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 A B S T R A C T

The integration of hydrogen technologies into islanded DC microgrids presents significant challenges in 
maintaining voltage stability and coordinating power flow under highly variable renewable energy conditions. 
This paper proposes a novel DC-link voltage control (DCVC) framework that incorporates adaptive droop 
control and autonomous operation algorithms to regulate fuel cells, electrolysers, and battery systems in 
a coordinated manner. Unlike conventional fixed-gain or priority-based methods, the proposed adaptive 
control dynamically adjusts the droop coefficient in response to voltage deviations, enhancing system stability 
and responsiveness. The control framework is validated on an industry-standard hydrogen DC microgrid 
platform developed at Griffith University, featuring real-time implementation on a Raspberry Pi controller 
and comprehensive integration with solar, wind, wave, and hydrogen energy sources. A small-signal stability 
analysis confirms that the proposed control ensures asymptotic voltage convergence under dynamic operating 
conditions. Experimental results across five case studies demonstrate that the proposed DCVC strategy ensures 
fast transient response, minimises overshoot, and maintains the DC-link voltage near the nominal 380 V under 
varying load and generation scenarios. The framework facilitates flexible energy sharing while ensuring safe 
hydrogen production and storage. It is also compatible with low-cost, open-source hardware, making it a 

scalable solution for remote and off-grid energy applications.
1. Introduction

In the contemporary power system, the increasing emphasis on 
sustainable and renewable energy sources is reshaping the traditional 
landscape. The integration of renewable energy sources, such as solar 
and wind, presents both opportunities and challenges for the existing 
power infrastructure [1]. While the promise of cleaner energy and 
reduced environmental impact is evident, the intermittent nature of 
renewables introduces complexities in balancing supply and demand, 
grid stability, and overall reliability [2]. Moreover, managing energy 
flows within the microgrid, especially with fluctuating renewable en-
ergy inputs, requires sophisticated control algorithms to maintain grid 
stability. These challenges necessitate innovative solutions to ensure a 
smooth transition to a more sustainable energy paradigm.

One transformative approach to address the challenges of renew-
able energy integration is the incorporation of hydrogen fuel cells 
and electrolysers within a DC environment for efficient and reliable 
operation [3]. Hydrogen technologies offer a versatile means of energy 
storage and conversion, allowing excess energy generated during peak 
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renewable periods to be efficiently stored as hydrogen. This stored hy-
drogen can then be utilised during low-generation periods, effectively 
bridging the gap between variable renewable output and consistent 
energy demand [4]. The integration of hydrogen fuel cells and elec-
trolysers in a power grid introduces a dynamic and adaptive energy 
storage solution, providing grid operators with greater flexibility and 
resilience in managing the inherent fluctuations associated with re-
newable energy sources [5]. These integrated technologies also gained 
popularity in microgrid applications, such as DC microgrids on ships 
or off-grid communities, where transportation of diesel is problematic 
and is not environmentally friendly due to greenhouse gas emissions. 
This provides a cost-effective solution to enhance power generation by 
harnessing locally derived renewable energy sources, mitigating their 
inherent variability [6]. However, producing and storing hydrogen ef-
ficiently for use in fuel cells or other applications presents a significant 
challenge, including electrolysers must operate dynamically, matching 
fluctuating energy inputs and demands while ensuring the safe and 
reliable storage of hydrogen.
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Nomenclature

AC Alternating Current
BESS Battery Energy Storage System
BMS Battery Management System
CEMPC Centralised Economic Model Predictive 

Control
COE Cost of Energy
DC Direct Current
DCVC DC Voltage Control
DEMPC Distributed Economic Model Predictive 

Control
EBDC EV-Based Decentralised Charging
EE Excess Energy
EMS Energy Management System
EV Electric Vehicle
EZ Electrolyser
FC Fuel Cell
GA Genetic Algorithm
HESS Hybrid Energy Storage System
HLC High-Level Controller
HRS Hydrogen Refuelling Station
IDA-PBC Interconnection and Damping Assignment 

