c1Þ.

In the high-frequency limit, one can demonstrate by analogy
with Sec. IVC that K2 ! 1� 0 for any c1. As a consequence of this,
when c1 ¼ 1; K2ðxÞ goes to unity in the both limiting cases, when
x! 0 or x!1, and inside this frequency range, it has at least one
minimum. If c1 6¼ 1, then K2ðxÞ grows from K2ð0Þ < 1 up to 1, but
not necessarily monotonically (this will be confirmed below through
the numerical calculations shown in Fig. 15).

In the right outer domain x > x2, the transformation of a
positive-energy low-frequency wave into a NEW is described by the
same Eq. (45), and the transmission ratio is

K3 ¼ 1� Pðþ1Þ � 1
Pðþ1Þ þ 1

� �2
" #�1=2

þ OðxÞ

¼ Pðþ1Þ þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðþ1Þ

p þ OðxÞ: (65)

Asymptotically, K3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðþ1Þ

p
=2 increases with Pðþ1Þ

� cðþ1ÞUðþ1Þ. However, when the frequency increases, K3

approaches unity from the top.
In the conclusion of this section, we note that in Ref. 7 it was

demonstrated experimentally that analogue traversable and bidirec-
tional wormholes can exist in dispersive hydrodynamics when the sur-
face tension effect is taken into consideration. Then, the capillary
wavelength plays the role of a Planckian scale below which long gravity
waves are transformed into short capillary waves that are able to move
with the “superluminal” speeds. Whereas the results obtained are not
applicable to putative astrophysical wormholes per se, they are of inter-
est from the hydrodynamic point of view.

VI. RESULTS OF NUMERICAL CALCULATIONS
A. BH–WH duct

The analysis presented above shows that the most interesting sce-
narios of wave propagation occur in the middle, supercritical, flow
region where a positive energy wave is amplified due to the coupling
with the NEW; then, the transmission coefficient can be noticeably
greater than one. Numerical calculations were performed mainly for
this region. Recall that at the far end of the region where
x2 � x � exp ð�x�1Þ, the function r(x) rapidly oscillates; therefore,
the spatial resolution of the oscillating solution in the numerical calcu-
lations can be performed without extra complications only for rela-
tively high x. Below we consider separately two particular cases when
the wave speed is (i) the same at the ending points of the supercritical
interval and (ii) when it is different.

1. Currents with the equal velocities at the ending
points

Bearing in mind the conditions (37), we take for calculations a
simple flow model with c1 ¼ c2 ¼ 1 [see Fig. 2(a)]:

cðxÞ � 1; UðxÞ ¼ 1þ xð2d � xÞ=ð2dÞ; x1 ¼ 0; x2 ¼ 2d:

(66)

For such a flow, the Mach number attains its maximum,
M¼ 1þ d=2, at the midpoint of the supercritical interval, xm ¼ d,
and function a(x) changes its sign. As was discussed in Sec. IV, the
wave amplification can be increased with the use of a properly chosen
phase-shifting insert. In our calculations, such an insert begins in the
point xm and is simulated by changing of the phase h ¼ argðrÞ by the
required value Dh. As a result, function hðxÞ becomes discontinuous
in the point xm. Note that in the limit x! 0, the most effective insert
is inverting one, with Dh ¼ 6p; we have considered this above.
However, when the frequency increases, the phase h changes more
and more significantly in that region where aðxÞ 6¼ 0, and therefore,
the optimal phase shift that maximizes the transmission ratio K2

depends on the frequency. Specific values of DhðxÞ used in our calcu-
lations for the flow with M¼ 4 (d¼ 6) are given in Table I and
shown in Fig. 3.

