
Teaching and Assessing Programming Strategies

Explicitly
Michael de Raadt, Richard Watson
Department of Mathematics and Computing

University of Southern Queensland
Toowoomba, Qld, 4350, Australia

{deraadt, rwatson}@usq.edu.au

Mark Toleman
School of Information Systems

University of Southern Queensland
Toowoomba, Qld, 4350, Australia

markt@usq.edu.au

Abstract

This paper describes how programming strategies were

explicitly instructed and assessed in an introductory

programming course and describes the impact of this curricular

change. A description is given of how strategies were

explicitly integrated into teaching materials and assessed in

assignments and examinations. Comparisons are made

between the outcomes of novices under the new curriculum

and results of novices‟ learning under the previous implicit-

only strategy curriculum, measured in an earlier study. This

comparison shows improvement in novices‟ strategy

application under the new curriculum.

Keywords: Strategies, introductory programming, curriculum.

1. Introduction
It is possible to distinguish programming knowledge from

programming strategies. Knowledge involves the declarative

nature (syntax and semantics) of a programming language,

while strategies describe how programming knowledge is

applied (Davies, 1993). Programming strategies involve the

application of programming knowledge to solve a problem. A

literary survey that defines these terms and highlights this

distinction is given by Robins, Rountree, & Rountree (2003).

Programming strategies can be plans as described by Soloway

(1985), or patterns (Wallingford, 1996), algorithms, etc.,

together with the associated means of incorporating these into

a single solution. Soloway suggests programming knowledge is

not a “stumbling block” (1986, p. 850) for novices and

suggests teaching should reach beyond a focus on syntax and

target programming strategies. Robins et al (2003) also

suggest that the key to novices becoming effective lies in them

learning programming strategies rather than acquiring

programming knowledge.

Another distinction relevant to this study is found between

programming comprehension (the ability to read and

understand the outcomes of an existing piece of code) and

generation (the ability to create a piece of code that achieves

certain outcomes). Whalley et al. contend that “a vital step

toward being able to write programs is the capacity to read a

piece of code and describe it” (2006, p. 249) meaning that a

novice must be able to comprehend a solution (and the

knowledge and strategies within it) before they can generate a

solution at the same level of difficulty. According to Brooks

(1983), expert and novice programmers can be distinguished

by how they undertake comprehension. During program

generation an expert can rely on a tacit body of programming

plans developed through solving past problems (Soloway,

1986), while novices are traditionally expected to conceive and

apply plans, with varying degrees of success (Rist, 1991).

The Leeds group (Lister et al., 2004) attempted to isolate the

cause of poor novice results measured by the McCracken

group (McCracken et al., 2001). The Leeds group reported that

many instructors attribute poor results to poor problem-solving

ability in novices. The group attempted to create programming

questions that required no problem-solving ability to answer. If

novices succeeded in the test it would confirm that novices can

successfully acquire programming knowledge and instructors

could put this issue aside and focus their attention on

improving strategy instruction. If novices failed this test, it

would indicate a failure in programming knowledge. Results of

the Leeds group study, and the BRACElet project (Whalley et

al., 2006) that followed, showed that many novices exhibit a

fragile programming knowledge and very few can demonstrate

programming strategy understanding in a comprehension

exercise. It is therefore important to consider both

programming knowledge and strategy together in curricula.

When considering the problems novices are expected to solve

in an introductory programming course, de Raadt, Toleman

and Watson (2006) use a scale of problems with three levels

being “system”, “algorithmic” and “sub-algorithmic”. The

simplest of these is sub-algorithmic level problems, with

solutions that do not involve algorithms or system design.

Examples of problems of this scale include avoiding division-

by-zero, achieving repetition until a sentinel is found, and so

on. Strategies used to solve problems at this level are

particularly relevant to novices in their initial exposure to

programming, yet these strategies are also a fundamental part

of solving problems at any level.

1.1 Previous Work

1.1.1 Initial Study
A previous study (de Raadt, Toleman, & Watson, 2004) found

weaknesses in a traditional curriculum used in teaching an

introductory programming course to novices where strategies

were not taught explicitly. Instead, students were expected to

learn strategies implicitly by seeing examples and solving

problems. Students who participated in the study were asked to

create a solution to a simple averaging problem. A number of

common flaws were detected when students' solutions were

scrutinised under Goal/Plan Analysis (Soloway, 1986).

Participating students were not consistently able to:

 initialise sum and/or count variables,

 use a correct looping strategy for the given problem,

 guard against events such as division by zero, or

 merge plans that should be achieved together.

Students, on average, were only able to demonstrate

application of 57% of the strategies required for a complete

solution. These flaws implied weaknesses in the curriculum

being delivered to the students at the time.

Copyright © 2009, Australian Computer Society, Inc. This paper appeared at the

Eleventh Australasian Computing Education Conference (ACE2009), Wellington,

New Zealand, January 2009. Conferences in Research and Practice in Information

Technology, Vol. 95. Margaret Hamilton and Tony Clear, Eds. Reproduction for

academic, not-for-profit purposes permitted provided this text is included.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

45

1.1.2 Pilot Study
Educational research experiments (Biederman & Shiffrar,

1987; Reber, 1993) have shown that explicit instruction can be

more powerful than implicit-only instruction, so it was

proposed that programming strategies be taught explicitly. A

number of attempts have been made to represent sub-

algorithmic strategies in a form that can be presented to

novices; with most recent studies focussing on patterns

(Muller, Haberman, & Ginat, 2007; Porter & Calder, 2003;

Wallingford, 2007). For this study plans were chosen as they

can be used with multiple paradigms, including the object

paradigm. Plans can be expressed simply, particularly at a sub-

algorithmic level. de Raadt, Toleman and Watson (2006)

showed that plans suitable for novice instruction at a sub-

algorithmic level can be identified in solutions produced by

expert programmers. Although plans were chosen as a strategy

representation, the focus of this study is on instruction of

strategies, and this could be tested with any form of strategy.