Passivity-Based Control
LCE Life Cycle Emissions
LLC Low-Level Controller
LPSP Loss of Power Supply Probability
m-SDWOA Modified Symbiotic Differential Whale Op-

timisation Algorithm
MG Microgrid
MH Metal Hydride
MILP Mixed-Integer Linear Programming
MINLP Mixed-Integer Nonlinear Programming
MPC Model Predictive Control
MPPT Maximum Power Point Tracking
NN Neural Network
OR Operating Reserve
PEM Proton Exchange Membrane
PI Proportional–Integral
PMS Power Management Strategy
PSO Particle Swarm Optimisation
PV Photovoltaic
RES Renewable Energy Sources
Rpi Raspberry Pi
SAC System Annual Cost
SMRC Sliding Mode Reference Conditioning
SoC State of Charge (battery)
Z-score Standardised statistical measure used to 

assess electricity price trends
𝛥𝑉 Voltage deviation (V)
𝜂 Efficiency
𝜂𝑐 Battery charging efficiency
𝜂𝑑 Battery discharging efficiency
𝜂𝑠 Solar panel conversion efficiency
𝜂𝑤𝑣 Wave generator efficiency
𝜂elz Electrolyser efficiency
𝜂fc Fuel cell efficiency
𝜔 Angular frequency (rad/s)
𝜌 Water density (kg/m3)
2 
𝐴 Area of PV panels (m2)
𝐵𝐿(𝑡) Battery energy level at time 𝑡 (Wh)
𝐵𝐿𝑚𝑎𝑥 Maximum allowable battery energy level 

(Wh)
𝐵𝐿𝑚𝑖𝑛 Minimum allowable battery energy level 

(Wh)
𝐶 Capacitance (F)
𝐷h2 Density of hydrogen at STP (kg/m3)
𝐷𝐼 Decision Interval (s)
𝐸h Energy content of hydrogen (J/g)
𝐸ip Input energy to electrolyser (kWh)
𝐻𝑠 Spectral significant wave height (m)
𝐻2cr Hydrogen consumption rate (m3/s)
𝐻2pr Hydrogen production rate (m3/s)
𝐻2st,maxC Maximum hydrogen storage capacity (m3)
𝐻2st,max Maximum hydrogen storage limit (m3)
𝐻2st,min Minimum hydrogen storage limit (m3)
𝐻2st,𝑡+1 Hydrogen storage level at time 𝑡 + 1 (m3)
𝐻2st,𝑡 Hydrogen storage level at time 𝑡 (m3)
𝐻2p Mass of produced hydrogen (kg)
𝐻fr Hydrogen flow rate extracted for fuel cells 

(g/s)
𝐻𝑆𝑂𝐶 State of hydrogen storage
𝐼dc DC current (A)
𝐾𝑖 Integral gain
𝐾𝑝 Proportional gain
𝑃𝑐 (𝑡) Battery charging power at time 𝑡 (W)
𝑃𝑑 (𝑡) Battery discharging power at time 𝑡 (W)
𝑃𝑟 Rated power of wind turbine (W)
𝑃𝑠 Output power from a solar panel (W)
𝑃𝑤 Wind turbine output power (W)
𝑃bat Battery charging/discharging power (W)
𝑃EL Power consumed by electrolyser (W)
𝑃EZ Electrolyser power (W)
𝑃FC Fuel cell output power (W)
𝑃FC Power from fuel cell (W)
𝑃load Load power (W)
𝑃PV Power from PV panels (W)
𝑃fc Fuel cell output power (W)
𝑃𝑐,max Maximum battery charging power (W)
𝑃𝑑,max Maximum battery discharging power (W)
𝑃𝑠𝑇 Total solar power output (W)
𝑃𝑤𝑇 Total wind power output (W)
𝑃𝑤𝑣 Time-averaged wave power output (W)
𝑃𝐻 Prediction Horizon (s)
𝑆𝐼 Solar irradiation (W/m2)
𝑇 Temperature (◦ C)
𝑇𝐸 Mean energy period of wave (s)
𝑡𝑜 Outside air temperature (◦ C)
𝑡𝑟 Rise time (s)
𝑡𝑠 Settling time (s)
𝑈h2 Energy density of hydrogen (kWh/kg)
𝑣 Wind speed (m/s)
𝑣𝑐 Cut-in wind speed (m/s)
𝑣𝑓 Cut-out wind speed (m/s)
𝑣𝑟 Rated wind speed (m/s)
𝑉dc DC-link voltage (V)
𝑉ref Reference DC voltage (V)
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𝑉h2 Volume of produced hydrogen (m3)
𝑤 Absorber width of wave generator (m)
𝑉max Maximum allowable voltage (V)
𝑉min Minimum allowable voltage (V)

