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Abstract 
Burgers equation is one of the simplest nonlinear partial differential equations—it 
combines the basic processes of diffusion and nonlinear steepening. In some 
applications it is appropriate for the diffusion coefficient to be a time-dependent 
function. Using a Wayne's transformation and centre manifold theory, we derive l-
mode and 2-mode centre manifold models of the generalised Burgers equations for 
bounded smooth time dependent coefficients. These modellings give some interesting 
extensions to existing results such as the similarity solutions using the similarity 
method. 
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1. INTRODUCTION 
Burgers equation 

xxxt cuuuu =+  ( )constant is c    (1) 

was originally introduced by J.M. Burgers (1939) as a model for turbulence [1]. It 
describes a variety of nonlinear wave phenomena arising in the theory of wave 
propagation, acoustics, plasma physics and other areas [30, 11]. It shares a number of 
properties with the Navier-Stokes equations: the same type of nonlinearity, of 
invariance groups and of energy dissipation relation, the existence of a 
multidimensional version, etc [12]. It is also one of the simplest nonlinear partial 
differential equations embodying together effects of convection and diffusion. For 
example, in an approximation to sound waves, the independent variable x  is a 
coordinate moving with the wave at the speed of sound, and the dependent variable u  
represents velocity fluctuations [6].  

M.J. Lighthil1 [15, p323] stated that the coefficient of the diffusion term xxu  in 

equation (1) is not normally a constant in applications, even approximately; the 
coefficient may actually be a function of the time. There is significant interest in 
generalizing (1) to  

( ) xxxt utuuu ∆=+
2

1
     (2) 
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for different functions ( )t∆  [28, 27, 6, 26] , particularly in determining similarity 
solutions of (2). Such solutions are sought for compact initial conditions for u, but 
until our work here there has been a lack of assurance of the attractivity of the 
similarity solutions.  

There is also a lot of work devoted to the decay of random solutions of (2) in the 
limit of vanishing ( )t∆  as time tends to infinity [14, 10, 11, 18, 7, 8, 13, 12]. These 
works typically estimate the main quantities such as the energy spectrum, correlation 
function and so on for long times and the expressions are not dependent upon ( )t∆ . 
However, from the low-dimensional models in Section 3 most quantities should 
depend upon ( )t∆  even if it vanishes for long times.  

In this paper, we consider the diffusion coefficient  

( ) ( )rtt δ+γ=∆ 2 , 
where r  is non-positive real number, γ  is a non-negative real number and δ  is a 

positive real number. Such a ( )t∆  may be viewed as an approximation of a smoothly 
decaying diffusion.  

We apply centre manifold theory to the derivation of the long-term solutions of 
(2). From the relevance theorem in [2], theory guarantees that any solution of (2) 
could be approximated to any order of error by the solution of the low-dimensional 
model on the centre manifold. Such centre manifolds are exponentially attractive so 
that we know a wide range of initial conditions approach the similarity solution.  

The long-term solutions of the dynamics are derived through centre manifold 
theory after a variable transformation of the generalized Burgers equation. The main 
trick is the transformation tlog=τ  which changes algebraic transients in t  into 
exponential transients in τ  and so allows centre manifold theory to be applied. A 
corresponding transformation of space is also needed. The low-dimensional models 
derived in Section 3 show the "amplitudes" A  defined in Section 2 are near constant 
for long time. Therefore the dynamics of the generalized Burgers equation are 
determined by the centre manifolds in Section 3 for the diffusion coefficient 

( ) ( )rtt δ+γ=∆ 2 . In the case of 0=γ  and 0<r , the predictions depend upon how 
fast the diffusion coefficient vanish. However, the predictions in other papers (for 
example, [12]) show results for the general case of diffusion coefficient ( ) ε=∆ t  
where 0→ε  as 0→t .  

2. CENTER MANIFOLD APPROXIMATION 
In this section, we first introduce a transformation of the generalized Burgers equation 
(2). We then discuss the properties of its solutions using center manifold theory. 