Figure 4 shows the reflection coefficient jrðxÞj that describes the
transformation of the co-current propagating wave into the NEW, as
well as hðxÞ � argðrÞ for the frequencies x 	 1, both with the optimal
phase-shifting insert (OI) and without it (NI). The upper part of Fig. 4
shows that even when the frequency is not very small, the “zero”
approximation jr0ðxj as defined by the Eq. (44) (and with phase inver-
sion, if any) describes pretty well the behavior of function jrðxÞj,

TABLE I. Data for the optimal phase shift vs frequency used in the numerical
calculations.

x 0.2 0.3 0.5 1 3 5 8

Dh 2.688 2.443 1.990 0.977 �1.187 �2.234 �3.002

FIG. 3. The optimal phase shift as a function of frequency. Dots show the values
used in the numerical calculations and presented in Table I.
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except for the neighborhood of the point x ¼ x2 ¼ 2d in the NI ver-
sion when there is no insert. The difference between the curves is
caused by missing in r0ðxÞ, but accumulated in r(x) (due to x 6¼ 0) a
rapidly oscillating component, although its amplitude is significantly
less than in the OI version. For x ¼ 1, the downstream change in h
manifests faster, and therefore, jrðxÞj and jr0ðxÞj differ notably
throughout the supercritical region, in both versions of the flow, with
the insert (OI-version) and without the insert (NI-version). Note that
when x ! x2 ¼ 2d, the reflection coefficients [which are equal here to
the amplitudes of fast oscillations of the functions r(x)] corresponding
to the different flow versions, approach each other (cf. lines 1 and 2 in
Fig. 4) and slightly decrease compared with what was for x ¼ 0:3 in
the OI version. Moreover, we draw attention to the fluctuation of
jrðxÞj near the point x2, which became noticeable in the result of
expansion of the region of oscillations.

Figure 5 shows the reflection coefficient jrðxÞj and function hðxÞ
for x > 1 for the both flow models, OI (with insert) and NI (no
insert). Here, the region of oscillations is even wider, and oscillations
of jrðxÞj are seen in a notably greater range of x. When x ! x2, these
oscillations, as expected, decay, and jrðxÞj approaches a finite limit,
which is equal to the amplitude of oscillations of the function r(x).
Comparison of graphs for x ¼ 1; 3; 8 confirms the conclusion made
at the end of Sec. IV that jrðxÞj decreases as x�1, and even faster in
the vicinity of x2.

In the course of propagation from x1 to x2, waves of positive and
negative energies interact such that the total energy flux (21) con-
serves. As the result, their amplitudes synchronously increase or
decrease in accordance with the change in their phase difference.
Quantitative measure of wave interaction is the gain of the positive
energy wave:

FIG. 4. The reflection coefficient (left pan-
els) and function hðxÞ (right panels) as
functions of x for three values of frequency
x 	 1 in the flow model (66) with
M¼ 4: line 1—NI; line 2—OI. Dashed
lines correspond to the reference case
with x ¼ 0 and Dh ¼ p: line 3—NI; line
4—OI. Function hðxÞ has a jump at the
point xm within the OI model due to the
phase shifting insert.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 077121 (2021); doi: 10.1063/5.0056877 33, 077121-11

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


QðxÞ ¼ 1

1� jrðxÞj2
; (67)

this quantity is shown in Fig. 6. According to Eq. (22), the growth is
replaced by the decrease when the sign of either a(x) or cos h changes.

At low frequencies (x < 1) in the OI model of the flow, the
change of the function a(x) sign is compensated to a large extent by
the phase jump, and therefore, Q(x) grows monotonically and begins
slightly oscillate only near the point x2 (see curves 3). As the frequency
increases, hðxÞ varies more and more rapidly, and Q(x) acquires more
and more distinct oscillatory character, whereas its value becomes
closer and closer to unity. Figure 7 shows the dependences of the
transmission ratio K2 of the supercritical domain as the functions of
frequency x for the NI (line 1) and OI (line 2) models. As one can see
from the comparison of lines 1 and 2, both models, with the optimal

phase-shifting insert (OI) and without it (NI), provide approxi-
mately the same transmission ratio for x > 1, whereas they differ
in the low-frequency domain. Whereas the OI model provides
monotonic increase in K2 when x! 0, in the NI model, K2 has a
maximum at x ¼ 1 and then goes to zero when x! 0. Even in the
NI model without any insert, the transmission ratio is notably
greater than one, what can provide the laser effect of wave amplifi-
cation in the active zone. The amplitude gain in the supercritical
domain may be drastically reduced by wave reflection in the left
and right subcritical domains. To gain a better insight into the
effect of domain competition, we have calculated the wave trans-
mission through all three domains in the bell-shaped velocity pro-
file [see Fig. 2(a)] with following dependences:

cðxÞ � 1; and UðxÞ ¼ U0 þ ðM � U0Þsechx: (68)

