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Abstract

Burgers equation is one of the simplest nonlinear partial differentia equations—it
combines the basic processes of diffusion and nonlinear steepening. In some
applications it is appropriate for the diffusion coefficient to be a time-dependent
function. Using a Wayne's transformation and centre manifold theory, we derive I-
mode and 2-mode centre manifold models of the generalised Burgers equations for
bounded smooth time dependent coefficients. These modellings give some interesting
extensions to existing results such as the similarity solutions using the similarity
method.
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1. INTRODUCTION
Burgers equation
u, +uu, =cu, (cisconstan} (1)

was originaly introduced by JM. Burgers (1939) as a mode for turbulence [1]. It
describes a variety of nonlinear wave phenomena arising in the theory of wave
propagation, acoustics, plasma physics and other areas [30, 11]. It shares a number of
properties with the Navier-Stokes equations. the same type of nonlinearity, of
invariance groups and of energy dissipation relation, the existence of a
multidimensional version, etc [12]. It is aso one of the simplest nonlinear partia
differential equations embodying together effects of convection and diffusion. For
example, in an approximation to sound waves, the independent variable x is a
coordinate moving with the wave at the speed of sound, and the dependent variable u
represents velocity fluctuations [6].

M.J. Lighthil1 [15, p323] stated that the coefficient of the diffusion term u,, in

equation (1) is not normally a constant in applications, even approximately; the
coefficient may actually be a function of the time. There is significant interest in
generdizing (1) to

o+ = Au, @)
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for different functions A(t) [28, 27, 6, 26] , particularly in determining similarity
solutions of (2). Such solutions are sought for compact initial conditions for u, but
until our work here there has been a lack of assurance of the attractivity of the
similarity solutions.

Thereis aso alot of work devoted to the decay of random solutions of (2) in the
[imit of vanishing A(t) as time tends to infinity [14, 10, 11, 18, 7, 8, 13, 12]. These
works typically estimate the main quantities such as the energy spectrum, correlation
function and so on for long times and the expressions are not dependent upon A(t).
However, from the low-dimensional models in Section 3 most quantities should
depend upon A(t) evenif it vanishes for long times.

In this paper, we consider the diffusion coefficient

A(t)=2ly+3t"),
where r is non-positive real number, y is a non-negative real number and & is a
positive real number. Such a A(t) may be viewed as an approximation of a smoothly
decaying diffusion.

We apply centre manifold theory to the derivation of the long-term solutions of
(2). From the relevance theorem in [2], theory guarantees that any solution of (2)
could be approximated to any order of error by the solution of the low-dimensional
model on the centre manifold. Such centre manifolds are exponentially attractive so
that we know awide range of initial conditions approach the similarity solution.

The long-term solutions of the dynamics are derived through centre manifold
theory after a variable transformation of the generalized Burgers equation. The main
trick is the transformation t=Ilogt which changes algebraic transients in t into
exponential transients in T and so alows centre manifold theory to be applied. A
corresponding transformation of space is also needed. The low-dimensional models
derived in Section 3 show the "amplitudes’ A defined in Section 2 are near constant
for long time. Therefore the dynamics of the generalized Burgers equation are
determined by the centre manifolds in Section 3 for the diffusion coefficient
A(t)z 2(y+ 6tr). In the case of y=0 and r <0, the predictions depend upon how
fast the diffusion coefficient vanish. However, the predictions in other papers (for
example, [12]) show results for the genera case of diffusion coefficient A(t):e
wheree - 0ast - 0.

2. CENTER MANIFOLD APPROXIMATION

In this section, we first introduce a transformation of the generalized Burgers equation
(2). We then discuss the properties of its solutions using center manifold theory.

Define new variable through Wayne's transformation [29] 7 = logt, £ = xt™®, and
u= Ct'o‘v(E, T) for some C>0, a>0, and B>0. Algebraic transientsin t become
exponential transients in 7 =logt alowing center manifold theory to be applied;

£ = xt P stretches space so that a spreading Gaussian will become a fixed point of the

dynamics. The investigation of the dynamicsis based on this Gaussian. M.J. Lighthill
[15, p335] showed that the form of solutions of Burgers equation with constant
diffusion coefficient are roughly Gaussian. The generalized Burgers equation (2)
under the above transformation becomes
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We consider the diffusion coefficient in the form
At)= 2y +5t") (4)

where r is a non-positive rea number, y is a non-negative real number and & is a
positive real number. This may be viewed as an approximation to wider class of
functions A(t). We lay the basis for two different models for the large-time dynamics
depending upon whether y =0 or not, that is, depending upon whether or not the
diffusion coefficient A - 0 for largetime.
A. If y£0, take —a-pB+1=0 and -23+1=0, i.e, a=p=1/2, then (3)
becomes
WL, Leov, OV o0, 5 OV (5
ot 2 279 982 9E o8l

