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ABSTRACT 

We use a pseudo-spectral Fast Fourier Transform method on MATLAB to study 

solitary wave solutions for fractional, coupled non-linear Schrödinger equations and 

find novel stability boundaries associated with solution symmetry within the fractional 

derivative order. From the bifurcation diagram we find soliton stability corresponding 

to symmetry, and other curious dynamics such as, symmetry breaking, non-stationary, 

and bright / dark pulses, and potentially new conditions to support symmetry making 

dynamics. We explore fractional derivatives of order α ∈ (1, 2], and display the results 

for consideration.  
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CHAPTER 1 INTRODUCTION 

The study of waves have been of interest to mathematicians and physicists for 

thousands of years: Pythagoras experimented with vibrating strings in the sixth century 

BC, while Galileo is said to have initiated the modern study of waves in the sixteenth 

century AD [1]. Throughout this time, our mathematical sophistication and hence our 

level of understanding of mechanical and mathematical nuances of waves has 

developed further, particularly since the application of calculus and study of partial 

differential equations (PDEs), fractional differential equations (FDEs), and diffusion 

equations, as part of academic research. 

Our understanding of waves has evolved from vibrating strings and the study of 

acoustics and soundwaves to much more complex phenomena. The family of 

Schrödinger equations and nonlinear Schrödinger equations (NLSEs) are a set of PDEs 

which have been employed to model a very wide range of natural behaviours, such as 

optical (light wave) waveguide research with applications in optical fibre networks 

supporting the internet [2-8]. Furthermore, NLSEs are used to model phenomena in 

plasma physics [6, 9-11], condensed matter physics [12-14] and quantum physics [6, 

9, 10, 12, 15, 16]. An important area of research with respect to NLSEs is finding 

conditions that support solitary waves: more specifically, solitary wave stability 

boundaries within these systems. 

Solitons are a type of wave first studied and published in 1845 by John Scott Russell 

[17]. In his published work, Scott Russell reported observing stable water waves 

travelling along a canal, which maintained their shape and speed for as long as Scott 

Russell could follow them (approximately one or two miles) before losing sight of the 

wave [17]. The creation of highly stable waves resistant to perturbations, and their 
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stability boundaries are of interest due to various optical applications such as improved 

optical fibre transmission rates, with immediate benefits for communication networks 

[7, 11]. 

Commensurate with the progression of wave research, so too did the paradigm of 

Physics shift from ‘classical’ to ‘modern’ studies with the development of relativity 

and Quantum Mechanics [18]. Relativity describes the geometry of space and time: 

for example, using the geometry of a well to describe the effect of gravity [19]. 

Quantum Mechanics may be succinctly described as the probability of observing a 

particle in space: for example, the probability of observing an electron in the vicinity 

of a proton. The probabilistic description of a particle is derived from the wave-particle 

duality of quantum scale objects [19].  

For a more sophisticated understanding of the significance of Schrödinger equations, 

and by extension fractional NLSEs, it is necessary to first understand how complex 

analysis and physics coalesce in the study of mathematical physics. 

 

1.1 Quantum mechanical motivation 

The unreasonable effectiveness of mathematics has provided a firm foundation which 

has allowed all sciences to flourish. To this end, and to demonstrate the importance of 

mathematical research in NLSEs, we will discuss the physical dilemma which led 

Erwin Schrödinger to develop the wave equations governing the wave-particle duality 

proposed by de Broglie [19]. 
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Research from de Broglie suggested wave-particle duality applied to electrons as well 

as photons, thereby equating the energy of a particle to the energy (E) of a wave, 

proportional to its frequency using the following model: 

 E =  hf      (1.1) 

where f is the frequency and h is Planck’s constant. We need to understand h = λp, 

where λ represents wavelength, and p is the momentum of a particle. From classical 

physics, we know p = mv, where m is the mass of the particle, and v is the velocity of 

the particle (where v = ẋ, the first time derivative of the position of the particle). Now 

we may rewrite (1.1) as follows:  

 E =  fλmv. (1.2) 

Now, we see de Broglie’s assertion builds on Einstein’s concept of mass energy 

equivalence. We recall the speed of a wave c = fλ, and if we assume the velocity in 

(1.2) is the speed of light, c, then v = c. Thus, we arrive at Einstein’s famous mass, 

energy equivalency (without momentum terms): 

 E =  mc2. (1.3) 

The problem here is that we have a wave (since c = fλ), but at the time, a governing 

wave equation did not exist to describe how this light wave solution behaved in a 

medium: physicists had a solution to a wave equation without the wave equation 

problem. 

We may consider a simplified solution to this problem by studying the classical heat 

equation: an example which serves as a straightforward demonstration of how 

quantum mechanics and complex analysis complement each other to provide useful 

results. We see the heat diffusion equation below: 
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 ut = uxx (1.4) 

where ut denotes the first partial derivative of the wave solution u with respect to time 

ut =
∂u

∂t
, and uxx denotes the second partial derivative with respect to space, uxx = 

∂2u

∂x2. 

We must understand the heat equation is not a suitable solution for relativistic particles, 

as heat travels relatively slowly as compared to light, and the solution is not Lorentz 

invariant [19]. Equation (1.4) may be generalised to the nth dimension using the 

Laplacian operator Δ, but in Physics this is restricted to spatial Cartesian coordinates 

(x, y, z): 

 ut = Δu. (1.5) 

To solve this problem (1.4), we take a commonly used mathematical method taught in 

undergraduate studies: simplify the problem. Therefore, we assume a solution of the 

form of a plane wave in time, choose one space dimension, x, and take an educated 

guess for the solution. By ansatz (or by understanding the derivative of an exponential 

function returns the original function itself), we try the plane-wave solution: 

   u(x, t)  =  Ae(kx−ωt). (1.6) 

Since the argument of the exponent must be non-dimensional, we include the constants 

k and ω. By dimensional analysis, we take k to be the wavenumber, and ω to be the 

wave frequency. To ensure compatibility with the potential wave solution (1.1), we 

will assume k = 
2π

λ
, and omega becomes the angular frequency ω = 2πf. 

To solve equation (1.5) in one space dimension, we begin taking derivatives of 

equation (1.6): 

 

                 ut = −ωAe(kx−ωt) 

                 uxx  =  k2Ae(kx−ωt)     
(1.7) 
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and substituting the derivatives into equation (1.4) yields the following result: 

 −ωAe(kx−ωt) = k2Ae(kx−ωt).           (1.8) 

For (1.8) to be true for E, we need to draw once again from Physics to provide guidance 

to motivate the Schrödinger wave equation. Therefore, we consider equation (1.8) 

describes the energy of a closed system. 

The Hamiltonian (H) is an operator acting on E, which describes the total energy of a 

system in the following way: H = T + V. Classical Physics dictates T= 
mv2

2
 is the kinetic 

energy, and V(x,t) is given as the potential energy, which, as its classical counterpart, 

implies V(x,t) is a forcing term (we may assume V(x,t) = mgh, where ‘g’ is the force 

of gravity acting on an object with mass ‘m’ with some spatial displacement, height 

‘h’, interchangeable with x), which has a firm foundation in classical physics. As H 

acts as an operator on the energy E (recall we are considering the energy of a wave), 

H provides a first order, nonlinear, heterogeneous differential equation E =
mẋ2

2
+

 mgx.  

From our solution u, we may substitute the spatial and angular frequency k and ω by 

considering the de Broglie wavelength λ =
h

p
 and the quantisation of angular 

momentum ħ =
h

2π
. For compatibility with equation (1.1) we assumed k = 

2π

λ
⇒ k =

2πp

h
=

p

ħ
, so momentum p = kħ (momentum depends on the wavenumber), and we 

assumed ω = 2πf, f = 
ω

2π
. This means we can substitute ω and k2 in (1.7) with the 

following: 

ω =  2πf, k2 =
p2

ħ2
. 
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Now we proceed with the Hamiltonian, where we recall previously T = 
mv2

2
=

p2

2m
. 

Since de Broglie proved E = hf, which is the total energy of a particle, and T =
p2

2m
, 

then using Hamiltonian operators on our wave solution with E = hf as the total energy 

of a particle, we find with H = T + V, (1.4) becomes 

 
                          (hf)u(x, t) = (

p2

2m
) u(x, t) + V(x, t) 

 

(1.9) 

If we choose to take the natural response of the system, we set the forcing term V(x,t) 

= 0, then we reduce (1.9) as follows: 

          (
hω

2π
) u(x, t) = (

(kħ)2

2m
) u(x, t) 

              ħωu(x, t) = (
k2ħ2

2m
) u(x, t) 

                   ħωu(x, t) = k2 (
ħ2

2m
) u(x, t)  (1.10) 

Now we take (1.4), and our solution (1.6), and substitute: 

              ħut =
ħ2

2m
uxx. 

 

(1.11) 

Substituting our solutions from (1.7), (1.11) becomes 

      ħ(−ωAe(kx−ωt)) =
ħ2

2m
(k2Ae(kx−ωt)). (1.12) 

 

For (1.12) to be true, the left-hand side and right-hand side must share the same sign, 

therefore, we draw from complex analysis and choose a complex plane solution. That 
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is, we include 𝑖2 = −1, an ‘impossible’, imaginary number. Now, our solution in (1.6) 

becomes 

 
      u(x, t) =  Ae𝑖(kx−ωt).      

(1.13) 

Then taking derivatives with the new solution: 

 

              ut = −𝑖ωAe𝑖(kx−ωt) 

              uxx  =  −k2Ae𝑖(kx−ωt)   
(1.14) 

For the wave equation to be true with our new complex valued solution (1.13), we 

need to make the wave equation complex, so (1.11) takes the form of a Schrödinger 

equation: 

 𝑖ħut = −
ħ2

2m
uxx. (1.15) 

 

Substituting the complex solution into our linear, time-dependent Schrödinger 

equation (1.15) and omitting the forcing term V(x, t), we see the natural response of 

the system: 

          (𝑖ħ) − 𝑖ωAe𝑖(kx−ωt) = (−
ħ2

2m
) −k2Ae𝑖(kx−ωt)                 

    ħω = (
ħ2

2m
) k2, (1.16) 

If we rearrange this equation, we see a harmonic oscillator and we can determine the 

angular frequency as a function of mass of the particle and the wavenumber of the 

system: 
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ω = (
ħ

2m
) k2, 

or alternatively, the spatial frequency as a function of angular frequency and mass: 

k = √
2mω

ħ
.  

We see that the plane wave solution we solved, based on the heat equation contains 

mass. It is this fact, in part, that motivates the study of solitons as an analogue for a 

wave/particle duality, hence the term ‘soliton’ implies the name of a particle. This 

example serves to demonstrate the culmination of mathematics and physics in NLSEs, 

and how such equations may be used to explore physical solutions and applications of 

real-world problems. This also shows how complex analysis with ‘imaginary’ numbers 

are used to describe real-world phenomena. 

From this example used to guide our motivation for research into NLSEs, we can see 

how complex analysis, wave mechanics, and classical physics have come together to 

galvanise the study of modern physics and provide a foundation on which modern 

science, and specifically mathematical physics has thrived: therein lies the significance 

of NLSE research. 

Development in mathematics has promoted growth in the family of Schrödinger 

equations, formally known as dispersive equations (if friction and dissipation are zero), 

to include relativistic particles and coupled systems used to model real phenomena. 

Such recent developments bring us to the point of this research: to numerically analyse 

soliton solutions to coupled time-dependent, one dimensional, fractional, cubic NLSEs 

of the form 
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𝑖u1t
+ (1/2)u1α

+ |u1|2u1 + u2 = 0 

𝑖u2t
+ (1/2)u2α

+ |u2|2u2 + u1 = 0, 
(1.17) 

where α ∈ (1, 2] denotes the order of the fractional derivative. Let us consider (1.17) 

in more detail. For simplicity, we normalise the physical constants used from our 

simplified Schrödinger equation example (1.15) (effectively setting ħ = 1) and treat 

this system as a mathematical problem only. If we consider an uncoupled system 

consisting of one wave, u, where u is the wave solution to this equation (therefore, u1 

and u2 are solutions to (1.17), referred to as the ‘solution pair’), it follows that ut is the 

group velocity of the wave u, and typically, uxx denotes the group velocity dispersion 

[20, 21]. In our research we seek to explore fractional solutions. That is, we replace 

the second space derivative uxx, with  uα, where α ∈ (1, 2]. The nonlinear cubic term 

in (1.17) includes the modulus squared, which, given a complex valued plane-wave 

solution (as we derived earlier in the chapter in equation 1.13), returns a real value, in 

this case: 

|e𝑖θ |2 = |cos θ + 𝑖sin θ|2 

                     = (√cos2 θ + sin2 θ
2

)
2

 

= 1                

In physics, and specifically quantum particle theory, if the solution u is the probability 

amplitude, the modulus squared, |u1|2, is understood to be the probability of finding a 

particle, known as the probability density function (PDF), in this case it equals one 

[19, 22]. This makes sense because we have restricted the particle to exist within polar 

domain space θ. Therefore, the probability of finding the particle on θ is one (because 
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we have restricted its existence to θ only). If we restrict ourselves to the mathematical 

approach, then from classical wave theory, or wave mechanics, |u1|2 is understood to 

be the energy density (ED), and it equals one from the identity given above [22]. Here, 

it is useful to note how θ acts as a coefficient for 𝑖 in the exponent. Its equivalent 

application as the argument for sin and cos means θ may serve as a complex valued 

phase constant represented as μ. 

Arriving at this wave equation via the Hamiltonian (1.15), we can once again borrow 

from physics. Since the Hamiltonian operates on the wave equation, then its solution 

u(x,t) may now be known as the eigenfunction, which describes a state of definite 

energy: it is a stationary state where the PDF does not change in time. In other words, 

if the solution function is an eigenvalue, the solution u(x,t) may be represented as a 

soliton, and the soliton contains information on the energy of the system, therefore it 

may be interchangeable with the mathematical term ED. 

The coupling terms (the last terms on the left-hand side in (1.17)) in this system mean 

our waves are interacting with each other: the state of one wave influences the state of 

the other wave, acting as a forcing term for the other wave. Physically, this has been 

demonstrated via thorough research in laboratory experiments and mathematical 

treatment by Driben and Malomed [23]. Driben and Malomed investigated light waves 

in a waveguide coupled by the tunnelling of light, accounting for gain and loss, and 

Kerr nonlinearity in the waveguide medium [23]. Their research is significant because 

the system they studied represents a Parity-Time (PT) Symmetric System when setting 

gain and loss equal to each other. A PT Symmetric System should not make physical 

sense, yet further supports the Quantum Mechanical interpretation of NLSEs and 
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serves to prove how ‘impossibilities’ be it mathematical, or physical, can be proven 

true and exist with useful purpose. 

1.1.1 PT Symmetric Systems 

To understand symmetries in the context of NLSE research, we must discuss Quantum 

Mechanics and relativity in more detail. As we described earlier in this chapter in terms 

of the PDF, Quantum Mechanics may be succinctly described as the probability of 

observing a particle in space. This probabilistic description of a particle is derived from 

the wave particle duality of quantum scale objects [19]. Relativity describes the 

geometry of space and time: for example, using the geometry of a well to describe the 

behaviour of an object under the force of gravity: there are useful demonstrations 

available online where heavy objects are placed on trampoline mats, and smaller 

objects can be shown to ‘orbit’ the larger object proportional to both objects’ 

respective mass and velocities, and therefore the geometry of the trampoline surface 

(see [24] for an example) [19]. 

Symmetries are a phenomenon found in both quantum mechanics and relativity. In the 

PT Symmetric System sense, symmetry is not restricted to geometry, but also includes 

time. Mathematically speaking, a discrete symmetry in quantum mechanics is called 

Hermiticity, while continuous symmetry exists as Special Relativity [18]. 

Combining these concepts, a point in space-time must exist in ℝ and is represented by 

the vector (x, y, z, t) in Cartesian coordinates (where x, y, and z denote orthogonally 

mutual dimensions in space, and t represents a point in time, acting as a fourth 

dimension). The Poincaré group expresses special relativity and is ten dimensional. 

The Poincaré group consists of the following: 
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Four translations: [x + a, y + b, z + c, t + d], where a, b, c, and d ∈ ℝ. 

Three rotations:  

Rx(θ) = [
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

] , Ry(θ) = [
cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

] , R𝑧(θ) = [
cos θ − sin θ 0
sin θ cos θ 0

0 0 1
 ],   

where θ ∈ nπ, n ∈ ℤ, and 

three velocity boosts: 
d

dt
[x, y, z] [18]. 

The Poincare group is significant because it contains symmetries which should not be 

found in nature; parity (P) changes the sign of spatial coordinates (x, y, z, t) →

(−x, −y, −z, t), changing the handedness of space; whereas time reversal (T) changes 

the sign (the direction) of time (x, y, z, t) → (x, y, z, −t) [18]. Therefore, PT operators 

are excluded from the geometrical symmetry of nature, forming the subset contained 

within the Poincaré group, the Proper Orthochronous Lorentz group [18]. 

Including PT operators, and thereby including complex matrices within the Proper 

Orthochronous Lorentz group results in PT symmetry, specifically, combined P and 

T symmetry [18]. From above, since P(x, y, z, t) → (−x, −y, −z, t), and T(x, y, z, t) →

(x, y, z, −t), then PT(x, y, z, t) → (−x, −y, −z, −t). 

Applying PT symmetry to Quantum Mechanics and the numerical analysis of light 

transmission in dual-core waveguides, we understand PT Symmetric Systems have 

complex potentials which may be considered as a system interacting with its 

environment [18]. That is, the PT Symmetric System is susceptible to gain and loss, 

where PT symmetry means gain equals loss. Driben and Malomed demonstrated what 

should otherwise be a physical impossibility by showing both mathematically (with 
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numerical solutions to coupled NLSEs) and in physical optical experiments that PT 

Symmetric Systems and solutions exist. 

Given the remarkable and unreasonable utility of NLSEs, which we demonstrated 

earlier in the chapter, physicists and mathematicians continue development and 

research in NLSEs and their solutions. The combination of complex analysis with 

Quantum Physics extends Quantum Mechanics into the complex domain, and allows 

for such research areas as NLSE solutions and PT Symmetric Systems: praised as one 

of the top ten physics discoveries in the past ten years at the time of writing [25].  

Mathematically speaking, extending Quantum Mechanics into the complex domain is 

useful, as this transformation allows scientists to rely on complex analysis to solve 

problems which may otherwise be difficult to solve with real analysis. Transforming 

the domain from ℝ → ℂ means we lose the ordering property associated with real 

analysis, therefore the concept of ‘stability’ does not make sense with complex 

analysis, and real, unstable physical systems can be shown to be stable in the complex 

domain [26].  

1.2 Fractional order Fast Fourier Transform 

So where do fractional order derivatives come from? Returning to mathematics and 

the scope of this research, we analysed various solutions to coupled NLSEs of the 

fractional variety. The concept of fractional calculus is almost as old as conventional 

calculus with integer order derivatives. However, considering conventional calculus 

has proven useful in the sciences so far, comparatively little research has been 

conducted in the field of fractional calculus: in fact, fractional calculus may be defined 

by numerous and distinct ways [27].  
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Integer derivatives are introduced very early in the careers of mathematicians 

conceptually as the value of the slope of a function f(x) at a given point, ‘x’. That is, 

the rate of change between a function and its variable. So, if we plot displacement of 

a particle f(t) in metres on the vertical y-axis, at a given time ‘t’ in seconds on the 

horizontal t-axis, the derivative in this case is 
df(t)

dt
=  

dy

dt
 which is the change in 

displacement over time, and in this instance has a value of metres per second, known 

colloquially as speed, or more appropriately, instantaneous velocity. So we learn the 

first derivative of displacement in time is velocity, and the derivative of velocity in 

time is acceleration and if we continue in this fashion after acceleration the third, 

fourth, fifth and sixth derivatives of displacement over time yield jerk, snap, crackle 

and pop (you will feel ‘jerk’ when changing direction while sitting in a vehicle 

navigating a corner, mid-turn, or perhaps you avoid childish games so you do not fall 

victim to the biggest jerk in the neighbourhood during a game of tug-of-war) [19, 28].  

If the first derivative of displacement over time has the physical interpretation of 

velocity, and the second derivative of displacement over time has the physical 

interpretation of acceleration, what about fractional values between one and two? What 

does it physically mean to take a fractional derivative such as 1.4, 1.9, or indeed any 

quotient such that a, b ∈ ℝ, where 
a

b
= α and for the scope of this research, α ∈ (1, 2]?  

When evaluating means to calculate fractional derivatives, we can see some properties 

which are distinct from conventional derivatives, such as nonlocal, memory properties, 

and the need to solve such problems almost exclusively using numerical methods (see 

appendix A1) [29]. Furthermore, what does it mean to take a fractional derivative of a 

coupled NLSE? In physical terms, since we are taking fractional values of the space 
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derivative perhaps this means we will explore memory properties of group velocity 

dispersion, and how this affects soliton stability. 

FDEs may be categorised into space, time, or space/time FDEs, and may be applied to 

model various natural phenomena, including, in our case, light waves [29]. FDEs 

generally require a considerable amount of computational power, especially when 

considering finite difference methods. However, solving FDEs can be significantly 

easier using Fast Fourier Transform (FFT) methods: the number of calculations can be 

reduced from O(N2) to O(NlogN) [29, 30]. 

FDEs have been shown to model natural phenomena more accurately than integer 

calculus in some cases, with demonstrated applications in semiconductor research, 

hydrogeology, finance and other areas [29]. The significance of this research is to 

explore solitary wave stability boundaries in fractional, coupled NLSEs used to model 

light in a dual-core waveguides. 

Recently, some papers have sought to raise attention to applications of FDEs, spanning 

across fields such as physics, control problems, signal and image processing, 

mechanics and dynamic systems, environmental science, and economics [31, 32]. 

Most of these fields make use of the memory properties of FDEs: to properly describe 

friction processes in physics, or to preserve textures in image processing, and analyse 

economic processes based on memory [31]. While within physics the accepted view is 

that fractional calculus applied to quantum mechanics is still in its infancy [33], the 

fact remains fractional order Fourier transform and its application to quantum 

mechanics is the title of an article published by Namias in 1980 [34], and is perhaps 

indicative of the relatively little research attention fractional calculus in quantum 
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mechanics has received: fractional calculus is not in its infancy due to age, rather this 

is a neglected field of mathematical physics which requires more research. 