Define new variable through Wayne’s transformation [29] tlog=τ , β−=ξ xt , and 

( )τξ= α− ,vCtu  for some 0>C , 0>α , and 0>β . Algebraic transients in t  become 
exponential transients in tlog=τ  allowing center manifold theory to be applied; 

β−=ξ xt  stretches space so that a spreading Gaussian will become a fixed point of the 
dynamics. The investigation of the dynamics is based on this Gaussian. M.J. Lighthill 
[15, p335] showed that the form of solutions of Burgers equation with constant 
diffusion coefficient are roughly Gaussian. The generalized Burgers equation (2)  
under the above transformation becomes 
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We consider the diffusion coefficient in the form 

( ) ( )rtt δ+γ=∆ 2     (4) 
where r  is a non-positive real number, γ  is a non-negative real number and δ  is a 
positive real number. This may be viewed as an approximation to wider class of 
functions ( )t∆ . We lay the basis for two different models for the large-time dynamics 
depending upon whether 0=γ  or not, that is, depending upon whether or not the 
diffusion coefficient 0→∆  for large time. 

A. If 0≠γ , take 01 =+β−α−  and 012 =+β− , i.e., 21/=β=α , then (3) 
becomes 

2
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Introducing rt
γ

δ=θ
2

, we obtain the equivalent system: 
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τ∂
θ∂

r .  (6) 

Rescaling ξ
γ

=ς
2

1
, 2/τ=τ′  and choosing 

2

γ=C  the system (6) becomes 

2

2

21 ς∂
∂θ+

ς∂
∂−=

τ′∂
∂ ℑ vv

vv
v

,    θ=
τ′∂
θ∂

r2 ,   (7) 

where the operator 

σ+
ς∂

∂ς+
ς∂

∂=ℑσ 2

2

, 

with 1=σ  for this case. 

B. If 0=γ , take 012 =+β−r , i.e., ( ) 21 /r+=β  and let pt
δ
β=θ , where 

2211 // rp −α−=+β−α−= , and α  will be decided later, then (3) becomes 

ξ∂
∂θ−





α+

ξ∂
∂βξ+

ξ∂
∂δ=

τ∂
∂ v

vCv
v

2

2

,  θ=
τ∂
θ∂

p .  (8) 

Rescaling ξ
δ
β=ς , βτ=τ′  and choosing δβ=C  the system (8) becomes 

ς∂
∂θ−ℑ=

τ′∂
∂

σ
v

vv
v

,   θ
β

=
τ′∂
θ∂ r

,   (9) 

where ( )r+α=βα=σ 12 // . 
 

Both systems (7) and (9) have the same from for the linear parts. So we discuss 
systems in the general form 

( )θ+ℑ=
τ′∂

∂
σ ,wfw

w
,  θ=

τ′∂
θ∂

c ,  (10) 

where ( )θ,wf  are some nonlinear terms, and c  is a constant. 
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The application of center manifold theory hinges upon the spectrum of the 
linearised dynamics. Seek the solution of the linear pat of the first equation in system 

(10) in the form ( ) ( )ςφς−τ′λ= 22 /expw . Substituting into the linear part of (10), we 

obtain a Hermite differential equation for ( )ςφ  

0
2

2

=φ+
ς
φς−

ς
φ

l
d

d

d

d
,    (11) 

where λ−−σ= 1l . The sequence of well-behaved solutions of (11) are Hermite 
polynomials ( )ςlH  for .,,, �210=l  Thus the spectrum of σℑ  consists of 

eigenvalues ll −−σ=λ 1 , �,,, 210=l , with corresponding eigenvectors 

( ) ( )22 /exp ς−τ′λς llH . Therefore there exists a center manifold for system (10) iff 

1=σ  by the existence theorem of center manifold theory. Linearly, all modes decay 

exponentially in τ′  except for the critical mode, ( ) ( )22
0 /exp ς−ςH , which is constant 

in time. 
Use these general results to deduce specific properties of systems (7) and (9). 

• For the system (7), the spectrum of 1ℑ  consists of ,ll −=λ  �,,, 210=l . 

Therefore all modes decay exponentially quickly except fir the critical 

mode  ( ) ( )22
0 /exp ς−ςH , it has zero decay rate and thus is long lasting. 