Before introducing programming strategies in a full

introductory programming course, a pilot study was

undertaken (de Raadt, Toleman, & Watson, 2007). A

controlled experiment was conducted that compared two

curricula: one including programming strategies explicitly and

a traditional curriculum that required students to learn

strategies implicitly. Each curriculum was delivered over a

weekend with students who had no programming experience.

The experiment showed that it is possible to incorporate

strategies explicitly into a curriculum. At the end of the

weekend, participants were asked to generate solutions to three

problems including the averaging problem used in the initial

study and two similar problems. Experimental participants,

who had been exposed to explicit strategy instruction, used

strategies in their solutions, although no significance was

proven as the number of participants was small. After the

weekend courses, control and experimental participants were

interviewed to probe their understanding of the strategies they

were exposed to, either implicitly or explicitly. Participants

were asked to describe their understanding of the problem

statements. They were asked to lead the interviewer through

their solution, describing each part. Participants were also

asked say if they felt their solution would solve the problem.

Participants exposed to explicit strategy instruction used

terms from a strategy vocabulary to describe their solutions

and showed greater confidence than those exposed to a

traditional curriculum.

After the pilot study strategies were introduced into an actual

introductory programming course held over a semester. A

larger set of programming strategies was expressed and

incorporated into teaching materials, lectures, formative and

summative assessments and the examination.

The main testing approach used to gauge strategy application

in previous studies was Goal/Plan Analysis (Soloway, 1986).

With novices, this approach is limited to analysing solutions

generated at or near the end of an introductory programming

course. After the pilot study it was proposed that analysis of

strategy skill should be conducted in more flexible ways

throughout the course by taking the ideas inherent in

Goal/Plan Analysis and using them to assess student work in

assignments and examinations. The following are ways

strategies were incorporated in assignments and examinations.

 Encouraging students to use particular strategies

when generating solutions for assignments

 Awarding credit for application of strategies in

assignment marking criteria

 Using problems that focus on programming

strategies as part of the final examination

 Analysing examination solutions in a Goal/Plan-

Analysis-like manner

Awarding credit for applying strategies in assessments was

also done to encourage students to value this component of

programming and devote more effort to learning it.

1.2 Participants and Setting
Participants in this study were novices studying in a first-year

introductory programming course. The course is delivered to

students on-campus (approximately 40% of the student cohort)

and students studying externally (via distance education,

potentially anywhere in the world). On-campus students are

expected to attend two one-hour lectures followed later in the

week by a one-hour tutorial (in a normal classroom) and a two-

hour practical class with computers. External students study

independently by reading the same written materials, accessing

lectures online, and undertaking tutorial and practical

exercises. The course runs twice a year, each year, but this

study will focus on the results of three particular cohorts.

Table 1. Cohorts involved in the study

Semester N Student Location Strategies

2003 42 on-campus implicit-only

2005 36 on-campus, external explicit

2007 45 on-campus, external explicit

Table 1 shows which cohorts were the focus of comparisons in

this study. The initial study, reported in (de Raadt, Toleman, &

Watson, 2004), was conducted 2003 in class with on-campus

students only. The later cohorts also included students

studying externally as testing was conducted as part of the

examination; this also kept participant numbers consistent

between comparisons during a period of decline in student

numbers. In each cohort, participants included school leavers

and mature-aged students. Students were from a range of

discipline areas but were primarily IT and Engineering

students. The entry standard was consistent throughout the

period of study. The mix of students has varied with more non-

computing students undertaking the course in later years.

Apart from the inclusion of explicit strategy instruction

(described in detail in section 0) the curriculum was

unchanged between the offerings listed above. The course

follows a procedural paradigm using the C programming

language teaching topics including functions, data storage,

selection, iteration, arrays, I/O and recursion. The instructor

was the same in all instances.

1.3 Research Questions
This section is divided into two parts related to two

perspectives (integration and impact) taken when conducting

this study. This two-perspective structure is mirrored in the

Methodology, Results and Discussion sections of this paper.

1.3.1 Integration Questions
The first two questions consider the possibility of instructing

and assessing programming strategies explicitly. Although this

was established on a smaller scale in the pilot, it needs to be

tested with a complete curriculum in a full-scale introductory

programming course.

RQ1. Can instruction of programming strategies be

explicitly incorporated into instruction in an actual

introductory programming course?

RQ2. Can programming strategy skill be measured as

part of the assessment in an actual introductory

programming course?

CRPIT Volume 95 - Computing Education 2009

46

1.3.2 Impact Question
The third question relates to the effect of introducing explicit

programming strategies to novice programmers. This question

will be answered by analysing novice performance on

assessments in the course and comparing this to the baseline

performance described by the initial study (de Raadt, Toleman,

& Watson, 2004).

RQ3. What is the impact on novice programmers of

incorporating programming strategy explicitly into

instruction and assessment?

2. Integrating Strategies
Over the two-and-a-half-year period between the second half

of 2005 and the end of 2007, programming strategies have

been incorporated into the curriculum of an introductory

programming course.

Programming knowledge was presented in a similar manner to

the traditional curriculum used. Strategies are interwoven

through the course in an explicit manner. In the beginning of

the course the distinction between knowledge and strategies is

presented. Figure 1 shows an initial description of plans as

strategies within a description of the programming process.

Strategies are a part of the curriculum and testing students‟

strategy skills forms part of the assessment. Students are

informed of this at the outset.

 Written materials provided to students include notes for each

module of the course and exercises for each week. Students are

encouraged to read the written materials before attending or

listening to lectures provided online (with audio for external

students). The lectures complement the written materials and

allow opportunities for questions and further explanations.

Each week students are expected to undertake written and

computer-based exercises, in tutorials and practicals, to

reinforce the material for the week.

 The following sub-sections describe how programming

strategies were explicitly incorporated into written materials,

lectures, weekly exercises, assignments and in the course

examination.

2.1 The ‘Strategy Guide’
The major component of written material provided to novices

in the course is referred to as a „Study Book‟. More detail

about the Study Book modules is given in section 2.2 below.

At the end of the Study Book two appendices are given: one is

a syntax guide and the other collects together all the strategies

that are covered in the course. This „Strategy Guide‟ is

available online (de Raadt, 2008).