Several recent publications have investigated the resource configu-
ration, design, and optimisation of hydrogen microgrids. For example, 
in [7], a renewable energy-based green hydrogen and oxygen produc-
tion system for aquaculture was developed, highlighting the role of 
hydrogen in sustainable food production. The optimisation of hydrogen 
storage in hybrid renewable energy systems under economic and envi-
ronmental uncertainties was explored in [8], showcasing strategies for 
balancing performance and cost. In transportation, a photovoltaic and 
wind turbine-powered hydrogen refuelling system was analysed in [9], 
leading to significant reductions in carbon intensity and levelised driv-
ing costs, further illustrating the economic and environmental benefits 
of hydrogen-based solutions. In [10], an economic model predictive 
control for an alkaline electrolyser in a multi-energy system is pre-
sented, with improved operational cost saving of 38% compared to a 
traditional economic strategy.

Advanced control strategies are also crucial for ensuring the reliable 
operation of hydrogen microgrids. A hierarchical model predictive 
control system was developed in [11] to integrate wind energy into a 
hydrogen storage system, optimising revenue and reducing operating 
costs. Similarly, an efficient hydrogen-energy storage system (HESS) 
management strategy in a wind–solar microgrid, addressing economic, 
operational, and degradation constraints, is presented in [12]. A hybrid 
energy storage system that combines batteries for short-term needs and 
hydrogen storage for long-term applications was presented in [13], util-
ising passivity-based control and sliding mode reference conditioning to 
ensure system stability. A lab-scale stand-alone hydrogen energy system 
using a predictive power management strategy is presented in [14] to 
optimise energy control, with a highlight of the importance of intelli-
gent power management over rule-based systems. The work has been 
extended by comparing the impact of predictive and reactive power 
management strategy in [15], indicating that predictive outperforms 
reactive management strategies.

Further advancements include two-layer hierarchical control strate-
gies [16], which combine primary interconnection and damping assign-
ment passivity-based control with supervisory model predictive control 
to maintain power balance and enhance system stability. Distributed 
economic model predictive control, as explored in [17], reduces com-
putational burdens while optimising energy management and DC link 
voltage stability in PV/hydrogen DC microgrids. Additionally, in [18], 
hydrogen storage as a financially viable alternative to batteries for 
high-power applications in Power-to-X systems is emphasised, further 
strengthening the case for hydrogen integration in renewable energy 
networks. In [19], a supervisory model for scheduling distributed hy-
brid energy system fuelling stations to track external hydrogen and 
electricity consumers is presented. An optimal scheduling approach for 
managing energy in a solar-hydrogen microgrid is discussed in [20], 
integrating solar panels, HESS, and Battery Energy Storage System 
(BESS) to meet both electrical and hydrogen demands of an industrial 
hydrogen facility. In [21], a control strategy for a grid-connected wind 
farm paired with hybrid energy storage is introduced, aiming to meet 
electrical and contractual demands while producing hydrogen as a fuel 
for fuel cell EVs. A summary of the reviewed literature is presented in 
Table  1, providing a comparative evaluation of recent advancements in 
control strategies, hydrogen modelling, and system-level validation in 
hydrogen-integrated microgrids.