Note 0H  is constant. We have the following three cases to discuss for 

system (7): 
1) There exists one critical mode for 0<r , namely 

( )22 /exp ς−= Av , 0=θ ; 
2) There exist two critical modes for 0≈r , namely 

( )22 /exp ς−= Av , and θ ; 
3) And when 0>r  there exists a two dimensional center-unstable 

manifold based upon the same two modes. This case will be 
disused later as here we assume r  is non-positive (i.e. decreasing 
diffusity ( )t∆ ). 

 
• For the system (9) , the spectrum of 1ℑ  consists of ,ll −=λ  �,,, 210=l  

upon choosing ( ) 21 /r+=α , for any given 1−>r . The restriction of 
1−>r  comes from the first case of the following three cases. Then only 

the critical mode ( ) ( )22
0 /exp ς−ςH  is long lasting. We discuss the 

following three cases for system (9): 
1) There exists one critical mode for 01 <<− r , since ( ) 21 /r+τ=τ′  

and τ  must keep the same sign as τ′ ; 
2) There exist two critical modes for 0≈r ; 
3) There exists a two dimensional center-unstable manifold for 0>r . 

This case will be discussed later as here we assume r  is non-
positive (i.e. decreasing diffusity ( )t∆ ). 

Now we return our attention to the general system (10) and discuss the first two cases 
of both systems (7) and (9), i.e. we consider the following two cases: 

1) There exists one critical mode for 0<c ; 
2) There exist two critical modes for 0≈c . 
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Due to the special form of the solution, we model the dynamics in terms of the 

evolution of “amplitude”  A  of the Gaussian ( )2ς−exp  , where we define 

( ) ςς−
π

= ∫
∞

∞−

dvA 2
1 2 /exp . The definition of A  is different from the usual one of 

amplitude. To improve the convergence of the improper integral used in this paper, 

we multiply v  by ( )2ς−exp  in the definition. We call the “ ( )2ς−exp ”  the weight of 
the integral. Note that A  is only the function of τ′  for the first case since 0=θ  for 
this case. A  is a function of τ′  and θ  for the second case. The evolution of ( )τ′A  and 

( )θτ′,A  form accurate one-dimensional models of the infinite-dimensional dynamical 
system (10). 

3. LOW-DIMENSIONAL MODEL OF THE GENERALIZED 
BURGERS EQUATION 

 
The derivation of the low-dimensional model of the system (10) for the first two cases 
is done with an iteration scheme. The predictions of these models are discussed 
following the derivation of the models. Roberts [23] developed such an iteration 
scheme using computer algebra. We summarize the procedure for system (10) as 
follows. We here give the procedure for Case 2. There are two critical modes 

( )22 /exp ς−= Av  and θ  in the second case, both of which are included in the 
iteration scheme. Therefore, the iteration scheme for the first case is a special situation 
of the one for the second case simply by omitting the expressions for θ . 

1) Identify the critical mode or modes, i.e., find the nontrivial solutions w , of 
01 =ℑ w , to give the linear approximation 

( ) ( )22 /exp, ς−θτ′≈ Aw ,   such that 0≈θ≈
��

A ,   (12) 

where A
�

 denotes 
τ′∂

∂A
. 

2) Find a low-dimensional description which satisfies the system (10). The 
details of this step are described as follows. Suppose that we have some 
approximate model 

( )θ≈ ,~ Aww ,  such that ( )θ≈ ,
~

AhA
�

 and θ=θ c
�

  (13) 
at any stage of the iteration scheme. Then we seek corrections so that a better 
approximation to the center manifold and the evolution is 

( ) ( )θ′+θ= ,,~ AwAww , such that ( ) ( )θ′+θ= ,,
~

AhAhA
�

. 
For example, in the first iteration, 

( ) ( )θ′+ς−= ,/exp AwAw 22 ,  and  ( )θ′≈ ,AhA
	

. 
Substituting into system (10), and using the chain rule for time derivatives 
leads to  