FIG. 5. The reflection coefficient (left pan-
els) and function hðxÞ (right panels) as
functions of x for two values of the fre-
quency x > 1 in the flow model (66) with
M¼ 4: line 1—NI; line 2—OI. Function
hðxÞ has a jump at the point xm within the
OI model due to the phase shifting insert.
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Calculations were performed for the fixed Mach numberM¼ 4 and
with various velocities at the infinity U0 2 ð0; 1Þ. The results obtained
are presented in Fig. 8. As one can see, the supercritical flow with any
U0 acts as a broadband amplifier (see the top right panel in Fig. 8).
This can be explained as follows: the wave reflection plays a noticeable
role only at low frequencies, whereas the transmission ratio K2 respon-
sible for the wave amplification decreases with x rather slowly. It
should be noted in passing that due to the flow symmetry, the trans-
mission ratios in the subcritical domains of the flow are equal, K1

¼ K3, so that the total transmission ratio is K ¼ K2
1K2. Finally, when

comparing K2ðxÞ shown in Fig. 8 with that presented in Fig. 7 by
curve 1, it should be born in mind that in calculations presented in

Fig. 8 the scaling (37) was not fulfilled. Due to this, the dimensionless
frequencies of the maximal amplification are different.

2. Currents with the different velocities at the ending
points

In this section, we consider currents in which wave velocity c(x)
monotonically increases or decreases downstream from c1 ¼ 1 to c2.
For calculations, we take a modification of the flow model (66) without
a phase-shifting insert [see Fig. 2(b)],

cðxÞ ¼ 1þ c2 � 1
2d

x; UðxÞ ¼ cðxÞ þ xð2d � xÞ
2d

;

x1 ¼ 0; x2 ¼ 2d:
(69)

In such a flow, the maximum Mach number is attained at
x ¼ 2d= 1þ ffiffiffiffi

c2
p� 


:

M¼ 1þ 2d

ð1þ ffiffiffiffi
c2
p Þ2

; (70)

so that for the given Mach number, we have

d ¼M� 1
2
ð1þ ffiffiffiffi

c2
p Þ2: (71)

Let us assume that in the entire region, function
PðxÞ ¼ cðxÞUðxÞ varies monotonically, and a(x) does not change its
sign. This limits the range of the flow parameters, so that

d 	 jc2 � 1j; 1 <M	
3� 4

1þ ffiffiffiffi
c2
p ; if c2 > 1;

4
1þ ffiffiffiffi

c2
p � 1 ; if c2 < 1:

8>>><
>>>:

(72)

The parameters c2 andM used for calculations are shown in Table II.
For a given c2, the Mach numberM was chosen close to the maxi-
mum value, and then, the parameter d was calculated using Eq. (71).

FIG. 6. The gain coefficient as the func-
tion of x for the several particular frequen-
cies: 1—x ¼ 0:2, 2—x ¼ 0:5, 3—x
¼ 1, 4—x ¼ 3, 5—x ¼ 5, 6—x ¼ 8.
Solid lines pertain to the NI model, dashed
lines—to the OI model.

FIG. 7. The transmission ratio K2 as functions of frequency x for the NI (line 1)
and OI (line 2) models.
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For the flows with the increasing velocity c(x), Fig. 9 shows the
dependence jrðxÞj for different c2 and x. It is clearly seen that the trans-
formation into the NEW increases with increasing of c2, but falls abruptly
when the frequency grows. This is also exhibited by the graphs of the
gain coefficientQ for the same set of parameters, see Fig. 10.