1.3 Solitary waves 

We have previously described how solitons are a wave/particle solution to NLSEs that 

say something of the energy of a system, but they still lack a rigorous definition. 

Loosely described, solitons are a subset of solitary waves that conserve their shape and 

behaviour over time, and after perturbations and collisions with other solitons (except 

for a phase shift) [21, 35]. After accounting for nonlinear effects, it is possible to derive 

soliton solutions resistant to self-similar blow-up [21]. 

After normalising physical constants, we can analyse the coupled, fractional 

Schrödinger equation (1.17) term by term for a better understanding in terms of soliton 

behaviour. If we take the first equation from our coupled system in (1.17), we see four 

terms on the left-hand side: 

𝑖u1t
+ (1/2)u1α

+ |u1|2u1 + u2 = 0. 

If u(x,t) is a complex plane-wave soliton solution, then the first term of this wave 

equation, the first time derivative (𝑖u1t
), represents the group velocity of our wave 

solution. The group velocity describes the velocity of the wave packet, or solution 

wave envelope (the ‘inner’ wave envelope is made up smaller ‘surface’ waves or 

phases moving at the phase velocity) [19]. The fractional order term to the α = 2 space 

derivative represents dispersion, that is, different elements of the wave solution 

travelling at different velocities, dependent on frequency: dispersion is evident when 

a rock is thrown in a pond, and waves travelling at different velocities result in ripples 
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spreading out over the pond, this spreading out of waves (and by extension, wave 

envelopes) is dispersion [20, 21]. The nonlinear term, (which may include the 

coefficient μ > 0 for the focusing case, and μ < 0 is the defocussing case) as explained 

earlier, is the ED (since we are dealing with complex variables, the ED equals one), 

which leaves the original solution u1, and the solution to the second equation, u2, 

making the equation coupled [21, 36]. To summarize, the coupled NLSEs contain the 

group velocity of the solution, the dispersion of the solution, the solution itself, and 

coupling term which is the solution to the other half of NLSE system.  

1.4 Research motivation 

Equipped with this knowledge of NLSEs and mathematics, where does this research 

fit in the field of mathematical physics? We wish to explore the propagation and 

stability boundaries of novel soliton modes such as bright and dark solitons using a 

Fast Fourier Transform (FFT) method executed on MATLAB. The significance of this 

research lies in the analysis of these equations using fractional derivative analysis, 

discovering fractional stability boundaries related to solution symmetry, and of course, 

contributing to our understanding of NLSEs by sharing any other curious results and 

dynamics, where we hope to find results consistent with other fractional NLSE 

research [36-39]. 

This area of research should contribute to the field of mathematics by sharing 

fractional derivative values and the fractional derivative effect on solitons. The 

research could contribute to our understanding of coupled NLSEs, or the applications 

of coupled NLSEs. Primarily, this research is focussed on numerical analysis of 

coupled NLSEs and finding soliton stability boundaries in terms of fractional 

derivative values: a relatively new research area. 
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CHAPTER 2 METHODS 

Numerical analysis and experiments were conducted using MATLAB (R2022b) 

running a FFT program modified for coupled, fractional NLSEs (the code is available 

in Appendix B) to find stable solutions for the fractional NLSE (1.17) [30, 36]. Since 

we concern ourselves with stationary solitons, we employ regular, periodic boundary 

conditions, [8, 11, 12, 22, 40-42]. The MATLAB script was run until system failure to 

determine computational memory limits, then the script was corrected to determine the 

time at which the solutions became numerically unstable and ‘blew up’. This ensured 

the MATLAB script was optimised to reduce numerical and memory error while 

ensuring experiments were run for a sufficiently long time to verify soliton stability.  

Once the MATLAB program was written, we set about finding numerical stability 

boundaries. During this time, the experiment limits were determined, and solution 

plotting and data collection programs were written to efficiently manage the data 

output. 

 

2.1 Code validation 

In this section we discuss and explain various plots used to describe the numerical 

solutions. Since we run numerical experiments on light waves, waterfall plots, such as 

in Figure 2.1 show the evolution of the light wave in three dimensions: two in space 

(wavelength and amplitude), and one in time to show the evolution of the solution. The 

heatmap (shown in Figure 2.2) displays the same information as the waterfall plot, but 

in two dimensions. The heatmap shows the wavelength of the soliton on and x-axis, 

over time on the y-axis, and uses colour to denote the amplitude dimension of the wave 
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over time (hence the name, ‘heatmap’: a ‘hotter’, ‘brighter’ colour denotes a higher 

value amplitude, whereas a ‘cold’ or ‘dark’ colour denotes a lower value amplitude). 

Figure 2.1 exemplifies an accumulation of numerical errors contributing to ‘blow-up’ 

from approximately time ‘t’ = 800, for what appears to be an otherwise stable soliton. 

It is important to note that one ‘t’ does not correspond to one second ‘s’. Since the 

experiments simulate the transmission of light, we observe that time 1t ≪ 1s, hence 

we use the term ‘t’ to denote the evolution of the solution over time and not the 

fundamental unit seconds ‘s’. Additionally, the units to denote space ‘x’ do not 

correspond to the fundamental unit metres ‘m’. Since we are dealing with the 

electromagnetic spectrum, if we restrict the light pulses to the visible spectrum, the 

plots would be in the order of nanometres. Therefore, to optimise experiment results, 

we conducted numerical experiments up to t = 750 on a space ‘x’ large enough to 

depict the behaviour of the light pulse and to capture the wavelength of the light pulse 

to observe behaviour and stability.  
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Figure 2.1 ED (top) and its solution (bottom) show numerical instability 

resulting in ‘blow up’, present as spikes and dispersion when t > 800. 
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2.2 Results and analysis 

To determine stability of results as objectively as possible, MATLAB programs output 

the following plots which are discussed and explained in detail in this section. 

  

Figure 2.2 Side by side heatmap of coupled, stable, symmetric soliton solution 

pair. 

 

Since we analyse coupled nonlinear solutions, we examine how pairs of solitons 

interact. If a soliton is stable and symmetric, it will appear to behave as the solitons do 

in Figure 2.2. If the solitons are stable and asymmetric, we would expect one soliton 

to be bright, and the other soliton to be significantly more dark, as in the Figure 2.3, 

where the bright solution corresponds to an amplitude of approximately two, which is 

higher than its counterpart which has an amplitude of approximately one: hence, the 

solutions are asymmetric. Therefore, heatmaps are a common method of evaluating 
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soliton behaviour, where colour is used to denote the height of the solution against the 

field. In Figure 2.2, the colour black corresponds to a height of zero – the solution field 

surface - while the colour white corresponds to a height of one, describing the shape 

of the solution as it evolves over time (the colours scale according to the maximum 

amplitude of the solution, therefore white does not always correspond to an amplitude 

of one) [3, 7, 8, 11, 12, 15, 35, 36, 43]. However, we must rely on other figures to 

assist with asymmetric stability assessment. The side-by-side heatmap will clearly 

show oscillations for the large peak amplitude values, but not for smaller asymmetric 

peak amplitudes which may appear as noise, or the heatmap may simply obfuscate 

oscillations or dispersion in the system due to our inability to distinguish between finer, 

darker colour grades. 

 

 

Figure 2.3 Side by side heatmap of stable, asymmetric soliton solution pair. 
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Solitons for this form of coupled NLSE such as (1.17) consist of combinations of 

decaying oscillations and permanent ‘wave’ solutions, so it is not always possible to 

observe a soliton solution that consists only of the permanent wave solutions after the 

oscillations have decayed [44, 45]. Considering the soliton solutions are a system 

evolving in time, we may say the oscillations and decay correspond to transient 

behaviour of the system, whereas permanent wave solutions correspond to the steady-

state. Therefore, since the experiments are restricted to 750t, we can expect some of 

our solutions to oscillate and decay over time but still be classified as stable, since the 

experiment may not allow sufficient time to observe steady-state behaviour [45].  

Since the peak amplitude of the soliton solutions we observe in our experiments 

generally decrease over time, we consider a soliton stable if it has minimal, low-

frequency oscillations, minimal dispersion, and conserves its behaviour. Considering 

we are testing soliton stability by perturbing the wave equation, soliton stability is 

somewhat subjective, and because we are exploring stability in terms of fractional 

derivative values, we will take a soliton as stable when it is sufficiently well-behaved 

[44]. We provide evidence to support our conclusions which are open to debate and 

discussion. 

The experiments have been conducted with a spatial width of ±15x, to a time of 750t 

as a standard for showing solution stability. Using experiment time is a commonly 

accepted approach to show soliton stability and has been used extensively in 

mathematical research of solitons [21, 23, 36, 46, 47]. However, soliton stability 

requires some knowledge of the perturbation and the intended application, this implies 

stability also depends on previous knowledge of the system, and not simply how long 

a solution conserves behaviour. Therefore, running an experiment for a sufficiently 
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long time should not be the only determinant of stability. So, we consider a system 

stable if it has low frequency oscillations and low frequency dispersion relative to the 

experiment length, 750t [44]. Experiments may run to other times, such as 200t, or 

1000t to allow for closer scrutiny of dispersive and radiative effects as appropriate.  

 

Figure 2.4 A closer view of the soliton u1 allowing for a more detailed 

inspection of dispersion or oscillation effects. 

 

Figure 2.4 offers improved scrutiny of soliton behaviour by showing a single solution: 

allowing dispersion and oscillation effects to be more obvious and easily identifiable 

for the absolute value of the solution u1, i.e. |u1|. Figure 2.5 extends on this line of 

reasoning, however this plot displays the ED, or the absolute value of the solution 

squared, i.e. |u1|2 for the same period of time. The ED will further amplify oscillations, 

and also serves to capture the ED in and of itself, so we see how energy is distributed 

throughout the solution field. 
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Figure 2.5 ED of the soliton u1 from figure 2.4. 

Since soliton studies find applications in a range of fields, we clarify the term ‘ED’ 

may be interchanged with ‘intensity’ in optics, or physically with the ‘PDF’, which is 

interpreted as the probability of finding a particle in given space, hence it is customary 

to display solutions in this manner as the ED, intensity, or PDF, and we understand 

these terms are interchangeable depending on the field of research [19, 41, 48, 49]. 

Waterfall plots of the solitons offer an alternative view from which we can see in detail 

the behaviour of the soliton peak amplitude and oscillations over the course of the 

experiment. The waterfall plot will also allow dispersion in the field to be visible due 

to the stark contrast of the plot of the solution field against the white background. Like 

the heatmap, the waterfall plot is also a common method to display soliton solutions 

[3, 9, 23, 35, 47, 50-53]. In Figure 2.6, we see a side-by-side comparison of a solution 

u2 with its corresponding ED, where we note the behaviour of the solution compresses 

when depicted as the ED. 
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Figure 2.6 Waterfall plot of u2 (top) and its ED (bottom) allows for improved 

discrimination of dispersion and oscillation. 
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To shift the analysis of the soliton stability away from qualitative to a more quantitative 

assessment, we collected other information such as peak amplitude evolution as in 

Figure 2.7 (where |u1max
| denotes the peak, or maximum amplitude of |u1| at each 

time step), phase portraits (such as Figure 2.11) of the gradient of both the peak 

amplitude and centre of mass and direction fields of the gradient of the peak amplitude 

and centre of mass during the experimental process. These methods are appropriate 

and have been used to support confirmation of stability regions in other studies of 

nonlinear processes [3, 8, 10, 31, 41, 44, 46, 54-57].  

Since the gradient is determined from the peak amplitude and the centre of mass of the 

numerical solutions, we do not rely on phase and direction fields as ‘true’ phase and 

direction fields, rather quasi-phase, and quasi-direction fields, used to inform an 

assessment. The phase portraits and direction fields are not used to definitively identify 

stable nodes, be the basis of a claim a solution is indeed self-supporting or to 

definitively justify a result. The phase portraits and direction fields are used as part of 

a mathematician’s analytical toolkit to help discern the goings-on of a solution [44]. 

 

The peak amplitude evolution captures the value of the maximum amplitude at each 

timepoint and summarises the behaviour of the solution over the course of the 

experiment: otherwise referred to as a time-series analysis of the peak amplitude [56, 

58]. Figure 2.7 shows the peak amplitude of a stable solution pair since it appears 

linear, or at least shows little sign of oscillations. 
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Figure 2.7 Peak amplitude evolution of u1 and u2 captures the change in peak 

amplitude over the duration of the experiment. We only see the u2 

curve because the solutions are symmetric (i.e. u1 is ‘overwritten’ by 

u2 during the plotting process). 

 

Since it is well known in physics the electromagnetic spectrum may behave as both a 

wave or a particle depending on the method of observation, we also calculate the 

centroid of both solutions to observe how the solution behaves as a particle and display 

the results as the centre of mass evolution such as in Figure 2.8 and centre of mass 

direction field as in Figure 2.10. The centre of mass is determined from the average 

value of the solution surface across the spatial domain at each time step. Considering 

the centre of mass evolution, a stable solution corresponds to a horizontal line across 

the plot. When a solution becomes narrow and focussed on the heatmap, the centre of 

mass evolution will decrease (calculating a lower average value near the surface at 0), 
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and as dispersion, noise, or a  solution with a wide pulse-width propagates through the 

field, the value of centre of mass will increase proportionally (the centre of mass 

increases as there are more peaks in the solution field, thereby raising the average 

value). 

 

 

Figure 2.8 Centre of mass evolution corresponding to the peak amplitude 

evolution in Figure 2.7: a stable, symmetric solution. 

 

To a lesser extent, we may call upon the direction field and phase portrait to help 

determine stability. Since we use the gradient of the peak amplitude evolution, the 

plots are not rigorous, true phase portraits or direction fields, rather they provide a 

qualitative, visual indication of the behaviour of the peak amplitude for each soliton in 

the pair throughout the experiment.  
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Figure 2.9 The direction field of both u1 and u2 from the peak amplitude in 

Figure 2.7. This plot indicates how well behaved the symmetric 

solution is and provides information on self-reinforcing properties of 

the solution. 

 

In Figure 2.9 we see the direction arrows here are densely packed and linear 

(effectively creating a blue curve), pointing from the value of the peak amplitude, in 

the direction of the gradient. The reasonably linear and close grouping in the direction 

field implies the solutions are symmetric, and peak amplitudes slowly increase or 

decrease over time. In conjunction with Figure 2.11, we observe very tight grouping 

around the point (0, 0), meaning the derivative of both solutions remain very close to 

zero, and therefore the peak amplitude has very little change over the experiment, and 

is well-behaved. 
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The centre of mass direction field was also available for consideration, where we look 

for evidence of reasonably ‘tight’ grouping to support stability. In Figure 2.10 we see 

the centroids do not wander around the direction field, and they take values that 

support relatively linear behaviour. The width of the line in the centre of mass direction 

field provides an indication of dispersion (note the small axis scale), and variance of 

peak amplitude throughout the experiment. Therefore a ‘tight’ grouping represents 

reasonably well-behaved solutions. 

 

Figure 2.10 Centroid direction field of u1 and u2 corresponding to the previous 

centre of mass evolution plot in figure 2.8. 

 

Considering the phase portrait of peak amplitude and centre of mass: the phase 

trajectory behaves like an unstable attractor, known as Arnold diffusion, seen in 
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Hamiltonian systems where phase portraits of oscillating, nonlinear systems have been 

shown to contain stability points [41, 44, 58-62].  

 

Figure 2.11 The phase portrait of the gradient of peak amplitude of u1 and u2 

provide information on nodes and stability points. Since the phase 

portrait is not using the true gradient, we must be careful when 

relying on this plot (note the small scale of units and close proximity 

to the point (0, 0) implies stability). 

 

The purpose of the phase portrait in Figure 2.11is to show the behaviour of the peak 

amplitude gradient throughout the experiment. For the purposes of this research, 

gradients centred around the zero point may indicate little change or variation in the 

peak amplitude (depending on the scale) over the course of the experiment, whereas a 

‘noisy’ phase portrait may indicate erratic oscillations in the peak amplitude, as shown 

in Figure 2.13. Displaying phase portraits in this manner allow the researcher to see 
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detail of changes in the solution which are not easily visible in the waterfall plots or 

heatmaps. Therefore, calculating and displaying phase portraits and direction fields 

offer further insight and closer scrutiny into the behaviour and stability of solutions. 

Both phase portraits in Figure 2.11 and Figure 2.12 behave as unstable attractors. 

Therefore, we rely on the scale, as well as the general behaviour of the phase portraits 

to help determine stability when necessary [58-62].  

 

Figure 2.12 Centre of mass phase portrait corresponding to the previous peak 

amplitude phase portrait. 

 

So far, the figures presented in this chapter display the results of well-behaved soliton 

solutions (which will be examined in closer detail in Chapter 3). For unstable solutions, 

we expect to see results such as in Figure 2.13 below.  
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The first unstable plot in Figure 2.13 begins with an unstable, asymmetric pair. The 

solutions are asymmetric because of the average difference in peak amplitude 

throughout the experiment, yet the solutions are unstable due to oscillations. The 

instability becomes clear when the solutions switch (swap their asymmetries, i.e. u1 

and u2 reach a critical point in the numerical experiment where they exchange 

behaviour), then disperse completely, evident as a ‘noisy’ solution field. 
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Figure 2.13 Asymmetric, unstable solution heatmap (top) and its corresponding 

phase portrait (bottom). Note the difference in axis scale magnitude 

for the phase portrait reflects asymmetry between u1 and u2, and note 

the axis limits as compared to Figure 2.12 illustrate instability. 
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We see the phase portrait in Figure 2.13, the values for u1 and u2 wander around the 

phase space in a disordered manner. Comparing the phase portrait in Figure 2.13 to 

the direction field in Figure 2.14 below, we see the peak amplitudes have been widely 

distributed across the direction field for both u1 and u2: we conclude the phase portrait 

and direction field in Figure 2.14 represent unstable, asymmetric solutions. 

 

Figure 2.14 Direction field for unstable asymmetric soliton pair shows the 

distribution of peak amplitude values and the direction of change at 

each point. 

Using axis scale and curve behaviour to determine stability applies to the centre of 

mass phase portrait and direction field in Figure 2.15. We must pay attention to the 

general behaviour of the phase and the distribution of direction field as an indication 

of stability because the phase generally behaves as a chaotic, unstable attractor. 

Therefore, stability is determined from the axis scale, rather than behaviour. 
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Figure 2.15 Phase portrait and direction field of the centre of mass for unstable, 

asymmetric solutions from the previous Figure 2.13 and Figure 2.14. 
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We see in the phase portraits in Figure 2.16 and Figure 2.17 two unstable, chaotic 

nodes for the asymmetric u1 solution at approximately 0.8, and 2.2, and there are some 

oscillations between 3 and 7.5 on the |u1max
| axis. Interpreting the phase portrait in 

Figure 2.16 in conjunction with the heatmap in Figure 2.13, by induction, we see these 

groups correspond to initial oscillations of the solution between 0 and 300t, swapping 

asymmetries and oscillations from approximately 300t to 600t, then dispersion from 

600t to 750t respectively. 

 

 

Figure 2.16 Phase portrait for solution u1. Note there are numerous unstable 

equilibrium points that correspond to the peak amplitude as it decays 

from initial conditions (from 7 to 3), begins oscillating (from 3 to 1), 

then disperses (1 to 0). The density of the phase portrait curve 

indicates how long the solution has existed at a given amplitude. 
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When considering the phase portrait and direction field for the centre of mass, we need 

to pay attention to the value of the centroid on the x-axis and compare this value to its 

corresponding heatmap. Recall the centre of mass is calculated from the surface value 

of the solution at each time point, therefore the centre of mass phase portrait may 

behave as stable, but it reflects the steady state of noise in the solution field, as in 

Figure 2.17. Without reference to other figures, Figure 2.17 may appear to be a stable 

solution, when it is in fact, an unstable solution. 

 

Figure 2.17 Centre of mass phase portrait corresponding to the previous phase 

portrait in Figure 2.16. 

In Figure 2.18 we see examples of waterfall plots, where we easily discern noise in the 

solution field due to the contrast of the plot and the background for times t < 600t. We 

see the solutions disperse into noise from approximately 600t until the conclusion of 

the experiment at 750t. 
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Figure 2.18 Example of unstable waterfall plots. Noise and dispersion in the 

solution field is easily discernible due to the high contrast of the plot 

against the neutral background. 
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Finally, we collected numerical data MATLAB output to table to supplement the plots. 

MATLAB calculated and collated the data type (including fractional derivative order 

α, and phase propagation constant μ as ‘a’ and ‘mu’ in the nomenclature respectively), 

its determined stability, maximum amplitude and the power of the initial conditions, 

the arithmetic mean of the peak amplitudes, the root mean square of the peak 

amplitude: from there the dispersion was determined [63].  

 

2.2.1 Power and propagation constants 

We explore solutions of the form  

 
u(x, t) =  Ae𝑖μ(kx−ωt). 

 
(2.1) 

The solutions here include constants to ensure the arguments of the functions remain 

non-dimensional, that is, the wave frequency ω, the wave number k, and additionally 

the phase propagation constant μ. 

The constant μ is defined as the complex number μ = α + 𝑖β, where α represents the 

real attenuation, and β is the phase constant [19, 49, 64]. The phase propagation 

constant μ provides a measure of amplitude attenuation and phase change per 

wavelength. 

The power of the soliton wave is defined as follows: 

 P = ∫ |u(x, t)|2dx
L

−L

 (2.2) 

Where L represents the spatial boundary limit, and u(x, t) is the initial condition of the 

solution. The physical interpretation of soliton power is the power required for a 
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soliton with a certain pulse width to propagate effectively through a medium  [19, 49, 

64]. 

At the end of each different fractional derivative order α, we present a bifurcation 

diagram using the initial conditions with the power ‘P’ and maximum peak amplitude 

at t = x = 0 to calculate the value of the bifurcation parameter μ [3, 5, 7-9, 22, 36, 51, 

65]. Information calculated to supplement the plots were output to table, such as Table 

2.1, for each dataset. 

Table 2.1: Stability data  
Data 
Pair 

Stability Abs. 
Max. 
Amp. 