( ) ( ) ( )θ′++′+ℑ=θ






θ∂
′∂+

θ∂
∂+′+







∂
′∂+

∂
∂

,~~
~~~

wwfwwc
ww

hh
A

w

A

w
1 . 

The difficulty of solving the above equation is almost the same as that of 
solving the system (10), so further simplification is appropriate.  Ignoring the 
products of corrections because they are small compared with other terms, and 
using the linear approximation wherever terms multiply corrections, we obtain 
an equation for the correction 
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( ) rhw ~/exp =′ς−+′ℑ 22
1 ,   (14) 

where r~  is the residual of the first equation in (10). Equation (14) is solved by 
the following scheme for the corrections: first choose h′  to put 

( )hr ′ς−− 22 /exp~  in the range of 1ℑ ; and second solve rhsw =′ℑ1 . The 
iteration is carried out until the residual r~  becomes zero to a chosen order of 

error. Note that the condition ( ) ςς−
π

= ∫
∞

∞−

dvA 2
1 2 /exp  must be satisfied. 

A REDUCE program given in the appendix A is run to perform the computations of 
the low dimensional model for the Case 1 of system (7). In this program, 

( )( )221 /exp ςςℑ−
σ kl ( )52121 ,,,,,, 

 == kl  is expanded by products of 

( )22 /exp ς− k ( )521 ,,, �=k  and a series in ς  with error ( )8ξO 3. The REDUCE 
programs for other cases are obtained by a few changes of the program given in the 
Appendix A. From the further calculations by the program in Appendix A, we know 

that all the radii of coefficient series in ς  of ( )22 /exp ς− k ( )521 ,,, �=k  are ∞+ . 

3.1 Case 0≠γ  
In this subsection, we represent the center manifolds and the corresponding low-
dimensional models for 0≠γ . 

The center manifold for 0<r  is 

( )
( )

( ) ( )
( ) ( )
( ) ( )686556453

64257544

753426433

6423

75322

001400008000380

00010000200020000400056000830

001000360013700278004170

00070005300321000900

023800833016670

AAGAG

GAAG

AGAG

GA

AGGAv

,O...

......

.....

....

...

ς+ς−ς+ς+

ς+ς+ς−+ς+ς−

ς+ς+ς+ς+ς−

ς−ς−ς−−

ς+ς+ς−=

  

(15) 
on which the system evolves according to  

( )653 0022006410 AAA
d

dA
O.. +−=

τ′
,   (16) 

where ( )22 /exp ς−=G . Then the center manifold of the Burgers equation with the 

diffusion coefficient (4) for 0<r  is obtained by substituting 21

2

1 /−

γ
=ς xt  into 

equation (15), and then substituting equation (15) into vtu 21

2
/−γ= . The error of the 

center manifold is ( )648 Atx ,O − . On this center manifold the system evolves 
according to  

( )161513 0011003210 −−− +−= tAtAtA
dt

dA
O.. .   (17) 

                                                 
3 A proof of the uniform convergence of such series of functions in ( )∞+∞− ,  and integral by term 

is given in Appendix B. 
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The state of A  described by equation (17) on the center manifold is approached with 

transients of relative magnitude approximately ( ) 21/exp −∝τ′− t  . The dynamics of the 
Burgers equation with the diffusion (4) for 0≠γ  and 0<r  evolves for long time 
according to the expression of u  in tx,  and A  ( A  is the solution of (17)). 

We consider θ  as a perturbation for the system when 0≈r . The center manifold 
for the case 2 of system (7) is 

( )[ ]642 013200986040820125701 ς+ς+ς−θ−= ....GAv  

[
( )]642

6423

00300013601427003610

00070005300321000900

ς−ς−ς−θ+

ς+ς+ς+−+

....

....GA
 

 

 
[

( )]642

6425

00040002200156000290

00010000200020000040

ς+ς+ς−θ−

ς+ς+ς−+

....

....GA
 

 

 
[
( )]753

75322

031701482051130

023800833016670

ς+ς+ςθ−

ς+ς+ς−

