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Abstract 25 

Selective removal of arsenic (As) is the key challenge as this not only increases the efficiency 26 

of removal of the main As species (neutral As(III) and As(V) hydroxyl-anions) but also allows 27 

the reduction of waste significantly as it does not co-remove other solutes. It increase the 28 

capacity and lifetime of units, while lowering the cost of the process. A sustainable selective 29 

mitigation method should be considered in relation to the economic resources available, the 30 

ability of infrastructure to sustain water treatment and the options for reuse and/or safe disposal 31 

of treatment residuals. Several methods of selective As removal have been developed, such as 32 

precipitation, adsorption and modified iron and ligand exchange. There are two types of 33 

mechanisms involved with As removal: Coulombic or ion exchange; and Lewis acid-base 34 

interaction. Solution pH is one of the major controlling factors limiting removal efficiency 35 

since most of the above-mentioned methods depend on complexation through electrostatic 36 

effects. The different features of two different As species make the selective removal process 37 

more difficult, especially under natural conditions. Most of the selective As removal methods 38 

involve hydrated Fe(III) oxides through Lewis acid-base interaction. Microbiological methods 39 

have been studied recently for selective removal of As although there have been only a small 40 

number of studies; however, the method shows remarkable results and indicates positive 41 

prospects for the future. The biggest challenges in selective removal of As is the presence of 42 

phosphate in water which is chemically comparable with As(V).  43 
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 50 

1. Introduction 51 

Arsenic (As) is a metalloid and a human carcinogenic substance that can be found in 52 

both organic and inorganic forms. Elemental As is a crystalline solid with silver-gray 53 

appearance. The atomic weight of As is 74.9 amu (atomic mass unit) and the melting and 54 

boiling point is 817 and 613 oC, respectively. Its vapor pressure is 1 mm Hg at 372 oC. Arsenic 55 

is an element that is commonly distributed in the atmosphere, rocks, minerals, soil, water and 56 

in the biosphere (Basu et al., 2014). In the earth’s crust, seawater and the human body, it is the 57 

20th, 14th and 12th most common element, respectively (Baig et al., 2015; Matschullat, 2000; 58 

Mohan and Pittman Jr, 2007). 59 

 60 

More than four thousand freshwater systems found globally, require As mitigation 61 

measures to meet the guidelines of the World Health Organization (WHO) for drinking water 62 

supply (WHO, 2011). The majority of these systems are groundwater reservoirs (DeMarco et 63 

al., 2003). Natural contamination through As mobilization from geogenic sources is the major 64 

reason for the presence of As (up to >1000 µg/L) in most groundwater resources (Vatutsina et 65 

al., 2007). Human activities such as mining and related processes can accelerate this release of 66 

As by several orders of magnitude. With the increasing global population, the agricultural 67 

demand and excessive groundwater withdrawal have resulted in the dissolution of As within 68 

the aquifers (Sarkar et al., 2012). In addition, there are anthropogenic sources of arsenic 69 

affecting water resources and other environments such as poultry and swine feed additives, 70 

pesticides (monosodium methyl arsenate (NaMeHAsO3), disodium salt (Na2MeAsO2)), 71 

herbicides, wood treatment agents (chromate copper arsenate), electronic manufacturing, cattle 72 

dips, vitamin supplements, pharmaceuticals, nutraceuticals, coal combustion, cigarettes, paints, 73 

dyes, cosmetics and highly soluble trioxide stockpiles (Basu et al., 2014; Kumar et al., 2019). 74 



More than 60% of anthropogenic As globally emitted originates from coal combustion and Cu 75 

smelting processes (Baig et al., 2015; Mohan and Pittman Jr, 2007; Smedley and Kinniburgh, 76 

2002). With such natural and anthropogenic factors, there are more than 105 countries and over 77 

202 million people which globally suffer from As contamination. Some of the most affected 78 

countries are Bangladesh, Vietnam, USA, West Bengal (India), Taiwan, Cambodia, Canada, 79 

Germany, Hungary, Japan, Laos, Nepal, Pakistan, Poland, Romania, Thailand, UK, Ghana, 80 

China and Latin American countries including Mexico, Argentina, Chile and Nicaragua (Asere 81 

et al., 2019; Bundschuh et al., 2010; Hlavay and Polyák, 2005; Litter et al., 2010; Luong et al., 82 

2018; Shakoor et al., 2017; Shakoor et al., 2016; Singh et al., 2015). In water, 95% of the As 83 

occurs in inorganic forms (Maity et al., 2019; Shinde et al., 2013). Generally, the inorganic 84 

forms of As are found in several oxidation forms such as -3, 0, +3 and +5 (not all are found in 85 

the natural condition). In natural systems, they are mostly present as As(III) or As(V); thereby 86 

speciation depends on solution pH and the redox potential (Eh) values (Kumar et al., 2019; 87 

Vatutsina et al., 2007). In groundwater, the oxidation status of the inorganic As is decided by 88 

water chemistry and exposure to the air (Xu et al., 2013). The toxicity of most organic As 89 

species is lower than that of inorganic As species with As(III) being more toxic than As(V) 90 

(Cullen and Reimer, 1989; Jain and Ali, 2000; Shinde et al., 2013). As(V) is generally 91 

considered as a soft acid and it is available as AsO4
3-, HAsO4

2-, and H2AsO4
- species while 92 

As(III) presents as AsO3
3-, AsO2OH2-, As(OH)4

- and As(OH)3, which are considered to be hard 93 

acids (Baig et al., 2015; Greenwood and Earnshaw, 2012). Both As(III) and As(V) species are 94 

subjected to chemically and microbially mediated redox and methylation reactions in water 95 

(Andreae and Klumpp, 1979; Freeman et al., 1986; Hlavay and Polyák, 2005). However, in 96 

groundwater, both As(III) and As(V) species can coexist, as redox reactions for conversion in 97 

between both species are slow (Litter et al., 2010; Vatutsina et al., 2007). Under natural 98 

conditions, the As(V) (hydroxy anions) and As(III) (neutral species) species show remarkable 99 



differences because of their electronic structure, polarizability, dissociation behavior, sorption 100 

affinity and toxic nature  (Cullen and Reimer, 1989; Jain and Ali, 2000; Shinde et al., 2013). 101 

Therefore, the removal of these As species requires different measures in most of the removal 102 

processes (Vatutsina et al., 2007).  103 

 104 

The toxicity of As has been widely discussed and reported in the literature (Baig et al., 105 

2015; Choong et al., 2007; Jain and Ali, 2000; Kavcar et al., 2009). Arsenic exposure has been 106 

linked to a number of cancerous and non-cancerous impacts in both acute and, non-acute forms 107 

(An et al., 2005; Awual et al., 2019; Mohan and Pittman Jr, 2007). In carcinogenic grouping, 108 

As has been categorized into group 1 elements (Nurchi et al., 2020). Hence, As is one of the 109 

major elements producing cancer (Baig et al., 2015; Cutter, 1992; Litter et al., 2010). A 110 

concentration of 3 µg/L of As in drinking water creates the risk of bladder and lung cancer (4-111 

7 deaths/10,000 people) (An et al., 2005). Moreover, As is a teratogen which can pass cross 112 

the placental membrane into the metabolic system of the unborn child. Further, it is also a 113 

cumulative substance passing out of the body through hair, fingers, urine, nails and skin, which 114 

makes hair, urine and nails ideal biomarkers for As exposure (Basu et al., 2014; Dissanayake 115 

and Chandrajith, 2009). Ischemic heart disease (Basu et al., 2014; Hsueh et al., 1998; Tseng et 116 

al., 2003), Blackfoot disease (Basu et al., 2014; Huang et al., 2003; Tseng, 2008; Tseng et al., 117 

1996), cardiovascular diseases (Basu et al., 2014; Wang et al., 2007), Chronic Kidney Disease 118 

(CKDu) (Basu et al., 2014; Hsueh et al., 2009), Bowen’s disease (Basu et al., 2014; Çöl et al., 119 

1999; Salazar et al., 2004), Alzheimer’s disease (Basu et al., 2014; Çöl et al., 1999; Dani, 2010; 120 

Salazar et al., 2004) are some other health problems due to As consumption. Considering the 121 

global emerging danger through As exposure, the World Health Organization (WHO) has 122 

lowered the As guideline value for drinking water from 50 to 10 µg/L (Litter et al., 2010; WHO, 123 

2011). 124 



 125 

One of the challenges in many water and wastewater treatment plants worldwide is the 126 

selective removal of trace elements such as As with the presence of higher concentrations of 127 

background competing solutes such as main ions (Mandal et al., 2013; Ramana and Sengupta, 128 

1992). Most of the conventional As removal methods that will be discussed in section 2 129 

generally pose higher removal efficiencies, but lack the ability to compete with background 130 

ions and are not cost-effective (Korngold et al., 2001; Pincus et al., 2019). Therefore, the 131 

conventional methods are jeopardized in practical applications due to economic, environmental 132 

or social aspects and, it creates several gaps for selective As removal. This challenge becomes 133 

even bigger as most of the As contaminated water systems are contaminated only with As, the 134 

fraction of which is very small compared to other dissolved chemical compounds that in 135 

addition are often essential in drinking water. Otherwise, water is often suitable for 136 

consumption. In this case, the As removal mechanism should eliminate only As to gain an 137 

efficient application approach and selective removal is, therefore, is a key goal. Moreover, the 138 

behavior of As in water is disturbing to the removal efficiency of As, as it generally decreases 139 

with increased initial As concentration. Therefore, the selective removal method should ensure 140 

a strong affinity with As despite its initial concentration. Moreover, it is a well-known fact that 141 

most of As removal methods require pre-oxidation and post-treatment steps to make sure the 142 

removal of As(III). Therefore, it is a key goal to finds and selects a method that does not require 143 

pre- and post-treatment to reduce the energy requirement and the complexity and cost of the 144 

process. The next key goal with any of the As removal methods is the reduction of waste 145 

production. In any of the non-selective treatments, large amounts of other solutes (in particular 146 

ions) are removed, and the resulting waste management is high in cost for both the environment 147 

and the economy and therefore, reduction of volumes of As-rich waste is a key goal of a 148 

selective As removal process as it can reduce the amount of waste by several orders of 149 



magnitude. Moreover, as two principal As species, i.e. As(V) and As(III) act differently, 150 