Introducing 8 = ZE , We obtain the equivalent system:
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Rescaling ¢ = /2—2, T'=1/2 and choosing C = \/g the system (6) becomes

o A vﬂ + 26ﬂ 9 _ 2r0, (7
at' ac ac?’ ot
where the operator
_ 0? 0
0 +C—+0,
o 6 ~2 ¢ ac

with o =1 for this case.
B. If y=0, take r—-28+1=0, i.e, B=(1+r)/2 and let e=\/§tp, where
p=—-a-B+1=1/2-a-r/2,and a will be decided |ater, then (3) becomes
ov 0? ov 00
—= — -Cov—, — =p9. 8
> EBEE% B Do ®)
Rescaling c:\/:E, T' =t and choosing C =\/5_B the system (8) becomes

N _pv-ovd P _rg 9)
ar 0¢ ar B

Whereo—a/B:2ul(1+r).

Both systems (7) and (9) have the same from for the linear parts. So we discuss
systemsin the general form

MW w+ f(w, 6), —=co, (10)

I

where f(w, 9) are some nonlinear terms, and ¢ is a constant.



The application of center manifold theory hinges upon the spectrum of the
linearised dynamics. Seek the solution of the linear pat of the first equation in system

(20) in the form w= exp()\T' -¢?/ 2)(p(c). Substituting into the linear part of (10), we
obtain a Hermite differential equation for cp(c)

d? d
d_cgp—qd_‘cpﬂcp:o, (11)

where | =o-1-A. The sequence of well-behaved solutions of (11) are Hermite
polynomials H|(C) for 1=0,12,---. Thus the spectrum of [, consists of
eigenvalues A, =o-1-1, 1=0,12,---, with corresponding eigenvectors

H, (c)exp()\lt' -2/ 2). Therefore there exists a center manifold for system (10) iff
o0 =1 by the existence theorem of center manifold theory. Linearly, all modes decay
exponentialy in T except for the critical mode, Ho(c)exp(— ¢? /2), which is constant
intime.

Use these general results to deduce specific properties of systems (7) and (9).

» For the system (7), the spectrum of [J;, consistsof A, =-I, 1 =0,1, 2,---.
Therefore all modes decay exponentially quickly except fir the critical
mode Ho(c)exp(— ¢? /2), it has zero decay rate and thus is long lasting.
Note H, is constant. We have the following three cases to discuss for
system (7):

1) There exists one criticd mode for r<0, namey
V= Aexp(—czlz), 8=0;

2) There exit two critic modes for r=0, namely
V= Aexp(—c2 /2), and 0;

3) And when r >0 there exists a two dimensiona center-unstable
manifold based upon the same two modes. This case will be
disused later as here we assume r is non-positive (i.e. decreasing
diffusity A(t)).

» For the system (9) , the spectrum of [, consistsof A, =-I, 1=0,1, 2,
upon choosing a :(1+r)/2, for any given r >-1. The restriction of
r > -1 comes from the first case of the following three cases. Then only
the critica mode Ho(c)exp(— ¢/ 2) is long lasting. We discuss the
following three cases for system (9):
1) There exists one critical mode for —1<r <0, since T' = T(1+ r)/2
and T must keep thesamesignas 1';
2) There exist two critical modesfor r = 0;
3) There exists atwo dimensional center-unstable manifold for r > 0.
This case will be discussed later as here we assume r is non-
positive (i.e. decreasing diffusity A(t)).
Now we return our attention to the general system (10) and discuss the first two cases
of both systems (7) and (9), i.e. we consider the following two cases:
1) Thereexistsone critical modefor c<O0;
2) There exist two critical modesfor ¢ = 0.



Due to the special form of the solution, we model the dynamics in terms of the
evolution of “amplitude” A of the Gaussian exp(— c2) , Where we define

:i J’vexp(— c2/2)dc. The definition of A is different from the usual one of

Jn
amplitude. To improve the convergence of the improper integral used in this paper,
we multiply v by exp(— c2) in the definition. We cal the “ exp(— cz)” the weight of
the integral. Note that A is only the function of 1" for the first case since 8 =0 for
thiscase. A isafunctionof t' and 6 for the second case. The evolution of A(T') and
A(T', 9) form accurate one-dimensional models of the infinite-dimensional dynamical
system (10).