Similar dependences for the flows with the decreasing function
c(x) are shown in Figs. 11 and 12. They demonstrate the strengthening
of the wave transformation with the decrease in the ending value c2
and its sharp weakening with the increase in x. The oscillatory nature
of the transformation near x2 is seen even more clearly than for
c2 > 1.

Figure 13 shows the transmission ratio K2 of the inner domain as
function of frequency x for the different values of c2 > 1 (left panel)
and c2 < 1 (right panel). As one can see from the figure, the transmis-
sion ratio in the both panel monotonically decreases from some maxi-
mal value K2ðx ¼ 0Þ, which depends on c2, to unity.

B. WH–BH duct

For this type of ducts, the inner domain, x1 < x < x2, is subcriti-
cal; the corresponding transmission ratio is less than one, K2ðxÞ 	 1.
The frequency dependence of K2ðxÞ is determined by the particular
profiles c(x) and U(x). For the numerical calculations, we chose a
family of flows with the linear c(x) and quadratic U(x) profiles [cf.
Eqs. (66) and (69)],

cðxÞ ¼ 1þ ðc1 � 1Þð2d � xÞ
2d

; UðxÞ ¼ cðxÞ � xð2d � xÞ
2d

: (73)

Here, c1 ¼ cð0Þ, and d is chosen such that U(x)> 0 in the entire inter-
val x1 ¼ 0 	 x 	 x2 ¼ 2d.

FIG. 8. Top panels: left—velocity profiles
(68) for U0 ¼ 0:1 and U0 ¼ 0:8, and
right—the total transmission ratio K
¼ K1K2K3 as function of frequency x.
Bottom panels: left—transmission ratios of
the left (K1) domain and right—for the mid-
dle (K2) domain as functions of frequency
x; 1—U0 ¼ 0:1, 2—U0 ¼ 0:4, 3—
U0 ¼ 0:8.

TABLE II. The Mach numbers used in the numerical calculations with the different
values of c2.

c2 2 3 5 9 2/3 0.5 1/3 1/6 0.1

M 1.3 1.5 1.6 2 1.2 1.3 1.5 1.8 2
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If c1 ¼ c2 ¼ 1, then cðxÞ � 1, and PðxÞ ¼ cðxÞUðxÞ � UðxÞ.
In this case, the transmission ratio K2ðxÞ ! 1 when the frequency
goes either to zero or to infinity, and its minimum decreases with the
decreasing of Umin ¼ ð1� d=2Þ (see Fig. 14). If, however, c1 6¼ 1,
then K2ð0Þ < 1 [see Eq. (64)] and K2ðxÞ increases to 1 (not necessar-
ily monotonically) when frequency grows (see right panel in Fig. 15).

The positive energy wave is amplified after passing into the super-
critical domain x > x2 due to the interaction with the NEW,23 and
therefore, the transmission ratio K3 � 1. For the calculations, we choose
c(x) andU(x) in such that the scaling (60) is satisfied and the finite limits
exist when x !þ1. In particular, if cðxÞ � 1, then we take

UðxÞ ¼ 1þ D tanhðx=DÞ; x2 ¼ 0: (74)

The results of calculations for D¼ 1 (Umax¼ 2) and D¼ 3 (Umax¼ 4)
are shown in Fig. 16.

In the more interesting case when c(x) and U(x) grow simulta-
neously with x [and UðxÞ � cðxÞ everywhere], the calculations were
carried out for current and wave speed in the following forms,
respectively:

UðxÞ ¼ 1þ AU tanh
x
DU

� �
; cðxÞ ¼ 1þ Actanh

x
Dc

� �
; (75)

with the various combinations of parameters satisfying the condition:

AU

DU
� Ac

Dc
¼ 1;

which follows from the scaling (60). Figure 17 presents the results of
calculations for the three cases:

FIG. 9. Dependence of jrðxÞj in the flows
with increasing wave velocity c(x) for dif-
ferent values of c2 and frequencies shown
by the numbers next to the curves. Dotted
line pertains to x ¼ 0.
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Case 1 : AU ¼
5
3
; DU ¼

4
3
; Ac ¼ 0:5; Dc ¼ 2;