selective removal is more difficult in natural conditions. 151 

 152 

 153 

2. Overview of common arsenic removal methods 154 

The As remediation can be categorized into major 4 groups: ion-exchange processes, 155 

membrane separation processes, precipitative processes, and adsorptive processes which 156 

generally include pre-oxidation in case of As(III) removal needs (Abejón et al., 2015; Baskan 157 

and Pala, 2010; Bundschuh et al., 2011; Jadhav et al., 2018; Yüksel et al., 2018). Figure 1 158 

represents different methods within the above four remediation methods. Coagulation using 159 

ferric chloride followed by microfiltration removes As(III) (after pre-oxidation) and As(V) 160 

equally but the method is not suitable for water that has trace amounts of As and it will produce 161 

a high amount of As-containing sludge (Kobya et al., 2020; Sarkar et al., 2012). In ion-162 

exchange processes, the conventional ion-exchange methods always reduce the As removal 163 

capacity with the competition of other anions in water. Adsorptive measures have received 164 

positive attention due to their easy use and low cost (not common for all adsorbents), compared 165 

to most of the other remediation methods. Considering the environmental cost of most of the 166 

conventional methods there is significant research interest in natural-based adsorbents in order 167 

to remove As in water. With well-designed chemical modifications, the As removal was 168 

successful with these natural-based adsorbents (Asere et al., 2019; Kumar et al., 2019). Soil 169 

minerals such as iron coated pottery granules (Baig et al., 2015; Dong et al., 2009), 170 

impregnated-tablet ceramic adsorbents (Baig et al., 2015; Chen et al., 2012), agricultural waste 171 

materials such as rice polish (Baig et al., 2015; Ranjan et al., 2009) and impregnated-activated 172 

rice husk carbon (Baig et al., 2015; Mondal et al., 2007), industrial waste materials such as 173 

granulated slug (Ahn et al., 2003; Baig et al., 2015; Zhang and Itoh, 2005) and fly ash (Baig et 174 



al., 2015; Diamadopoulos et al., 1993), plant biomass such as biochars from plant materials 175 

(Allen and Brown, 1995; Allen et al., 1997; Baig et al., 2015; Mohan and Chander, 2006), 176 

aquatic biomass such as chitosan (Baig et al., 2015; Gupta et al., 2009), activated carbon 177 

materials such as Fe3+ impregnated granular activated carbon (Baig et al., 2015; Mondal et al., 178 

2007), calcium impregnated granular activated carbon (Baig et al., 2015), metal-loaded coral 179 

limestone (Maeda et al., 1992; Xu et al., 2002), hematite feldspar (Singh et al., 1996; Xu et al., 180 

2002), sandy soils (Kuhlmeier, 1997; Xu et al., 2002), lanthanum loaded silica gel (Xu et al., 181 

2002), activated alumina (DeMarco et al., 2003; Kim et al., 2004), and activated mud (Genç-182 

Fuhrman et al., 2004) are some of the adsorptive materials that have been used for As removal 183 

in water.  184 

 185 

Generally, the electronic structure of As (especially of arsenate (As(V)) is very similar 186 

to phosphorus/phosphate and so the chemistry of As is comparable with that of phosphorus 187 

(Bui et al., 2019). Therefore, the removal of As interferes with the presence of phosphate or 188 

phosphorus compounds (Basu et al., 2014). Other than phosphorus, the presence of silicate, 189 

sulfate, chloride and bicarbonate are some of the ions that can interfere with As removal and 190 

will also be removed, together with As increasing waste product and cost while reducing the 191 

lifetime of the removal unit (Basu et al., 2014; Gu et al., 2005). 192 

 193 

Most of the conventional or modified conventional As treatment methods require 194 

further removal techniques such as micro-filtration, to meet the guidelines, creating less cost-195 

effectiveness in the whole process (An et al., 2005). The commercially available resins as ion-196 

exchangers are economically less competitive for As removal as they have a lack of selectivity 197 

toward As. The polymeric anion exchangers would not be suitable for selective removal of As, 198 

as such exchangers are selective on sulfate ions over As (DeMarco et al., 2003). Therefore, 199 



there is a growing demand for economically and environmentally feasible novel materials for 200 

selective removal of both (As(III)) and As(V) with a similar high affinity for both of them 201 

(Gupta et al., 2012). 202 

 203 

 204 

3. Common mechanisms for arsenic removal in water 205 

With either selective or non-selective As removal, the mechanisms involved are 206 

common for most of the time, despite the different types of equipment and protocols used. 207 

There are two types of mechanisms involved with As removal; Coulombic or ion exchange and 208 

Lewis acid-base interaction (Sarkar et al., 2012). 209 

The As(V) oxyanions pose negative charges and therefore the ion-exchange mechanism is most 210 

suitable for removal of As(V) especially in most of the conventional ion exchange processes. 211 

over a broad range of pH, where As(V) exists as an oxyanion. For example, if the solution is 212 

at above neutral levels As(V) is found as a divalent anion and can be removed using an anion 213 

exchanger in chloride form (Eq. 1) 214 

 215 

2(𝑅𝑅+)𝐶𝐶𝐶𝐶− +  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻42− (𝑎𝑎𝑎𝑎)  ⇌ (𝑅𝑅+)2𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻42− + 2𝐶𝐶𝐶𝐶− (𝑎𝑎𝑎𝑎)                                         (1) 216 

 217 

where R+ represents the anion exchanger with fixed positive charges. As stated in the 218 

introduction section the groundwater always consists of other innocuous anions such as 219 

chloride, bicarbonate, sulfate as well as phosphate simultaneously with As. The As removal 220 

efficiencies in ion exchangers are greatly impacted by the above common anions and they 221 

always play a role in reducing the As(V) uptake and chromatographic elution of As(V).  222 

Therefore, unless there is a specifically modified selectivity in ion exchangers toward As, the 223 

conventional ion exchange methods will not effectively remove As in water. As(III) which 224 



occurs in non-ionic form cannot be removed through ion-exchange methods unless there is a 225 

pre-treatment process to convert As(III) into As(V) (Sarkar et al., 2012).  226 

 227 

The second possible mechanism for As removal is Lewis acid-base interaction. Both 228 

As(III) and As(V) are strong ligands or Lewis bases as they can denote lone pairs of electrons. 229 

H2AsO4
- and HAsO2 are monodentate ligands which have one donor atom per molecule, while 230 

HAsO4
2- is a bidentate ligand with two donor oxygen atoms. Thus, As(III) and As(V) show 231 

high sorption affinity towards solid surfaces with Lewis acid characteristics. Sulfate, chloride 232 

and bicarbonate ions are poor ligands compared to both As(III) and As(V). Therefore, if there 233 

is a Lewis acid surface to catch the As(III) and As(V), there will be selectivity behavior and 234 

high affinity towards As(III) and As(V). In literature, there have been several attempts made 235 

to remove As(III) and/or As(V) using the Lewis acid-base interaction (An et al., 2005; Awual 236 

et al., 2019; Shinde et al., 2013; Singh et al., 2018). Metal ions such as Cu(II), Fe(III) (An et 237 

al., 2005), Zr(IV) (Awual et al., 2019) and thiol groups (Singh et al., 2018) have been used as 238 

Lewis acid for removal of As(III) and As(V), and this will be further discussed in  section 5. 239 

 240 

 241 

4. Selective removal of arsenic in water 242 

In natural water systems, cations and anions have a high affinity for interacting with 243 

hydrous oxide surfaces. Therefore, metals and metalloids like As can be removed with the use 244 

of oxide and hydroxide surfaces. Iron oxide/hydroxide is one of the most used ingredients in 245 

terms of selective removal of heavy metals and metalloids, including As in water (Hao et al., 246 

2018). Iron-based oxides/hydroxides have several advantages, including high affinity towards 247 

As species and have easy access as they are abundant on earth and are environmentally friendly 248 



in their use (Hao et al., 2018). Table 1 briefly depicts selective adsorbents of As and their 249 

behavior in selective As removal in aqueous media. 250 

 251 

 252 

4.1. Selective removal of arsenic by the electrocoagulation method 253 

The electrocoagulation method for selective arsenic removal has been identified as one 254 

of the most simple and efficient methods in use (Ali et al., 2013). In electrocoagulation, the 255 

basic mechanism for removal of As(III) from water involved two steps: (1) conversion of 256 

As(III) into As(V) (Eq. 2). Due to the conversion of As(III) into As(V), the presence of As(III) 257 

usually slows the removal process (Kumar et al., 2004; Wan et al., 2011).  The second step is 258 

removal of As(V) via generation of coagulants due to oxidation of the sacrificial anode. The 259 

latter step consisted of three sub-steps. First, with the voltage, the sacrificial anode goes through 260 

an oxidation process and produce a coagulant which is insoluble in water. Several anodes that 261 

used in electocoagulation (in As removal) are Zn, Fe and Cu (Ali et al., 2013; Ali et al., 2012; 262 

Wan et al., 2011). The Zn and Cu anodes generate Zn(OH)2 and Cu(OH)2 coagulants 263 

respectively.As the second sub-step, the As(V) adsorbs into the surface of the coagulant and 264 

further, As(V) replaces the hydroxyl groups of the developed coagulant making complexes 265 

such as ZnHAsO4 and CuHAsO4. Finally, the flocs settle and the sedimentation and filtration 266 

steps also should be employed to complete the removal process.  The presence of competing 267 

ions such as sodium, potassium, magnesium, calcium, sulphate, nitrate and chloride do not have 268 

negative impact on removal of As(III) and As(V). The desolved anions are provide 269 

advantageous conditions in electrocoagulation method as the anions provide conductivity to 270 

the solution. The As removal is increasing with the conductivity and after specific value the 271 

adsorption become constant at the highest adsorption level (Ali et al., 2012). This specific 272 

conductivity level is nearly similar to the conductivity of natural water (1.43 mS/cm). 273 



Regarding sodium chloride it require 200 mg/L of sodium chloride to get the above mentioned 274 

conductivity level (Ali et al., 2012). Therefore, the more anion in water make higher 275 