3. LOW-DIMENSIONAL MODEL OF THE GENERALIZED
BURGERS EQUATION

The derivation of the low-dimensional model of the system (10) for the first two cases
is done with an iteration scheme. The predictions of these models are discussed
following the derivation of the models. Roberts [23] developed such an iteration
scheme using computer algebra. We summarize the procedure for system (10) as
follows. We here give the procedure for Case 2. There are two critical modes
V= Aexp(— c2/2) and 0 in the second case, both of which are included in the
iteration scheme. Therefore, the iteration scheme for the first caseis a specia situation
of the one for the second case simply by omitting the expressionsfor 6.

1) Identify the critica mode or modes, i.e., find the nontrivial solutions w, of

[,w =0, to give the linear approximation

w= AT, 8)exp(-2/2), suchthat A=8=0, (12)

where A denotes %
ot'

2) Find a low-dimensional description which satisfies the system (10). The
details of this step are described as follows. Suppose that we have some
approximate model

w=W(A 8), suchthat A=h(A, 6)and 6=co (13)
at any stage of the iteration scheme. Then we seek corrections so that a better
approximation to the center manifold and the evolution is
w=wW(A 8)+w(A 6), suchthat A=h(A, 8)+h'(A, 8).
For example, in the first iteration,

w=Aep(-?/2)+w(A8),  ad A=h(A®).
Substituting into system (10), and using the chain rule for time derivatives
leads to
W oW [~ ., WooowW [, o~ ~
DaA+ﬁ§h +h)+§%e+%%e' 0,(W+w)+ f(W+w, 8).

The difficulty of solving the above equation is amost the same as that of
solving the system (10), so further simplification is appropriate. Ignoring the
products of corrections because they are small compared with other terms, and
using the linear approximation wherever terms multiply corrections, we obtain
an equation for the correction



0w + exp(— < 2)h' =T, (14)
where 1 istheresidual of the first equation in (10). Equation (14) is solved by
the following scheme for the corrections. first choose h' to put
F—exp(— c2/2)h' in the range of 0J;; and second solve [,w =rhs. The
iteration is carried out until the residual r becomes zero to a chosen order of

error. Note that the condition A= % Ivexp(— c? /Z)dc must be satisfied.
T =

A REDUCE program given in the appendix A is run to perform the computations of
the low dimensiona model for the Case 1 of system (7). In this program,

D;l(c' exp(kczlz)) (=12--,k=12--,5 is expanded by products of
exp(— kc2/2) (k=1,2,-,5) and a series in ¢ with error 0(28)3. The REDUCE
programs for other cases are obtained by a few changes of the program given in the
Appendix A. From the further calculations by the program in Appendix A, we know
that all the radii of coefficient seriesin ¢ of exp(~k¢?/2)(k =1, 2,--,5) are +co.

3.1Case y#0
In this subsection, we represent the center manifolds and the corresponding low-
dimensional modelsfor y #0.

The center manifoldfor r <0 is

v =GA-G2A2(0.1667 + 0.083%° +0.023&)
-GA® (0.0090— 0.032%” -0.005%" - o.ooo7c6)
-G°A° (o.o417c4 + 0.0278:6) +G?A (0.0137c3 +0.00365° + 0.00K7)
-G*A* (0.0083;5 + 0.005&7) +GA® (0.004— 0.0020” +0.000%" + o.ooox“’)
+ G3A5(o.0038;4 + 0.0008:6) - 0.0014G°A° + O(cs, AB)
(15)

on which the system evolves according to

% = 0.0641A° - 0.0022A° + O(AG), (16)
T

where G = exp(— ¢/ 2). Then the center manifold of the Burgers equation with the

diffusion coefficient (4) for r <0 is obtained by substituting ¢ = /Zixt‘l’2 into
y

equation (15), and then substituting equation (15) into u = \/gt'l’ 2v . The error of the

center manifold is O(xst"‘, AG). On this center manifold the system evolves

according to
%’: =0.0321A% ™ - 0.0011A% * + o(AGt‘l). 17

3 A proof of the uniform convergence of such series of functionsin (— oo, + 00) and integral by term
isgivenin Appendix B.