Power u1 Ar. 

Mean 

u2 Ar. 

Mean 

u1 

RMS 

u2 

RMS 

u1 

Disp. 

u2 

Disp. 

a_2p0_
mu_1p5 

 Stable 1 4 0.91 0.91 0.91 0.91 0.04 0.04 

 

Five programs of MATLAB code were written to calculate the FFT, collect data and 

generate figures (available in Appendix B). Close to 10000 files and 6 gigabytes of 

data were produced from the experiments and considered for the results section. 

2.3 Experimental procedure and results 

The data sets were processed in terms of fractional derivative order α, phase 

propagation constant μ, and bifurcation plots are presented in terms of power, P, and 

phase propagation constant μ [36]. Solutions u1 and u2 were grouped in pairs classified 

simply as ‘u’, where the fractional derivative value α → a, the phase propagation 

constant μ → mu, and whether the solutions initial values were symmetric or 

asymmetric. Therefore, solution pairs followed the nomenclature of 

‘u_data_a_X_mu_Y_sym’ corresponding to a fractional derivative of order ‘X’, phase 

propagation constant ‘Y’ for a symmetric soliton pair ‘u’ consisting of u1 and u2. For 
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an asymmetric soliton pair, the name contains the suffix ‘asym’. The experiments were 

run from the customary second order derivative α = 2, iteratively reducing the order 

by tenths until α = 1.1.  

Not all figures will be produced for each soliton pair. Instead, figures used to guide the 

stability assessment will be displayed in the results section. Given the qualitative 

nature of identifying stability in solitons, and without strict definitions of solitons or 

their stability, we collect as much information as possible during the data collection 

process to support our conclusions and approach a more quantitative analysis.  
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CHAPTER 3 RESULTS 

We display results in groups of fractional derivative order from α = 2.0, to α = 1.1, 

where we present stability and other dynamics associated with the same solution pair 

for different values of α. Not all results from each fractional experiment will be 

displayed. Instead, the general behaviour of the system will be described between 

displays of more interesting dynamics produced between various values of α.  

 

3.1 Fractional derivative 𝛂 = 2.0 

In this section we present results corresponding to the fractional derivative of order α 

= 2.0. 

 

3.1.1  u_data_a_2_mu_1p5_sym 

We see in Figure 3.1 a stable, symmetric soliton pair with a phase propagation constant 

μ = 1.5. 
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Figure 3.1 Stable, symmetric soliton pair. 

 

From Figure 3.1, we can see there is little decline in peak amplitude over the course of 

the experiment, and there is no evidence of oscillatory behaviour or dispersion 

throughout the experiment, so we conclude this solution is a stable, symmetric, soliton 

pair. 
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3.1.2 u_data_a_2_mu_1p8_asym 

Here we present an asymmetric solution with a phase propagation constant μ = 1.8. 

 

Figure 3.2 Unstable, asymmetric soliton pair. 

 

We see from the heatmap in Figure 3.2 what appears to be unstable, asymmetric 

solutions. Looking closely in Figure 3.3 we observe dispersion and irregular 

oscillations throughout the experiment. Therefore, we conclude this solution is an 

unstable, asymmetric solution pair. 
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Figure 3.3 A closer inspection at 200t more clearly shows the asymmetry of the 

soliton pair, and varying oscillation wavelengths throughout the 

experiment. 

 

We confirm the unstable assessment by looking at the peak amplitude evolution in 

Figure 3.4 and direction field in Figure 3.5, which both show behaviour consistent with 

unstable asymmetry for these experiments. We see asymmetry and group velocity 

oscillations in the peak amplitude evolution, and instability in terms of erratic phase. 

These erratic oscillations result in the direction field shown in Figure 3.5 with a 

relatively wide ‘tornado’ or  ‘funnel’ pattern, indicating unstable behaviour from the 

solutions. 
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Figure 3.4 The peak amplitude shows asymmetry and erratic oscillations. 

 

Figure 3.5 Direction field for unstable asymmetric pair. 
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3.1.3 u_data_a_2_mu_1p8_sym 

The following results correspond to symmetric solutions with a phase propagation 

constant μ = 1.8. 

 

Figure 3.6 Asymmetric, unstable solution pair. 

 

From the heatmap in Figure 3.6, we notice a break in symmetry almost immediately, 

leading to the solutions converging asymmetrically, followed by bright/dark pulses. 

The experiment concludes with oscillations and dispersion. Instability is confirmed 

from inspection of the peak amplitude and centre of mass evolution in Figure 3.7. 
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Figure 3.7 The peak amplitude evolution illustrates the instability and 

convergence of this asymmetric pair (top), and the centre of mass 

evolution for reference (bottom). 
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If we inspect the peak amplitude evolution in Figure 3.8, we see symmetry break very 

early in the experiment.  

 

Figure 3.8 Here we see the solutions break symmetry almost immediately, and 

quickly continue oscillating as an asymmetric solution pair. 
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3.1.4 u_data_a_2_mu_2_asym 

The following results correspond to an asymmetric solution with a phase propagation 

constant μ = 2. 

 

Figure 3.9 Stable, asymmetric solutions when α = 2 

 

The heatmap in Figure 3.9 shows the results for a stable, asymmetric solution pair. We 

see some decay in peak amplitude and a corresponding increase in dispersion 

throughout the progression of the experiment. Therefore, we refer to the direction 

fields in Figure 3.10 below which indicate stable, asymmetric solutions with 

corresponding narrow ‘tornado’ effects.  
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Figure 3.10 Direction field behaviour for stable, asymmetric pair, with peak 

amplitude (top) and centre of mass (bottom). 
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We see convergence in the centre of mass as the solutions become more symmetric 

over the course of the experiment. The peak amplitude evolution in Figure 3.11 shows 

the solutions become stable after approximately 200t, where oscillations remain 

consistent until approximately 900t, when the experiment becomes numerically 

unstable. 

  

Figure 3.11 The peak amplitude evolution shows the inner wave of the solutions 

converge and begin propagating symmetrically until approximately 

900t. 

 

A close inspection of the peak amplitude evolution appears to show u1 and u2 as 

asymmetric and converging at the beginning of the experiment until approximately 

200t, where it appears the solutions converge, matching group velocity. Here we have 

evidence of symmetry making behaviour. 
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3.1.5  u_data_a_2p0_mu_2p0_sym 

Here we show the results of a symmetric solution with a phase propagation constant μ 

= 2. 

 

Figure 3.12 Unstable, asymmetric solution pair 

 

The heatmap in Figure 3.12 shows a symmetric solution pair quickly break symmetry 

and propagate as an unstable asymmetric solution pair. We classify this solution as 

unstable because it breaks symmetry, and as an asymmetric solution, the peak 

amplitude oscillations are erratic. From Figure 3.12 and the peak amplitude plot Figure 

3.13 we can see u1 decrease in peak amplitude over time, and a reduction in oscillation 

frequency over time, switching symmetry before a bright/dark pulse is seen. The 

experiment concludes with erratic peak amplitude oscillations.  
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The peak amplitude evolution in Figure 3.13 reveals the extent of instability and shows 

u1 and u2 slowly converging over the course of the experiment. 

 

Figure 3.13 The peak amplitude evolution reveals the extent of instability, 

showing both solutions converging at approximately 610t, switching 

symmetry, then followed by a bright/dark pulse. 
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3.1.6 u_data_a_2p0_mu_2p2_asym 

Now we present the results of an asymmetric solution with a phase propagation 

constant μ = 2.2. 

 

Figure 3.14 Stable, asymmetric pair when α = 2. 

 

In Figure 3.14 this experiment shows a stable asymmetric solution pair that begins 

oscillating after 100t. The peak amplitude evolution in Figure 3.15 confirms the 

asymmetric solutions converging at approximately 500t. 

We determine this solution is stable from Figure 3.15 below. The group velocity is 

shown to converge in the peak amplitude evolution, consistent with symmetry making 

behaviour, while stable, symmetric oscillations continue until numerical instability 

occurs late in the experiment at approximately 900t. 
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Figure 3.15 Peak amplitude evolution shows converging solutions (top). We see 

symmetric group velocity propagation from approximately 450t until 

800t. 
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3.1.7 u_data_a_2p0_mu_2p2_sym 

The heatmap in Figure 3.16 reveals an unstable, asymmetric solution pair, as the 

frequency of the oscillations varies from the initial conditions throughout the 

experiment. Here the solutions have a phase propagation constant μ = 2.2. 

 

Figure 3.16 The heatmap reveals this unstable solution pair propagates 

asymmetrically. 

 

Looking at the following peak amplitude plot in Figure 3.17, we see u1 and u2 have 

the same initial amplitude, however the solutions quickly break symmetry, then 

converge on each other until what appears to be unstable dark/bright pulses at 

approximately 725t. 
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Figure 3.17 The peak amplitude evolution (top) shows convergence and 

instability for the solution pair. Centre of mass evolution shows 

increased dispersion as the experiment concludes (bottom). 
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3.1.8  u_data_a_2p0_mu_2p4_asym 

Here we have asymmetric solutions with a phase propagation constant μ = 2.4. 

 

Figure 3.18 Heatmap results of a stable, asymmetric, solution pair. 

 

The heatmap from Figure 3.18 reveals a stable, asymmetric solution pair. There is 

some evidence of oscillation and dispersion, but after convergence the solutions 

conserve their behaviour reasonably well throughout the experiment. We see from the 

peak amplitude plot in Figure 3.19 the true extent of the oscillations, and the 

convergence of the solution pair ‘u’ over large values of ‘t’. 



62 

 

  

 

Figure 3.19 Peak amplitude (top) shows u1 converging on u2 at approximately 

150t. The centre of mass remains reasonably consistent throughout 

the experiment, indicating minimal dispersion. 
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The waterfall plots in Figure 3.20 illustrate stability of the solutions. 

 

Figure 3.20 Despite the apparent dispersion evident in the heatmap, the waterfall 

plots show the solutions to be reasonably stable. 
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3.1.9 u_data_a_2p0_mu_2p4_sym 

The Figure 3.21 heatmap from this experiment reveals an unstable, symmetric solution 

pair with a phase propagation constant μ = 2.4. 

 

Figure 3.21 Unstable, symmetric solution pair. 

 

If we review the peak amplitude spectrum in Figure 3.22 below, we see evidence of 

u1 and u2 converging as the experiment progresses with erratic oscillations. The centre 

of mass plot illustrates the oscillatory behaviour of the solutions, however, as the 

curves maintain a horizontal trend throughout the experiment, we determine there is 

little evidence of dispersion.   
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Figure 3.22 Peak amplitude evolution (top) shows u1 decaying as u2 increases. 

The centre of mass evolution (bottom) shows evidence of oscillation, 

but not dispersion. These plots confirm the asymmetry and instability 

of the solutions. 
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3.1.10   u_data_a_2p0_mu_2p8_asym 

Experimental results in Figure 3.23 indicate a stable, asymmetric solution pair which 

begins oscillating approximately halfway through the experiment. The solutions have 

a corresponding phase propagation constant μ = 2.8. 

 

Figure 3.23 Stable, asymmetric solution pair. 

 

Looking at the peak amplitude plot in Figure 3.24, we see u1 and u2 converging on 

each other from the initial conditions until meeting halfway through the experiment at 

approximately 350t, when the solutions are shown to oscillate asymmetrically. 
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Figure 3.24 The peak amplitude evolution (top) shows asymmetric behaviour for 

the duration of the experiment. The centre of mass (bottom) for 

reference indicating oscillations with minimal dispersion. 
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3.1.11  u_data_a_2p0_mu_2p8_sym 

The heatmap in Figure 3.25 shows the results of unstable, focussed, and asymmetric 

solutions with a phase propagation constant μ = 2.8. 

 

Figure 3.25 Asymmetric, unstable solutions. 

 

We see the peak amplitude plot in Figure 3.26 reveals the full extent of oscillations 

from the solutions, where we see a difference in group velocity for each solution, and 

a low peak amplitude from u2. 
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Figure 3.26 The peak amplitudes reveal changing group velocity as each solution 

evolves. 

 

The instability of the solutions is clear in the peak amplitude evolution plot Figure 

3.26, where we see wave envelopes evolving over time for both solutions. If we look 

closely, we can see the solutions remain symmetric for a very short time period at the 

beginning of the experiment, before breaking symmetry and evolving asymmetrically. 
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3.2 Bifurcation diagram: portion 𝛂 = 2.0 

 

Figure 3.27 Bifurcation diagram for solutions evaluated at fractional derivative 

value α = 2. 

 

The bifurcation plot for the dataset when the fractional derivative order α = 2 shows 

instability when the average ratio for power and the bifurcation parameter μ exceeds 

3.8, whereas the solutions remain stable when the average ratio of power and μ is less 

than 3. 

If we compare the branches of the bifurcation plot with Table 3.1, we see the unstable 

branch (in red) corresponds to symmetric solutions, whereas the stable branch (black) 

corresponds to asymmetric solutions: there exists a correlation between symmetry and 

stability. 
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Table 3.1: Fractional derivative group α = 2 

Data Pair Stability 

Abs. Max. 

Amplitude Power 

a_2p0_mu_1p5_sym  Stable 1 4 

a_2p0_mu_1p8_asym 

 

Unstable 1.4792903 4.558345401 

a_2p0_mu_1p8_sym 

 

Unstable 1.2649111 5.059644339 

a_2p0_mu_2p0_asym  Stable 1.6902419 4.581384019 

a_2p0_mu_2p0_sym 

 

Unstable 1.4142136 5.656854204 

a_2p0_mu_2p2_asym  Stable 1.8487053 4.66340266 

a_2p0_mu_2p2_sym 

 

Unstable 1.5491933 6.196773221 

a_2p0_mu_2p4_asym  Stable 1.9828059 4.772180225 

a_2p0_mu_2p4_sym 

 

Unstable 1.6733201 6.693280204 

a_2p0_mu_2p8_asym  Stable 2.2107771 5.022978064 

a_2p0_mu_2p8_sym 

 

Unstable 1.8973666 7.589466386 

 

 

 

 

3.3 Fractional derivative 𝛂 = 1.7 

Generally, from fractional derivative order α = 2, to α = 1.8 soliton quality degraded, 

and solutions became less stable as the fractional derivative order α reduced from 2. 

However, Figure 3.28 is an unusual example for a solution when the fractional value 

α = 1.7 and a phase propagation constant μ = 2.8. 
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3.3.1 u_data_a_1p7_mu_2p8_asym 

 

Figure 3.28 The solutions appear be become symmetric when α = 1.7. 

Considering the peak amplitude evolution and centre of mass evolution in Figure 3.29, 

we can see the internal (higher frequency) peak amplitude wave oscillations approach 

symmetry, with the phase shift resulting in asymmetric surface (wave envelope) 

oscillations. However, it appears the surface waves also converge as the solution 

evolves. When α = 1.7, these asymmetric solutions appear to converge and become 

symmetric: this solution appears to be representative of symmetry making conditions. 
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Figure 3.29 We see u1 and u2 converge early in the experiment for both inner 

and surface wave amplitudes. When α = 1.7 the group and phase 

velocities approach equivalence: i.e., symmetry making. 
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We confirm our conclusion by observing long-term stability of the solutions, where 

symmetry improves over time. Thus, we have symmetric behaviour  when α = 1.7. 

 

Figure 3.30 The solutions match group and phase velocity as the experiment 

evolves. This system becomes numerically unstable for t > 800. 
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3.4 Fractional derivative 𝛂 = 1.6 

Within this dataset where we evaluate fractional derivative values of order α = 1.6, we 

note solutions are highly dispersive from α = 2, until α = 1.6, when the dispersive 

effects and oscillation frequencies are minimised. 

 

3.4.1 u_data_a_1p6_mu_1p2_sym 

The fractional derivative value with order α = 1.6 and phase propagation constant μ = 

1.2 data begins with a very stable and distinct solution pair seen in Figure 3.31. 

 

Figure 3.31 This is an example of a well-behaved symmetric pair of solitons. 
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We notice subtle dispersion, and ‘wide’, unfocussed solution pairs. If we look at the 

waterfall ED in Figure 3.32, we observe some evidence of instability in the solution, 

as dispersion and oscillatory effects become more obvious, but are still minimal. The 

peak amplitude plot in Figure 3.33 confirms symmetry and stability over the length of 

the experiment, with minimal oscillations and slight decay in peak amplitude over the 

course of the experiment.  

 

 

Figure 3.32 The ED for u1 shows oscillatory behaviour and dispersion throughout 

the experiment. 

 

 



77 

 

 

 

Figure 3.33 The peak amplitude evolution (top) confirms the soliton pair are 

symmetrical throughout the experiment, while exhibiting minimal 

oscillations. The centre of mass (bottom) correlates with increased 

dispersion seen in the waterfall ED in Figure 3.32.  
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3.4.2 u_data_a_1p6_mu_1p4_sym 

From fractional derivative order α = 2, until α = 1.6, there is a steady, consistent 

reduction in dispersion and oscillation frequency, until the solutions are optimised, 

becoming stable at α = 1.6 with a phase propagation constant μ = 1.4. The results are 

available in the Figure 3.34. 

 

Figure 3.34 The heatmap shows optimised stability when the fractional 

derivative α = 1.6. 

 

The following peak amplitude plot and waterfall ED illustrate the stability of the 

solutions when α = 1.6. We do not see evidence of oscillations in either the peak 

amplitude evolution in Figure 3.35, or the waterfall ED plot in Figure 3.36, indicating 

a stable soliton solution. 
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Figure 3.35 The peak amplitude evolution shows little evidence of oscillations. 

 

Figure 3.36 The waterfall ED with optimised solution stability when the 

fractional derivative α = 1.6. 
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3.4.3  u_data_a_1p6_mu_1p5_sym 

Decrementing the fractional derivative order α resulted in increased dispersion and 

decay rate until α = 1.6. As the fractional derivative value decreased and approached 

1.6 with a phase propagation constant μ = 1.5, so too did the soliton stability decrease, 

until an abrupt change occurred: displayed in Figure 3.37. 

 

Figure 3.37 Broken symmetry and bright/dark soliton pulses when α = 1.6. 

 

From the heatmap in Figure 3.37, we see what appears to be an unstable symmetric 

solution pair, except for brief symmetry switching resulting in three bright/dark soliton 

pulses at approximately 100t. We see from Figure 3.37 evidence of both continuous 

oscillations and dispersion throughout the experiment. We examine the solutions in 

more detail by examining the peak amplitude evolution for 200t in Figure 3.38. 
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In Figure 3.38, we see the solutions behave symmetrically until approximately 25t, 

when a break in symmetry occurs and unstable, asymmetric oscillations propagate. 

The solutions switch symmetry, and three bright/dark soliton pulses are created at 

approximately 100t, after which the solutions continue with asymmetric oscillations. 
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Figure 3.38 Amplitude evolution of α = 1.6, shows unstable, oscillating, 

asymmetric solutions, with bright/dark solitons (top). Corresponding 

centre of mass evolution (bottom). 
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Figure 3.39 Heatmap showing switching and bright/dark soliton pulses when the 

fractional derivative α = 1.6, from a previously stable, symmetric 

pair. 
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Figure 3.39 above shows the evolution of the bright/dark pulses in terms of the 

heatmap. The peak amplitude direction field in Figure 3.40 provides an indication of 

self-correcting behaviour around (1.1, 1.1), after which we see a ‘tornado’ effect 

typical of asymmetric solution pairs in our experiments.  
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Figure 3.40 Direction fields of unstable asymmetric solutions for reference. Peak 

amplitude direction field (top). The centre of mass direction field 

(bottom) provides an indication of the instability of the solutions 

evident as a dynamic centre of mass. 
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3.4.4 u_data_a_1p6_mu_1p8_asym 

Here we display the results for an asymmetric solution with a phase propagation 

constant μ = 1.8. 

 

Figure 3.41 Asymmetric, unstable solution pair. 

 

The heatmap in Figure 3.41 shows asymmetric, unstable solutions with a high degree 

of dispersion throughout the experiment. If we review the peak amplitude evolution in 

Figure 3.42, we see erratic, high-frequency oscillations contributing to the instability 

of the solutions. 
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Figure 3.42 Erratic oscillations indicate instability. 

 

Later in the experiment we observe the group velocity of the solutions converging, but 

the solutions continue to propagate out of phase. The peak amplitude evolution Figure 

3.42 indicates the solutions converging symmetries as the experiment progresses. 
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3.4.5 u_data_a_1p6_mu_1p8_sym 

From fractional derivative α = 2, until α = 1.6, the solutions are symmetric and 

unstable, however once the fractional derivative order α = 1.6 with a phase propagation 

constant μ = 1.8, we get the following asymmetric results in Figure 3.43. 

 

Figure 3.43 Asymmetric solution pair converging. 

 

We see the solutions break symmetry early in the experiment and display high-

frequency oscillations for approximately 400t before converging on each other. After 

the solutions converge, they remain asymmetric and continue to oscillate out of phase. 
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Figure 3.44 Peak amplitude (top) and the centre of mass (bottom) show the 

solutions breaking symmetry, then converging at approximately 

450t.  
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From the peak amplitude evolution in Figure 3.44, we see the extent of the instability 

of the solutions due to high-frequency oscillations. Furthermore, after the solutions 

converge on each other, we see despite the oscillations, the solutions do not decay 

overall, but seem to conserve their average peak amplitude while continuing to evolve 

out of phase.  

When reviewing the centre of mass evolution in Figure 3.44, we see after the solutions 

converge, the centre of mass approaches symmetry while continuing to oscillate. 

While the asymmetric solutions are oscillating, which affects the value produced in 

the centre of mass plot, the overall trend is horizontal, indicating reduced dispersion. 
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3.4.6 u_data_a_1p6_mu_2p4_asym 

Looking at the heatmap in Figure 3.45, we see solutions with a phase propagation 

constant μ = 2.4 start the experiment as asymmetric with minimal oscillations. 

However, the solutions converge early in the experiment followed by oscillations and 

dispersion. Despite the oscillations and dispersion after convergence, it appears the 

solutions conserve their shape throughout the experiment. 