As(III)/As(V) removal in electrocoagulation but no inhibition activities. Sometimes, the 276 

presence of different competitive ions will not directly interact with As adsorption but may 277 

inhibit the adsorption/removal indirectly. For example, with Fe anode, presence of silica will 278 

be inhibit or lower the production of coagulant that responsible for adsorption of As(V) in the 279 

solution (Wan et al., 2011). Therefore, the type of ions presence will be decided the most 280 

suitable electrodes.   However, the electrocoagulation method does not always act in a selective 281 

manner for As(III) and/or As(V) removal in water if phosphate is presence. It can prove with 282 

the literature, the Zn-Zn and Cu-Cu electrodes can successfully remove the As(III) and As(V) 283 

without any interference of phosphate (Ali et al., 2013) but Wan et al. (2011) showed the 284 

electrocoagulation of As(III) and As(V) with Fe electrode inhibited by 1 and 4 mg/L of 285 

phosphate respectively, due to similar chemistry of phosporous with As. By using long 286 

operational times and electrode that produce sufficient amount of iron oxide, it removed both 287 

As and phosphate but not selectively As. After As(III) removal by electrocoagulation, the 288 

resultant water have similar conditions for all of the other parameters such as ion 289 

concentrations, temporary and permanent hardness, alkalinity, total dissolved solids (TDS) (Ali 290 

et al., 2013; Ali et al., 2012). The pH can be slightly increased in treated water within the 291 

accepted range for water quality guidelines. It has been reported that the maximum percentage 292 

of As(III) removal can be achieved as high as  99.5% under the electrocoagulation method (Ali 293 

et al., 2013; Ali et al., 2012). The electrocoagulation removes phosphate simultaneously with 294 

As due to the same chemistry of both of them (Wan et al., 2011). Therefore, the 295 

electrocoagulation does not successful enough if there are phosphate in the water. In 296 

electrocoagulation, the pH is an important factor to determine the As removal amount. The 297 

maximum As(V) removal percentage can achieve at the pH 7 and moreover at pH 7 the removal 298 



is quick. When the pH is lower than 7 it may remove significant amount of As (similar as at 299 

pH 7) but takes longer time. The higher pH than 7 require longer time to remove As but not 300 

same as at pH 7. The fact make easier the removal process since the natural water is at the pH 301 

levels of around 7. (Ali et al., 2013; Kumar et al., 2004; Wan et al., 2011).  302 

As𝐻𝐻2− + 2𝐻𝐻𝐻𝐻−  →  𝐻𝐻2𝐻𝐻𝐻𝐻𝐻𝐻4− + 2𝑒𝑒−                                                     (2) 303 

 304 

The electrocoagulation method can be used for selective removal of both As(III) and 305 

As(V) when correct electrodes are used; however, there are still, some significant 306 

disadvantages found. The production of a large amount of coagulant, rich with As will require 307 

additional measures for safe disposal. The additional energy must be employed to filter the 308 

coagulant in order to receive clean water. Therefore, electrocoagulation is an energy-309 

consuming method when compared to most of the other available selective As removal 310 

methods. 311 

     312 

 313 

4.2. Selective arsenic removal by adsorption 314 

Adsorption is one of the most employed methods in selective As removal studies. Fe 315 

based methods are common in selective As removal through adsorption. The basic 316 

phenomenon of Fe based adsorption methods is discussed in section 5.2. However, all the 317 

adsorptive materials are different. Hlavay and Polyák (2005) have prepared a novel adsorption 318 

material for As(III) and As(V) removal in water by in situ precipitation of Fe(OH)3 on the 319 

surface of granulated activated Al2O3 as supporting material (surface of activated Al2O3 320 

covered with Fe(OH)3). It has been identified and classified by USEPA that activated alumina 321 

is one of the best available technologies for As removal in drinking water (Weidner and 322 

Ciesielczyk, 2019) due to its relatively high surface area. Moreover, activated alumina has a 323 



selectivity towards As(III) and As(V) (Clifford, 1999; Weidner and Ciesielczyk, 2019). One of 324 

the key advantages of this novel adsorbent is its mechanical and chemical stability in aqueous 325 

environments. The key adsorption mechanism of Fe(OH)3 precipitated on Al2O3 material is 326 

chemisorption. The As(V) forms inner-sphere complexes with both Al and Fe oxide (Figure 327 

2). Meanwhile, As(III) forms both inner-sphere and outer-sphere surface complexes on Fe 328 

oxide and outer-sphere surface complexes on Al oxide (Goldberg and Johnston, 2001; Hlavay 329 

and Polyák, 2005) (Figure 2). This particular adsorbent can be used as a selective sorbent for 330 

removal of As from aqueous solutions according to the authors, but no data have been reported 331 

for absorbance of As in the presence of interactive ions. However, there is evidence that 332 

precipitated Fe(III) oxides are selective for As species in aqueous solutions (DeMarco et al., 333 

2003; Vatutsina et al., 2007). Xu et al. (2002) have developed a new adsorbent, aluminium-334 

loaded Shirasu-zeolite P1 by treating a P1 type Shirasu-zeolite (of volcanic origin) with 335 

aluminium sulfate solution. The adsorption of As(V) has occurred through chemisorption with 336 

active sites of aluminium species which is mostly aluminium hydroxide that is loaded in 337 

Shirasu-zeolite P1. The adsorption of As into aluminium-loaded Shirasu-zeolite, P1 depends on 338 

the pH of the containing solution and the effective pH range is pH 4-10. The adsorption 339 

capacity was 0.1 mmol/g (initial solution 1.3 mM/20 mL) obeying the Freundlich isotherm 340 

equation. The study suggests that this particular sorbent is suitable even for low As(V) 341 

concentration ranges (˂200 µg/L). There is no significant interference of As(V) adsorption with 342 

As(III), chloride, nitrate, sulfate, chromate and acetate ions in the solution. However, 343 

significant suppression of As(V) adsorption occurred with the presence of phosphate ions in 344 

the solution as phosphorus competes with As for adsorption sites (Xu et al., 2002).  345 

 346 

Chromium-based metal-organic framework hosted Fe3O4 nanoparticle (MIL-101-Cr-347 

Fe3O4) also can be identified as Fe based adsorptive material with modifications (Folens et al., 348 



2016). The chromium-based metal-organic framework hosted Fe3O4 nanoparticle (MIL-101-349 

Cr-Fe3O4) shows a high affinity towards both As(III) and As(V) in water. The adsorption 350 

capacities are 121.5 and 80.0 mg/g, respectively. The results show that the integration of 351 

encapsulated Fe3O4 nanoparticles and the chromium-based metal-organic framework have 352 

enhanced the adsorption capabilities more significantly than using them alone. The 353 

encapsulated Fe3O4 nanoparticles could remove 75.5 and 37.4% of As(III) and As(V) whereas 354 

the chromium-based metal-organic framework could remove 22.8 and 92.4%, respectively. 355 

The integration showed 94.7 and 99.9% removal, respectively. The encapsulated Fe3O4 356 

nanoparticles have less selectivity towards As(V) and at the aqueous media the nanoparticles 357 

are subjected to aggregation and therefore, even for the As(III), the sorption capacities are low. 358 

On the other hand, the chromium-based metal-organic framework has less selectivity towards 359 

As(III) but the integration could increase the selectivity for both As(III) and As(V) while 360 

avoiding the aggregation of the nanoparticles (Folens et al., 2016). Most importantly, the 361 

presence of Ca2+, Mg2+ and phosphate has not created any impact on As(III) and As(V) 362 

adsorption. The MIL-101-Cr host material consisted of two types of mesoporous cages with 363 

29 and 34 Å; therefore, the particular host material is very attractive to high loadings of Fe 364 

nanoparticles which leads to high As(III) and As(V) adsorption capacity. The best pH range 365 

for the particular adsorptive material is 7-10. In literature, there are several studies based on 366 

metal-organic frameworks. Some of the other metal-organic frameworks that have been used 367 

to remove As(III) or As(V) are ZIF-8 nanoparticles (Jian et al., 2015), ZIF-8(Zn) (Wu et al., 368 

2014), Fe-BTC (Zhu et al., 2012) Of them, ZIF-8 nanoparticles are effective for use with low 369 

As(III) and As(V) concentrations. The study has been conducted with 100 µg/L of total As 370 

solution and with 0.06 g/L of ZIF-8 nanoparticles of As(V) concentration in the water sample 371 

has been decreased dramatically to 2.8 µg/L. However, the As(III) only decreased to 73 µg/L 372 

even with a high ZIF-8 dosage of 0.2 g/L (Jian et al., 2015). In aqueous media, the ZIF-8 373 



adsorbs the water molecules and generates activated sites such as zinc hydroxyl, secondary 374 

amine and tertiary amine via a protonation reaction. Those positive sites adsorb the negative 375 

As(V) species efficiently via electrostatic attraction. The presence of sulfate and nitrate as 376 

competitive anions in the solution has no impact on As(III) and As(V) sorption even when the 377 

concentration of the above anions is 100 times higher than the As(III) or As(V) concentration. 378 

However, phosphate and carbonate ions will significantly decrease As(III) and As(IV) 379 

adsorption. The phosphate has a similar chemistry as As and therefore, it competes with all the 380 

adsorption sites while the carbonate ions compete for zinc hydroxyl sites (Jian et al., 2015).  381 

These results are similar to those of Folens et al. (2016) which also have a metal-organic 382 

framework. Folens et al. (2016) showed that a pure organic metal framework (without 383 

modification) has a higher affinity towards As(V) than As(III) and the same fact has been 384 

proved with some of the other organic metal frameworks in As(III) and As(V) adsorption (Jun 385 

et al., 2015)  386 

 387 

The Technical University of Berlin in Germany has developed an As removal technique 388 

with granular ferric hydroxide in fixed bed reactors (Driehaus et al., 1998). The reactors were 389 

effective at As removal and no interference of other anions except phosphate occurred. 390 

Although phosphate adsorption is lower than As adsorption, phosphate concentration 391 

exceeding those of As could suppress the As adsorption significantly. One of the disadvantages 392 

of the use of granular ferric hydroxide on As removal is that as time passes, the capacity of 393 

removal decreases (freshly prepared granular ferric hydroxide are better at As removal than old 394 

ones). The adsorption capacity decreases with an increasing solution pH (for detailed results 395 

see Driehaus et al. (1998) and Vatutsina et al. (2007)). As mentioned earlier, the granular 396 

particles can end up in the effluent (Driehaus et al., 1998). This particular adsorbent is most 397 



suitable for small water suppliers due to operational needs, pH adjustments, and less capability 398 

in reuse as well as requiring doses of chemicals. 399 

 400 

Another adsorbent, hydrous Fe(III) bound with polyacrylamide made by Shigetomi et 401 

al. (1980), selectively removed As(V) from aqueous solution. The optimum adsorption was 402 

achieved in the range of pH 5-8. The arsenate adsorption capacity was 43 mg/g of the adsorbent. 403 