The Strategy Guide begins by defining how strategies can be

integrated. Abutment, nesting and merging are discussed in

this introduction. Each strategy is then described as either a

plan or, in the case of some later strategies, as a basic

algorithm. An example is given in Figure 2. The programming

knowledge required to apply each plan is stated at the

beginning of each plan description. Examples and diagrams

are provided for most strategies. The Strategy Guide forms a

resource for novices studying in the course, and possibly after

they have completed the course. All strategies assessed in

assignments and the examination can be found in this guide;

students are told this at the beginning of the course and again

before the examination. Strategies are addressed individually

in context within the modules of the Study Book and lectures.

1.6.1 Design

An expert programmer will take time to

properly design a solution. It is tempting to

jump to implementation, but often, without a

reasonable design, a programmer can waste

time correcting a poor implementation and

take far longer than if they had spent a small

amount of time on design first.

From a problem statement a programmer will

identify the goals that need to be achieved.

These goals can usually be found through a

careful reading of the problem statement.

When the goals of the problem have

been identified, a programmer can

choose appropriate plans that satisfy

goals. A plan is a small, independent

strategy that the programmer has

applied in a past solution. During this

course we will be covering

programming knowledge and also the

strategies that you can use to apply

this knowledge. Look for the

STRATEGY sidebar to differentiate parts of this book that cover strategies.

Once plans have been identified they need to be combined together to form a solution. Plans

can be combined together in three possible ways.

 Abutment

Placing the plans one after another in the correct sequence that will solve the

problem.

 Merging
Integrating plans so that common parts are performed together

 Nesting
Placing one plan inside another plan

Depending on the scale of the solution a programmer will design a solution in their head, on

paper or using some computerised tool. The solution will show the programmer how to

implement the program.

S
T

R
A

T
E

G
Y

Problem

Goal Goal Goal…

Plan Plan Plan…

Solution

Figure 1. Introduction to strategies from the Study Book

Plan 6. Triangular Swap Plan

This plan requires an understanding of variables and the assignment operator.

Consider how you swap two items. Imagine two pencils in front of you. To swap their positions you

would pick up one with one hand, the second with your other hand and then place each in their new

positions.

A computer can only perform one action at a time. Now, imagine that you only have one hand; how

would you swap the positions of the two pencils now? Keep in mind also that when a variable is

assigned a new value, the old value is replaced and cannot be accessed later. Attempting to swap

using the above method will result in two copies of the same value.

To achieve a swap a temporary position is needed. One of the pencils could be moved to the

temporary position; the second pencil could be moved to its new location; finally the first pencil could

be moved from the temporary position to its new position.

Here is an example in the context of a full program.

#include <stdio.h>

int main() {

 int firstPosition = 5; // First position containing value to swap

 int secondPosition = 6; // Second position containing value to swap

 int tempPosition; // Temporary position for swap

 // Output the numbers after the swap

 printf("Before Swap...\n");

 printf("First: %i, Second: %i\n", firstPosition, secondPosition);

 // Swap the two numbers in a triangular swap

 // 1. Copy the value from the second position to temp

 tempPosition = secondPosition;

 // 2. Copy the value from the first position to the second

 secondPosition = firstPosition;

 // 3. Copy the value from the temp position to the first

 firstPosition = tempPosition;

 // Output the numbers after the swap

 printf("After Swap...\n");

 printf("First: %i, Second: %i\n", firstPosition, secondPosition);

}

Here is the output of the above program.

Before Swap...

First: 5, Second: 6

After Swap...

First: 6, Second: 5

The above results show the values are swapped and not duplicated.

Position 1 Position 2

Temp Pos

Position 1 Position 2

1
Temp Pos

Position 1 Position 2

2

Temp Pos

Position 1 Position 2

3

Figure 2. An example of a plan from the Strategy Guide

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

47

The Strategy Guide contains 18 strategies ranging in scale

from very simple plans such as finding an average, through

several sub-algorithmic plans such as a triangular swap (see

Figure 2 for this example), and on to some algorithmic

strategies such as sorting. The strategies currently in the

Strategy Guide are listed below.

1. Average plan

2. Divisibility plan

3. Cycle Position plan

4. Number Decomposition plan

5. Initialisation plan

6. Triangular Swap plan

7. Guarded Exception plans (including Guarded

Division plan)

8. Counter-Controlled Loop plan

9. Primed Sentinel-Controlled Loop plan

10. Sum and Count plans

11. Validation plan

12. Min/Max plans

13. Tallying plan

14. Search algorithm

15. Bubble Sort algorithm

16. Command Line Arguments plan

17. File Use plan

18. Recursion plans (single- and multi-branching)

2.2 Explicit Incorporation in Written Notes
Within the 12 modules of the Study Book, programming

strategies are introduced after presenting the programming

knowledge applied in each strategy. In this context the

strategies show immediately how the knowledge can be

applied, which, in its purest sense, is the nature of a strategy.

This is followed by a code example showing the plan applied.

For instance, the Triangular Swap plan is shown after students

cover variables and assignment as programming knowledge

components. This takes place in the third module, covered

during the third week of the course. This plan is discussed in

lectures, reinforced in tutorial and practical exercises and

assessed in assignments and in the examination. The

Triangular Swap plan appears again when the Bubble Sort

Algorithm is presented in a later module of the course. This

demonstrates how identifying strategies and creating a

vocabulary for strategies allows instructors to use this

vocabulary, and in doing so, reinforce strategies when they

appear later in the course.

In the Study Book a sidebar down the left is used to visually

distinguish parts covering programming strategy from other

parts of the Study Book.

2.3 Explicit Incorporation in Lectures
During lectures, strategies are presented and discussed after

relevant programming knowledge content had been covered.

Lectures are presented in person to a class of on-campus

students. The lecture is also recorded and the slides and audio

are presented together and placed on the course website.