 

Figure 3.45 Asymmetric, stable solution pair. 
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Figure 3.46 Peak amplitude evolution up to 250t indicates oscillating, 

asymmetric solutions (top), whereas the peak amplitude evolution 

(bottom) shows the asymmetric pair converge: the inner wave 

oscillates symmetrically until numerical instability occurs at 950t. 
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Figure 3.46 shows the solutions converge early in the experiment, then oscillate 

asymmetrically out of phase. At approximately 250t surface waves of the peak 

amplitude appear to oscillate out of phase. However, the internal peak amplitude wave 

begins oscillating symmetrically: the group velocity of both solutions propagate 

symmetrically. In Figure 3.47 we observe the centre of mass is largely unchanged, as 

we see a horizontal trend throughout the experiment. Therefore, we consider this 

solution stable, as it conserves its behaviour, and does not appear to undergo dispersive 

losses until numerical instability occurs when the experiment time exceeds 900t. 

 

Figure 3.47 The centre of mass evolution shows signs of oscillations, but little 

evidence of dispersion until numerical stability occurs after 900t. 
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3.4.7 u_data_a_1p6_mu_2p4_sym 

In Figure 3.48 , we see what appears to be a symmetric solution pair with a phase 

propagation constant μ = 2.4 at the beginning of the experiment become unstable: 

breaking symmetry and showing signs of oscillations and dispersion throughout the 

experiment. 

 

 

Figure 3.48 The heatmap shows u1 and u2 appear to symmetric initially, but 

ultimately destabilise and break symmetry. 

 

Taking a closer look at the peak amplitude evolution in Figure 3.49 (top), we see the 

solutions immediately break symmetry and oscillate asymmetrically throughout the 

experiment. Considering the centre of mass evolution in Figure 3.49 (bottom), we can 

see the effects of dispersion, as the distribution of mass in the solution field increases 
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throughout the experiment, so too do both centroids increase in value. Comparing the 

centre of mass to the peak amplitude plot in Figure 3.49, it is interesting to note the 

centroids start the experiment symmetrically, whereas the peak amplitude propagates 

asymmetrically for experiment time t < 5. This solution is classified as unstable due to 

erratic peak amplitude oscillations. 
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Figure 3.49 Peak amplitude evolution (top) shows the solutions are asymmetric 

very early in the experiment (t < 5), then u2 quickly disperses. The 

centre of mass evolution (bottom) shows the solutions to be 

symmetric before dispersion. 
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3.4.8 u_data_a_1p6_mu_2p8_asym 

 

Figure 3.50 Asymmetric, stable solution pair. 

 

Figure 3.50 shows asymmetric solutions with a phase propagation constant μ = 2.8 

appear stable until approximately 150t, when the solutions converge and begin 

dispersion and oscillations. Considering the peak amplitude plot in Figure 3.51 below, 

we see the solutions behave similarly to the previous section 3.4.6 

u_data_a_1p6_mu_2p4_asym, where the internal peak amplitude wave oscillates 

symmetrically, while asymmetric ‘surface’ oscillations occur due to a difference in 

phase. Since the trend in Figure 3.51 remains horizontal, indicating dispersion is 

minimal, we conclude the solutions are self-supporting and stable. 
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Figure 3.51 Peak amplitude evolution shows asymmetry until 250t (top), 

whereas the peak amplitude evolution (bottom) indicates symmetric 

oscillations of the inner wave until 1000t, when the system becomes 

numerically unstable. 
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3.4.9 u_data_a_1p6_mu_2p8_sym 

Figure 3.52 displays the results of symmetric solutions with a phase propagation 

constant μ = 2.8. 

 

Figure 3.52 Asymmetric, unstable solutions. 

 

While the data begins with identical peak amplitudes, we see the solutions evolve 

asymmetrically. Observing the peak amplitude and centre of mass evolution plots in 

Figure 3.53, we see solutions are unstable as both solutions show high frequency peak 

amplitude oscillations. In Figure 3.53 we note as u2 decays almost completely after 

the initial conditions, u1 slowly converges on u2 throughout the experiment. 
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Figure 3.53 The peak amplitude evolution (top) and centre of mass (bottom) 

indicate asymmetric, highly oscillatory, unstable solutions. 
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3.5 Bifurcation diagram: portion 𝛂 = 1.6 

 

 

Figure 3.54 Bifurcation diagram for data with α = 1.6. 

 

Taking the average slope of each bifurcation, we determine a stable branch 

corresponds to the average ratio of power to peak amplitude less than approximately 

2.75, and an unstable branch corresponds to a ratio exceeding approximately 2.9. 

When reviewing Table 3.2, we note for phase propagation constant μ ≥ 2.4 we see an 

unstable branch (in red) corresponds to symmetric solutions, whereas the stable branch 

(black) corresponds to asymmetric solutions. This trend does not hold for a phase 

propagation constant μ < 2.4. 
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Table 3.2: Fractional value group α = 1.6 

Data Pair Stability 

Abs. Max. 

Amplitude Power 

a_1p6_mu_1p2_sym  Stable 0.67217559 2.64103256 

a_1p6_mu_1p4_sym  Stable 0.95164944 3.422833531 

a_1p6_mu_1p8_asym 

 

Unstable 1.6183659 3.728858558 

a_1p6_mu_1p8_sym 

 

Unstable 1.3462826 4.438167627 

a_1p6_mu_2p4_asym  Stable 2.1228634 3.703225888 

a_1p6_mu_2p4_sym 

 

Unstable 1.7811287 5.474263998 

a_1p6_mu_2p8_asym  Stable 2.3615327 3.806348531 

a_1p6_mu_2p8_sym 

 

Unstable 2.0196517 6.01521567 

 

 

 

3.6 Fractional derivative 𝛂 = 1.5 

Here we present various dynamics for fractional derivatives of order α = 1.5. 

 

3.6.1  u_data_a_1p5_mu_2p4_sym 

Decrementing the fractional derivative order, the solution quality deteriorates with 

increased oscillations and dispersion until α = 1.5 and the phase propagation constant 

μ = 2.4, when we observe non-stationary behaviour where the solution propagates to 

the left of the solution field in Figure 3.55. 
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Figure 3.55 Non-stationary, asymmetric solution propagating to the left. 

 

The waterfall plots of the ED in Figure 3.56 show u1 as a highly focussed, decaying 

solution. From the u1 ED, we see gradual decay of peak amplitude over time, with 

unstable oscillations, which may correspond to the dispersion evident for latter time 

periods in the heatmap in Figure 3.55. We confirm some dispersion in the centre of 

mass evolution plot in Figure 3.56 below. 
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Figure 3.56 ED of u1 and shows how focussed u1 is (top), and the corresponding  

increase in dispersion late in the experiment (bottom). 
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3.6.2  u_data_a_1p5_mu_2p8_sym 

From fractional derivative order α = 2.0, to α = 1.5, the solution oscillation frequency 

and dispersion increases, and solutions generally become more unstable until α = 1.5, 

when u1 becomes highly focussed, non-stationary, and u2 disperses almost 

completely. 

 

Figure 3.57 Heatmap of non-stationary solution u1 when α = 1.5. u2 is not shown 

because it decays immediately. 

 

In the heatmap in Figure 3.57 above, we observe u1 deviate left, then right, and left 

again, leaving the boundary and ‘wrapping’, returning to the right of the heatmap 

consistent with periodic boundary conditions. Figure 3.58 shows disparity in the peak 

amplitude evolutions of u1 and u2, whereas the centre of mass evolution shows the 

solutions u1 and u2 dispersing throughout the experiment. 
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Figure 3.58 Peak amplitude evolution (top) shows gradual decay and high-

frequency oscillations of u1 over time. The centre of mass evolution 

increases over time, proportional to increased dispersion. 
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3.7 Fractional derivative 𝛂 = 1.4 

Here we present various dynamics for fractional derivative order α = 1.4. 

3.7.1 u_data_a_1p4_mu_1p8_asym 

From fractional derivative order α = 2, until α = 1.4, the solution pair increases 

oscillation frequency and dispersion effects until we see aberrant, non-stationary, 

asymmetric behaviour with a phase propagation constant μ = 1.8. We also note u1 

maintains a higher peak amplitude than u2, which propagates in the solution field with 

a peak amplitude slightly higher than background noise in Figure 3.59. 

In Figure 3.59 we observe the solution pair commence the experiment with amplitudes 

of approximately 5 and 0.9 for u1 and u2 respectively, after which the solutions quickly 

become non-stationary. If we look closely in Figure 3.59, we see the background 

radiation in u2 largely propagates to the right. 
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Figure 3.59 Non-stationary asymmetry when the fractional derivative α = 1.4. 

The solution u2 mainly radiates to the right (bottom). 
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Figure 3.60 The direction fields of unstable non-stationary solutions. Peak 

amplitude direction field (top), and centre of mass direction field 

(bottom) for reference. 
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The direction field in Figure 3.60 above shows u1 to be unstable, as there is substantial 

variance in the peak amplitude and centre of mass data from both u1 and u2 in both 

direction fields. The relatively wide distribution of direction points for u1 and u2 

supports our conclusion this solution is unstable. 

We see the following waterfall plots in Figure 3.61 have more dispersion detail than 

the heatmap in Figure 3.59, where the waterfall plot shows the extent of oscillations 

and decay from u1. The u2 solution disperses almost completely from initial 

conditions, yet still appears to be self-supporting. In Figure 3.61 we notice u1 is highly 

focussed, narrow and appears to disperse continually throughout the experiment. 

Dispersion is evidenced by continuous decay in peak amplitude and consistent 

radiation throughout the solution field. From a closer inspection of Figure 3.61 it is 

possible the self-supporting behaviour evident in u2, and the noise evident in the 

solution field u1 may be the result of coupling between the solutions. 
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Figure 3.61 A closer inspection of the non-stationary solutions show u1 is highly 

focussed, while u2 is barely distinguishable from background 

radiation. 
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3.7.2 u_data_a_1p4_mu_1p8_sym 

The solution quality continues to decay asymmetrically from fractional derivative 

order α = 2, until α = 1.4 with a phase propagation constant μ = 1.8. The solutions 

display behaviour consistent with increasing oscillations and dispersion until we 

observe the following unstable, non-stationary behaviour in Figure 3.62. We see from 

the heatmap in Figure 3.62  a high degree of asymmetry, and a more focussed solution 

in the form of u1, consistent with previous non-stationary solutions.   
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Figure 3.62 Highly asymmetric, non-stationary solutions propagating left when 

the fractional derivative α = 1.4. 
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If we look at the following peak amplitude evolution in Figure 3.63, we see u1 and u2 

appear to be converging throughout the experiment. 

 

 

Figure 3.63 The peak amplitude plot and phase portrait shows u1 decaying over 

time, whereas u2 peak amplitude slowly increases. 

 

 

3.7.3 u_data_a_1p4_mu_2_asym 

From fractional derivative order α = 2, until α = 1.4 with a phase propagation constant 

μ = 2, the asymmetric solution quality decreases, with a corresponding increase in 

oscillations and dispersion until we see the following solution in the heatmap in Figure 

3.64. 
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Figure 3.64 Aberrant, non-stationary, asymmetric behaviour when the fractional 

derivative α = 1.4. 

 

When the fractional derivative order α = 1.4, we see in Figure 3.64 u1 becomes highly 

focussed, and u2 disperses, barely distinguishable from noise. The waterfall plot in 

Figure 3.65 for 200t showing the ED of u1 and u2 illustrates a substantial decay in u2, 

radiating both to the right and left of the solution. Conversely, u1 becomes focussed 

and maintains erratic oscillations in peak amplitude over time. We note the asymmetric 

solutions travel briefly to the right, then continuously to the left.  
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Figure 3.65 ED of u1 and u2 reveal u1 is highly focussed, while u2 has decayed 

substantially. 
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3.7.4  u_data_a_1p4_mu_2p0_sym 

The symmetric solution pair continues to deteriorate until the fractional derivative α = 

1.4 and the phase propagation constant μ = 2, when we see the following non-

stationary behaviour in Figure 3.66. For the symmetric solutions, note as the phase 

propagation constant μ increases, the solutions become more asymmetric, and the non-

stationary solution becomes more erratic, deviating right, then left, then right again. 

The centre of mass evolution and centre of mass phase portrait for u1 in Figure 3.67 

shows that despite the non-stationary behaviour, u1 maintains relatively stable 

behaviour with minimal dispersion from the centre of mass evolution, and 

conservation of mass with an unstable sink at approximately 0.18. 
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Figure 3.66 Heatmap reveals aberrant path of u1 and u2, while remaining highly 

asymmetric and focussed. 
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Figure 3.67 Centre of mass evolution (top) and phase portrait (bottom) would 

appear to indicate stable, asymmetric solutions. However, since we 

know the solution is non-stationary, it is classified as unstable. 
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3.7.5 u_data_a_1p4_mu_2p2_asym 

 

Figure 3.68 Heatmap ED of a highly asymmetric, non-stationary solution. 

 

As the fractional derivative order α approaches 1.4 and the phase propagation constant 

μ = 2.2, the unstable, asymmetric, and oscillatory behaviour increases until aberrant, 

non-stationary behaviour occurs, as seen in Figure 3.68. We can see more detail from 

the following waterfall plots in Figure 3.69, where we notice oscillations in peak 

amplitude of u1 decreasing in size during a gradual decay of the solution. Continuing 

our observation of Figure 3.69, we note u1 is focussed, and while substantially smaller 

than u1, u2 remains distinguishable from background dispersion. 
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Figure 3.69 Waterfall plots reveal u1 is highly focussed, while u2 propagates 

through a highly dispersed solution field. 
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The peak amplitude evolution in Figure 3.70 shows the decay of u1 throughout the 

experiment as the solution evolves into an oscillating wave envelope while u2 

disperses, where the amplitude approaches background noise levels.  
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Figure 3.70 The peak amplitude evolution for 200t (top) reveals the gradual 

increase in dispersion in u1 as the oscillation frequency increases. 

Centre of mass evolution (bottom) for reference. 
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3.7.6 u_data_a_1p4_mu_2p2_sym 

As the fractional derivative order decreases from α = 2, the solution stability decreases, 

and dispersion increases until the fractional derivative α = 1.4and the phase 

propagation constant μ = 2.2. In Figure 3.71 we see non-stationary, highly asymmetric 

behaviour from u1 and u2.  Figure 3.71 shows u1 deviate right, before moving to the 

left at an increasing rate over time. The solution u2 appears to decay instantly, and 

leaves behind a noisy solution field. 

Observing the phase portrait in Figure 3.72, we see the peak amplitude of u1 appear 

relatively stable throughout the experiment with an amplitude value ranging from 5 to 

6, despite the non-stationary behaviour of the solution. The relative stability of the 

peak amplitude is reflected in the centre of mass portrait in Figure 3.72, which appears 

to behave as an unstable attractor at approximately 0.18. 
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Figure 3.71 The heatmaps show the asymmetry and non-stationary behaviour of 

the solution pair. 
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Figure 3.72 The phase portrait for peak amplitude (top) and centre of mass 

(bottom) reveals an unstable equilibrium point. 
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3.7.7 u_data_a_1p4_mu_2p4_sym 

As the fractional derivative order decreases from α =2, the symmetric solutions 

continue propagating asymmetrically until becoming non-stationary and propagating 

to the left of the solution field when α = 1.4 and the phase propagation constant μ = 

2.4: evident in the heatmap below in Figure 3.73. 

 

Figure 3.73 ED heatmap shows non-stationary behaviour from u1. The coupled 

solution, u2 is virtually reduced to noise. 

 

The waterfall ED plot Figure 3.74 below, indicates the instability and decay of the 

solution throughout the experiment. In the peak amplitude evolution in Figure 3.75, 

we see u2 immediately disperses into noise, while the solutions converge throughout 

the experiment. 
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Figure 3.74 Waterfall ED plot shows u1 to be highly focussed and unstable. 

 

Figure 3.75 The peak amplitude evolution shows converging solutions: u1 

decreases over time, while u2 increases over time. 
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3.7.8 u_data_a_1p4_mu_2p4_asym 

From fractional derivative order α = 2, until α = 1.4, with the phase propagation 

constant μ = 2.4, we see a gradual increase in both asymmetry and focus, before non-

stationary behaviour occurs, evident in Figure 3.76. 

 

Figure 3.76 Non-stationary behaviour, where the solution propagates left. 

 

The following waterfall plots in Figure 3.77 shows the ED oscillations, instability and 

the degree of focus of the u1 solution. It is still possible to see the solution u2 in the 

waterfall ED within Figure 3.77. 
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Figure 3.77 Waterfall plots of the ED reveal how focussed u1 becomes when the 

fractional derivative α = 1.4 and demonstrate the convergence of the 

peak amplitudes throughout the experiment. 
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3.7.9 u_data_a_1p4_mu_2p4_sym 

 

Figure 3.78 Heatmap ED illustrating non-stationary behaviour of u1. 

 

When the fractional derivative α = 1.4 and the phase propagation constant μ = 2.4, u1 

becomes more focussed, and u2 continues to decay. Figure 3.78 shows the non-

stationary behaviour of u1 ED throughout the experiment. We see on the waterfall plot 

in Figure 3.79 the maximum peak amplitude for both u1 and u2 is greater than the 

previous results from α = 1.5: the ED peak amplitude has effectively doubled from 

derivative order α = 1.5 to α = 1.4. 



132 

 

 

 

Figure 3.79 Waterfall plot ED for u1 and u2 for 200t show dispersive noise 

evident in both solution fields. 
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3.7.10  u_data_a_1p4_mu_2p8_asym 

As the fractional derivative order α approaches 1.4 and the phase propagation constant 

μ = 2.8, the solutions undergo increased dispersion until u1 becomes focussed, and u2 

radiates to background noise, evident in Figure 3.80. If we consider the peak amplitude 

plot in Figure 3.81, we see u1 and u2 converging throughout the experiment. In Figure 

3.81 we see the centre of mass evolution of both solutions u1 and u2 increase over 

time, consistent with increased dispersion for both solutions as the experiment evolves, 

or perhaps the centre of mass increases proportional to the angle of propagation 

through the solution field. 
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Figure 3.80 Asymmetry increases before non-stationary propagation takes place. 
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Figure 3.81 The peak amplitude of u1 decays and the peak amplitude of u2 

increases over time (top). The centre of mass evolution increases 

throughout the experiment, indicating increased dispersion over time. 
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3.7.11  u_data_a_1p4_mu_2p8_sym 

 

Figure 3.82 Heatmap where u1 diverges to the right when the fractional derivative 

order α = 1.4.  

Comparing Figure 3.57 with Figure 3.82 above, we see when the fractional derivative 

order α = 1.4, u1 appears to become more focussed than the previous experiment in 

section 3.6.2 u_data_a_1p5_mu_2p8_sym with the fractional derivative of order α = 

1.5 while keeping the phase propagation constant with μ = 2.8. While the solution 

appears stable, we see u1 deviates from normal approximately halfway through the 

experiment.  

The peak amplitude plot in Figure 3.83 shows the two solutions appear to converge 

over the course of the experiment, as u2 slowly increases in peak amplitude while u1 

decays over time while maintaining unstable, oscillatory behaviour. The increase in 

centre of mass evolution from approximately 600t indicates an increase in dispersion 

for both solutions over time. 
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Figure 3.83 Peak amplitude plot (top) shows u1 with high-frequency oscillations 

and decay, while u2 peak amplitude gradually increases around 600t. 

The centre of mass evolution increases over time (bottom), consistent 

with increased dispersion. 
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3.7.12  u_data_a_1p4_mu_2p8_sym 

 

Figure 3.84 The ED heatmap of u1 shows non-stationary propagation to the 

right of the solution field. 

 

When the fractional derivative order α = 1.4 and the phase propagation constant μ = 

2.8, we see non-stationary behaviour propagating to the right of the solution field in 

Figure 3.84, corresponding to a high degree of focus from the solution u1. We see 

further instability in u1 after examining the peak amplitude evolution plot in Figure 

3.85, where we see erratic oscillations and decay throughout the experiment, while u2 

has dispersed to noise. 



139 

 

 

Figure 3.85 The amplitude spectrum reveals the extent of instability of u1 over 

the course of the experiment, evident as high frequency oscillations. 
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3.8 Fractional derivative 𝛂 = 1.3 

Here we present various non-stationary dynamics for fractional derivative of order α 

= 1.3. 

 

3.8.1 u_data_a_1p3_mu_1p4_sym 

Decreasing the fractional derivative order from α = 1.6 and keeping the phase 

propagation constant μ = 1.4 the solutions increase oscillations and dispersion while 

maintaining symmetry, until α = 1.3 when we observe non-stationary dynamics in 

Figure 3.86. 

 

 

Figure 3.86 When α = 1.3 symmetry breaks, with non-stationary behaviour. 
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From the heatmap in Figure 3.86, we see the solutions begin the experiment 

propagating as a symmetric pair, but symmetry is quickly broken when we see 

asymmetric, highly focussed solutions with non-stationary behaviour. In Figure 3.86 

we first see the solution deviate to the left, then continue to radiate to the right. 

Eventually the solution loses focus (increases wavelength), disperses and widens as it 

continues to propagate to the right. 
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Figure 3.87 Here we can see the solution pair are symmetric until approximately 

10t when the solutions shift phase before breaking symmetry. 
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The peak amplitude plot in Figure 3.87 captures the moment symmetry is broken at 

approximately 20t. We see the solutions are stable and oscillating symmetrically from 

the initial conditions until approximately 10t. Then the solutions appear to shift phase 

before an abrupt break in symmetry occurs. After the break in symmetry the solutions 

become focussed and non-stationary, evident in Figure 3.86. 

The waterfall ED plots in Figure 3.88 show the behaviour of both solutions up to 200t. 

We see stable oscillations (accounting for the difference in axis scale) at the beginning 

of the experiment, until the solutions disperse, become highly focussed, and depart 

from normal propagation. Furthermore, we see u2 disperses almost entirely after 

breaking symmetry. 
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Figure 3.88 The waterfall ED for u1 and u2 illustrate the degree of asymmetry 

between this previously stable and symmetric pair of solitons. 
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3.8.2  u_data_a_1p3_mu_1p5_sym 

From fractional derivative order α = 1.6 to α = 1.3 with a phase propagation constant 

μ = 1.5, a decay in soliton quality and stability ensued, corresponding with continued 

asymmetry until the solution became non-stationary and unstable in Figure 3.89. 