The state of A described by equation (17) on the center manifold is approached with
transients of relative magnitude approximately exp(— r’) 0t Y2 . The dynamics of the
Burgers equation with the diffusion (4) for y#0 and r <0 evolves for long time
according to the expression of u in x,t and A (A isthesolution of (17)).

We consider 8 as a perturbation for the system when r = 0. The center manifold
for the case 2 of system (7) is

v= GA[l— 9(0.1257— 0.4082;% +0.0986;* + 0.0132;6)J
+GA3|-0.0090+ 003212 +0.005%* +0.0007C°
+ 9(0.0361— 0.1427%% - 0.013&" - 0.0030;6)]

+GAB|0.0004-0.002a:2 +0.000Z* +0.000%°
- 9(0.0029— 0.0156;% +0.0022* + 0.0004:6)]

-G2A2|0.1667c3 +0.083%5 +0.0238& " _
- 9(0.5113;3 +0.148%° + o.0317c7)

+G2A%0.01373 + 000365 +0.000%”
- 6(0.0899;3 +0.0153 + 0.0009;7)

-G%a%0.0417% +0.027&° - 60.2164% +0.1068 |
+G3a%0.003&:* +0.000&° - 6(0.0332:4 + 00033

- G*A%(0.008%> +0.0056;" - 9(0-029747)J

-G5%j0.0014% - 60.013x8 |+ O[c8, A8, 62), (18)
on which the system evolves according to
% = -1.1835A0 + A3(0.0641- 0.1638B) - A>(0.0022- 0.013%) + O(A6, 92).
T

(19)
Then the center manifold of the Burgers equation with the diffusion coefficient (4) for

r=0 is obtained by substituting ¢= /zixt_ll 2 into equation (18), and then
Y

substituting equation (18) into u =\/gt_1/ 2y. The error of the center manifold is

O(x8t_4, A8 62). On this center manifold the system evolves according to



‘;—? = -0.591846t 1 + A(0.0321- 0.08160)t * — A>(0.0011-0.006 )t

+ O(A6t‘1, ezt‘l).
(20)
The state of A described by (20) on the center manifold is approached with transients
of relative magnitude approximately exp(— T') 0t Y2 The dynamics of the Burgers
equation with diffusion coefficient (4) for y#0 and r =0 evolves for long time
according to the expression of u in x, 6, t and A (A isthesolution of (20)).

3.2Case y=0

In this subsection, we give the center manifold and the corresponding low-
dimensional model for y =0.

The center manifold for the case 1 of system (9) is

v=AG, (21
on which the system evolves according to

dA

Rl 22

o (22)

Then the center manifold of the Burgers equation with the diffusion coefficient (4) for

r <0 is obtained by substituting ¢ = 1(1;-—5rxt_(1+r)/2 into equation (21), and then

substituting equation (21) into u = 1,5_[12”1,[—(1”)/2\/’ i.e,

_ [ ) -y o H )
u > t epo prRES E[ (23)

on which the system evolves according to

dA
—= 24
m (24)

Equation (24) indicates that the amplitude A in (23) is a constant. The state of A on
the center manifold is approached with transients of relative magnitude approximately

exp(— T')Dt_(1+r)/2. The dynamics of the Burgers equation with the diffusion
coefficient (4) for y =0 and r <0 evolvesfor long time according to (23).

As in subsection 3.1, we still consider 6 as a perturbation for the system when
r = 0. The center manifold for the case 2 of system (9) is

v = GA- GA%2(0.0090- 0.03212 - 0.005& - 0.0007%"
- GZA26(0.1667Q3 +0.0833° + 0.0238:7)

(29)
-G3A%? (0.0417q4 +0.027&°
N O(c8, A8 63
on which the system evolves according to
% =0.0641A%9° + o(A6, 63). (26)
T



Then the center manifold pf the Burgers equation with the diffusion coefficient (4) for

r =0 is obtained by substituting ¢ = 1/1;—6rxt_(1+r)/2 into equation (25), and then

substituting equation (25) into uzwfé—hzﬂjt_(l”)/ 2y. The error of the center

manifold is O(x8t_4(1+r), A6,63). On this center manifold the system evolves
according to

% =0.03211+r)A%% 1 + O(AGt‘l, 63t‘1). (27)

The state of A described by equation (27) on the center manifold is approached with

transients of relative magnitude approximately exp(— T') [ t"(l”)/ 2 The dynamics
of the Burgers equation with the diffusion coefficient (4) for y=0 and r =0 evolves
for long time according to the expression of u in x, 6, t and A (A isthe solution of

(27)).