Figure 3. Example of a lecture slide showing the Guarded

Division plan

The example shown in Figure 3 is one of a number of related

slides that discuss the Guarded Division plan. On the left of

the slide the outline of the lecture is shown and the current

topic, „Guarded Division‟, is highlighted. Observe that much

of the previous content of the lecture has covered

programming knowledge. Before a guarded division can be

applied, novices must be aware of the if statement and the

division operator (covered in a previous module). Students are

shown how to apply this plan. This strategy is reinforced in the

tutorial class held later that same week and is assessed in

assignments and has been assessed in the examination.

2.4 Strategies in Tutorial and Practical

Exercises
Programming is practiced in tutorial and practical classes.

Exercises for these classes are listed in the Study Book

following the content of each module. Prior to adding strategy

content explicitly, the following exercise was given as an

example.

Write a program that will allow the user to enter

words. Use the %s format sequence in a scanf()

call to capture each word one at a time. Find the

length of each word using strlen(). To end the

user input, the user will enter the string “end”. At

the end of the program, output the count of words

and the average length of the words.

This example demonstrates how novices were expected to

learn programming strategies implicitly in order to solve

problems. The problem statement describes what needs to be

achieved, but does not suggest how a solution should be

constructed, and no strategy to solve the problem had been

given in previous instruction.

CRPIT Volume 95 - Computing Education 2009

48

Computer Exercises

8 Write a program that will allow the user to enter words. Use the %s format sequence in

a scanf() call to capture each word one at a time (this will skip whitespace between

words). You don't have to keep the user inputs in memory; you only need to deal with

each word one at a time. Create an array with 256 characters for the input word. Set the

maximum word size as a constant.

Find the length of each word using strlen(). To end the user input, the user will

enter the string "end" (you will have to use strcmp() to test for this). You will need

to include string.h to use these functions. Set the sentinel word as a constant.

At the end of the program, output the count of words, the total number of letters and the

average length of the words. Be sure to use a sentinel controlled loop and guard the

calculation of the average word length. Keep all numeric values as integers.

Your program should work if several words are entered before the sentinel, or if the

sentinel is entered as the first input. Test your program by entering "end" as the first

word. Try entering more than one word per line of input.

Figure 4. Example exercise requiring the Sentinel-

Controlled Loop and Guarded Division plans. Highlighting

(added for this figure only) shows strategy content

As a contrast, a new version is shown in Figure 4 above. In the

new version students are given the same initial requirement

with a few programming knowledge embellishments (such as

the size of an array). Following this, in the third and fourth

paragraphs of the problem statement, strategy instructions are

given. Students are expected to use a Primed Sentinel-

Controlled Loop to achieve repetition; this plan is named and

its use is directed. The students are also reminded to guard the

division when calculating the average. At this stage students

are expected to know what a sentinel-controlled loop is and

how to achieve a guarded division. This problem relies on

students possessing a vocabulary that includes the term

„sentinel‟, which is used to define the value that, when

encountered, will stop the repetition.

13. Fill in the blanks in the following code which swaps the values of two character variables
and then outputs the variables new values.

#include <stdio.h>

int main() {

 char letter1 = 'a'; // First letter

 char letter2 = 'b'; // Second letter

 char temp = '-'; // Temporary position

 // Swap the two letters in a triangular swap

 // Output the letters

}

Figure 5. Example exercise from Module 3 requiring

Triangular Swap plan

The example shown in Figure 5 requires students to apply a

Triangular Swap plan to swap two character values. The plan

name is mentioned explicitly in the code (in a comment) and

three blanks imply the use of the triangular swap. Later in the

course this strategy is used again in an exercise where students

write a function that takes two pointers and orders the values

to which they point.

Computer Exercise s

6. Copy the Guarding Division function example from page 15 that will calculate an

average. Add a main() function that will call the average() function. It should still

work when the value passed to count is zero.

6.1 Remove the guarding if-else statement so all that remains in the function is the

return statement. Now test the function sending zero as the value of count.

When the program is compiled and run, the operating system should shut the
program down and display an error.

6.2 Restore the guard to the function and test that it works correctly again.

Figure 6. Example exercise from Module 5 testing the

Division by Zero plan

Figure 6 contains an example of an exercise that asks students

to experiment with the Guarded Division plan. This exercise

encourages novices to experience the consequences (a program

crash) resulting from dividing by zero. Through this, novices

will hopefully come to appreciate the necessity of protecting

the division with a guard.

Students are deliberately led to practise application of

particular strategies for these problems in the same way that an

instructor might encourage students to use a particular

language construct, such as a for loop. In the examination,

students are expected to apply required strategies without

being led in this manner.

2.5 Assignment Instructions
As well as being introduced explicitly into instructional

materials, programming strategies also became assessable in

the course. Sections 2.5 to 2.8 describe how programming

strategies have been included in assignment instructions and

marking criteria as well as how examinations have been

designed and marked to include testing of strategy-related

abilities.

When teaching strategies explicitly, the challenge for

instructors is to create problems that focus on particular

programming strategies. Achieving this allows novices to

demonstrate specific strategies in assignments and the

examination.

 In your program, create the following functions.

…

void decryptEncryptLine(int shift);

 This function will shift alphabetic characters by the amount of the shift. The

function performs in the same manner for encryption and decryption. If the

shift is a positive amount, this will shift characters forward (encrypt

characters) and if negative it will shift them back (decrypt characters).

 The function will input and process each character one at a time until a

newline character is detected. Use a primed sentinel controlled loop. Do not

try to store or process entire lines.

Figure 7. Extract from assignment instructions highlighting

the requirement for a specific programming strategy

In assignment instructions students are given tasks that require

them to apply specific programming strategies. Figure 7 above

is an extract from an assignment‟s instructions where students

are asked to use a Primed Sentinel-Controlled Loop to input

characters entered by a user until the end-of-line is

encountered.

2.6 Assignment Marking Criteria
As well as requiring specific strategies to be applied in the

creation of solutions, the marking schema used to evaluate

solutions also explicitly includes references to specific

strategies.