Case 2 : AU ¼ 2; DU ¼ 1:6; Ac ¼
1
3
; Dc ¼

4
3
;

Case 3 : AU ¼ 1; DU ¼ 0:8; Ac ¼ 1; Dc ¼ 4:

(76)

As one can see from Fig. 17, the dependence K3ðxÞ in the case 3
notably deviates from the dependences K3ðxÞ in the cases 1 and 2.
There are two distinction peculiarities in the case 3. First, the charac-
teristic width of variation of the wave speed, Dc, significantly exceeds
(five times) that of current variation DU. Second, Uðþ1Þ ¼ cðþ1Þ;
that is, there is a third critical point at the infinity. The former distinc-
tion feature seems, however, not very important since even if
cðxÞ � 1, K3 depends on x in the nearly the same way as in the cases
1 and 2 (cf. line 2 and dashed line in the right panel of Fig. 16). On the

contrary, the presence of an additional (albeit infinitely remote) critical
point has a profound impact on the behavior of function r(x), which
determines the progress of the wave transformation.

Figure 18 demonstrates the absolute value and argument of r(x)
for the cases 2 and 3; it allows us to compare the wave propagation in
these two cases with the greater detail. It is clearly seen that in the case
3, the oscillations of r(x) begin to develop noticeably at a much smaller
distance from the critical point x2 ¼ 0, and this results in lesser values
and more pronounced oscillatory character of jrðxÞj. Moreover, when
x increases, the oscillation period in the case 3 decreases, whereas in
the case 2 it approaches a constant value.

VII. DISCUSSION AND CONCLUSION

We have carried out the analysis of a simple harmonic wave
propagation in two types of ducts, BH–WH and WH–BH, and have

FIG. 10. The gain coefficient in the flows
with increasing wave velocity c(x) for the
different frequencies and ending values of
c2 shown by numbers next to the curves).
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illustrated the theoretical results by numerical calculations. Note that
in contrast to Ref. 9 where the transformation of dispersive gravity–ca-
pillary waves were studied, in our paper devoted to dispersionless
purely gravity long waves, each of the ducts is traversable only in the
co-current direction, from left to right in the considered geometry.
However, the problem statements for the aforementioned types of
ducts are different and should be specified.

At the ends of a BH–WH duct far from the middle supercritical
domain, the flow is subcritical (see Fig. 1), and the problem state-
ment is rather traditional. A wave running from the left in the course
of propagation to the critical point x1 is partially reflected due to scat-
tering on the flow inhomogeneity. A reflected wave runs to the left
and therefore does not have any influence on the wavefield down-
stream of the flow. Upon attaining the point x1, the positive energy
incident wave passes through this critical point keeping its

amplitude. In the supercritical domain at x > x1, the wave propa-
gates to the second critical point x2 being amplified along the path
due to the interaction with the NEW, which is generated due to scat-
tering of the positive energy wave on the flow inhomogeneity. In the
result of such coupling, amplitudes of both waves of positive and
negative energies grow simultaneously.23 The NEW completely
absorbs in the vicinity of the critical point x2, whereas the wave of a
positive energy passes through this point keeping its amplitude and
penetrating into the right subcritical domain. In this domain, the
penetrated wave propagates toward the infinity losing its energy for
the generation of reflected wave of positive energy due to flow inho-
mogeneity. Calculation of both the transmission ratio K2 for the
“active” duct domain with the supercritical flow and the transmission
coefficient (ratio of the amplitudes of the transmitted and incident
waves) does not cause any principal problem in this case. Note that

FIG. 11. Dependence of jrðxÞj in the
flows with the decreasing wave velocity
c(x) for the different values of c2 and fre-
quencies: 1—x ¼ 0:2, 2—x ¼ 0:5, 3—
x ¼ 1, 4—x ¼ 2, 5—x ¼ 5.
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the supercritical domain plays a role of an active zone of the open-
boundary laser.