 

Figure 3.89 Asymmetric, non-stationary behaviour to the right when α = 1.3. 
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Figure 3.90 Waterfall plot shows u1 is narrow and highly focussed. 

 

The waterfall plot in Figure 3.90 shows dispersion in the solution field which is not 

clear in the heatmap. The dispersion is evident as noise, or ripples in the solution field 

propagating with the highly focussed, narrow soliton. Furthermore, we see a decay in 

peak amplitude over the course of the experiment corresponding with continued 

dispersion. 
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3.8.3 u_data_a_1p3_mu_1p8_asym 

The solutions increase oscillation frequency and dispersion until the fractional 

derivative order α = 1.3 and the phase propagation constant μ = 1.8. We see in Figure 

3.91 u1 becomes highly focussed and non-stationary.  

 

Figure 3.91 The ED heatmap shows the degree of focus and the non-stationary 

propagation of u1. 
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Figure 3.92 The peak amplitude evolution (top) shows u1 converging on u2. 

The centre of mass evolution (bottom) increasing over time 

corresponds to dispersion in the solution. 
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The peak amplitude evolution in Figure 3.92 shows the two solutions converge on each 

other throughout the experiment. Convergence is easier to see in Figure 3.93, where 

the ED waterfall plots show the solutions deviate to the right of the solution field. We 

also see evidence of dispersion from the solutions, correlating with the increase in the 

centre of mass evolution plot in Figure 3.92. 
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Figure 3.93 The waterfall plots of the ED show the highly focussed and 

asymmetric solutions converging throughout the experiment. 
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3.8.4 u_data_a_1p3_mu_1p8_sym 

When the fractional derivative order α = 1.3 and the phase propagation constant μ = 

1.8, we see the solutions hold symmetry for a short period of time before breaking 

symmetry and becoming non-stationary, deviating to the left of the solution field in 

Figure 3.94. 

 

 

Figure 3.94 Non-stationary solutions when the fractional derivative order α = 

1.3. 

 

Taking a closer look at the peak amplitude and centre of mass evolution in Figure 3.95, 

we see the solution maintain symmetry for approximately 20t. After a phase shift 

occurs: the inner peak amplitude wave becomes asymmetric, and the two solutions 

break symmetry completely and commence high-frequency oscillations. When the 
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solutions become asymmetric at 50t, u2 disperses and u1 propagates as a focussed, 

decaying solution. As the experiment progresses, both solutions converge before 

reconvening at approximately 550t, remaining non-stationary, deviating left for the 

remainder of the experiment. After 550t, we see in Figure 3.95 the inner peak 

amplitude wave is symmetric, while the surface waves continue propagating 

asymmetrically. 
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Figure 3.95 The peak amplitude evolution shows the solutions break symmetry 

at approximately 30t, then converge again at approximately 550t. 
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3.8.5  u_data_a_1p3_mu_1p8_asym 

 

Figure 3.96 When the fractional derivative order α = 1.3 we see asymmetric 

solutions until approximately 400t when the solution becomes non-

stationary. 
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When the fractional derivative order α = 1.3 and the phase propagation constant μ = 

1.8, we see in Figure 3.96 highly asymmetric solutions which become non-stationary 

at approximately 450t, travelling to the right of the solution field. As the solutions 

become non-stationary, u2 predominantly radiates to the right of the solution field, 

alongside the primary, non-stationary solution which tends to the right of the solution 

field. 

We display the phase portraits in Figure 3.97, where we see the gradient of the peak 

amplitude, |u1max
|

′
 ≅ 0, take a range of amplitude values indicating instability in the 

solution. If we observe the centre of mass phase portrait, we see what appears to be a 

much more stable solution, but this is a misleading result due to unequal axis scaling. 

These phase portraits confirm decay over time, as u1 does not become stable around a 

fixed amplitude value, and instead takes a range values between 7 to 4. The peak 

amplitude spectrum in Figure 3.98 shows oscillations and instability with variation in 

the peak amplitude of u1, while u2 appears to be indistinguishable from noise. 
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Figure 3.97 The peak amplitude phase portrait (top) shows u1 to decay, whereas 

the centre of mass is misleading: appearing to be stable (bottom). 
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Figure 3.98 The peak amplitude evolution shows unstable, asymmetric 

solutions, where u1 converges on u2, and u2 is barely 

indistinguishable from noise. 

 

In Figure 3.98 the peak amplitude plot shows u1 to be unstable, with high frequency 

oscillations, converging on u2 throughout the course of the experiment, whereas u2 is 

barely distinguishable from background noise after initial conditions. 
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3.8.6  u_data_a_1p3_mu_1p8_sym 

 

Figure 3.99 When the fractional derivative order α = 1.3, u1 diverges to the left 

approximately halfway through the experiment. The coupled 

solution u2 decays immediately from initial conditions. 

 

When the fractional derivative order α = 1.3 and the phase propagation constant μ = 

1.8, Figure 3.99 shows our unstable solutions (which are symmetric from initial 

conditions) remain highly focussed and asymmetric with non-stationary behaviour to 

the left of the solution field. The coupled solution u2 decays immediately and is not 

shown here. 
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3.8.7 u_data_a_1p3_mu_2_asym 

 

Figure 3.100 The asymmetric pair show non-stationary behaviour for large t 

when the fractional derivative α = 1.3. 

 

When the fractional derivative order α = 1.3 and with a phase propagation constant μ 

= 2, we see in Figure 3.100 u1 continues to maintain a high degree of focus and 

asymmetry, until approximately 400t, when the solution becomes non-stationary and 

propagates to the right. The ED waterfall plot in Figure 3.101 reveals details of the 

instability of the solutions before non-stationary behaviour begins, evident as high 

frequency oscillations in u1, and a high level of dispersion from u2. 
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Figure 3.101 Waterfall plots of the ED for u1 and u2 show how highly focussed 

u1 is, while u2 remains close to noise. The solution u1 decays prior 

to non-stationary propagation. 
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3.8.8  u_data_a_1p3_mu_2p2_asym 

When the fractional derivative order α = 1.3 and when the phase propagation constant 

μ = 2.2, we see in Figure 3.102 the solutions retain stability until late into the 

experiment. At approximately 650t non-stationary behaviour is observed, and the 

solution deviates left, then right. We see familiar asymmetry where u1 becomes highly 

focussed while u2 disperses almost immediately, barely distinguishable from 

background noise. 

When reviewing the centre of mass evolution in Figure 3.103, we note the centre of 

mass for both solutions increases throughout the experiment. This reflects noise in the 

solution field increasing the value of the mean centre of mass at each time step. 
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Figure 3.102 Heatmaps reveal asymmetry between u1 and u2, capturing non-

stationary behaviour for large t values when the fractional 

derivative order α = 1.3. 
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Figure 3.103 Peak amplitude evolution (top) and centre of mass evolution 

(bottom) shows instability of solution pair.  
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3.8.9 u_data_a_1p3_mu_2p2_sym 

 

 

Figure 3.104 Solutions become asymmetric and non-stationary. 

 

When the fractional derivative order α = 1.3, and the phase propagation constant μ = 

2.2 we see the heatmap in Figure 3.104 and the peak amplitude plot in Figure 3.105 

the solutions break symmetry at approximately 10t. In Figure 3.105 the solutions 

evolve asymmetrically but continue to converge until approximately 680t: the inner 

wave propagates symmetrically, but the surface waves propagate asymmetrically. We 

refer to the following peak amplitude and centre of mass plots in Figure 3.105 below 

to see the solutions break symmetry at approximately 13t, and to see the group 

velocities approach each other at 680t. 
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Figure 3.105 Closer inspection of the break in symmetry from the peak amplitude 

plot (top), and convergence at approximately 680t, continuing as an 

unstable, asymmetric solution (bottom). 
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3.8.10  u_data_a_1p3_mu_2p4_asym 

As the fractional derivative order α = 1.3, and the phase propagation constant μ = 2.4, 

the solution quality deteriorates, and continues to evolve asymmetrically until 

becoming non-stationary as we see in the heatmap in Figure 3.106 below. 

 

 

Figure 3.106 The heatmap shows solutions are asymmetric and non-stationary. 

u1 is significantly more focussed and prominent than u2. 
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Figure 3.107 The peak amplitude evolution shows u1 converging on u2 

throughout the experiment. 

 

In the peak amplitude plot in Figure 3.107, we see u1 and u2 converging throughout 

the experiment. We also observe erratic oscillations in peak amplitude from both 

solutions. 

In the waterfall ED plots in Figure 3.108 we see the convergence between the 

solutions, and we see the dispersion in the solution field of u2. 
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Figure 3.108 The waterfall plot of the ED shows the convergence between u1 and 

u2 as the solutions evolve throughout the experiment (note the 

difference in amplitude scale). 
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3.8.11  u_data_a_1p3_mu_2p4_asym 

 

Figure 3.109 The heatmap shows non-stationary behaviour when the fractional 

derivative order α = 1.3 late in the experiment. u2 is not shown as 

it quickly radiates into noise. 

 

When the fractional derivative order α = 1.3 and the phase propagation constant μ = 

2.4, u2 disperses completely, whereas u1 remains highly focussed but decays over 

time, visible in Figure 3.109. The waterfall ED in Figure 3.110 and the peak amplitude 

in Figure 3.111 illustrate the instability of u1 where we observe erratic oscillations and 

consistent decay of peak amplitude over the experiment. 

The waterfall ED shows a noticeable amount of decay from u1, and the peak amplitude 

figure shows u1 converging on a significantly smaller u2 throughout the experiment. 
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Figure 3.110 A view of the highly focussed u1 ED. 

 

Figure 3.111 Peak amplitude evolution shows u1 decaying over the course of the 

experiment. Whereas u2 decays into background noise. 
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3.8.12  u_data_a_1p3_mu_2p6_sym 

When the fractional derivative order α = 1.3 and the phase propagation constant μ = 

2.6, Figure 3.112 shows the solutions break symmetry early in the experiment. The 

solution u1 becomes highly focussed, and u2 appears to disperse almost completely. 

After approximately 150t we observe u1 becomes non-stationary, deviating 

predominantly to the left of the solution field. 

 

 

Figure 3.112 The solution becomes asymmetric and non-stationary when α = 1.3. 
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Figure 3.113 We see the solutions break symmetry at approximately 25t, then 

continue to converge throughout the rest of the experiment. 

 

Looking at the peak amplitude evolution in Figure 3.113, we can see u1 and u2 are 

unstable due to high frequency oscillations. We also observe the solutions converging 

on each other throughout the experiment, displaying similar behaviour to other results 

in this section where the fractional derivative order α → 1. 
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3.8.13  u_data_a_1p3_mu_2p8_asym 

From fractional derivative order α = 1.6 until 1.3, with the phase propagation constant 

μ = 2.8, the solutions become more focussed and asymmetric until non-stationary 

behaviour occurs, evident in the following ED heatmap in Figure 3.114 below. We 

notice in Figure 3.114 the solution is stationary until approximately halfway through 

the experiment, when it diverges to the left, then right of the solution field. The peak 

amplitude evolution in Figure 3.115 shows u1 and u2 converging throughout the 

experiment, with erratic oscillations and clear instability from both solutions. 

 

Figure 3.114 The ED heatmap shows non-stationary behaviour from u1. 
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Figure 3.115 The peak amplitude evolution converging over time. 
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3.9 Fractional derivative 𝛂 = 1.2 

This section reviews curious dynamics for fractional derivatives of order α = 1.2.  

 

3.9.1 u_data_a_1p2_mu_1p2_sym 

 

Figure 3.116 Symmetric, stable, but increasingly dispersed solutions. 

 

In Figure 3.116 we present the results of a stable symmetric solution pair with the 

phase propagation constant μ = 1.2. We see little evidence of oscillations, but there is 

noticeable dispersion and amplitude decay as the solution evolves. 

We confirm from the peak amplitude evolution in Figure 3.117 the solutions are 

symmetric, and stable as there is very little evidence of oscillations. The centre of mass 
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evolution plot in Figure 3.117 confirms the stability of the oscillations but also 

indicates the dispersion in the solution corresponding to a positive slope as the 

experiment progresses. Considering the experiment time and the absence of high 

frequency oscillations, we conclude that despite the dispersion in the system as the 

solution evolves, u1 and u2 are stable soliton solutions. 
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Figure 3.117 The peak amplitude evolution (top) shows stable, but gradually 

decaying solutions. The centre of mass (bottom) indicates the 

amount of dispersion as the solutions evolve. 
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3.9.2 u_data_a_1p2_mu_1p4_sym 

 

 

Figure 3.118 Heatmap of stable, symmetric solutions. 

 

In Figure 3.118 we see a stable, symmetric solution pair corresponding to a fractional 

derivative of order α = 1.2 and phase propagation constant μ = 1.4.  . The peak 

amplitude in Figure 3.119 reveals a decay in peak amplitude throughout the 

experiment, while the centre of mass evolution plot indicates minimal oscillations, and 

increased dispersion over time, confirming stability. 
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Figure 3.119 Peak amplitude evolution (top) and centre of mass evolution 

(bottom) of a stable symmetric solution pair. 
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3.9.3 u_data_a_1p2_mu_1p5_sym 

 

Figure 3.120 Asymmetry continues when the fractional derivative order α = 1.2 
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In Figure 3.120, when the fractional derivative order α =1.2 and the phase propagation 

μ = 1.5, the solution returns to a stationary state yet remains asymmetric. We see the 

phase portrait in Figure 3.121 below, u1 remains relatively stable with a peak 

amplitude ranging from approximately 5 to 6. We must remain aware of the need for 

caution when interpreting peak amplitude and phase of low amplitude values, as the 

data used to determine these factors may in fact be noise from dispersion effects, 

therefore we do not display u2, as it would appear to be stable at a value of 

approximately 0.5, consistent with the average amplitude of the noise in the solution 

field. 

 

Figure 3.121 Phase portrait shows u1 oscillates with an amplitude of 

approximately 6 for most of the experiment. 
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3.9.4 u_data_a_1p2_mu_1p6_asym 

For fractional derivative of order α = 1.2 and phase propagation constant μ = 1.6 we 

see in Figure 3.122 the unstable asymmetric solution pair disperses immediately, 

creating visually appealing, symmetric diffraction patterns in the solution field. 

 

 

Figure 3.122 Heatmap of asymmetric solutions u1 and u2 with a phase 

propagation constant μ = 1.6, and fractional derivative order α = 

1.2. 

 

If we inspect the waterfall ED plot in Figure 3.123, we see four periodic peaks in the 

solution field before the solution disperses. Due to the periodic boundary conditions, 

we see a fifth pulse at the conclusion of the experiment. 
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Figure 3.123 Asymmetric, unstable solution pair. 

 

If we observe the following peak amplitude evolution and centre of mass evolution 

plots in Figure 3.124, we see these solutions are another example of group velocity 

propagating symmetrically, while remaining out of phase. The peak amplitude and 

centre of mass plots are a good example of the inverse relationship between peak 

amplitude and centre of mass. 
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Figure 3.124 The peak amplitude evolution (top) and centre of mass evolution 

(bottom) show the solutions converging in symmetry. Both inner 

waves propagate symmetrically, while the surface waves remain 

asymmetric. 
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3.9.5 u_data_a_1p2_mu_1p8_sym 

As the fractional derivative order α approaches one and the phase propagation constant 

μ = 1.8, we see in Figure 3.125 the solution u1 increases in amplitude and focus, 

whereas u2 disperses immediately. We refer to the waterfall ED in Figure 3.125 to 

appreciate the focus of the stable solution u1, as compared to its coupled solution u2, 

which decays immediately.  
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Figure 3.125 The ED shows u1 is highly focussed, while u2 decays to noise 

almost immediately, radiating both right and left of the solution 

field. 
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The phase portrait in Figure 3.126 shows u1 to be reasonably stable when the peak 

amplitude is approximately 6.8, albeit with some variation in amplitude over time, 

consistent with oscillations. 

 

 

 

Figure 3.126 Phase portrait of peak amplitude shows u1 to be reasonably stable 

when the peak amplitude is approximately 6.8.  
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3.9.6 u_data_a_1p2_mu_2p0_asym 

 

Figure 3.127 Unstable, asymmetric pair when α = 1.2. 

 

For fractional derivative of order α = 1.2 and phase propagation constant μ = 2, we see 

in Figure 3.127 the unstable, asymmetric solutions u1 and u2 disperse immediately. 

As the dispersion combines with the periodic boundary conditions, we see appealing 

diffraction patterns throughout the solution field. Looking at the peak amplitude 

evolution and centre of mass evolution in Figure 3.128, we see evidence of the 

solutions approaching symmetry. 
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Figure 3.128 Peak amplitude evolution (top) and centre of mass evolution 

(bottom) show evidence of symmetric propagation of group 

velocity, while remaining out of phase. 
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3.9.7 u_data_a_1p2_mu_2p4_asym 

 

Figure 3.129 Unstable, asymmetric solution with interesting dispersion pattern. 

 

When the fractional derivative order α = 1.2 and the phase propagation constant μ = 

2.4 we observe in Figure 3.129 the results of unstable, asymmetric solutions dispersing 

early in the experiment. Due to the periodic boundary conditions, we see a periodic 

diffraction pattern in the solution field. Once again, if we observe the peak amplitude 

evolution and centre of mass evolution in Figure 3.130 below, we will see symmetric 

propagation of the group velocity and continued evolution out of phase. 
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Figure 3.130 Peak amplitude evolution (top) and centre of mass evolution 

(bottom) show evidence of symmetry making conditions. 
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3.10 Bifurcation diagram: portion 𝛂 = 1.2 

 

 

Figure 3.131 Bifurcation plot for α = 1.2 data. 

 

Here we note in Figure 3.131 the stable bifurcation branch (black) corresponds to the 

average power to maximum amplitude ratio greater than 3, and the unstable branch 

(red) corresponds average power to peak amplitude ratio less than approximately 1.6. 

Comparing the stable and unstable branches of the bifurcation plot with Table 3.3 

below, we see stability corresponds to phase propagation values μ < 1.6, and the 

unstable branch corresponds to phase propagation constants μ ≥ 1.6. 
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Table 3.3: Fractional value group α = 1.6 

Data Pair Stability 

Abs. Max. 

Amplitude Power 

a_1p2_mu_1p2_sym  Stable 0.75010405 2.671736713 

a_1p2_mu_1p4_sym  Stable 1.0684264 2.97717636 

a_1p2_mu_1p6_asym 

 

Unstable 1.5964785 2.703842224 

a_1p2_mu_1p8_sym 

 

Unstable 1.5139137 3.335051096 

a_1p2_mu_2p0_asym 

 

Unstable 2.0909423 2.340843955 

a_1p2_mu_2p2_sym 

 

Unstable 1.8548813 3.566778161 

a_1p2_mu_2p4_asym 

 

Unstable 2.4119801 2.252409669 

a_1p2_mu_2p6_sym 

 

Unstable 2.1421425 3.74140627 
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3.11 Fractional derivative 𝛂 = 1.1 

In this section we present various noteworthy and interesting dynamics for fractional 

derivatives of order α = 1.1. 

3.11.1  u_data_a_1p1_mu_1p2_sym 

In Figure 3.132 we see the symmetric solutions disperse, however, due to periodic 

boundary conditions we see an interesting pattern evolve in the solution field. This is 

the first of two examples (the second may be found in the following section 3.112 

u_data_a_1p1_mu_1p2_sym) of a symmetric solution maintaining symmetry as the 

fractional derivative order α approaches 1: both symmetric solutions that evolve in this 

manner share a phase propagation constant μ = 1.2: generally when the fractional 

derivative order α = 1.6 symmetric solutions become asymmetric and non-stationary. 

 

Figure 3.132 Symmetric dispersion pattern when fractional derivative order α = 

1.1. 
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3.11.2  u_data_a_1p1_mu_1p2_sym 

As the fractional derivative order decreases from α = 1.6 to α = 1.1 with the phase 

propagation constant μ = 1.2 the solutions lose stability and increase dispersion until 

we observe the following periodic dynamics in Figure 3.133. 

 

Figure 3.133 When the fractional derivative order α = 1.1, the solution pair lose 

stability, but maintain symmetry. Here the solution resembles a 

cos(2t) sin(2x) surface. 

 

When the fractional derivative order α = 1.1, the solutions decay into what appears to 

be a cos(2t)sin(2x) surface, when the previous tile pattern occurs as in section 3.11.1. 

The waterfall ED in Figure 3.134 is included out of interest, to show how the solution 

quickly disperses from the initial conditions. This is an example of why periodic 

boundaries may be considered undesirable. This is also the first example of symmetric 



196 

 

solutions maintaining symmetry as the fractional derivative order α approaches 1, 

instead of breaking symmetry and becoming highly focussed and non-stationary. 

 

Figure 3.134 ED of the solution nicely demonstrates diffraction patterns from the 

regular boundary conditions. 

 

3.11.3  u_data_a_1p1_mu_1p6_asym 

When the fractional derivative order α = 1.1 and the phase propagation constant μ = 

1.6, the solutions become highly asymmetric and focussed, visible in Figure 3.135. 

The solution u2 decays immediately, whereas u1 propagates as a highly focussed, 

oscillating, and decaying soliton throughout the experiment. We can see this behaviour 

in the ED waterfall plot in Figure 3.135 below. 
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Figure 3.135 Waterfall ED displaying unstable, highly focussed, and asymmetric 

results when the fractional derivative order α = 1.1. 
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3.11.4  u_data_a_1p1_mu_1p8_asym 

 

Figure 3.136 The heatmap shows the ED of u1 and u2.  
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Between fractional derivative order α = 1.3 and α = 1.1, and the phase propagation 

constant μ = 1.8, u1 increases focus while u2 immediately disperses. We see on the 

ED heatmap for 200t in Figure 3.136, u1 has become focussed with a relatively high 

peak amplitude that appears to be stable. Alternatively in the ED waterfall plot for 750t 

in Figure 3.137, u2 disperses immediately to the left and the right, until halfway 

through the experiment when radiative noise appears to propagate to the left only. 