Regeneration of adsorbent with 0.01 mol/L HCl acid restored the initial adsorbent capacity. 404 

 405 

Apyron Technology, Inc. has developed a large-scale As removal system using 406 

inorganic granular activated alumina metal oxide (Ahmed, 2001). This particular system is a 407 

point-of-entry system that is directly attached to a tube-well to treat As contaminated water. 408 

The Apyron Technology Inc. As removal system contains highly activated hybrid alumina and 409 

alumina composites which consist of enhanced pore and surface properties and it effectively 410 

and selectively removes both As(III) and As(V) through both an inner and outer-sphere 411 

complex formation which is a chemisorption process. The system was tested in Nepal for 412 

providing safe water to the community. The test was conducted for eleven consecutive days 413 

with this particular As removal system which was connected to an As contaminated tube-well 414 

and showed excellent As removal throughout the eleven days. Already after the first day, the 415 

effluent contained only 4 µg/L of As (influent 226 µg/L) and all rest of the nine days showed 416 

As with below the detection limits in the effluent (306 µg/L of average influent concentration). 417 

The advantages of the above system are that it can be used as a system for a community 418 

(available for larger-scale), as the particular system with granular activated alumina metal 419 

oxide is non-hazardous as it has non-leaching properties and therefore the exhausted media 420 

(waste) can be disposed into a typical landfill. However, the cost is high (US$2000 per unit) 421 

and therefore, the use of such units in communities is a question (Hurd et al., 2001). 422 



 423 

Luo et al. (2013) developed a novel hybrid adsorbent with hydrated zirconium oxide 424 

nano-particles and graphite oxide, and a hydro-thermal co-precipitation reaction was employed 425 

in the preparation of the hybrid adsorbent. The particular adsorbent was excellent for removal 426 

of As(III) and As(V) simultaneously following Langmuir’s adsorption equation and this 427 

suggests the adsorption mechanism is an inner sphere formation. The removal dosages were 428 

95.15 and 84.86 mg/g for As(III) and As(V), respectively, and the adsorption was applicable 429 

for a wide range of pHs (pH 5-12 and 3-9, respectively). Moreover, the simultaneous removal 430 

was far more effective for both As(III) and As(V) than separate removal by hydrated zirconium 431 

oxide nano-particles graphite oxide. For both As(III) and As(V), among the interference 432 

(bicarbonate, nitrate, sulfate, fluoride, and chloride ions), bicarbonate was insignificant while 433 

the adsorption suppression occurred with phosphate ions (Luo et al., 2013). 434 

 435 

Silica-based novel composite material has shown a selective affinity towards As(V) in 436 

water (Awual et al., 2019). The fabricated –NH2 derived highly porous composite material 437 

operated well within the range of pH 3.5 to 7.0. The As(V) adsorption capacity of the composite 438 

material was 142.25 mg/g at optimum conditions (initial concentration 75 mg/L) and it has 439 

been tested in the presence of cations and anions to evaluate the selectivity aspect. With the 440 

presence of chloride, bicarbonate, sulfate, sodium, calcium and magnesium ions (competing 441 

ion concentrations were 20 times higher than those of As(V)), the As(V) adsorption was tested 442 

and the monovalent anions and cations did not affect the As(V) adsorption (<3% removed from 443 

those ions) but the divalent sulfate ions slightly interfered with As(V) adsorption (about 12% 444 

of sulfate removed and slightly reduced the As(V) removal). Therefore, the particular 445 

composite adsorption material has a selective affinity towards As(V); however, there is no data 446 

for interference with phosphate (Awual et al., 2019).  447 



 448 

Surface imprinting is one of the advanced techniques that has been used for selective 449 

removal of As in water. Briefly, surface imprinting is a technique to immobilize the functional 450 

groups onto the surface of supporting material (a polymer) to possess high selectivity towards 451 

a target contaminant (Fan et al., 2012; Fang et al., 2018; Fu et al., 2015). 3-(2-452 

Aminoethylamino)propytrimethoxysilane (AAPTS) is a kind of material that can be used to 453 

surface imprinting in order to remove targeted pollutants (Chen et al., 2009). The AAPTS can 454 

be used with silica and target certain metal ions with the functional group of –NH-CH2-CH2-455 

NH2 (ethylenediamine). As(V) is one of the metalloids that have a high affinity towards this 456 

functional group. The adsorption efficiency is dependent on the solution pH as the mechanism 457 

for As(V) adsorption is the electrostatic effect. Within the range of pH 3-9, the adsorption 458 

efficiency of AAPTS imprinted silica on As(V) is significant. The adsorption percentage is 459 

almost 100% and throughout the 3-9 pH range, the adsorption capacity was similar. Below pH 460 

9, the active functional group is NH3
+ (after imprinting of AAPTS into silica) and As(V) exists 461 

mainly as anions (H2AsO4
- and HAsO4

2-). So, As(V) is adsorbed due to electrostatic effects. 462 

As(III) is mostly found in neutral form and therefore As(III) adsorption cannot take place by 463 

electrostatic forces. The co-existing cations such as K+, Na+, Ca2+, Mg2+, Al3+, Zn2+, Fe3+, NO3
- 464 

and anions including SO4
2- and Cl- did not impact on the As(V) adsorption capacity however, 465 

no data have been reported whether those ions were adsorbed or not with AAPTS imprinted 466 

silica (Chen et al., 2009). Metal ion imprinting is a kind of surface imprinting technique and 467 

silica gel is used mostly as the surface for selective removal of heavy metals (Fan et al., 2012). 468 

As(V) imprinted amino-functionalized silica gel sorbent is used for selective removal of As(V) 469 

in water. Here, the silica gel crosslinking has been completed in the presence of As(V) as a 470 

template in order to specifically target the As(V) in water. Similar to most of the As(V) removal 471 

methods, pH was one of the factors limiting the adsorption of As(V). The adsorption occurs 472 



via a complexation mechanism through electrostatic effects in between As(V) and amino 473 

functional groups. The pH range of 3.7-9 is the most efficient for As(V) adsorption while at 474 

pH<3.7 the H+ ions compete with the adsorption sites. The material shows great selectivity 475 

towards As(V) even in the presence of phosphate, Cd2+, Cu2+, and Pb2+ (Fan et al., 2012). 476 

As(III)-ion imprinted polymer based on cyclic functional monomer is one of the surface 477 

imprinted polymers that have been used on selective As(III) removal in water (Fang et al., 478 

2018). The cyclic functional monomer has been synthesized with a positively charged moiety, 479 

tetra-bromine-bi-4, 5-2)methylene bi-imidazole) acridine and then the As(III) imprinted 480 

polymer has been produced. The morphology analysis revealed that the produced novel 481 

material has nanoscale particles and most of them have relatively homogeneous lamellar holes 482 

structure. The novel material showed a maximum adsorption capacity of 55 mg/g at the 100 483 

mg/L of initial As(III) concentration. The relative selectivity coefficient values for novel 484 

material are 1.03, 1.95, 2.55 and 1.52 for chloride, sulfate, phosphate, and nitrate respectively 485 

(Fang et al., 2018). 486 

 487 

The adsorbent materials that have similar selectivity capabilities for both As(III) and 488 

As(V) are rare, due to different chemistry of As(III) and As(V). A single-phase Fe/Mn oxy-489 

hydroxide shows equal selectivity on both As(III) and As(V) in drinking water (Tresintsi et al., 490 

2013). This particular nano-adsorbent material has been developed in a two-stage continuous 491 

flow reactor. Briefly, the method of synthesis is coprecipitation of FeSO4.H2O and KMnO4 into 492 

water. After the reaction in the flow-reactor, the received suspension has been washed and 493 

centrifuged to separate the dry material. The material has been used as the adsorbent after been 494 

ground into a fine powder (<63 µm). With the XRD analysis, the developed fine powder shows 495 

a nanocrystalline structure with a mean crystal size of 2 nm. The resultant adsorbent has shown 496 

homogeneous distribution of Fe and tetravalent Mn at a nanoscopic level and therefore it has 497 



been confirmed that there will not be any phase separation into pure MnO2 and FeOOH phases. 498 

The Mn(IV) responsible for oxidizing the As(III) into As(V) and As(V) adsorption occurs with 499 

Fe atoms. However, there is no data to describe the behavior of As(III) and As(V) adsorption 500 

with the presence of competitive anions (Tresintsi et al., 2013). 501 

 502 

One of the successful field level As treatment units is community-scale As treatment 503 

unit which show selective arsenic removal capabilities in the villages of West Bengal, India 504 

since 1977 and one unit has the capability to provide water to an average of 150 families (Sarkar 505 

et al., 2010; Sarkar et al., 2012; Sarkar et al., 2005). In accordance with increasing demand for 506 

arsenic-safe water, the unit providing an excellent solution. Most importantly, the unit does not 507 

require any electricity, chemical addition or pH adjustment for its operation. This community-508 

scale As treatment unit consists of a stainless steel column that has a volume of 100 L. The raw 509 

water inlet is located at the top of the column and water enters through a spray head and splash 510 

plates. At the raw water inlet, Fe(II) particles are stored and mixed with spray water, Fe(II) 511 

contact with air and water and form fine precipitates of hydrated Fe(III) oxide with the 512 

following reaction (Eq. 3). 513 

 514 

4𝐹𝐹𝑒𝑒2+ (𝑎𝑎𝑎𝑎) +  𝐻𝐻2 (𝑔𝑔) + 10𝐻𝐻2𝐻𝐻 → 4𝐹𝐹𝑒𝑒(𝐻𝐻𝐻𝐻)3 (𝑠𝑠) + 8𝐻𝐻+                             (3) 515 

 516 

Hydrogen ions generated in the process react with the alkalinity present in the 517 

groundwater, with no notable pH change in the treated water. Freshly precipitated hydrated 518 