...

...AG
 

 

 
[
( )]753

75342

000900153008990

000300036001370

ς+ς+ςθ−

ς+ς+ς+

...

...AG
 

 

 ( )[ ]646433 10610216400278004170 ς+ςθ−ς+ς− ....AG  
 

 ( )[ ]646453 00330033200008000380 ς+ςθ−ς+ς+ ....AG  
 

 ( )[ ]77544 029700056000830 ςθ−ς+ς− ...AG  
 

 ( )[ ] ( )2686455 0131000140 θς+ςθ−ς− ,,O.. AAG ,   (18) 
on which the system evolves according to  

( ) ( ) ( )2653 0133000220163100641018351 θ+θ−−θ−+θ−=
τ′

,O..... AAAA
d

dA
.

 (19) 
Then the center manifold of the Burgers equation with the diffusion coefficient (4) for 

0≈r  is obtained by substituting 21

2

1 /−
γ

=ς xt  into equation (18), and then 

substituting equation (18) into vtu 21

2
/−γ= . The error of the center manifold is 

( )2648 θ− ,,O Atx . On this center manifold the system evolves according to 
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( ) ( )

( ).,O

.....

1216

1511 0067000110081600321059180

−−

−−−

θ+

θ−−θ−+θ−=

ttA

tAtAtA
dt

dA

 

 (20) 
The state of A  described by (20) on the center manifold is approached with transients 

of relative magnitude approximately ( ) 21/exp −∝τ′− t . The dynamics of the Burgers 
equation with diffusion coefficient (4) for 0≠γ  and 0≈r  evolves for long time 
according to the expression of u  in x , θ , t  and A  ( A  is the solution of (20)). 

3.2 Case 0=γ  
In this subsection, we give the center manifold and the corresponding low-
dimensional model for 0=γ . 

The center manifold for the case 1 of system (9) is 
AGv = ,      (21) 

on which the system evolves according to 

0=
τ′d

dA
.     (22) 

Then the center manifold of the Burgers equation with the diffusion coefficient (4) for 

0<r  is obtained by substituting ( ) 21

2

1 /rxt
r +−

δ
+=ς  into equation (21), and then 

substituting equation (21) into 
( ) ( ) vt

r
u r 21

2

1 /+−+δ= , i.e., 

( ) ( ) ( )











δ
+−+δ= +

+−
r

r

t

xr
t

r
Au

1

2
21

4

1

2

1
exp/ ,   (23) 

on which the system evolves according to  

0=
dt

dA
.    (24) 

Equation (24) indicates that the amplitude A  in (23) is a constant. The state of A  on 
the center manifold is approached with transients of relative magnitude approximately 

( ) ( ) 21 /exp rt +−∝τ′− . The dynamics of the Burgers equation with the diffusion 
coefficient (4) for 0=γ  and 0<r  evolves for long time according to (23). 

As in subsection 3.1, we still consider θ  as a perturbation for the system when 
0≈r . The center manifold for the case 2 of system (9) is 

( )
( )
( )

( )368

64233

75322

64223

0278004170

023800833016670

00070005300321000900

θς+

ς+ςθ−

ς+ς+ςθ−

ς−ς−ς−θ−=

,,O

..

...

....

A

AG

AG

GAGAv

  (25) 

 
on which the system evolves according to  

( )362306410 θ+θ=
τ′

,O. AA
d

dA
.    (26) 
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Then the center manifold pf the Burgers equation with the diffusion coefficient (4) for 

0≈r  is obtained by substituting ( ) 21

2

1 /rxt
r +−

δ
+=ς  into equation (25), and then 

substituting equation (25) into 
( ) ( ) vt

r
u r 21

2

1 /+−+δ= . The error of the center 

manifold is ( )( )36148 θ+− ,,O Atx r . On this center manifold the system evolves 
according to  

( ) ( )1316123103210 −−− θ+θ+= ttAtAr
dt

dA
,O. .   (27) 

The state of A  described by equation (27) on the center manifold is approached with 

transients of relative magnitude approximately ( ) ( ) 21 /exp rt +−∝τ′− . The dynamics 
of the Burgers equation with the diffusion coefficient (4) for 0=γ  and 0≈r  evolves 