 

Figure 3.137 The ED waterfall plot of u2 shows noise in the solution, and 

dispersion radiating to the left during the second half of the 

experiment.  
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3.11.5  u_data_a_1p1_mu_1p8_sym 

 

Figure 3.138 ED heatmap of u1 and u2 when the fractional derivative order α 

approaches 1.  
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In Figure 3.138, when the fractional derivative order α = 1.1 and the phase propagation 

constant μ = 1.8, we see the solution u1 becomes highly focussed as u2 disperses 

completely: u1 appears to be stable. If we look at the phase portrait in Figure 3.139 

below, we see u1 oscillating around what appears to be an unstable sink, corresponding 

to a stable amplitude of approximately 6.3. 

 

 

Figure 3.139 The phase portrait of u1 shows an unstable sink when u1 is 

approximately 6.3. 

 

In the waterfall plot in Figure 3.140 below, we see u1 and the contribution of u2 as 

dispersion patterns in the solution field. Based on the ED heatmap in Figure 3.138, 

waterfall plot in Figure 3.140 and the phase portrait in Figure 3.139, u1 appears to be 

highly focussed but stable. 
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Figure 3.140 The waterfall ED plot illustrates the stability and focus of u1, and 

the unusual dispersion pattern of u2. 
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3.11.6  u_data_a_1p1_mu_1p8_asym 

We see in Figure 3.141 below, as the fractional derivative order α decreases from 1.3 

to 1.1 and when the phase propagation constant μ = 1.8, u1 maintains shape and 

behaviour as a highly focussed soliton with substantial dispersion from initial 

conditions. The solution u2 appears to disperse completely from the initial conditions. 

 

Figure 3.141 As the fractional derivative order α approaches 1, we continue to 

see highly asymmetric solutions, and well-defined dispersive 

losses, particularly in u2. 

In the phase portrait in Figure 3.142 below, we see u1 appears stable as the peak 

amplitude phase oscillates around 6. We further support this conclusion with the 

waterfall plot in Figure 3.143, which shows little decay in peak amplitude over time, 

and minimal dispersion. The noise evident in the solution field of Figure 3.143 in the 

solution field equivalent to its coupled counterpart u2. 
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Figure 3.142 Despite initial losses, u1 appears reasonably stable with a peak 

amplitude of approximately 6.3. 

 

Figure 3.143 A focussed and stable solution, with dispersion effects. 



205 

 

3.11.7  u_data_a_1p1_mu_2_asym 

 

Figure 3.144 Heatmaps show u1 becomes highly focussed and u2 disperses 

completely to the left and right of the initial conditions. 
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As the fractional derivative order α approaches one the phase propagation constant μ 

= 2, we see in Figure 3.144 u1 becomes highly focussed and reasonably stable 

throughout the duration of the experiment. From the heatmap in Figure 3.144 we see 

u2 disperses immediately, whereas u1 maintains a relatively large peak amplitude. 

Figure 3.145 confirms the stability of u1 and shows the solutions converging on each 

other throughout the experiment. 

 

 

Figure 3.145 The peak amplitude evolution shows u1 to be reasonably stable, 

whereas u2 remains completely dispersed throughout the 

experiment. 
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3.11.8  u_data_a_1p1_mu_2p2_sym 

 

Figure 3.146 As the fractional derivative order α approaches 1, u1 decays to 

noise, and u2 becomes highly focussed. 
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From fractional derivative order α = 1.4 to α = 1.1 and the phase propagation constant 

μ = 2.2, the solutions returned to stationary propagation through time as an asymmetric 

pair, however, in Figure 3.146, u1 disperses immediately, and u2 becomes focussed 

and stable. Observing the ED heatmap in Figure 3.146, we see u1 disperse immediately 

to the left and right of the solution field while u2 becomes highly focussed and appears 

stable and self-supporting. 

The peak amplitude evolution in Figure 3.147 shows u2 gradually decay, converging 

on u1 throughout the experiment. Dispersion from the heatmap is corroborated when 

reviewing the centre of mass evolution, as the centre of mass increases throughout the 

experiment, indicating noise throughout the solution field. 
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Figure 3.147 The peak amplitude evolution (top) shows the switch in symmetry 

between u1 to u2. The centre of mass evolution (bottom) shows 

increased dispersion over time. 
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3.11.9  u_data_a_1p1_mu_2p4_asym 

As the fractional derivative order α decreases in value and the phase propagation 

constant μ = 2.4, the solutions become more asymmetric and focussed, and we observe 

the following behaviour in Figure 3.148. 

 

Figure 3.148 When the fractional derivative order α approaches 1, u1 becomes 

highly focussed, while u2 disperses completely. 

Figure 3.148 shows dispersion in both solutions at the beginning of the experiment, 

however, considering the stability of u1, we assume the persistent dispersion pattern 

in the u1 solution field comes from the coupling with u2. Conversely, there is little if 

any evidence of the u1 coupling term in the u2 solution which one would expect would 

appear as periodic pulses where the dispersive effect intersects in the centre of the 

solution field. As we investigate this potential expected phenomena in Figure 3.149, 

we see no evidence of symmetric pulses from the coupling of u1 in the u2 solution 

field. 
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Figure 3.149 The peak amplitude plot shows u1 to be reasonably stable while u2 

shows peaks corresponding to the dispersive waves meeting 

periodically at the boundary. 

 

3.11.10 u_data_a_1p1_mu_2p4_asym 

When the fractional derivative order α = 1.1, and phase propagation constant μ = 2.4, 

we see in Figure 3.150 below u1 becomes highly focussed and reasonably stable, 

whereas u2 radiates into noise. We observe noise in both solution fields with more 

easily discernible dispersion patterns. In this instance, u2 has not dispersed completely, 

and may be seen propagating above background noise. 

 



212 

 

 

Figure 3.150 The waterfall plots show the extent of asymmetry, and the level of 

radiation in the solution fields. 
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3.11.11 u_data_a_1p1_mu_2p4_sym 

 

Figure 3.151 As the fractional derivative α approaches 1, u1 becomes highly 

focussed, while u2 decays to noise. 

As the fractional derivative order α approaches 1 and the phase propagation constant 

μ = 2.4, we see in Figure 3.151 u1 becomes focussed and shows signs of dispersive 

decay to the left and right of the solution at the beginning of the experiment. The 

solution u2 decays to noise almost immediately after the initial conditions. Looking 

closely at the heatmap in Figure 3.151, after 100t, we see constructive and destructive 

interference  where the diffraction pattern intersects near the centre of the solution 

field, alternating from the right of the solution to the left of the solution. Reviewing 

the following peak amplitude evolution plots in Figure 3.152, we observe u1 

converging on u2, and the peak amplitude of dispersion from u2 throughout the 

experiment. 
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Figure 3.152 The peak amplitude of u1 appears to be reasonably stable for 200t. 
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3.11.12 u_data_a_1p1_mu_2p4_sym 

 

Figure 3.153 In this experiment u2 becomes more focussed and stable. 
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As the fractional derivative order α approaches 1 and the phase propagation constant 

μ = 2.4, we see symmetry break early in the experiment, but for the second time from 

this dataset (where the fractional derivative order α = 1.1), we see u2 become highly 

focussed, while u1 disperses immediately into noise (the first example can be seen in 

Figure 3.146 in sub-section 3.11.8 u_data_a_1p1_mu_2p2_sym). If we observe the 

waterfall plot in Figure 3.154, we see unwanted effects of periodic boundary 

conditions: it appears the solution consists of two solitons in a single solution field, 

but this is simply the dispersive waves intersecting near the boundary rather than near 

the centre of the solution field at x = 0. 

 

 

Figure 3.154 The waterfall plot shows undesirable edge effects more clearly. 
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Experimenting with the phenomenon of boundary effects, we adjust the solution field 

by increasing the value of the x-axis and therefore increasing the size of the solution 

field, we observe the following dispersive effects  in Figure 3.155, Figure 3.156, and 

Figure 3.157. 
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Figure 3.155 The focussed soliton shifts from u2 to u1 when the x-axis increases 

to 40. 
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Figure 3.156 As the solution field increases, u1 maintains focus and we see 

increased dispersion in the u2 solution field when the x-axis 

increases to 50. 
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Figure 3.157 Noise in the solution field when the x-axis increases to 60. 
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As the solution field increases, the focussed soliton swaps symmetries from u2 to u1 

(evident from Figure 3.155) and the noise in the solution field becomes more 

dispersed. However, the peak amplitude remained approximately the same for all 

experiments with this solution pair, maintaining a peak amplitude from approximately 

6.5 to 5.5. When re-evaluating the data from the initial experiment when u2 was 

focussed and stable (with the standard solution field width of x = 30), we see signs of 

numerical instability at the end of the experiment. Evidence of numerical instability 

may be seen in both Figure 3.154, and the peak amplitude plot in Figure 3.158 below 

at approximately 750t. 

 

 

Figure 3.158 The peak amplitude evolution shows u2 decaying until the solution 

‘blows up’ at the end of the experiment. 
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3.11.13 u_data_a_1p1_mu_2p8_asym 

As the fractional derivative order decreases and the phase propagation constant μ = 

2.8, the solutions continue to remain highly focussed and asymmetric until u2 disperses 

immediately, while u1 becomes stable throughout the experiment, visible in Figure 

3.159. 

 

Figure 3.159 The heatmap of u1 and u2 show interesting dispersion patterns in 

the solution field. As α approaches 1, we see u1 become highly 

focussed and stable, whereas u2 disperses immediately. 

 

If we look at the peak amplitude plot in Figure 3.160 and compare it to the heatmap in 

Figure 3.159, we see spikes in u2 corresponding to the periodic intersection of 

dispersive waves early in the experiment (t < 200) due to periodic boundary conditions. 
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Figure 3.160 The peak amplitude evolution shows periodic, asymmetric peaks 

corresponding to edge effects and dispersion waves meeting in the 

centre of the solution field. 

 

The peak amplitude evolution in Figure 3.160 above shows the diffraction in u1 acts 

as destructive interference (lower amplitude values), while the diffraction acts as 

constructive interference (higher amplitude values) for u2. The ED waterfall plots in 

Figure 3.161 indicates the level of dispersion in the solution field and provides 

indication of the focus and stability of u1. 
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Figure 3.161 The waterfall ED reveals the stability and focus of u1, and 

dispersion effects for u2. 
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3.11.14 u_data_a_1p1_mu_2p8_sym 

As the fractional derivative order α approaches 1 and the phase propagation constant 

μ = 2.8, u1 continues to evolve as a highly focussed solution, and u2 disperses 

immediately, leaving only the solution u1 visible in Figure 3.162. 

 

 

Figure 3.162 The peak amplitude evolution shows u1 gradually converging on u2 

over time, whereas u2 decays into noise. 

The peak amplitude evolution plot Figure 3.162 shows u1 decay slowly throughout the 

experiment, like other focussed, stable solutions. The ED waterfall plot in Figure 3.163 

below illustrates the degree of focus and stability in u1. Looking carefully in Figure 

3.163, we can see the noise in the u2 solution field appear as noise in the u1 solution 

field.  
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Figure 3.163 The ED waterfall plots details dispersion from u2 and illustrate how 

highly focussed and stable u1 becomes. 
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3.12 Bifurcation plot: all 

 

Figure 3.164 Combined bifurcation diagram for fractional derivative order α = 2 

(red), 1.6 (green), and 1.2 (blue). 

 

In Figure 3.164 we see the combined bifurcation plot. For the fractional derivative 

order α = 2, we have stability when the power to maximum amplitude ratio is 

approximately 3, and instability when the power to maximum amplitude ratio is 

approximately 3.8. For this set of data when α = 2, the unstable branch corresponds to 

symmetric solutions, whereas the stable branch corresponds to asymmetric solutions. 

When the fractional derivative order α = 1.6, we have stability when the power to 

maximum amplitude ratio is approximately 2.7, and instability when the power to 

maximum amplitude ratio is approximately 2.9. When the phase propagation constant 

μ > 2.4 we see the unstable branch corresponds to symmetric solutions, whereas the 
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stable branch corresponds to asymmetric solutions. This trend does not hold for μ < 

2.4. When μ < 1.4, the solutions are stable, and for 1.4 < μ < 2.4, the solutions are 

unstable. 

When the fractional derivative order α = 1.2, we have stability when the power to 

maximum amplitude ratio is approximately 3, and instability when the power to 

maximum amplitude ratio is approximately 1.6. The stable branch corresponds to 

phase propagation values μ < 1.6, and the unstable branch corresponds to μ ≥ 1.6. 

 

 

 

 

 

 

 

 

 

 

 



229 

 

CHAPTER 4 DISCUSSION 

The data sets were grouped together to evaluate specific fractional derivatives of order 

α. The results focussed on determination of stability of the solution: that is, stable or 

unstable for each fractional derivative of order α = 2, 1.6, and 1.2. The results of which 

determined each branch of the bifurcation plot.  

Additionally, for each data pair, the fractional derivatives were evaluated at each tenth, 

for values α ∈ (1, 2]. The MATLAB program output approximately twenty figures for 

each data set, for each fractional derivative order α. From the evaluated data, curious 

dynamics were presented here according to the fractional derivative order. 

Changes in the fractional derivative order resulted in four main behaviours: stability 

optimisation, symmetry making or breaking, non-stationary solutions, and to a lesser 

extent, unstable bright / dark soliton pulses. We discuss the results here by groups 

sharing behavioural dynamics. 

 

4.1 Stability optimisation 

In some cases, we found fractional values of order α optimised stability for some 

solution pairs with a fractional order α = 1.6 and 1.2. Stability optimisation occurred 

for symmetric solutions and can be seen in the sub-sections 3.4.1 

u_data_a_1p6_mu_1p2_sym, 3.4.2 u_data_a_1p6_mu_1p4_sym, 3.9.1 

u_data_a_1p2_mu_1p2_sym, and 3.9.2 u_data_a_1p2_mu_1p4_sym. 

For each of the four solution pairs above, from α = 2, to α = 1.6, the results were 

symmetric, but highly oscillatory and dispersive. As α → 1.6, the frequency of peak 
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amplitude oscillations decreased, while the solution evolved with some dispersion. To 

determine stability in these cases, rather than extending the experiment time, the 

solution could be optimised by changing the fractional value to limit energy losses in 

the wave equation by reducing the frequency of oscillations. Such solutions are note-

worthy because these solitons would otherwise be dismissed as unstable solutions with 

conventional integer derivatives. Yet here, we have shown the solitons to be stable 

with fractional derivatives of order α = 1.6, establishing a relationship between soliton 

stability and fractional derivative values for coupled NLSEs. This result is consistent 

with the assessment of soliton stability by Makhankov: determination of soliton 

stability requires some knowledge of the previous behaviour of the solution [44]. 

Fractional derivatives, by definition, tell us of the memory properties of the original 

problem, i.e., previous behaviour of the solution. Therefore, if we consider a soliton as 

a particle, these results may be indicative of particles ‘remembering’ a previously 

stable state and self-correcting their behaviour to maintain stability after perturbation.  

 

4.2 Symmetry 

One of the primary dynamics observed from the experiments included symmetry 

breaking boundaries for fractional values, and some evidence of symmetry making 

behaviour. Symmetry making was observed when stable, asymmetric solutions were 

provided enough experimental time to observe the frequencies of the solution pair  

converge on each other. 

Symmetry breaking occurred for each symmetrical pair of solutions as α→1, always 

prior to observation of non-stationary dynamics. We confirmed symmetry breaking 
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with the peak amplitude and centre of mass amplitude plots, where this behaviour often 

occurred early in the experiment. Symmetric solutions generally broke symmetry 

before 50t, except in the cases where the phase propagation constant μ = 1.2. In such 

cases, the solutions simultaneously dispersed, and because of the periodic boundary 

conditions, can be seen radiating in a similar fashion to cos(2t) sin(2x) diffraction 

patterns in the solution field.  

 

4.2.1 Symmetry making 

Solitons have been shown to converge experimentally in the past via numerical and 

physical experiments, however, previous merges we found occurred between stable, 

symmetric solitons [38, 66, 67]. Our research showed potentially novel symmetry 

making behaviour: both stable and unstable, asymmetric solutions tending to 

symmetric propagation.  

Symmetry making behaviour occurred for the following eight sets of solutions in the 

following sections: 3.1.4 u_data_a_2p0_mu_2p0_asym, 3.1.6 

u_data_a_2p0_mu_2p2_asym, 3.3.1 u_data_a_1p7_mu_2p8_asym, 3.4.6 

u_data_a_1p6_mu_2p4_asym, 3.4.8 u_data_a_1p6_mu_2p8_asym, 3.9.4 

u_data_a_1p2_mu_1p6_asym, 3.9.6 u_data_a_1p2_mu_2p0_asym, and 3.9.7 

u_data_a_1p2_mu_2p4_asym. 

Symmetry making behaviour was primarily seen in asymmetric solutions which were 

classified as stable. From this data, we saw the asymmetric solution pairs match their 

wavelength and group velocity, so the inner solutions began to oscillate symmetrically. 
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The peak amplitude evolution solutions converge and show signs of structural stability 

throughout the experiment, until numerical instability occurred. 

In one instance, 3.3.1 u_data_a_1p7_mu_2p8_asym, the inner wave of both solutions 

converged, then the surface waves converged. In this example, the fractional derivative 

α = 1.7 corresponds to symmetry making conditions and may be seen in Figure 3.29 

and Figure 3.30. In the other cases where the inner wave, or group velocity converged, 

experiment time was insufficient to determine if the surface waves would eventually 

converge and approach stability. Generally, from the symmetry making data we 

showed the inner waves converged and began to propagate symmetrically, while the 

surface waves continued to oscillate out of phase.  

Two asymmetric waves of unequal wavelength can be shown to propagate in and out 

of phase over time. However, from the data mentioned in this section, we see 

amplitude, wavelength, and phase of the two coupled solutions merging (changing 

amplitude, wavelength, frequency and phase from initial conditions), hence we 

conclude the potential for symmetry making conditions as a function of fractional 

derivative order α. 

Symmetry making phenomena would be more significant if the initial conditions were 

asymmetric and unstable, and able to propagate without oscillations. This type of 

symmetry making behaviour would yield immediate benefits for physical optical 

networks with improved error-tolerance in optical communication, and may be an 

indication of particles having a ‘memory’ of their past. In any case, it is still interesting 

to see the behaviour and dynamics of stable asymmetric solutions approaching the 

behaviour of stable symmetric solutions. Given enough experiment time, or for a 

sufficiently defined fractional derivative order α, it may be possible to see unstable, 
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asymmetric solutions converge throughout an experiment, and continue propagating 

as a self-supporting structure. If the solutions mentioned in this section are not 

representative of symmetry making, then perhaps such solutions represent a way to 

quantify mathematical stability: by examining the steady state of group velocity after 

convergence. 

 

4.2.2 Symmetry breaking 

Symmetry breaking behaviour occurred for most datasets as the fractional derivative 

order α → 1. For a fractional derivative order to be considered symmetry breaking, we 

must consider results from previously stable, symmetric solutions, since unstable 

solutions necessarily break symmetry and therefore propagate asymmetrically or 

disperse from initial conditions. Of the stable symmetric solutions, the following 

solution pairs are considered to have broken symmetry: 3.4.3 

u_data_a_1p6_mu_1p5_sym,  and 3.8.1 u_data_a_1p3_mu_1p4_sym. Additionally, it 

is useful to note symmetry was always broken prior to any solution becoming non-

stationary: this behaviour occurred early in the experiment, usually less than 20t. 

Of the unstable symmetric solutions to break symmetry, these consisted of solutions 

found in sections: 3.1.3 u_data_a_2_mu_1p8_sym, 3.1.5 

u_data_a_2p0_mu_2p0_sym, 3.1.7 u_data_a_2p0_mu_2p2_sym, 3.4.5 

u_data_a_1p6_mu_1p8_sym, 3.8.6 u_data_a_1p3_mu_1p8_sym, 3.8.9 

u_data_a_1p3_mu_2p2_sym, and 3.8.12 u_data_a_1p3_mu_2p6_sym. 

Each of the solution’s broke symmetry early in the experiment (t < 20) and continued 

to converge on each other throughout the rest of the experiment. After convergence, 
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three of these solutions created unstable, dark / bright pulses 3.1.3 

u_data_a_2_mu_1p8_sym, 3.1.5 u_data_a_2p0_mu_2p0_sym, and 3.1.7 

u_data_a_2p0_mu_2p2_sym. Of these three sets of solutions, we note the dark / bright 

pulses after convergence correspond to derivatives of order α = 2. 

One asymmetric solution pair found in section 3.11.12 u_data_a_1p1_mu_2p4_sym 

were shown to switch focus as the width of the solution field changed. When the size 

of the spatial axis was increased,  the solutions switched focus: u2 was initially 

focussed and stable while u1 dispersed, yet after increasing the boundaries, the 

solutions switched and u1 became stable and focussed while u2 dispersed. 

 

4.3 Dark / Bright pulses 

From the data we discovered two dark/bright soliton pulses in sections 3.1.5 

u_data_a_2p0_mu_2p2_sym, and 3.4.3 u_data_a_1p6_mu_1p5_sym. Of these, one of 

the solutions produced this result for the fractional derivative of order α = 2, while the 

other result occurred when the fractional derivative order α = 1.6 respectively. The 

pulses appear after the previously stable initial conditions break symmetry, then 

converge throughout the remainder of the experiment. If the solutions converged, dark 

/ bright pulses were often seen as a result. 

While these solutions are not stable, stationary dark / bright solitons, we can see the 

dynamics leading up to the behaviour, and the switching properties of the pulses 

themselves.  
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4.4 Non-stationary dynamics 

Nearly all solutions become non-stationary when the fractional derivative order 

α =1.3. Of these, all the solutions break symmetry if they are not already asymmetric, 

then continue as asymmetric solutions as the fractional derivative order α approaches 

1. Furthermore, of the twenty-one non-stationary solutions, fourteen tended to 

propagate to the left of the solution field, while seven tended to the right. Taking the 

average fractional derivative order for non-stationary solutions, it seems the value α = 

1.3 corresponds to non-stationary behaviour moving predominantly to the left of the 

solution field. 

From this dataset non-stationary solutions are always asymmetric: usually u1 becomes 

highly focussed whereas u2 disperses completely. Evidence of self-supporting 

behaviour in u2 after dispersion may be the result of coupling from u1. Furthermore, 

non-stationary solutions result in highly focussed, and in some cases self-supporting 

propagation with exceptionally large amplitudes as compared to other data analysed 

here. 