Fe(III) oxide selectively adsorbs significant portions of both As(III) and As(V) in water with 519 

the functional groups of FeOH2
+ and FeOH through Lewis acid-base interaction. The water in 520 

the particular region contains high concentrations of chloride, sulfate and bicarbonate; 521 

however, all three ions are weak ligands which have a poor affinity towards hydrated Fe(III) 522 



particles. At the same time, phosphate and silica compete against As adsorption by the hydrated 523 

Fe(III) oxide. The water then passes through a bed consisting of activated alumina or a hybrid 524 

anion exchanger which can trap As as well as the released hydrated Fe(III) particles. The 525 

desired water flow rate of the unit is 10-12 L/min (Sarkar et al., 2010). 526 

 527 

 528 

4.3. Selective removal of arsenic by modified ion-exchangers 529 

The conventional ion-exchange methods which are also mentioned in the introduction 530 

section are not effective for removal of As and therefore several studies have attempted to find 531 

the solution with modified ion-exchangers. Polymeric and inorganic ion-exchangers such as 532 

chitosan and zeolite-based ion exchangers have been used as hosts for the development of 533 

modified ion exchangers. The chemical and physical nature of the host material such as pore 534 

size and distribution are also important for the enhancement of the removal capability of the 535 

final product. Modified ion-exchange, therefore, has been identified as an effective method for 536 

selective removal of As species from water. However, as stated in the introduction section, due 537 

to different properties between the two principal As species (As(III) and As(V)) have different 538 

behavior and adsorption mechanisms and act differently with modified ion-exchange methods. 539 

For example, strong base anion-exchange resins have lack of selectivity towards As(V) in the 540 

presence of sulfate and chloride ions whereas for As(III) adsorption the interference of sulfate 541 

and chloride is not significant (Vatutsina et al., 2007). However, it should be noted that the 542 

resin does not have a significant impact on As selectivity but its modification with some other 543 

components e.g. Fe(III) oxide, can increase affinity to As. This fact has been tested by 544 

Guenegou et al. (1998) using two different ion-exchangers (anion exchanger – packed with 545 

AG1X-8 strong base anion exchange resin, cation exchanger – packed with AGMP-50 546 

macroporous strong cation exchange resin) for As(III) and As(V) removal. The un-modified 547 



two ion-exchangers alone were found insignificant for As removal; however, As removal was 548 

remarkable after their modifications, especially, for As(III). Ramana and Sengupta (1992) have 549 

studied a modified commercial anion exchange resin named Dow 2N. However, to improve 550 

the selectivity towards As(V), the resin was modified by converting it into a copper-loaded 551 

form by passing a Cu(II) solution following the principle of Lewis acid-base interaction by 552 

creating a ligand exchanger. It has been identified that there are several drawbacks with Fe(III) 553 

ions; and loading of Cu(II) instead of Fe(III) makes a much stronger Lewis acid which can 554 

expect a greater As(V) loading capacity. By proving the assumed hypothesis, the modified 555 

resin showed significantly higher selectivity towards As(V) despite the competition from the 556 

sulfate. The As(V) which is an oxy-anion Lewis base comprising an electron donor and the 557 

fixed Cu(II) sites in the resin was a Lewis acid which is the electron acceptor. A similar study 558 

has been conducted for removal of As(V) from drinking water to test the selectivity of 559 

modifying a commercial resin towards As(V) with the presence of sulfate. Copper loaded DOW 560 

3N resin was tested for As(V) removal and the results proved that the modification could 561 

enhance the As(V) selectivity so that it was 60-120 times greater based on the binary 562 

arsenate/sulfate separation factor. After the adsorption experiment, the sulfate concentration 563 

was the same as before. Moreover, the particular modified resin can be efficiently regenerated 564 

with NaCl and it can be used in multiple cycles (8 cycles) without significant loss of removal 565 

capacity (An et al., 2005). The porous structure of the anion exchangers provides space for 566 

embedding nanoscale particles into the anion exchanger and this feature is beneficial in the 567 

removal of a specific contaminant in water because the particular nanoscale inorganic particles 568 

can selectively adsorb deferent contaminants. Further, there is another advantage of the 569 

combined use of nano-particles with the anion exchange resin rather than when they are used 570 

separately. The porous structure acts as a separation nano-reactor which helps to overcome the 571 

agglomeration of the nanoscale particles. A zirconium molybdite embedded anion exchanger 572 



developed by Bui et al. (2018) has been identified as having good selectivity towards phosphate 573 

(Bui et al., 2018) and therefore, it could be used as a material for selective removal of As(V) 574 

as well. Using the same adsorbent, the same research group has been working on As(V) 575 

separately and the results showed excellent selectivity towards As(V) in the presence of up to 576 

150:1 of SO4
2- or NO3

-:As(V) (90% removal of As(V)) (Bui et al., 2019). However, As(V) 577 

removal in the presence of phosphate has not been assessed, so that further studies are required 578 

before using a zirconium molybdite anion exchanger composite for As(V) removal in the 579 

presence of phosphate.  580 

  581 

Granulated ferric hydrochloride has been used widely for selective removal of As, but 582 

it causes the release of As containing particles into the treated water (Vatutsina et al., 2007). It 583 

has been identified that amorphous and crystalline hydrated Fe(III) oxides show significant 584 

selectivity on As(III) and As(V) (Vatutsina et al., 2007). Therefore, amorphous crystalline 585 

hydrated Fe(III) shows more advantageous characteristics towards selective removal of As over 586 

granulated Fe(III). Arsenate adsorption by hydrated Fe(III) oxides occurs via inner-sphere 587 

complex formation and As(III) forms both inner and outer sphere complex formation with 588 

hydrated Fe(III) oxides (Figure. 2) (Goldberg and Johnston, 2001; Vatutsina et al., 2007; Zhao 589 

et al., 2011). The basic mechanism behind the As(V) adsorption by hydrated Fe(III) is a ligand 590 

exchange reaction between As anions and surface hydroxyl groups in the coordination spear of 591 

Fe atoms (Vatutsina et al., 2007). The particle size of the Fe(III) oxide also matters according 592 

to its uses. The very fine submicron iron oxide or hydroxide particles have poor mechanical 593 

strength and unacceptable durability. Such particles are unable to use in fixed-beds, permeable 594 

reactive barriers or any flow-through systems. To overcome such barriers, Fe(III) oxide and/or 595 

hydroxide particles can be encapsulated with robust polymeric support which can give an 596 

excellent mechanical strength, durability and favorable hydraulic properties (Cumbal and 597 



SenGupta, 2005; Iesan et al., 2008). There are several of such modified sorbents with hydrated 598 

Fe(III) oxides considering their selectivity capability towards As species in order to improve 599 

the adsorption capacities, mechanical properties as well as their hydraulic properties (DeMarco 600 

et al., 2003; Greenleaf et al., 2003; Vatutsina et al., 2007). However, in anion exchangers with 601 

incorporated Fe(III) oxide, the nature of the basic ion exchange matrix also matters for the 602 

sorption capacity. The anion exchangers show higher sorption capacity for As compared to 603 

those prepared with cation exchangers (Vatutsina et al., 2007). Further, weak base functional 604 

groups containing ion exchangers are capable of higher As sorption than strong base functional 605 

groups. Weak base ion exchangers are capable of loading larger amounts of Fe(III) oxides than 606 

strong base ion exchangers. Moreover, weak base ion exchangers facilitate uniform and firm 607 

loading of Fe(III) within the ion exchanger which is also a reason for their better As removal. 608 

Additionally, the incorporation of Fe(III) oxides with ion-exchangers helps to avoid release of 609 

fiber into the treated solution. Basically, As adsorption by iron-based sorbates interfere in 610 

decreasing manner with phosphate > sulfate > chloride. However, Fe(III) oxide incorporated 611 

ion exchangers show insignificant interference for both chloride and sulfate as Fe(III) oxide 612 

has low affinity towards chloride and sulfate but high affinity towards As (Vatutsina et al., 613 

2007). As a consequence of the above findings, Vatutsina et al. (2007) have developed a fibrous 614 

composite sorbent (commercially available FIBAN® ion-exchanger, based on a weak base) by 615 

precipitation of Fe(III) oxide. This composite showed a high rate of As(III) and As(V) (~ 2.9 g 616 

As/kg) adsorption which is in contrast to most of the ion exchangers that are used alone. Here, 617 

90% of the As was adsorbed within 10 minutes (initial concentration 9 and 8.5 g/L of As(III) 618 

and As(V), respectively). Moreover, the particular composite sorbent did not release any Fe 619 

into the contacting solution and did not require any backwashing step in column studies which 620 

is advantageous and is economically friendly. The arsenic adsorption capacity of this composite 621 

anion exchanger depends on pH. At the low and high pH ends (for As(III) pH<6, pH>10 and 622 



for As(V) pH<4, pH>9), the sorption capacity decreases significantly. Dissociation of H3AsO4 623 

and H3AsO3 is the major reason for this lower adsorption and additionally, at acidic pH levels 624 

the hydrated Fe(III) oxide particles dissolve and at higher pH levels they become inactive for 625 

As sorption. However, the active pH level is within the range of natural water and therefore, it 626 

does not require any prior pH adjustment. The interference of chloride and sulfate is 627 

insignificant for the composite sorbent developed by Vatutsina et al. (2007). However, 628 

phosphate has a negative influence on the adsorbance of As(V) but no influence on As(III). 629 

According to the literature, at the mild acidic condition, the As(III) adsorption becomes higher 630 

but not for As(V). The main reason is that phosphate has the ability to effectively compete with 631 

As(V) sorption sites of Fe(III) oxide particles as both of them are adsorbed via inner-sphere 632 

complex formation (Vatutsina et al., 2007). At an As(V)/phosphate ratio of 1, the As adsorption 633 

(0.6 mmol/mmol Fe) is higher than the phosphorous adsorption (0.4 mmol/mmol Fe) 634 

(Vatutsina et al., 2007). However, considering the natural conditions, the phosphate 635 

concentration is far higher than the As concentration; therefore, selective As adsorption is again 636 

a problem. 637 

  638 

A hybrid sorbent has been tested by DeMarco et al. (2003) and it could remove both 639 