At the ends of a WH–BH duct far from the middle subcritical
domain, the flow in contrast to the previous case is supercritical.
Therefore, waves, both with positive and negative energies, entering
the duct from the left end, propagate to the critical point x1 interacting
with each other in such a way that the total energy flux E determined
by Eq. (21) is conserved, whereas the amplitudes of both waves
increase. In any case, only the finite domain to the left of the point x1
is accessible for an observer, and in any point of it, one can see a super-
position of both waves having no possibility to separate which of these
two waves arrives from the left infinity. In such a situation, the only
doubtless statement is, if only a positive energy wave is incoming from
the left, then E > 0, whereas the converse is not true, in general.

However, as has been shown in the paper, in the neighborhood of the
critical point x1, any NEW is completely absorbed. Therefore, it seems
that the only reasonable statement of the problem in this case is to set
the amplitude of the co-current propagating wave at either end of the
subcritical domain and ignore the prehistory of wave propagation in
the supercritical domain at x < x1. Technically, it is more convenient
to set the amplitude of the co-current propagating wave of positive
energy at x ¼ x2, because both the reflected wave and NEW vanish at
this point. When this is done, the picture of the wave propagation
becomes quite clear. Integrating Eq. (18) back from x2 to x1 and using
Eq. (21), one can find the amplitudes of co-current propagating and
reflected (countercurrent propagating) waves at x ¼ x1 þ 0 and deter-
mine what part of the wave energy penetrated from the left domain
x < x1 is lost in the middle domain between x1 and x2 due to the

FIG. 12. The gain coefficient in the flows
with decreasing wave velocity c(x) for the
different frequencies and ending values of
c2 shown by numbers next to the curves
in the upper left panel.
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FIG. 13. The dependences of the trans-
mission ratio K2 of the inner domain as
functions of frequency x for the different
values of c2 > 1 (left panel) and c2 < 1
(right panel). Numbers next to curves
show the values of c2.

FIG. 14. Graphics of the flow as per Eq.
(73) with c1 � 1. Left panel: the flow
velocity UðxÞ � PðxÞ as the function of
x. Right panel: the frequency dependence
of the transmission ratio K2ðxÞ. Line 1 is
plotted for d¼ 1 with Umin ¼ 0.5; lines 2
is plotted for d¼ 1.5 with Umin ¼ 0.25.

FIG. 15. Graphics of the flow as per Eq.
(73) with c1 6¼ 1. Left panel: the flow
velocity U(x) (solid lines) and PðxÞ
(dashed lines) as functions of x. Right
panel: the frequency dependence of the
transmission ratio K2ðxÞ. Line 1 is plotted
for c1 ¼ 0:5, d¼ 1; lines 2 is plotted for
c1 ¼ 2, d¼ 1; line 3 is plotted for c1 ¼ 2,
d¼ 1.5.
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reflection on the flow inhomogeneity. Further, when the positive
energy wave enters the supercritical right domain x > x2, we can cal-
culate its amplification due to the transformation into a NEW. This is
precisely the statement of the problem that is adopted in the paper.

The performed analysis has highlighted a very significant influ-
ence of the “geometric factor” PðxÞ on the wave propagation. First, its
constancy provides reflectionless wave propagation regardless of the
frequency. Second, in the BH–WH ducts, the reflection coefficient in
the subcritical flow regions depends mainly on the behavior of func-
tion PðxÞ rather than on the Mach number at the infinity,
M61 ¼ U=c. In addition to that, amplification of positive energy
waves in the supercritical region is also determined mainly by the dif-
ference in the values of PðxÞ at the ending points of the “active”
(supercritical) region. With regard to this, we recall that at low fre-
quencies, the gain does not depend which of the speeds is greater, c1 or
c2 but is determined entirely by their ratio.

In a WH–BH duct, the PðxÞ behavior has a profound impact on
the wave propagation as well. However, the frequency dependence of
the transmission ratio K3 of its final (supercritical) part is highly sensi-
tive to that does the Mach number tend to unity at the infinity or not
(see Fig. 17).