The details of the results are available in Table 4.1 below. 
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Table 4.1: Non-stationary Dynamics 

Data Fractional α Value Direction 

u_data_a_2_mu_1p5_sym 1.3 Right 

u_data_a_2_mu_1p8_asym 1.4, 1.3 Left 

u_data_a_2_mu_1p8_sym 1.4 Left 

u_data_a_2_mu_2_asym 1.4, 1.3 Left 

u_data_a_2p0_mu_2p0_sym 1.4 Right 

u_data_a_2p0_mu_2p2_asym 1.4, 1.3 Left 

u_data_a_2p0_mu_2p2_sym 1.4 Left 

u_data_a_2p0_mu_2p4_asym 1.4, 1.3 Left 

u_data_a_2p0_mu_2p4_sym 1.5, 1.4 Left 

u_data_a_2p0_mu_2p8_asym 1.4 Right 

u_data_a_2p0_mu_2p8_sym 1.5, 1.4 Left 

u_data_a_1p6_mu_1p4_sym 1.3 Right 

u_data_a_1p6_mu_1p8_asym 1.3 Right 

u_data_a_1p6_mu_1p8_sym 1.3 Left 

u_data_a_1p6_mu_2p4_asym 1.3 Left 

u_data_a_1p6_mu_2p4_sym 1.4 Left 

u_data_a_1p6_mu_2p8_asym 1.3 Right 

u_data_a_1p6_mu_2p8_sym 1.4 Right 

u_data_a_1p2_mu_1p8_sym 1.3 Left 

u_data_a_1p2_mu_2p0_asym 1.3 Left 

u_data_a_1p2_mu_2p6_sym 1.3 Left 

 

4.5 Bifurcation diagrams 

The data produced three bifurcation diagrams of the pitchfork type for different 

fractional derivative order groups α = 2, 1.6, and 1.2. From these results available in 

Figure 3.164, we determined stability branches corresponded to solution symmetries 

for two of these groups: α = 2, and 1.6. 

For the dataset corresponding to fractional derivative order α = 2, we found a stable 

branch corresponding to asymmetric solutions, and an unstable branch corresponding 

to symmetric solutions for each distinct phase propagation constant μ: the findings are 

consistent with other research in this area where stability branches are shown to 

correspond to solution symmetry [20, 36]. 
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Taking a linear approximation for each branch, we calculated a power to peak 

amplitude ratio to determine stability limits. When the fractional derivative order α = 

2, we have a stable branch with power to maximum amplitude ratio of approximately 

3.2, and an unstable branch when the power to maximum amplitude ratio is 

approximately 3.8. When the fractional derivative order α = 1.6, we have a stable 

branch corresponding to power to maximum amplitude ratio of approximately 2.7, and 

an unstable branch when the power to maximum amplitude ratio is approximately 2.9. 

For the fractional derivative order α = 1.2, we have a stable branch when the power to 

maximum amplitude ratio is approximately 3, and an unstable branch when the power 

to maximum amplitude ratio is approximately 1.6. 

We note when the fractional derivative order α = 2 and 1.6, the unstable branches have 

a steeper linearised slope as compared to the stable branches, whereas when the 

fractional derivative order α = 1.2 the stable branch has the steeper slope than the 

unstable branch.  

4.6 Evaluation techniques 

To evaluate the stability of each experiment, the MATLAB programs produced 

heatmaps, waterfall plots, phase portraits and direction fields based on the peak 

amplitude value and centre of mass evolution for each solution u1 and u2. Furthermore, 

numerical data was collected to determine dispersion to assist with stability 

determination. From the collected plots, phase portraits and direction fields were not 

required to determine stability. The heatmap, waterfall plots, peak amplitude evolution 

and centre of mass evolution were sufficient to determine stability. 
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The results of the direction fields and phase portraits resemble chaotic, oscillating, 

nonlinear, unstable attractors. This makes sense, since we are using the peak amplitude 

value of coupled, oscillating solutions to calculate the plot data. Therefore, u1 and u2 

are shown to behave in accordance with an unstable attractor: that would be the 

oscillating peak amplitude value of the coupled solution in our case. Our results are 

superficially consistent with chaotic systems [58-60], and to a lesser extent nonlinear 

oscillators [61, 62]. While the plots were unnecessary to determine stability for this 

project, perhaps future soliton analysis could benefit from appropriate statistical 

analysis of nonlinear, chaotic systems with plots such as these.  
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CHAPTER 5 CONCLUSIONS 

The aim of this research set out to explore solitary wave solutions for coupled, NLSEs 

with fractional space derivatives of order α ∈ (1, 2]. Experiments were run by 

decrementing the fractional derivative order α from 2 to 1.1 by tenths. The MATLAB 

programs calculated and output twenty-four plots for each data pair and calculated two 

tables of information designed to assist in the determination of stability. From the data, 

we selected noteworthy dynamics for consideration in this research paper. 

 

5.1 Primary results 

Examining the bifurcation diagrams, we found stable and unstable branches 

corresponding to asymmetric and symmetric solutions respectively when the fractional 

derivative order α = 2, and 1.6. For α = 1.2, the stable branch corresponds to phase 

propagation constant values μ < 1.6 and consists exclusively of symmetric solutions. 

The unstable branch corresponds to μ ≥ 1.6 and consists of symmetric and asymmetric 

solutions. To produce the bifurcation diagram, we calculated soliton power and created 

bifurcation plots corresponding to fractional derivatives of orderα = 2, 1.6, 1.2. We 

found for fractional derivatives of order α = 2, and 1.6, stable branches of the 

bifurcation plot corresponded to asymmetric solutions, while the unstable branches 

corresponded to their symmetric counterpart, consistent with similar symmetry 

breaking bifurcation results in fractional derivative research [20, 36, 38]. 

There is relatively little previous data or research in soliton stability analysis as a 

function of fractional derivative. Part of the problem researching this area of 

mathematics is compounded by the fact there exist numerous computational methods 
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to approach NLSEs, and therein lie various approaches integrating fractional 

derivative values into the computational methods. For example, the Reisz fractional 

derivative (
𝜕𝛼𝑢

𝜕|𝑥|𝛼) by the shifted Grünwald formulae restricts the fractional derivative 

value to the domain α ∈ (1, 2] which has been applied in similar research areas [20, 

36, 57]. Other methods explore fractional derivatives outside of this domain [27, 31, 

33, 35, 37]. What each method has in common, is the way in which the fractional 

values are calculated: showcasing the memory properties of fractional derivatives, and 

the need for numerical methods to solve them. This approach naturally lends itself to 

discrete computational methods, as the fractional derivative is defined in discrete 

terms: it also provides rigorous bounds the fractional value may take.  

 

5.2 Stability assessment 

Applying the shifted Grünwald approach to soliton research, we produced and 

captured heatmaps, waterfall plots, peak amplitude evolution, centre of mass 

evolution, phase portraits and direction fields for the wave solutions and corresponding 

energy density. While we found the resulting phase portraits and direction fields f were 

not necessary to determine stability, they did, however, imply the application to 

potentially help define solitons in the future, thereby providing a potential quantitative 

method to determine the stability of solitons. The reasoning here is the link between 

soliton evolution phase trajectories and nonlinear, oscillating, chaotic systems: this 

may open the door to a statistical approach to soliton analysis or may simply move the 

evaluation of soliton stability from a qualitative endeavour to a more quantitative 

process through methods employed in statistical analysis. 
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5.3 Symmetry boundaries 

Looking closely at peak amplitude plots and scrutinising the symmetries between 

various solutions led to the discovery of symmetry breaking boundaries, and possibly 

more importantly the discovery of symmetry making boundaries. On four occasions, 

asymmetric solutions matched group velocities, so the inner wave solution began 

oscillating symmetrically (while the surface waves remained out of phase) until 

numerical instability occurred (these solutions are found in sections 3.1.4 

u_data_a_2p0_mu_2p0_asym, 3.9.4 u_data_a_1p2_mu_1p6_asym, 3.9.6 

u_data_a_1p2_mu_2p0_asym, and 3.9.7 u_data_a_1p2_mu_2p4_asym). On one 

occasion (in section 3.3.1 u_data_a_1p7_mu_2p8_asym), both group and phase 

velocity converged. If this phenomenon is not symmetry making, and is indicative of 

asymmetric stability, perhaps determining the steady state solution of group velocity 

of solutions is one way to quantify stability. Soliton stability boundaries are an 

important part of numerical mathematical research as the boundaries lead to a better 

understanding of diffusion equations in general. In terms of real-world applications, 

stability boundaries often represent physical properties of a medium which may be 

optimised to support the existence of a more stable propagating light pulse, and error 

tolerant optical communication applied in systems requiring less energy to produce, or 

fewer repeaters to maintain soliton pulse propagation. Therefore, the implication of 

symmetry making conditions and their applications cannot be understated [3, 5, 6, 10, 

35, 42, 43, 56, 57, 65]. 

We also found non-stationary solitons for sufficiently low fractional derivative values 

of approximately α = 1.3, which were often preceded by symmetry breaking behaviour 

in previously symmetric solutions. The non-stationary solutions were highly 
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asymmetric, and mostly propagated to the left of the solution field. Furthermore, when 

symmetric solutions did break symmetry, we found the value of the peak amplitude of 

each solution continued to converge throughout the experiment, and in two of the 

stationary cases, convergence resulted in dark/bright soliton pulses (found in sections 

3.1.5 u_data_a_2p0_mu_2p2_sym and 3.4.3 u_data_a_1p6_mu_1p5_sym). 

5.4 Future research 

Considering the breadth of NLSE research, and the relatively wide range of 

computational methods, coupled with the lack of a strict, rigorous definition of a 

soliton, and by extension, guidelines for what makes a soliton stable or unstable, 

NLSEs represent a very large area of fruitful mathematical research, with a lot of 

potential for continued development [21]. 

To begin with, a research priority should be the formulation of a strict definition for 

solitons, thereby creating a framework to determine soliton stability. As the NLSE 

field currently stands, stability is dependent on application, type of perturbation, and 

what we already know of the behaviour of the system. Strict mathematical guidelines 

for stability are required and would immediately benefit the area. Furthermore, 

numerical methods require transparency, and code should be published with results as 

part of the peer-review and publication process. When researching this area, it is 

assumed adequate numerical methods are universally employed, but this is impossible 

to know without making this type of data transparent. 

There is potential to mathematically explore why stable, symmetric solutions break 

symmetry and become non-stationary when approaching fractional derivative order 

α =1.3. Since some solutions become non-stationary as the fractional derivative order 
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α =1.5, 1.4, or α =1.2, we cannot claim for there to be a ‘magic fraction’ to break 

symmetry, but we can certainly explore this mathematically with more rigour and 

determine the relationship between fractional derivative orders α and non-stationary 

solitons. 

Additionally, we could explore the relationship between chaotic attractors and soliton 

solutions and determine if there are any further substantial links between NLSEs and 

stochastic, chaotic systems. Considering this project alone generated 6GB of data, it 

stands to reason that statistical methods could only serve to benefit soliton analysis: 

studying soliton stability through a statistical lens may yield results in terms of a strict 

definition of soliton stability for various NLSEs. 

The next immediate area of research may simply be repeating this research with finer 

fractional derivative values, approaching symmetry making, breaking, and non-

stationary behaviour with greater precision of derivative order to observe the evolution 

of the results. This may be solved by developing a program to iteratively process 

solution pairs in a loop of increasingly smaller changes in fractional derivative values: 

effectively nesting the programs used in this research in a loop. This type of approach 

would allow for the collection of results to observe solution behaviour as the fractional 

derivative order α changes over time.  Generally, the NLSE field area would benefit 

from exploring how a wide variety of solutions behave with fractional derivatives for 

a range of NLSEs. 

This research project set out to study solitary wave solutions for fractional, coupled 

NLSEs and find novel stability boundaries within the fractional derivative order. We 

found stable and unstable solitons corresponding to symmetry when α = 2 and 1.6, 

interesting symmetry breaking, non-stationary dynamics, bright / dark pulses, 
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symmetry making dynamics, and a lot of potential for future research in this area 

including error-tolerant optical communication and the potential for particles to 

demonstrate memory and self-correcting behaviour. 
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A1 Properties of the Reisz fractional derivative 

This project requires discretisation of the Reisz fractional derivative (
∂αu

∂|x|α) by the 

shifted Grünwald formulae where the fractional derivative order α ∈ (1, 2]. 

   
dαu(xi)

dxα
|

0

x

=
1

hα
  ∑   gjul−j+1 + O(H)

l+1

j=0

, LHS of u(xi),                        

dαu(xi)

dxα
|

x

L

=
1

hα
∑ gjul+j−1 + O(H)

N−l+1

j=0

, RHS of u(xi),          (A. 1) 

where the coefficients are given as  

          g0 = 1, gj = (−1)j
α(α − 1). . . (α − j + 1)

j!
, for j ∈ ℕ. 

Then the Reisz fractional diffusion equation reduces to the discretised system of 

ODEs: 

                        
dul

dt
≅

−Kα

2cos(
πα
2 )hα

[∑ gjul−j+1 +

l+1

j=0

∑ gjul+j−1

N−l+1

j=0

],           (A. 2) 

where Kα is the dispersion coefficient, h is the space step, and in the application from 

the Yang, Liu, Turner paper, u is solute concentration [57]. 
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A1.1 Check the shifted Grünwald approximation reduced to 

discretised ODE formulae 

To confirm the Grünwald approximation is indeed appropriate for our discretisation 

experiments in MATLAB, we check that A.2 reduces to the discretised approximation 

for the second derivative when the fractional derivative order α = 2. 

Taking equation (A.2), we let Kα = 1 and α = 2, as follows: 

dul

dt
≅

−1

2cos(
π2
2 )h2

[∑ gjul−j+1 +

l+1

j=0

∑ gjul+j−1

N−l+1

j=0

] 

Since cos(nπ)  = (−1)n, n ∈ ℤ, 

                                      ≅
1

2h2
[∑ gjul−j+1 +

l+1

j=0

∑ gjul+j−1

N−l+1

j=0

]                                 (A. 3)   

Since we are given g0 = 1, gj = (−1)j α(α−1)...(α−j+1)

j!
, for j ∈ ℕ, we observe  

gj = (−1)j α(α−1)...(α−j+1)

j!
→ 0 when α = j − 1. So, we are restricted in our 

summation up to j = 3.  

Now we determine which discretised function values correspond to the coefficients g 

up to j = 2, where j = 1, . . . , N. So, we restrict our summation to j = 1, 2, i.e., N = 2. 

By letting l=1, our summation limits change appropriately: 

 

                   ∑ gjul−j+1 +

l+1

j=0

∑ gjul+j−1

N−l+1

j=0
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i.e. 

              ∑ gjul−j+1

1+1

j=0

 → ∑ gju2−j

2

j=0

 

∑ gjul+j−1

N−l+1

j=0

→ ∑ gjul+j−1

2−1+1

j=0

→ ∑ gjuj

2

j=0

          (A. 4) 

To compare the Grünwald approximation of the second derivative to the discrete 

second derivative approximation, we determine the value of the second derivative of 

u at the lth position: 

dul

dt
≅

1

2h2
[∑ gjul−j+1 +

l+1

j=0

∑ gjul+j−1

N−l+1

j=0

]                                                                     

  =
1

2h2
[g0ul+1 + g0ul−1 + g1ul + g1ul + g2ul−1 + g2ul+1].           (A. 5) 

Substituting the values of the coefficients gj yields: 

dul

dt
≅

ul+1 + ul−1 − 2ul − 2ul + ul−1 + ul+1

2h2
 

≅
2ul+1 − 4ul + 2ul−1

2h2
                          

≅
ul+1 − 2ul + ul−1

h2
.                 (A. 6)  

So, we conclude the Grünwald approximation is an appropriate method for numerical 

NLSE experiments since it reduces to the second order, central difference 

approximation.
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MATLAB code used to produce data are shown below. The script was run on 

MATLAB R2022b and consisted of a FFT script and a plotting program. 

B1 FFT script 

% The pseudospectral method for solving NLSEs 
% iu1_t+(1/2)u1_{a}+|u1|^2*u1+u2=0  
% iu2_t+(1/2)u2_{a}+|u2|^2*u2+u1=0  
 
clear 
clc 
global tmax tdata dt L txt txp NN Mu1 Mu2 
 
% Enter filename here  
txt = "a_1p7_mu_2p8_asym_stable_1100t"; 
txp = "Portion a 1p6";  % Enter name of dataset 
 
% Derivative Order 
a = 1.7;                % a = (1, 2] 
 
% Experiment length 
tmax = 1100;             % ~750 - CPU runs out of memory ~1000 
 
% Initialise variables and equations 
% Solitons 
load u1_data 
load u2_data 
u1=u1_data'; 
u2=u2_data'; 
 
ubdata = []; 
 
% Space 
L  = 30;                % Size of x-axis ~80 
N  = length(u1(:, 1));  % u1 = N x 1 
dx = L/N;               % dx >= 0.1322 for stability 
x  = [-L/2:dx:L/2-dx]'; 
 
% Power Calculations 
NN = sum(u1.^2 + u2.^2).*dx; 
Mu1 = max(u1); 
Mu2 = max(u2); 
 
% Time 
dt   = 0.001;            % ~ 0.01  
nmax = round(tmax/dt);   
 
% Wavenumbers 
k  = [0:N/2-1 -N/2:-1]' * 2*pi/L; 
k2 = abs(k).^a; 
 
% FFT Data 
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tdata  = 0; 
u1data = u1; 
u2data = u2; 
 
% FFT Integration 
for nn = 1:nmax 
    du11 = 1i * ((1/2) * ifft(-k2.*fft(u1)) + u1.*u1.*conj(u1) + u2);  
    v1   = u1 + 0.5*du11*dt; 
    du21 = 1i * ((1/2) * ifft(-k2.*fft(u2)) + u2.*u2.*conj(u2) + u1);  
    v2   = u2 + 0.5*du21*dt; 
    du12 = 1i * ((1/2) * ifft(-k2.*fft(v1)) + v1.*v1.*conj(v1) + v2);  
    v1   = u1 + 0.5*du12*dt; 
    du22 = 1i * ((1/2) * ifft(-k2.*fft(v2)) + v2.*v2.*conj(v2) + v1);  
    v2   = u2 + 0.5*du22*dt; 
    du13 = 1i * ((1/2) * ifft(-k2.*fft(v1)) + v1.*v1.*conj(v1) + v2);  
    v1   = u1 +    du13*dt; 
    du23 = 1i * ((1/2) * ifft(-k2.*fft(v2)) + v2.*v2.*conj(v2) + v1);  
    v2   = u2 +    du23*dt; 
     
    du14=1i*((1/2)*ifft(-k2.*fft(v1))+v1.*v1.*conj(v1)+v2);  
    du24=1i*((1/2)*ifft(-k2.*fft(v2))+v2.*v2.*conj(v2)+v1);  
     
    u1 = u1 + (du11 + 2*du12 + 2*du13 + du14)*dt/6; 
    u2 = u2 + (du21 + 2*du22 + 2*du23 + du24)*dt/6;  
     
    if mod (nn, round(nmax/tmax)) == 0 
        u1data = [u1data u1];          
        u2data = [u2data u2]; 
        tdata  = [tdata nn*dt]; 
    end 
 
end 
 
u1data = abs(u1data); 
u2data = abs(u2data); 
 
udata = [u1data' u2data']';        % For Plot function 
 
if any(isinf(udata(:))) || any(isnan(udata(:))) == 1 
    [r,c] = find (isnan(udata) | isinf(udata)); 
    Cinf= [ ,c]; 
    Newt = floor(dt*(min(Cinf)-1)); 
    disp(['Solution blew up! Set tmax to ', num2str(Newt), ' and try 
again']) 
    return 
else   
    Evol_Plot(udata)  
    beep 
end 
 
% Stability Analysis 
Evol_Stab(udata) 
beep 
 
% Bifurcation Data 
Evol_BiFu(udata) 
beep 
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B1.1 Plotting program 

% Heatmap, Waterfall and Animation Function 
 
% udata     space x time 
 
function Evol_Plot(udata) 
 
global tmax tdata L  txt 
 
T  = size(udata, 2); 
X  = size(udata, 1); 
XX = 1:0.1:X; 
a  = X/2;   
e  = L/2;  
xx = -e:L/(a-1):e; 
 
% Decompose cdata into u(real), v(real) 
u1 = udata(1:a,   1:T)';        % u1        
u2 = udata(a+1:X, 1:T)';        % u2 
uc = [u1 u2]; 
 
% Axis scaling 
cc = ceil(abs(max(u1, [], 'all'))); 
dd = ceil(abs(max(u2, [], 'all'))); 
c2 = cc^2; 
d2 = dd^2; 
ee = max(c2, d2); 
 
% Heatmap Plots 
figure(1)               % Plot coupled equations 
H1 = heatmap (uc , Title = 'Time Evolution: |u1| & |u2|', XLabel = 'x', 
YLabel = [{'Time ', '0 to' num2str(tmax)}], Colormap = hot, 
GridVisible='off');  
% Removes categories from heatmap 
HA = gca;            
HA.XDisplayLabels = nan(size(HA.XDisplayData)); 
HA.YDisplayLabels = nan(size(HA.YDisplayData)); 
HA.NodeChildren(3).YDir='normal';     % Flips y-axis 
H1T = strcat ('H_u1u2_', txt, '.png'); 
exportgraphics(HA, H1T,'Resolution',600) 
 
figure(2)          % Plot u1 
H2 = heatmap (u1, Title = 'Time Evolution |u1|', XLabel = 'x', YLabel = 
[{'Time ','0 to' num2str(tmax)}], Colormap = hot, GridVisible='off');         
HB = gca;            
HB.XDisplayLabels = nan(size(HB.XDisplayData)); 
HB.YDisplayLabels = nan(size(HB.YDisplayData)); 
HB.NodeChildren(3).YDir='normal';     % Flips y-axis 
H2T = strcat ('H_u1_', txt, '.png'); 
exportgraphics(HB, H2T,'Resolution',600) 
 
figure(3)         % Plot u2 
H3 = heatmap (u2, Title = 'Time Evolution |u2|', XLabel = 'x', YLabel = 
[{'Time ','0 to' num2str(tmax)}], Colormap = hot, GridVisible='off'); 
HC = gca;            
HC.XDisplayLabels = nan(size(HC.XDisplayData)); 
HC.YDisplayLabels = nan(size(HC.YDisplayData)); 
HC.NodeChildren(3).YDir='normal';     % Flips y-axis 
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H3T = strcat ('H_u2_', txt, '.png'); 
exportgraphics(HC, H3T,'Resolution',600) 
 
figure(4)          % Plot u1^2 
H4 = heatmap (u1.^2, Title = 'Time Evolution |u1|{^2}', XLabel = 'x', 
YLabel = [{'Time ','0 to' num2str(tmax)}], Colormap = hot, 
GridVisible='off');         
HD = gca;            
HD.XDisplayLabels = nan(size(HD.XDisplayData)); 
HD.YDisplayLabels = nan(size(HD.YDisplayData)); 
HD.NodeChildren(3).YDir='normal';     % Flips y-axis 
H4T = strcat ('H_u1^2_', txt, '.png'); 
exportgraphics(HD, H4T,'Resolution',600) 
 