As(III) and As(V) in a selective manner. The particular hybrid sorbent contains spherical 640 

macro-porous polymeric cation exchanger beads within submicron hydrated Fe(III) oxide 641 

particles. The nano-scale hydrated Fe oxide particles have been uniformly and irreversibly 642 

dispersed, employing a simple chemical-thermal treatment. The experiment has been done as 643 

a fixed-bed column and most importantly, the hybrid ion exchanger can be regenerated for 644 

further use. The regeneration of the material is also an easy process (with 10% NaOH). Due to 645 

the week acid-base properties of Fe(III) oxide (hydrated metal ions) they have a high affinity 646 

towards hydroxyl ions. Therefore, the ligand sorption can be greatly reduced at the alkaline pH 647 



and further it causes desorption of the ligands from the negatively charged functional groups 648 

of hydrated metal ions following the Donnan co-ion exclusion effect (Sarkar et al., 2012). 649 

Moreover, cost-effectiveness is also advantageous compared with most other As removal 650 

methods, since the raw materials are available worldwide (DeMarco et al., 2003). 651 

 652 

Another anion exchange base hybrid adsorbent was developed and named HFO/SBA 653 

(Iesan et al., 2008). It was obtained by in situ encapsulation of ferric hydroxide into the macro-654 

porous structure of a strong base anion exchange resin based on a styrene-divinylbenzene 655 

copolymer, employing a simple thermal treatment. In a fixed-bed column study, the HFO/SBA 656 

adsorbent showed good absorbance capacity towards As(V) with 15.26 mg As/g dry adsorbent. 657 

Some other anions such as sulfate, chloride, nitrate and bicarbonate did not affect As(V) 658 

absorbance but phosphate and silicate decreased the As(V) adsorption by 2.59 (17%) and 5.19 659 

mg As/g (34%) dry adsorbent, respectively, and in presence of all these ions together, As(V) 660 

adsorption capacity was reduced by 50%. Further, the particular hybrid sorbent was able to 661 

remove As(III) as well but the capacity of removal (~5.5 mg As/g dry adsorbent) is less than 662 

that of As(V). With the presence of 80 and 20% of As(V) and As(III), respectively, the removal 663 

capacity was 14.07 mg As/g dry adsorbent which is a decrease of less than 10%. Moreover, the 664 

optimum As removal is pH 5 which is the lowest pH among the tested pH values (pH 5, 7 and 665 

9). The HFO/SBA adsorbent also has regeneration and reuse capability for As removal (Iesan 666 

et al., 2008). 667 

 668 

Another material for selective As removal is macroporous sulfonic acid resin (Bio-Red 669 

AGMP-50). The modified resin has been produced by the precipitation of ferric hydrochloride 670 

into the above mentioned commercially available resin (Guenegou et al., 1998; Mohanty, 671 

2017). The adsorbent was selective for both As(III) and As(V) with the presence of chloride 672 



ions. However, there were no reported data for interference with other potential competitive 673 

ions. It has been reported that the macroporous anion-exchanger was effective at As(III) 674 

removal after being modified with Fe-Mn binary oxide (Li et al., 2012). However, it is 675 

important to note that the anion-exchanger was dissimilar to that described by Mohanty (2017). 676 

The added advantage of the Fe-Mn binary oxide was that it can simultaneously oxidize As(III) 677 

into As(V) and adsorb As(V) in water. The anion exchanger itself was used to enhance the 678 

applicability of Fe-Mn binary oxide and introduce the Donnan membrane principle. The 679 

modified anion exchanger works well in low pH ranges (4-6.5) and this pH range is preferable 680 

for both of oxidation (As(III)) and adsorption (As(V)). The anions which are potentially 681 

competing for adsorption sites, chloride and sulfate, did not reduce the As(V) adsorption 682 

significantly but phosphate and silicate showed significant adsorption loss at high 683 

concentrations; phosphate showed the greatest adsorption loss for As(V) (by 60% at 10 mM of 684 

phosphate) (Li et al., 2012).     685 

 686 

The ligand exchange based As treatments methods are available for selective removal 687 

of As. The polymeric ligand exchange comprises a cross-linked hosting resin which binds with 688 

a transition metal such as iron and copper, as well as metal ions and metalloids that are 689 

immobilized to the functional groups of the resin. This polymeric ligand exchanger is very 690 

similar to the standard ion exchanger but the ligand exchanger uses transition metal ions as its 691 

terminal functional groups. As a result of these terminal functional groups, the ligand 692 

exchangers have Lewis acid-base interactions and the electrostatic interactions between the 693 

fixed metal ions and the target ionic ligands (An et al., 2005). Ligand exchange named 694 

iminodiacetic chelating resin (Chelex 100) in ferric ion form selectively removed both As(III) 695 

and As(V) ions and the saturation capacities were 70 and 45 mg As/g wet resin, respectively 696 

(Table 1) (Chanda et al., 1988). The resin can be regenerated and most importantly, after 697 



regeneration, the sorption capacity has not decreased. (Chanda et al., 1988). Zr(IV) loaded 698 

adsorbents have been proven to efficiently adsorb As(V) through ligand exchange mechanisms 699 

(Dambies, 2005; Suzuki et al., 2000). Another advantage of Zr(IV) loaded fibrous material is 700 

its ability to take up trace levels (0.015 mM) of As(V) from water, even at high feed flow rates 701 

(750 h-1), which is an ability that most of the metal loaded ligand exchangers do not have 702 

(Awual et al., 2012). Following this phenomenon, a Zr(IV) loaded monophosphonic acid resin 703 

showed selective adsorption properties towards As(V) through a ligand exchange mechanism 704 

(Awual et al., 2019). Since Zr(IV) is a hard Lewis acid, the As(V) adsorption depends on the 705 

solution pH. In other words, at high pH levels (>7), the Zr(IV) adsorbs mostly the hydroxyl 706 

ions and at acidic pH levels, the adsorption capacity for As(V) is high. Therefore, the Zr(IV) 707 

loaded monophosphonic acid resin works well at the pH range of 2-7. The presence of chloride 708 

and sulfate do not interfere with the As(V) adsorption but only shift the breakthrough curves 709 

to the right. This particular modified resin has been tested for both As(V) and phosphate and a 710 

higher affinity towards phosphate than to As(V) has been found. Therefore, the Zr(IV) loaded 711 

monophosphonic acid resin alone will not be able to act selectively for As(V) if there is a 712 

similar or higher concentration of phosphate than of As(V). However, the modification of 713 

Zr(IV) loaded resin with phosphonate and sulfonate groups enhanced the selective As(V) 714 

removal capacities (Awual et al., 2012). The Zr(IV) loaded resin removed 0.005 mmol/g of 715 

As(V) in the presence of Cl- and SO4
2- and a similar resin including phosphonate and sulfonate 716 

groups could selectively remove 0.119 mmol/g of As(V) (feed concentration is 2 mg As(V)/L) 717 

(Awual et al., 2019; Awual et al., 2012). The main function of the introduced phosphonate and 718 

sulfonate functional groups was to make proper binding of Zr(IV) into the resin so that more 719 

Zr(IV) particles can be packed within the resin which can enhance its adsorption capacity and 720 

overcome the removal of Zr(IV) particles from the resin with the treated flow. However, studies 721 

have not been reported to assess the adsorption pattern of As(V), with the presence of 722 



phosphorus in the raw water which is one of the most important competitive ions for adsorption 723 

and needs to be assessed. In the recent literature there are several studies that have attempted 724 

to remove As with Zr based adsorbents; however, the selective removal aspect is missing in 725 

those studies. A highly porous material comprising nanostructured ZrO2 spheres is such an 726 

adsorbent that showed exceptional As(III) and As(V) removal in fixed bed experiments. It 727 

could remove 9.2 mg/g of As(III) and 9 mg/g of As(V) at the initial concentration of 0.212 and 728 

0.335 mg/L, respectively (Cui et al., 2013). The above mentioned Zr based adsorbents that 729 

showed selective adsorbance were only for As(V), but the ZrO2 spheres based adsorbent 730 

showed removal capability for both As species and it is worth studying its capability for 731 

selective As removal. 732 

 733 

These examples show that conventional ion-exchangers have a great affinity for As 734 

removal with the incorporation of Fe(III) particles. However, in general, most of the resins are 735 

not economically feasible and therefore, the availability of other, more economic methods for 736 

selective As removal is vital. Considering this fact, Muñoz et al. (2002) have prepared a non-737 

conventional ion-exchange material as an economical method which is based on an open-celled 738 

cellulose sponge (to avoid release into the water phase) incorporating a chelating polymer with 739 

selective affinity for contaminants, e.g. As (Forager sponge). The material has been selected 740 

due to the presence of amine and iminodiacetate groups which are the groups that can interact 741 

with heavy metals and metalloids (anions and cations) by chelation and ion-exchange. The 742 

selectivity behavior toward As has been obtained by incorporation of Fe(III). The As 743 

adsorption capacity is 0.35 mmol As/g (13.3 mmol/L of initial concentration and 0.16 g of dry 744 

sponge). The interference of anions is in the order of phosphate > sulfate > nitrate > chloride 745 

and the interfering effect is significantly lowered with chelating polymer forage sponge when 746 

compared to the cellulose sponge used alone.  747 



 748 

 749 

4.4. Selective arsenic removal by bio-sorbents based methods   750 

The bio-sorbents are possible materials that have been used and can be used in the As 751 

removal processes. The biochemical composition of the bio-sorbents contains different kinds 752 

of functional groups such as hydroxyl, carboxyl, and amide which can remove As in water 753 

through complexation (Shakoor et al., 2019). Further, one of the major requirements of any of 754 

the contaminant removal processes is lowering the cost and bio-sorbents are great options in 755 

relation to economic and environmental cost. Moreover, the process is simple and easy to 756 

operate. However, due to low efficiency compared to the above-mentioned adsorbents, very 757 

few attempts are found in literature based on bio-sorbents for selective As removal. Chitosan 758 

is an example of a bio-sorbent and a potential adsorbent, especially for transition metals as it 759 

consists of amino and hydroxyl groups (Kwok et al., 2014). Many attempts can be found in the 760 

literature for the use of chitosan without modification (Kwok et al., 2009; Kwok and McKay, 761 

2010) and modified chitosan for the removal of As in water. Some examples of the modified 762 

chitosan are chitosan beads impregnated with molybdite (Chassary et al., 2004; Chen et al., 763 