In the course described here students participate in electronic

peer-review as part of each assignment. Marking schema are

constructed well in advance and released as part of the

assignment instructions. Students are therefore aware of how

their submission will be judged before they submit. They can

see that they will receive marks for applying specific

programming strategies. Being involved in peer-review,

students are also expected to be able to judge if a peer-student

has correctly applied a specific strategy where required by a

criterion.

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

49

…

Check that no variables are declared outside functions. This does not include

global constants.

 A Primed Sentinel Controlled Loop is used to process menu options in the

main() function

The function should contain a priming input before the loop and a subsequent

input at the end of the loop. If the user enters the quit option in the first instance,

the loop body should not be entered.

 A Primed Sentinel Controlled Loop is used to gather characters for input

until the end of a line in the decryptEncryptLine() function

The function should contain a priming input before the loop and a subsequent

input at the end of the loop. If the user enters a blank line, the loop body should

not be entered.

 Code is indented consistently and no line is longer than 80 characters

…

Figure 8. Extract from the marking scheme showing

strategies are required in the solution for a programming

assignment

Criteria relating to programming strategies are mixed with

other criteria in each marking scheme. Figure 8 is an extract

from the marking scheme for the same assignment that was

used in the previous section.

2.7 Examination Questions
Questions in the examination are designed to separate ability

in knowledge from strategy and ability in comprehension from

generation. By combining these aspects, four types of question

can be defined as shown in Figure 9.

Knowledge
Comprehension

Knowledge
Generation

Strategy
Comprehension

Strategy
Generation

Knowledge

Strategy

G
e
n
e
ra

tio
n

C
o
m

p
re

h
e
n
s
io

n

Figure 9. Four types of examination questions

based on novice instruction aspects

Targeting questions to one of these four areas is not always

simple. Some questions may stray over the boundaries between

areas. The focus of the question can be reinforced by criteria

used to award marks (see section 2.8).

2.7.1 Knowledge-Comprehension Questions
To test knowledge and comprehension, an examination

question must focus primarily on language syntax skills but

not ask the novice to generate any code. The question should

test that the student understands an example shown to them,

possibly by simulating how the code would be executed. A

knowledge-comprehension examination question is shown in

Figure 10.

QUESTION 1 (10 marks, 12min)

What will the following output?

#include <stdio.h>

int testFunc(int *ptr, int num);

int main() {

 int x=7, y=3, z=5;

 printf("%i %i\n", x, y);

 z = testFunc(&y, x);

 printf("%i %i %i\n", x, y, z);

}

int testFunc(int *ptr, int num) {

 int temp;

 printf("%i %i\n", *ptr, num);

 temp = num;

 num = *ptr;

 *ptr = temp;

 printf("%i %i\n", *ptr, num);

 return num + (*ptr);

}

Figure 10. A Knowledge-Comprehension examination

question

2.7.2 Knowledge-Generation Questions
Knowledge-generation questions should require novices to

generate code but not solve a problem requiring any

programming strategies. The question should instead prompt

the novice to create code that demonstrates their understanding

of specific language constructs. An example of such a question

is given as Error! Reference source not found..

QUESTION 4 (10 marks, 17min)

Write a main() function that input an integer from a user and then use a switch statement to respond to

the user’s input with one of the following outputs:

Where 0 is entered, output hello

Where 1 is entered, output bye

Where any other value is entered, output invalid

Figure 11. A Knowledge-Generation examination question

2.7.3 Strategy-Comprehension Questions
Strategy-comprehension questions are perhaps the most

difficult to define. These questions must test the strategy

potential of a novice without asking them to generate any

code. Possible ways to achieve this include the following.

 Asking novices to identify or describe strategies

used in a given solution

 Asking novices to relate common strategies applied

across multiple solutions

 Asking novices to identify how a strategy has been

incorrectly applied in, or is absent from, a solution

In Figure 12 we see an example of a strategy-comprehension

question that asks the novice to identify the strategy-related

error in the code and state how the error could be corrected.

The error can occur when the argument count has a value of

zero, which would cause a division by zero. There is no guard

to protect against this. To remedy this problem the student

should apply a guard against division by zero. The exact

„Guarded Division‟ terminology is not critical if the novice can

express this solution using other words.

QUESTION 5 (5 marks, 18min)

The following function contains a logic error. In a few words, describe what the error is

and how you would remedy the error. Do not re-write the whole function.

int getAverage(int sum, int count) {

 return sum/count;

}

Figure 12. A Strategy-Comprehension examination

question

2.7.4 Strategy-Generation Questions
Strategy-generation questions are probably what most

instructors think of when they write a generation question for

an examination. Such problems were designed to allow

CRPIT Volume 95 - Computing Education 2009

50

novices to apply specific strategies they have learned in the

course.

Figure 13 gives an example of two questions that formed a

series from the S2, 2007 examination. The first question asks

the novice to demonstrate a Validation plan. The Validation

plan involves a Sentinel-Controlled Loop plan where a valid

input is the sentinel. The second question in Figure 13 is

essentially the same classic averaging problem, defined by

Soloway (1986), and used in the initial study (de Raadt,

Toleman, & Watson, 2004). This question requires novices to

apply the following plans, each of which is covered explicitly

in the course.

 Primed Sentinel-Controlled Loop plan

 Sum plan

 Count plan

 Guarded Division plan

 Average plan

 Output plan

2.8 Marking the use of Strategies in the

Examination
When assessing the use of strategies in an examination it is

critical that the marking scheme does not fall back on

syntactical measures. The marking criteria for strategy related

questions should seek the application of specific strategies or

comprehension of those strategies. Strategy-generation

questions should target specific strategies and the marking

scheme for these questions should award marks where the

required strategies have been applied, rather than for

syntactical correctness.

Distinguishing how knowledge-related and strategy-related

questions are marked forces a greater focus on particular areas

from Figure 9 at the beginning of section 2.7.

3. Methodology
The comparison described in this paper can be considered

from two perspectives, which can be related back to the

research questions stated earlier:

 to test the possibility of explicitly incorporating and

assessing programming strategies in an actual

introductory programming course (RQ1 and RQ2);

and

 to measure the impact of explicit programming

strategy instruction and assessment on novices by

comparing results produced under the new

curriculum with benchmark measurements from the

initial study (RQ3).