In this paper, we have considered quite general models of station-
ary flows variable in space. Such flows can be realized in laboratory
water tanks with the varying tank width and depth. In the linear
approximation, we have derived a second-order ODE describing the
wave amplitude in the non-uniform flow with two critical points that
mimic the BH and WH horizons in the general relativity. The derived
ODE can be reduced to the set of two first-order ODEs containing
critical points. Solutions to this set of equations have been investigated
analytically in the vicinity of each critical point. This allowed us to
determine the conditions of the optimal wave amplification for low-
and high-frequency waves. The analytical results have been illustrated

FIG. 17. Left panel: U(x) (solid lines),
PðxÞ (dashes), and c(x) (dash-dotted
lines) graphs. Right panel: frequency
dependence of the transmission ratio K3.
The numbers next to curves indicate the
number of a case in Eq. (76).

FIG. 16. The flow (74), cðxÞ � 1. Left
panel: flow velocity U � P vs x. Right
panel: frequency dependence of the trans-
mission ratio K3. 1—D¼ 1 (Umax ¼ 2),
2—D¼ 3 (Umax ¼ 4). For comparison,
the dashed line presents the curve 2 plot-
ted in the right panel of Fig. 17.
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by the direct numerical solutions of the derived set of equation.
Ultimately, this should shed light on the intriguing problem of wave
propagation through the wormholes if they exist in nature, indeed.
However, at least, the results obtained can be of interest to the inter-
pretation of wave amplification in the natural estuaries (rivers and
canals) or laboratory tanks. The validation of the theoretical results in
the laboratory sets up is a challenge for the experimenters.
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APPENDIX: INFLUENCE OF THE VISCOSITY IN THE
VICINITY OF CRITICAL POINTS

To investigate the details of a solution in the vicinity of a criti-
cal point where cðxÞ ¼ UðxÞ, let us take into account a small viscos-
ity in the medium. Supplementing Eq. (2) with a viscous term and
introducing the velocity potential u ¼ @u=@x, we derive:

@u
@t
þ @ðUuÞ

@x
¼ �g @g

@x
þ � @

2u
@x2

) @u
@t
þ U

@u
@x
� � @

2u
@x2
¼ �gg;

FIG. 18. The absolute value and argu-
ment of the function r(x) for the case 2
(top) and case 3 (bottom). Different num-
bered curves pertain to different frequen-
cies: 1—x ¼ 0, 2—x ¼ 0:5, 3—x ¼ 1,
4—x ¼ 2, 5—x ¼ 5.
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where � � 1 is the kinematic viscosity. Substitution of this into Eq.
(4) yields:

�
@

@t
þ U

@

@x
� 2U

c0

c

� �
@2u
@x2
þ ðc2 � U2Þ @

2u
@x2
� 2U

@2u
@t@x

þ 2U2 c0

c
� ðc2 þ U2Þ U

0

U

� �
@u
@x
� @

2u
@t2
þ 2U

c0

c
@u
@t
¼ 0:

For a single harmonic, uðx; tÞ ¼ /ðxÞe�ixt , we have

�U
d3/
dx3
þ c2 � U2 � 2�U

c0

c
� ix �

� �
d2/
dx2

þ 2U2 c0

c
� ðc2 þ U2Þ U

0

U
þ 2 ixU

� �
d/
dx

þ x2 � 2 ixU
c0

c

� �
/ ¼ 0: (A1)

In the neighborhood of the BH horizon (say, x ¼ x1), we put
x � x1 ¼ en, where e2 ¼ �=ð2l1Þ, l1 ¼ U 01 � c01 > 0, and expand
c(x) and U(x) in the Taylor series. Then, Eq. (A1) yields in the lead-
ing order:

d3/

dn3
� n

d2/

dn2
� ð1� ib1Þ

d/
dn
¼ 0; b1 ¼

x
l1
> 0: (A2)

After integration of this equation over n, we obtain:

d2/1

dn2
� n

d/1

dn
þ i b1 /1 ¼ 0; /1 ¼ /� /01; /01 ¼ const: (A3)

Then, by means of the ansatz /1ðnÞ ¼ en
2=4GðnÞ, we obtain the

equation of the parabolic cylinder for the function GðnÞ:

d2G

dn2
þ i b1 þ

1
2
� n2

4

� �
G ¼ 0: (A4)