2008) and chitosan beads impregnated with titanium (Miller et al., 2011; Miller and 764 

Zimmerman, 2010). Chitosan itself does not have specific ability to selectively remove As but 765 

the modification of chitosan with selective adsorption features will allow its use in selective 766 

As removal. Although chitosan is not a good adsorptive material and has no selectivity, as well 767 

as having insufficient mechanical strength, it provides a high surface area for trapping the 768 

contaminant in water. Moreover, with the amine and hydroxyl groups on the polymer 769 

backbone, easy functionalization is facilitated with favorable functional groups for the targeted 770 

contaminant. Therefore, those advantages overcome the weak mechanical strength, allowing 771 

chitosan to be used in the preparation of composite materials (Pincus et al., 2019). While 772 



considering the advantages of chitosan, different composites can be found. Pincus et al. (2019) 773 

and (Pincus et al., 2018) have developed a composite material including chitosan and nano-774 

metal oxides. Nano-metal oxides are good adsorbents but difficult to recover, resulting in high 775 

costs. Moreover, integrating nano-metal oxides into chitosan has overcome the drawbacks of 776 

both chitosan and nano-metal oxides when used individually. Nano TiO2 has been used as 777 

nano-metal oxide with chitosan. Apart from adsorption, nano TiO2 has the ability to cause self-778 

oxidation of As(III) and complete the removal process. For selective removal of As, Cu(II) has 779 

been incorporated and the selective removal capabilities have been tested with multifunctional 780 

nano-TiO2-Cu(II)-chitosan material. It has been identified that Cu(II) has the potential to 781 

enhance the selectivity in engineered adsorbents (Ramana and Sengupta, 1992). In engineered 782 

adsorbents, Cu(II) acts as an electron acceptor and can also form a complex with oxyanions 783 

(Yamani et al., 2016).  The multifunctional material is able to remove 3.2 mg/L (84%) of 784 

As(III) (initial concentration 3.8 mg/L) under UV irradiation and the presence of phosphorous 785 

as a competing ion in the solution only lowered it by 0.83 mg/L (22%). However, nano TiO2 786 

alone removed only 2.2 mg/L (58%) of As(III) and in the presence of phosphate ions, only 787 

0.38 mg/L which is a 48% reduction. Therefore the multifunctional material showed excellent 788 

improvement with As removal capacity and selectivity for As. Yamani et al. (2016) produced 789 

chitosan-Cu(II) beads to assess As(V) removal with the presence of phosphate as the 790 

competitive anion. Cu(II) has the ability to bind with chitosan at several electron-donating 791 

sites, such as amine and alcohol on the chitosan backbone, depending on the system’s 792 

condition. At pH levels lower than 5.5, the Cu(II) ions bind with amine groups on chitosan, 793 

making type-1 complexes (Fig. 3). The higher Cu(II) loading does not make any difference in 794 

the chitosan-Cu(II) complexes. With the pH levels higher than 5.5, first, the chitosan and Cu(II) 795 

make type-1 complexes but with increased Cu(II) loading, type-II complexes are formed (Fig. 796 

3). Therefore, at pH levels higher than pH 5.5 there will be a mixture of type-I and type-II 797 



complexes (Rhazi et al., 2002; Yamani et al., 2016). The complexed Cu(II) is then able to open 798 

up binding sites for oxyanions (Yamani et al., 2016). Both As(V) and phosphate show 799 

increasing adsorbency with increasing Cu(II) in the system which is due to increased binding 800 

sites of the chitosan-Cu(II) beads. There is 25-35% of As(V) adsorbency reduction when the 801 

phosphate is present in the solution (1:10 As(V):PO4
3-). At low Cu(II) loading, the As(V) 802 

adsorption is limited while phosphate adsorption shows nearly linear behavior. The data 803 

demonstrates that there is a Cu(II) loading threshold level for obtaining higher As(V) 804 

adsorption over phosphate. The adsorption mechanism suggests that phosphate facilitates 805 

binding with type-I chitosan-Cu(II) beads while As(V) facilitates binding with type-II (Yamani 806 

et al., 2016). If there is a method to obtain chitosan-Cu(II) beads that have only type-II 807 

complexes the As(V) adsorption can be maximized, avoiding the impact of phosphate; further 808 

studies are needed on this regard.  809 

 810 

Another chitosan-based bio-sorbent, a furfuraldehyde-chitosan cross-linked hydrogel, 811 

also shows selective affinity towards As(V). The particular hydrogel has stability in a broad 812 

range of pH (1-8) and adsorbs 100% of As(V) from groundwater which has 15 µg/L of As(V). 813 

The material shows high As(V) selectively in the presence of Cd(II), Cr(III), Ni(II) and Pb(II) 814 

(Maity et al., 2019). Shinde et al. (2013) have tested composites developed using chitosan and 815 

different metal ions for selective As(V) pre-concentration, using Cu(II), Fe(III), La(III), 816 

Mo(VI) and Zr(IV). Among those metal complexes, Fe(III)-chitosan and La(III)-chitosan show 817 

better and more significant As(V) sorption compared to other complexes and those two 818 

composites are able to remove 95% of As(V) from the aqueous solution at the range of pH 3-819 

9. Comparing La(III)-chitosan and Fe(III)-chitosan, the latter is better in selective As(V) 820 

adsorption. As(V) is a borderline hard base (hard Lewis base) and therefore reacts with hard 821 

or borderline acids. Regarding La(III) and Fe(III), the latter is harder than La(III). So, the 822 



interaction is stronger between As(V) and Fe(III) compared to As(V) and La(III). Therefore, 823 

Fe(III) is one of the best metal ions for sorption of As(V). The Fe(III)-chitosan has also been 824 

used for treating As(V) containing seawater (Shinde et al., 2013). After the As adsorption, a γ-825 

ray study shows that there is only the As peak in the spectrum. Therefore, the selective As 826 

removal by Fe(III)-chitosan has been confirmed. A novel material has been developed using 827 

chitosan and zerovalent iron, known as zerovalent iron encapsulated chitosan nano-spheres 828 

(Gupta et al., 2012). The use of chitosan is for enhancement of mechanical stability and 829 

durability of Fe(0) nanoparticles. The developed sorbent reduces the As concentrations from 2 830 

mg/L of As(III) and As(V) to lower than 5 µg/L obeying Langmuir monolayer adsorption 831 

behavior and the adsorptive properties are useful for a wide range of pH (pH 2-9). The 832 

selectivity towards As(III) and As(V) is significant even in the presence of major ions such as 833 

sulfate, phosphate, and silicate. The adsorbent is available for reuse and has been successfully 834 

applied for removal of real groundwater which contains both As(III) and As(V) (Gupta et al., 835 

2012). Another material that has been developed based on chitosan is Fe-Mn binary oxide 836 

impregnated chitosan beads (Qi et al., 2015). The preparation of this novel sorbent employs 837 

two steps which are powdered Fe-Mn binary oxide synthesis and Fe-Mn binary oxide 838 

impregnated chitosan beads fabrication. The Fe-Mn binary oxide impregnated chitosan beads 839 

show excellent selective sorption capacities for both As(III) and As(V), obeying Freundlich’s 840 

equation and sorption of As(III) is high compared to As(V). The sorption capacities are 39.1 841 

and 54.2 mg/g for As(V) and As(III), respectively. The optimum sorption is in the range of pH 842 

6-8. With the increase of pH beyond this range the adsorption decreases. The adsorption 843 

capacity of Fe-Mn binary impregnated chitosan beads is not significantly influenced by 844 

coexisting ions such as bicarbonate, silicate and sulfate; however, the presence of phosphate 845 

ions suppresses the As(III) and As(V) adsorption. The material can be regenerated for reuse. 846 

Although the adsorption amount decreases with the increment of regeneration cycles it is not 847 



significantly lower compared to the fresh material. The adsorption capacity is 85%, even with 848 

the fourth regeneration cycle (Qi et al., 2015).  849 

 850 

It has been noted that thiol groups pose high affinity towards As in aqueous media but 851 

the studies are limited in this regards (Singh et al., 2016; Singh et al., 2018). A novel material 852 

has been prepared with chitosan, thiol and Fe(III) that has high affinity for both As(III) and 853 

As(V) in aqueous media (Singh et al., 2018). Generally speaking, removal of As(III) requires 854 

peroxidation (Ezeh and Harrop, 2012) but the thiol groups and As(III)/As(V) interact with 855 

Lewis acid-base interaction and remove both As(III) and As(V). For providing extra 856 

coordination sites for As(III) and As(V) binding, the chitosan-thiol has been incorporated and 857 

the results have been significant. The particular chitosan-thiol-Fe(III) composite showed rapid 858 

As(III) and As(V) sorption within the first 60 mins (about 60-65%). The chitosan provides a 859 

large surface area for a large number of thiol functional groups and Fe(III) oxide and therefore, 860 

such rapid adsorption has taken place. After 3 hours the As(III) adsorption is 99.5% and As(V) 861 

adsorption is 99% (initial concentration 50 µg/L). Without the introduction of Fe(III) into 862 

chitosan-thiol material, the adsorption percentages are 85% and 87%, respectively (Singh et 863 

al., 2016). Therefore, Fe(III) oxide provides a significant amount of binding sites for both 864 

As(III) and As(V). The composite material poses a heterogeneous surface for effective As(III) 865 

and As(V) adsorption. The surface of Fe(III) oxide provides space for binding of chitosan-thiol 866 

and As(III)/As(V). Further the thiol groups in the chitosan act as binding sites for As(III) and 867 

As(V). The SEM image confirms that no bare space is found on the composite material and 868 

therefore the adsorption is occurring in an effective manner. The impact of competing anions 869 

also has been studied and the results reveal that Cl-, NO3
-, and SO4

2- show a negligible effect 870 

while PO4
3- reduces the adsorption by 37.5% for As(III) and by 34% for As(V) (Singh et al., 871 

2018).   872 



 873 

 874 

4.5. Selective arsenic removal by membrane filtration/permeable reactive barrier 875 

methods 876 

The membrane-based methods such as reverse osmosis are economically feasible for 877 

water that has a trace amount of contaminant. Except for a few cases, most often the As 878 

contamination found with trace levels (less than 500 µg/L) and the reverse-osmosis method is 879 

practicable for As removal (Sarkar et al., 2012). The reverse-osmosis method on As removal 880 

has been identified as highly effective but these require large operating pressure and energy 881 

which increase the cost of the process and reduce the efficiency of the process (Chang et al., 882 