The method for achieving these aims is described in the

following sub-sections.

3.1 Integration
The first and second research questions (RQ1 and RQ2) raised

in section 1.2 consider the possibility of integrating strategy

content into an actual introductory programming course. The

success of this integration, drawing on examples presented

earlier, is discussed in section 4.1. Observations are made on

student response to the newly incorporated materials and

assessment.

3.2 Impact
The third research question (RQ3) seeks to measure impact of

the new curriculum relative to curriculum measured in the

initial study (de Raadt, Toleman, & Watson, 2004). Students

who participated in the initial study had studied using a

curriculum that required them to learn strategies implicitly. In

the initial study students were asked to create a solution to a

classic averaging problem. Several strategy gaps were detected

in student solutions indicating flawed understandings of the

required strategies. Of particular interest was the lack of

application of the Guarded Division plan.

Comparison of performance under the new curriculum with the

benchmark performance was achieved through two

examination questions. One question was included in the

examination that followed the first integration of explicit

programming strategy instruction in the second half of 2005

and another from an examination at the end of 2007. Results of

these two examination question comparisons are shown in

section 4.2.

3.2.1 Guarded Division Problem (2005

Examination)
One of the major flaws in novice strategy skill, detected in the

initial study, was poor use of guarded division. A 2005

examination question shown as Figure 12 (section 2.7.3) is a

strategy-comprehension question that targets the Guarded

Division plan. This question yields either a correct or incorrect

response. Student responses to this question were analysed and

compared to application of Guarded Division in the initial

study.

3.2.2 Averaging Problem (2007 Examination)
A 2007 examination question shown as Question 8 in Figure

13 (section 2.7.4) was a strategy-generation question that

repeated the averaging problem given to novices in the initial

study. Solutions to this question were analysed using the same

approach as used in the initial study. Eight features were

analysed in student solutions: seven plans, and the correct

merging of plans. The presence or absence of each of these

features was checked in all attempts. The features measured

were as follows.

 Initialisation of a sum variable

 Initialisation of a count variable

 A Sum plan in a Primed Sentinel-Controlled Loop

 A Count plan in a Primed Sentinel-Controlled Loop

 A guard against division by zero

 An Average plan

 An Output plan

 Merging of the Sum and Count plans inside the

Primed Sentinel-Controlled Loop

Strategies were judged as being either present or absent in

solutions. For more detail on how these features can be

QUESTION 7 (20 marks, 24min)

Write a function, using the following prototype, which will prompt the user and read in a

valid positive integer. If the user enters invalid input, or a negative integer, the function

will tell them their input was invalid and prompt them to enter another value. The function

will repeat this until the user enters a valid input.

int getValidPositiveInteger();

For your reference, the following lines of code will clear the standard input stream.

scanf("%*[^\n]");

scanf("%*c");

QUESTION 8 (20 marks, 24min)

Write a main() function that will read in integers and output their average. Input will be

gathered using the getValidPositiveInteger() function as described above (do not re-

write that function). Stop reading when the value 99999 is entered (this is not to be used as

an input).

Figure 13. A Strategy-Generation examination questions

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

51

identified in a solution, see (de Raadt, Toleman, & Watson,

2006).

The circumstances surrounding the initial testing were slightly

different to a final examination. The initial study was

conducted under examination-like conditions (students were

not permitted to talk to each other or use resource materials),

but in tutorial classes during the course. Final examinations are

held at the end of the course, giving students more time

between exposure and testing of the necessary plans. These

differences need to be kept in mind when comparing

performance between these tests.

3.2.3 Avoiding Bias
Neither of these two specific questions had been used in the

course prior to the examinations. The closest problem

resembling the averaging problem was the average word length

exercise given in practicals and shown in Figure 4 (section

2.4). The course materials covered each of the required

strategies. Students had opportunities to practice each of the

required strategies. These strategies were not emphasised

more than any other strategies taught in the course.

In the two examination questions, students are not led to use

any specific strategies; they are expected to have learned

which strategies to apply at this stage (during the exam).

4. Results
Results are presented below, again divided by the two

perspectives used earlier. First the success of integrating

programming strategies in an actual introductory programming

course is discussed. Specific strategy-related responses elicited

under the traditional and new curriculum are then compared.

4.1 Integration
Integrating explicit strategy instruction and assessment into an

actual introductory programming course was achieved. The

examples of curricular materials and assessment items shown

in section 0 demonstrate how this was achieved.

Although it is not scientific, some observations can be made.

Perhaps the most arduous part of integrating strategies

explicitly was in conceiving well focused assessment items. It

is challenging to create problems that required students to

apply specific plans, while maintaining interesting problems.

Even so, a set of problems was developed to assess strategy

skill in assignments and examinations.

Students accepted the new instruction as part of the course; no

student protested against the inclusion of strategies as

legitimate content. As each new cohort undertook the new

curriculum, they were not aware that it was different to the

traditional curriculum that preceded it. Students did not protest

against having their strategy skills assessed. As mentioned

earlier (see section 2.6), assignments involved peer review, so

students were being asked to evaluate the work of their peers.

Students were asked to complete reviews that required them to

judge the presence or absence of strategies in the work of their

peers.

4.2 Impact
Two specific questions were used to compare strategy skill

under the previous and new curricula. The questions were

drawn from two examinations, one which took place at the end

of 2005 after the first instance of the course to include explicit

strategy instruction, and one in the most recent instance at the

end of 2007.

4.2.1 Guarded Division Problem (2005

Examination)
During the initial study a particularly poorly applied plan was

the Guarded Division plan, with only four students out of 42

applying this plan. In the S2 2005 examination, under the new

curriculum, the strategy-comprehension question given as

Figure 12 (section 2.7.2) was used to specifically target

comprehension of the Guarded Division plan after explicit

instruction. This question showed a function used to calculate

an average; however, there was no guard around the division

so it was susceptible to failure if the count of values was zero.

Students were asked to identify the flaw and suggest a remedy.