Solution to this equation can be presented in terms of the functions
Dib1
ð6nÞ and D�ib1�1ð6i nÞ33 so that, we obtain:

/ ¼ /01 þ en
2=4 C1Dib1

ðnÞ þ C2Dib1
ð�nÞ

	 

: (A5)

This solution should be matched with the asymptotic expan-
sions (34) of the outer solution calculated for x ¼ x1. To this end,
we use the asymptotics of the function DpðsÞ for jsj 
 1 [see, Ref.
33, Eq. (9.246)]:

DpðsÞ � spe�s
2=4

2F0 �
p
2
;
1� p
2

;� 2
s2

� �
; jargðsÞj < 3p

4
; (A6)
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2=4

2F0 �
p
2
;
1� p
2

;� 2
s2

� �

�
ffiffiffiffiffi
2p
p

eipp

Cð�pÞ s�p�1es
2=4

2F0
p
2
;
1þ p
2

;
2
s2

� �
; (A7)

DpðsÞ � spe�s
2=4

2F0 �
p
2
;
1� p
2

;� 2
s2

� �

�
ffiffiffiffiffi
2p
p

e�ipp

Cð�pÞ s�p�1es
2=4

2F0
p
2
;
1þ p
2

;
2
s2

� �
; (A8)

where Eq. (A7) is valid for p=4 < argðsÞ < 5p=4, Eq. (A8) is valid
for �5p=4 < argðsÞ < �p=4; CðxÞ is the gamma-function, and

2F0ða; b; zÞ �
X1
n¼0

Cðaþ nÞCðbþ nÞzn
CðaÞCðbÞ n!

:

It can be easily seen that both terms in square brackets in Eq.
(A5) grow infinitely (the former grows when n! �1, and the
later when n! þ1), and therefore, the matching with the
bounded outer solutions [see Eq. (34)] requires:

C1 ¼ C2 ¼ 0 ) BðþÞ0 ¼ Bð�Þ0 ¼ 0; AðþÞ0 ¼ Að�Þ0 ¼ /01e
�iwðx1Þ;

(A9)

because in the matching point c1 ¼ 1 [cf. Eq. (35)].
In the neighborhood of the WH horizon (say, x ¼ x2), we put

x � x2 ¼ en, where e2 ¼ ��=ð2l2Þ because l2 ¼ U 02 � c02 < 0.
Then, we obtain the equation similar to Eq. (A3):

d2/2

dn2
þ n

d/2

dn
� ib2 /2 ¼ 0; /2 ¼ /� /02; /02 ¼ const;

where b2 ¼ x=l2. The ansatz /2ðnÞ ¼ e�n2=4GðnÞ leads to the
equation [cf. Eq. (A4)]:

d2G

dn2
� ib2 þ

1
2
þ n2

4

� �
G ¼ 0:

Then, function / can be written as

/ ¼ /02 þ e�n2=4 C1D�ib2�1ðnÞ þ C2D�ib2�1ð�nÞ
	 


:

This solution remains bounded for any finite constants C1 and C2.
Indeed, assuming that �p 	 argðnÞ 	 0 (and, consequently,
�n ¼ neip), using then Eqs. (A6)–(A8), and keeping only the lead-
ing terms in each sum, we obtain:

/ � /02 þ

ðC1 � C2epb2Þn�ib2�1e�n2=2 þ
ffiffiffiffiffi
2p
p

C2

Cð1þ i b2Þ
nib2 ;

n! þ1;

ðC2 � C1e�pb2Þjnj�ib2�1e�n2=2 þ
ffiffiffiffiffi
2p
p

C1

Cð1þ i b2Þ
jnjib2 ;

n! �1:

8>>>>>>>><
>>>>>>>>:

Match of this solution with the outer solution (34) yields:

AðþÞ0 ¼ Að�Þ0 ¼ /02

c2
e�iwðx2Þ;

and the relations between C1 and Bð�Þ0 on the one hand and C2 and
BðþÞ0 on the other demonstrating the fact that Bð6Þ0 are mutually
independent.
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