2014; Fox et al., 2016). The forward osmosis, however, requires low-pressure and has low 883 

fouling tendencies (Xu et al., 2017; Yang et al., 2019; Zhao et al., 2012). However, the basic 884 

forward osmosis technique with thin selective layer is not efficient enough for removal of As 885 

in water to meet the WHO recommended levels (Jin et al., 2012; Mondal et al., 2014a). Grafting 886 

of ionic liquids on to the thin selective layer has been identified as a potential modification to 887 

overcome the fouling process and gain higher rejection rates for As while ensuring maximum 888 

water flux. Yang et al. (2019) developed and grafted a series of bi-functional imidazole-based 889 

ionic liquids onto a thin-film (thin polyamide selective layer) composite forward osmosis 890 

membrane. The grafting process was done following a simple amidation grafting procedure 891 

following incorporation of ionic liquids with amine functional groups. The synthesized 892 

composite membrane showed higher electronegativity and stronger electrostatic repulsion with 893 

As oxyanions and is less prone to fouling. The As(V) rejection was 99.5% at the pH 11. At the 894 

alkaline pH values, the neutral H3AsO4
- is gradually converted into higher valance As 895 

oxyanions, enhancing the mutual repulsion between the negatively charged ionic membrane 896 

and As oxyanions. Therefore, it enhanced the As(V) rejection rates. The presence of competing 897 



ions such as NO3
- and SO4

2- reduced the As(V) rejection rates slightly (nearly 5%). The 898 

presence of competing ions increased the feed osmotic pressure, reducing the net driving force 899 

across the membrane which can reduce water flux and the As(V) rejection rates. Moreover, the 900 

repulsion of larger ions such as NO3
- and SO4

2- (hydrated radius – 0.34, 0.34 nm respectively) 901 

by the negatively charged membrane could enable smaller HAsO4
2- (hydrated radius – 0.20 902 

nm) to pass through the membrane interior and this will enhance the fouling process which 903 

reduces the water flux and As(V) rejection rates (Mondal et al., 2014b; Yang et al., 2019).   904 

 905 

The concept of permeable reactive walls or barriers exists mainly for the removal of 906 

dissolved contaminants in the water while ensuring regular water flow in either groundwater 907 

or surface water (Liao et al., 2018). A pilot study has been conducted in China to avoid/lower 908 

the As contamination of lake Yangzoghai (average 177 µg/L), Yunnan by surface runoff input 909 

sources (average 140 µg/L). The permeable reactive barrier has been developed by 910 

modification of zeolite by ionic liquids. The field-scale ionic liquid modified zeolite has been 911 

mixed with the ratio of 1 ton zeolite:50 kg of 70% ionic liquid in a concrete mixer. The ionic 912 

liquid modifying a zeolite permeable reactive barrier has been installed in a valley near 913 

Yangzonghai lake. In batch sorption studies the As (total As) removal was 11 and 17 mmol/kg 914 

(824 and 1273 mg/kg) for the particle ranges of 0.35-1 and 1.0-1.41 mm respectively. A study 915 

with Fe-exchanged zeolite showed in batch sorption studies 6-8 mg/kg sorption of As(III) and 916 

As(V) (Li et al., 2011) which was much lower than the ionic liquid modified zeolite. The best 917 

pH range for the above As sorption by ionic liquid modified zeolite was 1-6 and the surface 918 

water it was treated with was in the range of 5-6. Without pH adjustment the water could be 919 

treated and could achieve the optimum removal capacity. The suggested mechanism for As 920 

removal by ionic liquid modified zeolite is surface anion exchange. The removal of counterion 921 

Cl from the modified zeolite surface confirms the suggested mechanism. In the six months of 922 



the testing period with permeable reactive barrier the As removal rate was nearly constant with 923 

an average removal of 96%. In May 2016 the As concentration at the upper stream of permeable 924 

reactive barrier was 0.14 mg/L and after passing through the permeable reactive barrier the As 925 

concentration was 0.004 mg/L with 96% removal. In August 2016 the As concentrations were 926 

0.51 and 0.02 mg/L respectively with 96% removal (Liao et al., 2018). However, there is no 927 

data regarding selectivity behavior of the ionic liquid modified zeolite permeable reactive 928 

barrier. 929 

 930 

 931 

4.6. Selective arsenic removal by microbiological methods 932 

The use of microorganisms is achieving increasing interest in different industries such 933 

as food and beverages, cosmetics, pharmaceuticals and energy. However, regarding As 934 

removal in water and wastewater, the use of microorganisms is still a novel aspect (Abbas et 935 

al., 2014; Hayat et al., 2017; Merrifield et al., 2004; Shakoori et al., 2010; Singh et al., 2008). 936 

The use of microorganisms in As removal has several advantages; for example, they can be 937 

produced in fast and in large quantities. Moreover, genetic engineering can be applied to 938 

improve the qualities and introduce the desired properties (Hayat et al., 2017). A marine alga 939 

named Fucus vesiculosus (a seaweed species) has been identified as being As tolerant. 940 

Scientists cloned the F.vesiculosus to Escherichia coli and after cloning the F. vesiculosus 941 

expresses as a fusion protein in E. coli. It has been identified that F. vesiculosus bound E. coli 942 

has a high affinity for As(III) in vitro (Singh et al., 2008). Moreover, to improve the selectivity 943 

toward As(III), an As(III) transporter has been co-expressed with F. vesiculosus bound E. coli 944 

(Figure 2). After allowing the prepared materials for As removal which contained 10 mM of 945 

As(III) and As(V) separately the F. vesiculosus bound E.coli could remove 6.91 mmol/g of 946 

As(V) and 6.08 mmol/g of As(III). After co-expression of As(III) transporter to F. vesiculosus 947 



bound E. coli, it could remove 8.61 mmol/g of As(III) which confirms the enhancement of As 948 

removal. Moreover, the impacts of co-existing ions were tested with the incorporation of Zn2+, 949 

Cd2+, and Pb2+ into initial solution. The interference of Pb and Zn was negligible, ensuring 950 

selective As removal by F. vesiculosus bound E. coli. However, Cd could suppress the As(III) 951 

accumulation by 56% but with As(III) transporter the impact was reduced by 30%. Most 952 

importantly even the resting cells in the engineered strain could accumulate and remove As 953 

with the absence of nutrients and antibiotics. The removal efficiencies were the same as the 954 

growing cells and they could remove trace levels of As in water and therefore the method is 955 

suitable to meet the USEPA guidelines in drinking water (Singh et al., 2008).  956 

 957 

 958 

5. Conclusion and future perspectives 959 

Selective removal of As in aqueous solutions is a challenge due to several reasons. In 960 

most cases, the common anions present in natural waters or wastewater, which are generally 961 

present in much higher concentrations are competing with As adsorption. Moreover, with 962 

changing solution pH and the redox potential in the media, the As changes into different 963 

oxidization forms, including As(V) oxyanions and neutral As(III) species, in most of the natural 964 

waters, which physically and chemically act in different ways and therefore, there exists no 965 

single removal method which can remove all of the As species satisfactorily at the same time. 966 

However, it has been identified that hydrated granular or amorphous Fe(III) has significant 967 

capability to remove As(III) and As(V) in aqueous solutions in a selective manner. To improve 968 

mechanical strength and adsorption capacities, there are attempts with the incorporation of 969 

mechanically strong materials with hydrated granular or amorphous Fe(III). Chitosan and ion-970 

exchange resins are examples of this. The firm deposition of hydrated granular or amorphous 971 

Fe(III) in the used matrix is an important step in the preparation procedure to improve the 972 



selective As removal. Instead of Fe(III), there are some metal ions such as Cu2+, La3+, and Al3+ 973 

that have been used for selective As removal and they also show significant As removal 974 

capabilities. There is no single material that can be used for selective As removal material 975 

which is pH-independent. Therefore, the pH of the solution is a limiting factor for selective As 976 

removal by any of the selective As removal material. However, most of the selective As 977 

removal materials are suitable within pH 6-8 range which is the range for most natural waters. 978 

Moreover, there is evidence to show that microbial methods for selective As removal in 979 

aqueous media. Most of the co-existing anions such as sulfate, nitrate, bicarbonate, chloride or 980 

fluoride do not interfere with As removal with most of the selective As removal materials. 981 

However, phosphate adversely impacts As removal of many of the methods. The reason is that 982 

phosphate ions have the same chemical structure as As and it is chemically compatible with 983 

the As. One of the important aspects is the chitosan and Cu(II) integration can form two types 984 

of bonds and the two types of bonds remove As and phosphate separately. The fact is both 985 

bonds present as a mix and there is a research gap to optimize the conditions in order to have 986 

only the particular bond that can remove the As. Even though phosphate is also removed with 987 

most of the selective As removal measures, the selective As removal in natural water is an 988 

important achievement. In most of the cases, the phosphate concentrations are much lower than 989 

those of the main ions. Therefore, the above mentioned selective As removal methods are still 990 

highly beneficial to overcome the global As contamination issue. In consequence, more studies 991 

are needed to overcome the interference of phosphate with As removal, especially for the water 992 

resources that have high phosphate concentrations. Thiol based removal methods even have 993 

the ability to target on specific As species when there are both As(III) and As(V). Moreover, 994 

the high affinity of thiol groups towards As species have greater future perspective in the 995 

selective As removal field, even to minimize the competition from phosphate. If such affinity 996 

could combine with the Cu(II) and chitosan it may even avoid the phosphate competition. 997 



However, more novelty and studies can be developed using such advantageous characters. 998 

Even though there are microbial methods to remove As in a selective manner, the studies have 999 

not extended to testing the interference of phosphate with As removal. Therefore, more studies 1000 

are needed with extended scope in microbial methods to use and selective As removal strategy. 1001 

If the microbial methods are strong enough to compete with phosphate, the incorporation of 1002 

both chemical and microbiological methods may overcome the interactive issues with common 1003 

ions and further studies are needed to test the possibility of the use of chemical and 1004 

microbiological methods together. 1005 
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