Table 2. Change in Guarded Division application

 Correct Proportion

Application in generation study

before explicit strategy instruction
4 of 42 10%

Comprehension in 2005 exam

under new curriculum
25 of 36 69%

Results from Table 2 show the poor application of the Guarded

Division plan under implicit-only strategy instruction and the

potential of students to comprehend this plan after explicit

instruction. After explicit strategy instruction, correct answers

to the Guarded Division were provided by 25 of 36 students.

This indicates that most students had learned and could

comprehend the Guarded Division plan, knowing where it

should be applied.

Testing comprehension of a strategy (as in this problem) is not

directly comparable to generation of that strategy (as with the

initial study). However, knowing that 69% of students

comprehend the Guarded Division plan should be kept in mind

when considering the results of a comparison using a

generation task in the next subsection.

4.2.2 Averaging Problem (2007 Examination)
During the examination from S2 2007 the questions shown in

Figure 13 (section 2.7.4) were used. From this figure Question

8 repeats the averaging problem used in the initial study (de

Raadt, Toleman, & Watson, 2004).

CRPIT Volume 95 - Computing Education 2009

52

Solutions to this problem were analysed under Goal/Plan

Analysis, with the same list of plans sought. Figure 14

distinguishes results between the initial test, where novices

learned programming strategies in an implicit-only manner

and attempted the problem in class in the second last week of

semester, and the examination question under the new

curriculum that included programming strategies explicitly.

Results show consistent improvement in all plans except one.

The Guarded Division plan is still the most poorly applied

plan, with only 38% of participants using this plan even after

explicit instruction; however, this is a significant increase

(χ2≈9.47, p≈0.002), almost fourfold from the initial study, and

this level is higher than the level demonstrated by experts (de

Raadt, Toleman, & Watson, 2006). There was also a

significant increase in use of the Sentinel-Controlled Count

Loop plan (χ2≈4.98, p≈0.03).

Figure 15 compares the completeness (use of all expected

plans) from the initial study and results from the averaging

question in an examination under a curriculum with explicit

programming strategies. Under the new curriculum, the

proportion of correct solutions increased from 2% (1 of 42) to

31% (14 of 45) which is a significant increase (χ2≈12.56,

p≈0.0004). If the most poorly applied plan, Guarded Division,

is ignored the proportion of complete (and near-complete)

answers has increased from 20% (10/42) to 49% (22/45) which

is also a significant increase (χ2≈5.88, p≈0.02).

Table 3. Improvement between cohorts

Exam
Average Plan

Application

Implicit-only (2003) 4.0 of 7 plans (57%)

Explicit (2007) 4.8 of 7 plans (69%)

There was an improvement in the average proportion of

application of the seven expected plans between the student

cohorts. As shown in Table 3, prior to explicit instruction of

programming strategies, students applied 57% of the expected

plans on average. With explicit instruction of programming

strategies, this increased to 69% of the expected plans on

average. Using a two-sample t-test (one-tailed) there is

evidence of a statistically significant improvement between the

two cohorts (df=85, t≈1.66, p≈0.02).

5. Discussion
In this section we use the results from section 4 to answer the

research questions posed in section 1.3.

5.1 Integration
RQ1. Can instruction of programming strategies be

explicitly incorporated into instruction in an actual

introductory programming course?

While it did take some time and effort to transform a

traditional curriculum, adding explicit strategy content, this

was shown to be possible. The amount of strategy content is

not necessarily fixed and needs to be further refined. Sharing

these strategies with other instructors will allow this

development. It is useful to reiterate that strategies can be used

with most imperative and object-oriented languages so they

would suit the majority of introductory programming courses,

requiring little change for different languages.

RQ2. Can programming strategy skill be measured as

part of the assessment in an actual introductory

programming course?

It is possible to measure programming strategy ability in

novices with tests that address both comprehension and

generation. A number of different forms of assessment have

been demonstrated for programming assignments and

examinations, providing additional instruments, beyond

Goal/Plan Analysis for gauging strategy skill. Most assessment

methods used in the new curriculum resemble traditional

curriculum assessment items, but with careful problem design

and objective criteria for evaluation, assessment items can be

used to focus testing of knowledge and strategies

independently.

5.2 Impact
RQ3. What is the impact on novice programmers of

incorporating programming strategy explicitly into

instruction and assessment?

The results show students‟ use of strategies under a curriculum

where strategies are covered explicitly is better compared to

those results achieved under an implicit instruction curriculum.

There is a strong improvement in overall completeness of

solutions to the averaging problem tested between the initial

study (de Raadt, Toleman, & Watson, 2004) and an

examination under the new curriculum. There is a specific

improvement in the use of the most poorly applied strategy,

the Guarded Division plan, although its application is still

relatively low.

However, the results shown here are clearly retrospective and

do not definitively prove the benefits of explicit strategy

instruction. The results are consistent and the sample sizes

62%

64%

45%

43%

71%

10%

88%

88%

67%

78%

62%

67%

82%

38%

82%

91%

Initialise Sum

Initialise Counter

Sentinel
Controlled Sum

Loop Plan

Sentinel
Controlled Count

Loop Plan

Merged with
PSCIL plan

Guard Against
Div. By Zero

Average Plan

Output Plan

Implicit-only (2003)

Explicit (2007)

Figure 14. Comparison of plan use in the averaging problem

between implicit-only and explicit strategy instruction

2%

20%

31%

49%

All Plans

All Except Guarded
Div

Implicit-only (2003)

Explicit (2007)

Figure 15. Comparison of complete and near-complete

correctness in averaging problem before and

after explicit strategy instruction

Proc. 11th Australasian Computing Education Conference (ACE 2009), Wellington, New Zealand

53

provide confidence in the result. However, with two disparate

cohorts separated by four years, student capability and

individual differences make it difficult to definitively claim

that improvement in this very specific task is attributable to the

change of teaching method. There is still a need for a more

direct comparison to isolate the impact of such instruction.

6. Conclusions and Future Work
This study has shown that it is possible to instruct and assess

programming strategies. Teaching programming strategies in

this way creates a vocabulary that can be used in teaching and

assessment, and reused and reinforced after they are presented.