APPENDIX A: COMPUTER ALGEBRA IMPLEMENTAION

1 Coment. Find | ow dinensional nodel for generalized Burgers equation
2 AMt) neasures anplitude of exp(-\xi-2/2) component in v(\xi,\tau)
3 x=\zeta, t=\rho.

4 Solve approximately in power series in x tinmes powers of

5 exp(-x"2/2) for the case 1 of system (7).

6 on rounded;

7 on div; off allfac; on revpri; % or inproving appearance of out put
8 factor ga,amtheta;

9 0:=8;

10 procedure ignore-order-x(0);

11 begin

12 I F 0=6 THEN LET x"6=0;

13 I F 0=7 THEN LET x~7=0;
14 1| F 0=8 THEN LET x~8=0;
15 I F 0=9 THEN LET x”79=0;
16 I F 0=10 THEN LET x”10=0;
17 end;

18 % define ga with properties of exp(-k*x"2/2)operator ga
19 operator ga; depend ga, X;
20 let{ df (ga(~k),x) => -k*x*ga(Kk),

21 ga(~k)"2 => ga(2*k),
22 ga(~k)*ga(~l) => ga(k+l)
23 }i

24 %Deffne the inverse operator of {\cal J}-\sigma nod \zeta”8 in(7)
25 operator linv; linear |inv;
26 let{linv(x*~a*ga(~b), x)=>(x"(a+2)*ga(b)-1inv(b*(b-1)*x"(a+4)*ga(b)

27 +(3+a-5*h-2*a*h) *x~(a+2) *ga(b), x))/ (a+2)/ (a+l)

28 when evenp(a)or(b>1),

29 linv(x*ga(~b),x) => (x"3*ga(b)-Iinv(b*(b-1)*x"5*ga(b)

30 +(4-7*b)*x"3*ga(b), x))/ 6 when b>1

31 linv(ga(~b), x) => (x"2*ga(b)-1inv(b*(b-1)*x"4*ga(b)

32 +(3-5*b) *x-2*ga(b), x))/ 2,

33 linv(x~"*a*ga(l), x)=>(x"a*ga(1)-linv(x*(a-2)*ga(l)*(ar2-
a),x))/(-a)

34 when not evenp(a),

35 linv(x*ga(l),x) => -x*ga(1l)

36 ¥

37 % Define integral for ga(k) from-\infi to \infi to get h
38 operator intg; linear intg;
39 let {intg(ga(~k),x) => sqgrt(2*pi/(k+1)),

40 i ntg(ga(~k)*x,x) => 0,

41 intg(ga(~k)*x"~p,x) => (p-1)/(k+1)*intg(ga(k+l)*x"(p-2),x)
42 }i

43 depend amt; % asserts that A depend on pseudotine \tau

44 let df (amt) => h; % dAM d\tau is replaced by function h(AM
45 depend theta,t;

46 |l et df (theta,t)=>2*r*theta;

47 v:=AMrga(l); theta:=0 h:=0, % initial approxination

48 %

49 %iterate until PDE is satisfied to desired precision

50 let {AM'6=0,t heta~2=0}; % discard high-order terns in AM
51 repeat begin

52 eqn: =df (v, t)-df (v, x, xX) -x*df (v, x) - v+v*df (v, X)

53 -2*theta*df (v, x, x);

54 i gnor e-order-x(0);

55 eqgn: =egn;

56 eqt: =df (theta,t)-2*r*t het a;

10



57 i gnor e-order-x(0+3);

58 gh: =-1/sqgrt(pi)*intg(eqn, x);

59 vd: =l'i nv(eqn+gh*ga(1), x);

60 v: =v+vd-intg(vd, x)*ga(1l)/sqrt(pi);
61 h: =h+gh;

62 end until eqn=0 and eqt =0

63 % check anplitude

64 anp:=intg(v,Xx)-sqrt(pi)*AM

65 ; end;

APPENDIX B: PROOF OF THE ASYMPTOTIC SCHEME FOR
BURGERS EQUATION

In Section 3, we need to calculate Dgl(c' exp(— kc2/ 2)) to get the center manifold.
However, it is hard to do that. We use a series of function to approximate it, i.e. let

D(_,l(c' exp(— ke? / 2)): f|k(c), we seek a series of function:

fi(Q) = fik()+ fiR(q)+--+ FR(c)+-- (29)
:Gk(ao +alc+...+ancn +...