for long time according to the expression of u  in x , θ , t  and A  ( A  is the solution of 
(27)). 
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APPENDIX A:  COMPUTER ALGEBRA IMPLEMENTAION 
1 Comment. Find low-dimensional model for generalized Burgers equation 
2  AM(t) measures amplitude of exp(-\xi-2/2) component in v(\xi,\tau) 
3  x=\zeta, t=\rho. 
4  Solve approximately in power series in x times powers of  
5  exp(-x^2/2) for the case 1 of system (7). 
6  on rounded;  
7  on div; off allfac; on revpri; %for improving appearance of output  
8  factor ga,am,theta;  
9  0:=8;  
10 procedure ignore-order-x(o);  
11 begin  
12 IF 0=6 THEN LET x^6=0;  
13 IF 0=7 THEN LET x^7=0;  
14 IF 0=8 THEN LET x^8=0;  
15 IF 0=9 THEN LET x^9=0;  
16 IF 0=10 THEN LET x^10=0;  
17 end; 

18 % define ga with properties of exp(-k*x^2/2)operator ga;  

19 operator ga; depend ga,x;  
20 let{ df(ga(~k),x) => -k*x*ga(k), 
21    ga(~k)^2 => ga(2*k), 
22   ga(~k)*ga(~l) => ga(k+l)  
23 }; 
24 %Define the inverse operator of {\cal J}-\sigma mod \zeta^8 in(7) 
25 operator linv; linear linv; 
26 let{linv(x^~a*ga(~b),x)=>(x^(a+2)*ga(b)-linv(b*(b-1)*x^(a+4)*ga(b) 
27 +(3+a-5*b-2*a*h)*x^(a+2)*ga(b),x))/(a+2)/(a+1) 
28 when evenp(a)or(b>1), 
29 linv(x*ga(~b),x) => (x^3*ga(b)-linv(b*(b-1)*x^5*ga(b) 
30 +(4-7*b)*x^3*ga(b),x))/6 when b>1, 
31 linv(ga(~b),x) => (x^2*ga(b)-linv(b*(b-1)*x^4*ga(b) 
32 +(3-5*b)*x-2*ga(b),x))/2, 
33 linv(x~^a*ga(1),x)=>(x^a*ga(1)-linv(x^(a-2)*ga(1)*(a^2-

a),x))/(-a) 
34    when not evenp(a), 
35 linv(x*ga(1),x) => -x*ga(1)  
36 }; 
37 % Define integral for ga(k) from -\infi to \infi to get h 
38 operator intg; linear intg;   
39 let {intg(ga(~k),x) => sqrt(2*pi/(k+1)), 
40 intg(ga(~k)*x,x) => 0, 
41 intg(ga(~k)*x^~p,x) => (p-1)/(k+1)*intg(ga(k+1)*x^(p-2),x) 
42 }; 
43 depend am,t;  % asserts that A depend on pseudotime \tau 
44 let df(am,t) => h;  % dAM/d\tau is replaced by function h(AM) 
45 depend theta,t; 
46 let df(theta,t)=>2*r*theta; 
47 v:=AM*ga(1); theta:=O; h:=O; % initial approximation 
48 % 
49 % iterate until PDE is satisfied to desired precision 
50 let {AM^6=0,theta~2=0}; % discard high-order terms in AM  
51 repeat begin 
52 eqn:=df(v,t)-df(v,x,x)-x*df(v,x)-v+v*df(v,x) 
53         -2*theta*df(v,x,x); 
54 ignore-order-x(o); 
55 eqn:=eqn; 
56 eqt:=df(theta,t)-2*r*theta; 
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57 ignore-order-x(o+3); 
58 gh:=-1/sqrt(pi)*intg(eqn,x); 
59 vd:=linv(eqn+gh*ga(1),x); 
60 v:=v+vd-intg(vd,x)*ga(1)/sqrt(pi); 
61 h:=h+gh; 
62 end until eqn=O and eqt=O; 
63 % check amplitude 
64 amp:=intg(v,x)-sqrt(pi)*AM; 
65 ;end; 
 

APPENDIX B:  PROOF OF THE ASYMPTOTIC SCHEME FOR 
BURGERS EQUATION 

In Section 3, we need to calculate ( )( )221 /exp ς−ςℑ−
σ kl  to get the center manifold. 

However, it is hard to do that. We use a series of function to approximate it, i.e. let 

( )( ) ( )ς=ς−ςℑ−
σ lk

l fk 221 /exp , we seek a series of function:  

( ) ( ) ( ) ( )
( )







+ς++ς+=

+ς++ς+ς=ς
n

n
k

n
lklklklk

aaaG

ffff

10

21

   (28) 

where ( )22 /exp ς−=G . In this section, we first prove that the series of function in 

the right hand side of (28) is uniformly convergent to ( )ςlkf  in ( )∞+∞− , . Thus we 

can replace ( )ςlkf  by finite terms of the series in the right hand side of (28) in any 

order of accuracy. We also use the integral of ( )Gflk ς  from ∞−  to ∞+  in the 

calculation of the center manifold and the low-dimensional models. Then we prove 
that the numerical series of the integral of the product of every term in the right hand 