This study has also shown that strategies can be a valid part of

assessment and can therefore be a valuable part of an

introductory programming curriculum that aims to train novice

programmers to apply programming strategies. The methods

of strategy skill assessment used can be applied to both

comprehension and generation exercises and conducted

throughout a course. Strategy-related questions in

examinations can elicit results consistent with questions that

assess programming knowledge skill. Strategy skill testing can

also be achieved in regular assignments. With a more precise

vocabulary for defining a complete solution to a problem,

instructors can avoid vague terms such as „elegance‟ and

‟connoisseurship‟ when assessing the work of a novice;

instead, instructors can point out what strategies are absent or

misapplied in novices‟ solutions.

Students seem to learn and apply programming strategies more

consistently when they are presented in an explicit manner

than when they are learned implicitly. However, further

experimentation is required to isolate the effects of this

approach on the development of novices.

With a well defined distinction between programming

knowledge and strategies in an introductory course, there is

potential to investigate programming strategies as possible

threshold concepts (Boustedt et al., 2007; Entwistle, 2007).

7. References
Biederman, I., & Shiffrar, M. M. (1987): Sexing Day-Old

Chicks: A Case Study and Expert Systems Analysis of a

Difficult Perceptual-Learning Task. Journal of

Experimental Psychology: Learning, Memory and

Cognition, 13(4):640 - 645.

Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E.,

Ratcliffe, M., Sanders, K., & Zander, C. (2007):

Threshold concepts in computer science: do they exist and

are they useful? Proceedings of the 38th SIGCSE

technical symposium on Computer science education,

Covington, Kentucky, USA 504 - 508, ACM Press.

Brooks, R. E. (1983): Towards a theory of the comprehension

of computer programs. International Journal of Man–

Machine Studies, 18:543 – 554.

Davies, S. P. (1993): Models and theories of programming

strategy. International Journal of Man-Machine Studies,

39(2):237 - 267.

de Raadt, M. (2008) Strategies Reference,

http://www.sci.usq.edu.au/staff/deraadt/research/dissertati

on/Strategies%20Reference.pdf. Accessed November 24

2008.

de Raadt, M., Toleman, M., & Watson, R. (2004): Training

strategic problem solvers. ACM SIGCSE Bulletin,

36(2):48 - 51.

de Raadt, M., Toleman, M., & Watson, R. (2006): Chick

Sexing and Novice Programmers: Explicit Instruction of

Problem Solving Strategies. Australian Computer Science

Communications, 28(5):55 - 62.

de Raadt, M., Toleman, M., & Watson, R. (2007):

Incorporating Programming Strategies Explicitly into

Curricula. Proceedings of the Seventh Baltic Sea

Conference on Computing Education Research (Koli

Calling 2007), Koli, Finland 53 - 64.

Entwistle, N. (2007): Conceptions of Learning and the

Experience of Understanding: Thresholds, Contextual

Influences, and Knowledge Objects. In S. Vosniadou, A.

Baltas & X. Vamvakoussi (Eds.), Re-Framing the

Conceptual Change Approach in Learning and

instruction (pp. 123 - 143): Elsevier, in association with

the European Association for Learning and Instruction.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J.,

Lindholm, M., McCartney, R., Moström, J. E., Sanders,

K., Seppälä, O., Simon, B., & Thomas, L. (2004): A

multi-national study of reading and tracing skills in

novice programmers. ACM SIGCSE Bulletin, 36(4):119 -

150.

McCracken, M., Wilusz, T., Almstrum, V., Diaz, D., Guzdial,

M., Hagan, D., Kolikant, Y. B.-D., Laxer, C., Thomas, L.,

& Utting, I. (2001): A multi-national, multi-institutional

study of assessment of programming skills of first-year CS

students. ACM SIGCSE Bulletin, 33(4):125 - 180.

Muller, O., Haberman, B., & Ginat, D. (2007): Pattern-

Oriented Instruction and its Influence on Problem

Decomposition and Solution Construction. Proceedings

of the 12th Annual Conference on Innovation and

Technology in Computer Science Education (ITiCSE

2007), Dundee, Scotland.

Porter, R., & Calder, P. (2003): A Pattern-Based Problem-

Solving Process for Novice Programmers. Proceedings of

the Fifth Australasian Computing Education Conference

(ACE2003), Adelaide, Australia 20:231 - 238,

Conferences in Research and Practice in Information

Technology.

Reber, A. S. (1993): Implicit Learning and Tacit Knowledge.

New York, USA: Oxford University Press.

Rist, R. S. (1991): Knowledge Creation and Retrieval in

Program Design: A Comparison of Novice and

Intermediate Student Programmers. Human-Computer

Interaction, 6:1 - 46.

Robins, A., Rountree, J., & Rountree, N. (2003): Learning and

Teaching Programming: A Review and Discussion.

Computer Science Education, 13(2):137 - 173.

Soloway, E. (1985): From problems to programs via plans:

The content and structure of knowledge for introductory

LISP programming. Journal of Educational Computing

Research, 1(2):157-172.

Soloway, E. (1986): Learning to program = learning to

construct mechanisms and explanations. Communications

of the ACM, 29(9):850 - 858.

Wallingford, E. (1996): Toward a first course based on object-

oriented patterns. Proceedings of the twenty-seventh

SIGCSE technical symposium on Computer science

education, Philadelphia, PA USA 27 - 31, ACM Press,

New York, NY, USA.

Wallingford, E. (2007) The Elementary Patterns Home Page,

http://cns2.uni.edu/~wallingf/patterns/elementary/.

Accessed 19th November 2007.

Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robins, P.,

Kumar, P. K. A., & Prasad, C. (2006): An Australasian

Study of Reading and Comprehension Skills in Novice

Programmers, using the Bloom and SOLO Taxonomies.

Proceedings of the Eighth Australasian Computing

Education Conference (ACE2006), Hobart, Australia

52:243 - 252.

CRPIT Volume 95 - Computing Education 2009

54