where G = exp(— cz /2). In this section, we first prove that the series of function in

the right hand side of (28) is uniformly convergent to f|k(c) in (— oo, + oo). Thus we

can replace f|k(c) by finite terms of the series in the right hand side of (28) in any

order of accuracy. We also use the integral of f|k(c)G from —o to +o in the

calculation of the center manifold and the low-dimensiona models. Then we prove
that the numerical series of the integral of the product of every term in the right hand
side of (28) with G from —c to + o0 is convergent and converges to the integral of
f|k(c)G from —oo to + . Notethat G isthe weight of theintegral.

Without loss of generality, we prove theresultsfor G . The proofs of the others
are the same.

It iseasy to calculate:

05'(G)=6f1(c)

=G q2+iq4+...+ic2n+...
12 Con
where ¢y = 2n(2n—1)cz(n_1)/ 2(n —1) for n>1. From the Ratio test of series of

functions,
2
.l . C 2(n—1)
lim |—— = lim =0,
N - oolUn—1 n- o 2ni2n—1j

series fl(c) converges for al ¢, i.e. series Gfl(c) uniformly converge to Dgl(G) in
(— oo, + oo) .
Now let us turn our attention to prove

11



+00 +o0
[05'(G)ede = [G*f1()dg
_1775 17 4.2 17 one2
—E_J;oc G dc+l—2_{oc G dq+~-+a_{f Gdg+---.
(29)
According to the definition of improper integral in (— o, + oo) :

jjof (x)dx = j f (x)dx + J]iof (x)dx

if the two improper integrals on the right hand side of above equation are convergent.
However, the function f we considered in this paper is even or odd. Then the first

integral on the right hand side can be transformed to the product of a constant and the
second one. Thusit is enough to give the proof of (29) in [O, + oo). For n>0,

+00 +00
J’cznszc _ J’Czn exp(— C2)dc
0 0

+00 +00
- _plc2nt exp(— czlo +272(2n-1) [ 20n-1) exp(— Cz)dc
0

=2""(2n-1)(2n - 3)~~-1+Fexp(— cz)dc

I

=27"(2n-1)(2n - 3)---17.

Apply the Ratio test of series of constants to the right hand side of (29),

Un | jjm oL

Up—1| n-o 2n 2

the series of the right hand side of (29) is convergent. Let the sum of the seriesis S.
Thusfor e >0, CintegerN ,when n> N,

lim

n—- oo

1 + 00 1 + 00
- IcZnGqu_'__ J-CZ(n+1)szc+ <gl2.
Con 9 C2(n+1) o
So
1 + 00 + 00
Co(N+1) Co(N+2)
Since ichz,m,LQZNGZ are integrable in [O, +oo), then OMg >0, when
C2 C2N
M > Mo,
+o00 . e
[—?G%dd<—— (=12 N). (31)
Y Co; 2N

12



Since the series of (28) is uniform convergent and each term of the series is
continuous and positivein [0 +oo) then

M M
IDc_Il( )GdC =— ICszdQ +— J'Q4G2dq +- J'Cznsz( +, (32
0 2n

and

1 M 1 M
ZGZdC +|— IC4szC + N ICznszC +
12 0

M
[O5'(G)edq <
0

+00
) el ICZnGZdC +
2n

1+oo 1 + 00
< > Ichzdc + I J’c4szc +

+ 00
2n 0

I
.U)

Also since

M
[05'(G)ede =
0

M
[05*(G)eds
0
increaseswhen M increases, then
+00
[05*(G)eds existsand < S. (33)
0
On the other hand, from (32) and the conditions

M M

1
[O05G)ede =2 jchzdc+ jc4szc+ ow ch”szc+---
0

2~2 42 2n~2
chc+ chq+ ¢ 'Godg+--
‘[ ‘[ CZn ‘(l;
+o00 D
2n =
+o00 0
zs—% Ichzdc+ J’Q4szc+ 1 ICZNGZdCD
C2N H
E,# J’C N+1)szQ+ El
FP2(N+1) B

When M > Mg, the part in the bracket of the second term in above expression is less

than €/2 from (31). The part in the bracket of the third term is less than €/2 from
(30). Thus

+00
[O5(G)ede 2 S-¢.
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Because € isarbitrary positive, we have

+f, 051 G)ede = S. (34)
Combining (33) and0(34), (29) holds.
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