side of (28) with G  from ∞−  to ∞+  is convergent and converges to the integral of 

( )Gflk ς  from ∞−  to ∞+ . Note that G  is the weight of the integral.  

Without loss of generality, we prove the results for G . The proofs of the others 
are the same.  

It is easy to calculate:  

( ) ( )







+ς++ς+ς=

ς=ℑ−
σ

��
n

nc
G

GfG

2

2

42

1
1

1

12

1

2

1

 
where ( ) ( ) ( )12122 122 −−= − ncnnc nn /  for 1>n . From the Ratio test of series of 

functions, 

( )
( ) 0

122

122

1
=

−
−ς=

∞→−∞→ nn

n

u

u

nn

n

n
limlim , 

series ( )ς1f  converges for all ς , i.e. series ( )ς1Gf  uniformly converge to ( )G1−
σℑ  in 

( )∞+∞− , . 
Now let us turn our attention to prove 
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( ) ( )

.�� +ςς++ςς+ςς=

ςς=ςℑ

∫∫∫

∫∫
∞+

∞−

∞+

∞−

∞+

∞−

+∞
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n

n
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2

2422

1
21

1
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2
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 (29) 
According to the definition of improper integral in ( )∞+∞− , , 

( ) ( ) ( )dxxfdxxfdxxf ∫∫∫
+∞

∞−

+∞

∞−
+=

0

0
 

if the two improper integrals on the right hand side of above equation are convergent. 
However, the function f  we considered in this paper is even or odd. Then the first 
integral on the right hand side can be transformed to the product of a constant and the 
second one. Thus it is enough to give the proof of (29) in )[ ∞+,0 . For 0>n , 

( )

( ) ( ) ( ) ( )

( )( ) ( )

( )( ) .

exp

expexp

exp

2
132122

132122
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2

2
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Apply the Ratio test of series of constants to the right hand side of (29), 

2

1

2

1

1
=−=

∞→−∞→ n

n

u

u

nn

n

n
limlim , 

the series of the right hand side of (29) is convergent. Let the sum of the series is S . 
Thus for 0>ε∀ , Ninteger  ∃ , when Nn > , 

( )
( ) 2

11

0

212

120

22

2
/ε<+ςς+ςς ∫∫

∞+
+

+

∞+
�dG

c
dG

c
n

n

n

n
. 

So  

( )
( )

( )
( ) 2

11

0

222

220

212

12
/ε<+ςς+ςς ∫∫

∞+
+

+

∞+
+

+
�dG

c
dG

c
N

N

N

N
.  (30) 

 

Since 22

2

22

2

11
G

c
G

c
N

N
ςς ,, �  are integrable in )[ ∞+,0 , then 0 0 >∃ M , when 

0MM > , 

N
dG

c
M

i

i 2

1 22

2

ε<ςς∫
∞+

       ( )Ni ,,, �21= .  (31) 
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Since the series of (28) is uniform convergent and each term of the series is 
continuous and positive in )[ ∞+,0 , then 

( ) �� +ςς++ςς+ςς=ςℑ ∫∫∫∫ −
σ dG

c
dGdGGdG

M
n

n

MMM
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2
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1
, (32) 

and 
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Also since  

( ) ( ) ςℑ=ςℑ ∫∫ −
σ

−
σ GdGGdG

MM

0

1

0

1  

increases when M  increases, then 

( ) ςℑ∫
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−
σ GdG

0

1  exists and S≤ .  (33) 

On the other hand, from (32) and the conditions 
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When 0MM > , the part in the bracket of the second term in above expression is less 

than 2/ε  from (31). The part in the bracket of the third term is less than 2/ε  from 
(30). Thus 

( ) ε−≥ςℑ∫
+∞

−
σ SGdG

0

1 . 
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Because ε  is arbitrary positive, we have 

( ) SGdG ≥ςℑ∫
+∞

−
σ

0

1 .    (34) 

Combining (33) and (34), (29) holds. 
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