

Surface Irrigation for Energy and Water Use Efficiency

Kanya Khatri and Rod Smith National Centre for Engineering in Agriculture

A Research Centre of the University of Southern Queensland

Premise

Surface irrigation (bay and furrow) with automation and real-time optimization:

- can give application efficiencies equivalent to pressurised systems;
- uses much less energy per unit of water than pressurised systems; and
- should be the preferred system for the majority of our broad acre crops, fodder and pasture.

A Research Centre of the University of Southern Queensland

UNIVERSITY OF SOUTHERN QUEENSLAND

Where have we come from ?

Previous performance of surface irrigation

A Research Centre of the University of Southern Queensland

SOUTHERN QUEENSLAND

Sugar (Qld) 1994/95

- Burdekin region 52 irrigations
- Application efficiencies 14 to 90%
- Average efficiencies
 - Cracking clay 62%
 - Alluvial & Non-sodic duplex 35%

Cotton (late 1990's) Average application efficiencies for furrow irrigation less than 50% (range 17 to 98%)- over 300 evaluations

Ord (sugar) early 2000's

- 30 irrigations, cracking clay soil
- average application
 efficiency 61% (range 36 to 81%)

Bay irrigated pasture (Vic) 2009

- 7 soil types, 9 irrigations
- average application efficiency 69% (46 to 86%)

UNIVERSITY OF SOUTHERN QUEENSLAND

fulfilling lives

Where do simple improvements take us ?

A Research Centre of the University of Southern Queensland

UNIVERSITY OF SOUTHERN QUEENSLAND

Performance improvement – Surface irrigated cotton

Farmer management – average efficiency 48% Flow rate 6 l/s cut off at 90% of advance time – average efficiency 74%

A Research Centre of the University of Southern Queensland

fulfilling lives

INIVERSITY OF

SOUTHERN QUEENSLAND

Furrow evaluations 2007 (Cotton) (Montgomery & Wigginton)

47 irrigations on 9 farms

Application efficiencies for drip irrigation of dried vine fruit (Schrache, 2011)

What can we achieve with advanced technology ?

A Research Centre of the University of Southern Queensland

UNIVERSITY OF SOUTHERN QUEENSLAND

Application efficiencies in excess of 85% are possible NOW using high flow rates and real-time optimisation

e.g. High flow-rate bay irrigation trials (Vic) 2010 5 soil types, 5 irrigations **Application efficiency 90% (82 to 95%)**

A Research Centre of the University of Southern Queensland

Automation hardware and software for bay irrigation is available, e.g., 'FarmConnect' system from Rubicon Water

NCEA has adaptive real-time optimisation based around the simulation model SISCO

UNIVERSITY OF SOUTHERN QUEENSLAND

A Research Centre of the University of Southern Queensland

Energy useage ?

A Research Centre of the University of Southern Queensland

UNIVERSITY OF SOUTHERN QUEENSLAND

Jackson et al. (2010)

- Measured the energy consumption for irrigated cropping in two regions (surface water source and groundwater source)
- Estimated the energy cost of converting surface irrigation to pressurised (centre pivot or drip) based on arbitrary improvements in application efficiency

However they did not include improved surface irrigation in the analysis

Energy consumption included:

energy consumed during irrigation - which is entirely for pumping and is a direct function of the quantity pumped and the head (lift + pressure) added to the flow.

plus

the energy used for other farm operations to give total energy use.

Energy consumption for irrigation of a hypothetical grain crop from a surface water source

System	Water applied (ML/ha)	Water savings (ML/ha)	Energy use (MJ/ha)
Current surface irrigation (E _a 55%)	7.3		9700
Real-time optimised surface irrigation (E _a 85%)	4.7	2.6	9700
Centre-pivot irrigation (E _a 90%)	4.4	2.9	17000
Drip irrigation (E _a 95%)	4.2	3.1	16000

A Research Centre of the University of Southern Queensland

SOUTHERN QUEENSLAND

Take home message

Surface irrigation (bay and furrow) with automation and real-time optimization:

- can give application efficiencies equivalent to pressurised systems;
- uses much less energy per unit of water than pressurised systems; and
- should be the preferred system for the majority of our broad acre crops, fodder and pasture.

A Research Centre of the University of Southern Queensland

OUTHERN OUEENS

A Research Centre of the University of Southern Queensland

UNIVERSITY OF SOUTHERN QUEENSLAND