% Plot u2^2 
figure(5)          
H5 = heatmap (u2.^2, Title = 'Time Evolution |u2|{^2}', XLabel = 'x', 
YLabel = [{'Time ','0 to' num2str(tmax)}], Colormap = hot, 
GridVisible='off'); 
HE = gca;            
HE.XDisplayLabels = nan(size(HE.XDisplayData)); 
HE.YDisplayLabels = nan(size(HE.YDisplayData)); 
HE.NodeChildren(3).YDir='normal';     % Flips y-axis 
H5T = strcat ('H_u2^2_', txt, '.png'); 
exportgraphics(HE, H5T,'Resolution',600) 
 
 
% Waterfall Plots 
% Plots u1 and u2 
figure (6) 
W1 = waterfall ([xx xx], tdata, uc.^2); 
colormap jet 
shading interp 
view (10,60) 
xlabel ('x') 
ylabel ('t') 
zlabel ('u1{^2}  u2{^2}') 
axis ([-e, e, 0, tmax, 0,  ee]) 
grid on 
set (gca, 'xtick', [-e, -e/2, 0, e/2, e]) 
set (gca, 'ytick', [0, tmax/2, tmax]) 
set (gca, 'ztick', [0, (ee)/2, ee]) 
W1T = strcat ('W_u1u2_', txt, '.png'); 
exportgraphics(gca, W1T,'Resolution',600) 
 
% Plot u1 
figure (7) 
W2 = waterfall (xx, tdata, abs(u1)); 
colormap jet 
shading interp 
view (10,60) 
xlabel ('x') 
ylabel ('t') 
zlabel ('|u1|') 
axis ([-e, e, 0, tmax, 0, cc]) 
grid on 
set (gca, 'xtick', [-e -e/2 0 e/2 e]) 
set (gca, 'ytick', [0 tmax/2 tmax]) 
set (gca, 'ztick', [0 cc/2 cc]) 
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W2T = strcat ('W_u1_', txt, '.png'); 
exportgraphics(gca, W2T,'Resolution',600) 
 
% Plot u2 
figure (8) 
W3 = waterfall (xx, tdata, abs(u2)); 
colormap jet 
shading interp 
view (10,60) 
xlabel ('x') 
ylabel ('t') 
zlabel ('|u2|') 
axis ([-e, e, 0, tmax, 0, dd]) 
grid on 
set (gca, 'xtick', [-e -e/2 0 e/2 e]) 
set (gca, 'ytick', [0 tmax/2 tmax]) 
set (gca, 'ztick', [0 dd/2 dd]) 
W3T = strcat ('W_u2_', txt, '.png'); 
exportgraphics(gca, W3T,'Resolution',600) 
 
% Plotting |u1|^2 
figure (9) 
W4 = waterfall (xx, tdata, abs((u1).^2)); 
colormap jet 
shading interp 
view (10,60) 
xlabel ('x') 
ylabel ('t') 
zlabel ('|u1|{^2}') 
axis ([-e 0 tmax 0 c2]) 
grid on 
set (gca, 'xtick', [-e, -e/2 0 e/2 e]) 
set (gca, 'ytick', [0 tmax/2 tmax]) 
set (gca, 'ztick', [0 c2/2 c2]) 
W4T = strcat ('W_u1^2_', txt, '.png'); 
exportgraphics(gca, W4T,'Resolution',600) 
 
% Plotting |u2|^2 
figure (10) 
W5 = waterfall (xx, tdata, abs((u2).^2)); 
colormap jet 
shading interp 
view (10,60) 
xlabel ('x') 
ylabel ('t') 
zlabel ('|u2|{^2}') 
axis ([-L/2 L/2 0 tmax 0 d2]) 
grid on 
set (gca, 'xtick', [-e -e/2 0 e/2 e]) 
set (gca, 'ytick', [0 tmax/2 tmax]) 
set (gca, 'ztick', [0 d2/2 d2]) 
W5T = strcat ('W_u2^2_', txt, '.png'); 
exportgraphics(gca, W5T,'Resolution',600) 
 
%{ 
% Drawnow Plot 
prompt = 'Run animation? Y/N? '; 
pp = input(prompt, 's'); 
if  pp == 'y'   
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    for j = 1:T 
        figure(7) 
        plot(xx, u1(j, :), xx, u2(j, :)) 
        hold off; axis([-e min(udata(:)) max(udata(:))]);  
        legend('|u1|', '|u2|') 
        title ('|u1(z,t)|, |v2(z,t)|'); xlabel ('z');  
        drawnow 
    end 
else 
end  
%} 

 

B1.2 Stability analysis 

% Plots used to determine stability 
 
function Evol_Stab(udata) 
 
global txt dt 
 
T = size(udata, 2); 
TT = 1:T; 
 
X = size(udata, 1); 
a = X/2; 
 
% Decompose udata into u1, u2 
u1 = udata(1:a,   1:T);        % u1        
u2 = udata(a+1:X, 1:T);        % u2 
 
% Max amplitudes 
U1 = max(u1); 
U2 = max(u2); 
TM = max(max(U1, U2)); 
 
% Soliton centre of mass 
C1 = mean(u1); 
C2 = mean(u2); 
C3 = gradient(C1); 
C4 = gradient(C2); 
MM = max(max(C1, C2)); 
 
XX = 1:0.1:length(U1); 
 
% Interpolated gradients 
P1 = interp1(U1, XX, "spline"); 
P2 = gradient(P1); 
P3 = gradient(U1); 
m1 = interp1(C1, XX, "spline"); 
m2 = interp1(C2, XX, "spline"); 
M1 = gradient(m1); 
M2 = gradient(m2); 
 
Q1 = interp1(U2, XX, 'spline'); 
Q2 = gradient(Q1); 
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Q3 = gradient(U2); 
 
[X1 Y1] = meshgrid(U1(1:15:end), U2(1:15:end)); 
[X3 Y3] = meshgrid(P3(1:15:end), Q3(1:15:end)); 
 
[X2 Y2] = meshgrid(C1(1:15:end), C2(1:15:end)); 
[X4 Y4] = meshgrid(C3(1:15:end), C4(1:15:end)); 
 
 
% Peak Amplitude Evolution 
figure(11) 
plot(XX, P1, XX, Q1) 
xlabel ('Time') 
ylabel ('|u1_{max}|  |u2_{max}|') 
title ('Peak Amplitude Evolution') 
legend ('|u1_{max}|', '|u2_{max}|', 'location', 'best') 
axis ([0, T, 0, TM]) 
P1T = strcat ('Amplitude_u_', txt, '.png'); 
exportgraphics(gca, P1T,'Resolution',600) 
 
figure(12) 
plot(XX, m1, XX, m2) 
xlabel ('Time') 
ylabel ('|u1_{centroid}|  |u2_{centroid}|') 
title ('Centre of Mass Evolution') 
legend ('|u1_{centroid}|', '|u2_{centroid}|', 'location', 'best') 
axis ([0, T, 0, MM*(1.05)]) 
P2T = strcat ('Centroid_u_', txt, '.png'); 
exportgraphics(gca, P2T,'Resolution',600) 
 
% Phase Portraits  
 
figure(13) 
plot(Q2, P2) 
xlabel ('|u2_{max}|^{\prime}') 
ylabel ('|u1_{max}|^{\prime}') 
title ('Peak Amplitude Phase Portrait') 
axis tight 
P3T = strcat ('Amplitude Phase_u_', txt, '.png'); 
exportgraphics(gca, P3T,'Resolution',600) 
 
figure(14) 
plot(P1, P2) 
xlabel ('|u1_{max}|') 
ylabel ('|u1_{max}|^{\prime}') 
title ('Peak Amplitude Phase Portrait') 
axis tight 
P3T = strcat ('Amplitude Phase_u1_', txt, '.png'); 
exportgraphics(gca, P3T,'Resolution',600) 
 
figure(15) 
plot(Q1, Q2) 
xlabel ('|u2_{max}|') 
ylabel ('|u2_{max}|^{\prime}') 
title ('Peak Amplitude Phase Portrait') 
axis tight 
P4T = strcat ('Amplitude Phase_u2_', txt, '.png'); 
exportgraphics(gca, P4T,'Resolution',600) 
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figure(16) 
plot(M2, M1) 
xlabel ('|u2_{centroid}|^{\prime}') 
ylabel ('|u1_{centroid}|^{\prime}') 
title ('Centre of Mass Phase Portrait') 
axis tight 
P5T = strcat ('Centroid Phase_u_', txt, '.png'); 
exportgraphics(gca, P5T,'Resolution',600) 
 
figure(17) 
plot(m1, M1) 
xlabel ('|u1_{centroid}|') 
ylabel ('|u1_{centroid}|^{\prime}') 
title ('Centre of Mass Phase Portrait') 
axis tight 
P5T = strcat ('Centroid Phase_u1_', txt, '.png'); 
exportgraphics(gca, P5T,'Resolution',600) 
 
figure(18) 
plot(m2, M2) 
xlabel ('|u2_{centroid}|') 
ylabel ('|u2_{centroid}|^{\prime}') 
title ('Centre of Mass Phase Portrait') 
axis tight 
P6T = strcat ('Centroid Phase_u2_', txt, '.png'); 
exportgraphics(gca, P6T,'Resolution',600) 
 
% Direction Fields 
figure(19) 
quiver(X1, X3) 
xlabel ('|u1_{max}|') 
ylabel ('|u1_{max}|^{\prime}') 
title ('Peak Amplitude Direction Field') 
axis tight 
P7T = strcat ('u1 Amplitude Direction Field_', txt, '.png'); 
exportgraphics(gca, P7T,'Resolution',600) 
 
figure(20) 
quiver(X2, X4) 
xlabel ('|u1_{centroid}|') 
ylabel ('|u1_{centroid}|^{\prime}') 
title ('Centre of Mass Direction Field') 
axis tight 
P8T = strcat ('u1 Centroid Direction Field_', txt, '.png'); 
exportgraphics(gca, P8T,'Resolution',600) 
 
figure(21) 
quiver(Y1, Y3) 
xlabel ('|u2_{max}|') 
ylabel ('|u2_{max}|^{\prime}') 
title ('Peak Amplitude Direction Field') 
axis tight 
P9T = strcat ('u2 Amplitude Direction Field_', txt, '.png'); 
exportgraphics(gca, P9T,'Resolution',600) 
 
figure(22) 
quiver(Y2, Y4) 
xlabel ('|u2_{centroid}|') 
ylabel ('|u2_{centroid}|^{\prime}') 
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title ('Centre of Mass Direction Field') 
axis tight 
P10T = strcat ('u2 Centroid Direction Field_', txt, '.png'); 
exportgraphics(gca, P10T,'Resolution',600) 
 
figure(23) 
quiver(Q1, P1, Q2, P2) 
xlabel ('|u2_{max}|') 
ylabel ('|u1_{max}|') 
title ('Peak Amplitude Direction Field') 
axis tight 
P11T = strcat ('Amplitude Direction Field_', txt, '.png'); 
exportgraphics(gca, P11T,'Resolution',600) 
 
figure(24) 
quiver(m2, m1, M2, M1) 
xlabel ('|u2_{centroid}|') 
ylabel ('|u1_{centroid}|') 
title ('Centre of Mass Direction Field') 
axis tight 
P12T = strcat ('Centroid Direction Field_', txt, '.png'); 
exportgraphics(gca, P12T,'Resolution',600) 

 

B1.3 Bifurcation collation 

% Plot Bifurcation Data 
 
function Evol_BiFu(udata) 
 
global txp Unstable_a_ tmax L dt dx txt u1 u2 NN a Mu1 Mu2 
 
% Create ubU for each new portion P 
ubUP = [0 0]; 
ubSP = [0 0]; 
 
T = size(udata, 2); 
X = size(udata,1); 
a = X/2;   
e = L/2;  
xx = -e:L/(a-1):e; 
tt = 0:dt:tmax; 
 
u1 = udata(1:a,   1:T);        % u1        
u2 = udata(a+1:X, 1:T);        % u2 
 
M1 = max(u1); 
M2 = max(u2); 
 
C1 = mean(M1); 
C2 = mean(M2); 
 
RM1 = rms(M1); 
RM2 = rms(M2); 
 
disp('Calculated Dispersion is:') 
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Dp1 = abs(sqrt(C1^2 - RM1^2)) 
Dp2 = abs(sqrt(C2^2 - RM2^2)) 
 
prompt = 'Is the solution stable? Y/N? '; 
pp = input(prompt, 's'); 
 
% Bifurcation Data 
if  pp == 'y' 
    if Mu1 > Mu2 == 1 
        Mxu = Mu1; 
    else 
        Mxu = Mu2; 
    end 
    ubS =[Mxu NN]; 
 
    save Stable_a_ ubS '-append' '-ascii'  
    SS = ' Stable'; 
else 
    if Mu1 > Mu2 == 1; 
        Mxu = Mu1; 
    else  
        Mxu = Mu2; 
    end 
    ubU = [Mxu NN]; 
    save Unstable_a_ ubU '-append' '-ascii' 
    SS = ' Unstable'; 
end 
 
 
% Experiment Data Collection 
 
nms = {'Data Pair' 'u1 Max. Amp.' 'u2 Max. Amp.' 'u1 RMS', 'u2 RMS', 'u1 
Ar. Mean', 'u2 Ar. Mean', 'u1 Dispersion', 'u2 Dispersion'}; 
DT = [txt Mu1 Mu2 RM1 RM2 C1 C2 Dp1 Dp2]; 
S1T = strcat (txp, ' Stability Data.xls'); 
writecell(nms, S1T) 
writematrix(DT, S1T, 'WriteMode', 'append') 
 
Nms = {'Data Pair' 'Stability' 'Abs. Max. Amp.' 'Power' 'u1 Ar. Mean', 'u2 
Ar. Mean', 'u1 RMS', 'u2 RMS', 'u1 Dispersion', 'u2 Dispersion'}; 
Stb = {txt SS Mxu NN C1 C2 RM1 RM2 Dp1 Dp2}; 
S2T = strcat (txp, ' All Data.xls'); 
writecell(Nms, S2T) 
writecell(Stb, S2T, 'WriteMode', 'append') 
 
beep 
prompt = 'Is this the end of dataset? Y/N? '; 
pp = input(prompt, 's'); 
 
% Bifurcation Plot 
if  pp == 'y' 
    load Stable_a_;  
    load Unstable_a_; 
    ubUP = Unstable_a_; 
    ubU = sort(Unstable_a_); 
    ubS = sort(Stable_a_); 
     
    HUP = ubU(:, 1)'; 
    NUP = ubU(:, 2)'; 
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    HSP = ubS(:, 1)'; 
    NSP = ubS(:, 2)'; 
     
    figure (25) 
    plot(HSP, NSP, 'ko-', HUP, NUP, 'r*--'); 
    xlabel 'Bifurcation Parameter {\mu}';  
    ylabel 'Power of Soliton Pair';  
    title (txp, ' Bifurcation Diagram'); 
    legend ('Stable', 'Unstable', 'Location', 'best'); 
    B1T = strcat ('Bifurcation Diagram_', txp, '.png'); 
    exportgraphics(gcf,B1T,'Resolution',600) 
    disp ('All Done! Prepare Stable and Unstable data for Evol_Merge') 
else 
    beep 
    disp ('All Done, load new u1_data, u2_data, and change filename') 
end 

 

B2 Merged bifurcation plot 

% Merge and Plot Fractional Data 
clear 
clc 
 
load Stable_a_2p0; 
load Unstable_a_2p0; 
 
load Stable_a_1p6 
load Unstable_a_1p6 
 
load Stable_a_1p2 
load Unstable_a_1p2 
 
A2p0S = sort([Stable_a_2p0], 2); 
A2p0S1 = A2p0S(:, 1); 
A2p0S2 = A2p0S(:, 2); 
 
A1p6S = [Stable_a_1p6]; 
A1p6S1 = A1p6S(:, 1); 
A1p6S2 = A1p6S(:, 2); 
 
A1p2S = [Stable_a_1p2]; 
A1p2S1 = A1p2S(:, 1); 
A1p2S2 = A1p2S(:, 2); 
 
A2p0U = [Unstable_a_2p0]; 
A2p0U1 = A2p0U(:, 1); 
A2p0U2 = A2p0U(:, 2); 
 
A1p6U = [Unstable_a_1p6]; 
A1p6U1 = A1p6U(:, 1); 
A1p6U2 = A1p6U(:, 2); 
 
A1p2U = [Unstable_a_1p2]; 
A1p2U1 = A1p2U(:, 1); 
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A1p2U2 = A1p2U(:, 2); 
 
HA2p0U = interp1(A2p0U(:, 1), 1:0.001:length(A2p0U(:, 1)), 'pchip')'; 
NA2p0U = interp1(A2p0U(:, 2), 1:0.001:length(A2p0U(:, 2)), 'pchip')'; 
     
HA2p0S = interp1(A2p0S(:, 1), 1:0.001:length(A2p0S(:, 1)), 'pchip')'; 
NA2p0S = interp1(A2p0S(:, 2), 1:0.001:length(A2p0S(:, 2)), 'pchip')'; 
 
HA1p6U = interp1(A1p6U(:, 1), 1:0.001:length(A1p6U(:, 1)), 'pchip')'; 
NA1p6U = interp1(A1p6U(:, 2), 1:0.001:length(A1p6U(:, 2)), 'pchip')'; 
 
HA1p6S = interp1(A1p6S(:, 1), 1:0.001:length(A1p6S(:, 1)), 'pchip')'; 
NA1p6S = interp1(A1p6S(:, 2), 1:0.001:length(A1p6S(:, 2)), 'pchip')'; 
     
HA1p2U = interp1(A1p2U(:, 1), 1:0.001:length(A1p2U(:, 1)), 'pchip')'; 
NA1p2U = interp1(A1p2U(:, 2), 1:0.001:length(A1p2U(:, 2)), 'pchip')'; 
     
HA1p2S = interp1(A1p2S(:, 1), 1:0.001:length(A1p2S(:, 1)), 'pchip')'; 
NA1p2S = interp1(A1p2S(:, 2), 1:0.001:length(A1p2S(:, 2)), 'pchip')'; 
     
figure (26) 
hold on 
plot(HA2p0S, NA2p0S, '-', HA2p0U, NA2p0U, '--', 'color', [0.7 0 0], 
'LineWidth',1); 
plot(HA1p6S, NA1p6S, '-', HA1p6U, NA1p6U, '--', 'color', [0 0.6 0], 
'LineWidth',1); 
plot(HA1p2S, NA1p2S, '-', HA1p2U, NA1p2U, '--', 'color', [0 0 0.7], 
'LineWidth',1); 
xlabel 'Bifurcation Parameter {\mu}';  
ylabel 'Power of Soliton Pair';  
title ('Combined Bifurcation Diagram'); 
qw{1} = plot(nan, 'color', [0.7 0 0], 'LineWidth',1); 
qw{2} = plot(nan, 'color', [0 0.6 0], 'LineWidth',1); 
qw{3} = plot(nan, 'color', [0 0 0.7], 'LineWidth',1); 
qw{4} = plot(nan, 'k-', 'LineWidth',1);  
qw{5} = plot(nan, 'k--', 'LineWidth',1);  
legend([qw{:}], {'a 2p0','a 1p6','a 1p2', 'Stable', 'Unstable'}, 
'location', 'best') 
hold off 
B1T = strcat ('Combined Bifurcation Diagram.png'); 
exportgraphics(gcf,B1T,'Resolution',600) 
 
figure (27) 
hold on 
plot(HA2p0S, NA2p0S, 'k-', HA2p0U, NA2p0U, 'r--'); 
plot(A2p0S1, A2p0S2,'ko', A2p0U1, A2p0U2, 'r*'); 
xlabel 'Bifurcation Parameter {\mu}';  
ylabel 'Power of Soliton Pair';  
title ('a2p0 Bifurcation Diagram'); 
legend ('Stable', 'Unstable', 'Location', 'best'); 
hold off 
B1T = strcat ('a2p0 Bifurcation Diagram','.png'); 
exportgraphics(gcf,B1T,'Resolution',600) 
 
figure (28) 
hold on 
plot(HA1p6S, NA1p6S, 'k-', HA1p6U, NA1p6U, 'r--'); 
plot(A1p6S1, A1p6S2,'ko', A1p6U1, A1p6U2, 'r*') 
xlabel 'Bifurcation Parameter {\mu}';  
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ylabel 'Power of Soliton Pair';  
title ('a1p6 Bifurcation Diagram'); 
legend ('Stable', 'Unstable', 'Location', 'best'); 
hold off 
B1T = strcat ('a1p6 Bifurcation Diagram', '.png'); 
exportgraphics(gcf,B1T,'Resolution',600) 
 
figure (29) 
hold on 
plot(HA1p2S, NA1p2S, 'k-', HA1p2U, NA1p2U, 'r--'); 
plot(A1p2S1, A1p2S2,'ko', A1p2U1, A1p2U2, 'r*') 
xlabel 'Bifurcation Parameter {\mu}';  
ylabel 'Power of Soliton Pair';  
title ('a1p2 Bifurcation Diagram'); 
legend ('Stable', 'Unstable', 'Location', 'best'); 
hold off 
B1T = strcat ('a1p2 Bifurcation Diagram', '.png'); 
exportgraphics(gcf,B1T,'Resolution',600) 
 

 