Despite significant advances in hydrogen-based microgrids and re-
newable integration, several critical research gaps remain. Many ex-
isting studies rely heavily on simulation or hardware-in-the-loop (HIL) 
3 
test as shown in Table  1, which do not fully replicate the operational 
complexities of real-world systems. These approaches often overlook 
transient uncertainties and integration challenges associated with phys-
ical hydrogen components. Most prior works emphasise individual re-
source control or fixed-priority logic, lacking a unified and autonomous 
strategy to coordinate fuel cells, electrolysers, and battery systems in 
real time. Moreover, system models for hydrogen components are often 
idealised or assumed, leading to inaccurate controller tuning. Finally, 
the reliance on expensive, proprietary platforms limits the scalability 
and practical deployment of microgrid control systems in cost-sensitive, 
remote, or offshore environments.

This study addresses these challenges by proposing and experimen-
tally validating a novel adaptive droop-based voltage control frame-
work tailored for islanded hydrogen DC microgrids. The adaptive droop 
controller dynamically adjusts its gain in response to voltage devi-
ations, enabling both fast transient recovery and stable steady-state 
performance. A fully autonomous control algorithm is developed to 
coordinate the operation of fuel cells, electrolysers, and batteries based 
on real-time system states such as voltage level and state-of-charge 
(SoC). Second-order dynamic models of the fuel cell and electrolyser 
systems are derived from experimental data, allowing for accurate 
control design and tuning. The proposed framework is implemented 
on a low-cost, open-source platform using Raspberry Pi, NodeRED, 
and Grafana, and validated through five hardware-based case studies. 
Results show reliable DC-link voltage regulation near 380V, reduced 
overshoot, and improved response time under variable renewable in-
puts and load fluctuations. This work not only improves the control 
precision and resilience of hydrogen microgrids but also provides a 
scalable, cost-effective solution for real-world deployment in remote or 
off-grid applications such as aquaculture and islanded energy systems.

The main contributions of this paper are summarised as follows:

• A novel DC-link voltage control (DCVC) framework is devel-
oped for islanded hydrogen DC microgrids, incorporating adap-
tive droop controllers that dynamically tune the gain based on 
real-time voltage deviations to improve transient response and 
stability.

• An autonomous control algorithm is proposed for seamless and 
coordinated operation of electrolysers, fuel cells, and battery 
banks based on voltage thresholds and SoC conditions, min-
imising reliance on centralised decision-making or fixed-priority 
logic.

• Second-order dynamic models of the fuel cell and electrolyser 
systems are experimentally derived and validated, capturing over-
shoot, damping, and settling behaviour critical for controller 
tuning and real-time implementation.

• The proposed control strategy is experimentally validated on a 
fully functional hydrogen DC microgrid platform built at Griffith 
University, using open-source software (NodeRED, Grafana) and 
low-cost Raspberry Pi hardware, demonstrating robust voltage 
stabilisation under fluctuating renewable inputs.

• A comprehensive small-signal stability analysis is performed, 
demonstrating that the combined droop gains from fuel cells, elec-
trolysers, and battery systems result in a first-order differential 
voltage response with guaranteed asymptotic stability, thereby 
validating the robustness of the control framework under dynamic 
load and generation fluctuations.

The paper is organised as follows. Section 2 presents an applica-
tion scenario and component modelling of a hydrogen DC microgrid 
in an aquaculture environment. The proposed voltage-based control 
framework is developed in Section 3 for the autonomous operation of 
the hydrogen microgrid with efficient operation. Section 4 carries out 
industry-standard experiments with five case studies to demonstrate the 
effectiveness of the proposed DCVC framework for microgrid reliable 
operation. The work is concluded in Section 5.
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Table 1
Comparative summary of key literature and this work.
 Study Focus area Control strategy Validation 

method
Hydrogen 
component 
modelling

Hardware/Plat-
form

Key limitation 
addressed

 

 Ref. [7] H2 + O2 for 
aquaculture

System-level 
RES–H2 design

Case study sim. 
(5 cities)

Thermodynamic 
PEM EZ modelling

No real-time 
hardware

No automation; 
lacks experimental 
control

 

 Ref. [8] H2 system under 
uncertainty

MILP-based 
robust EMS

Sim. in AIMMS Static sizing with 
uncertainty

No hardware test Ignores dynamics; 
lacks real-time 
control

 

 Ref. [9] HRS for buses RDO 
optimisation

Uncertainty-
based sim.

Sizing of 
PV/wind/HRS

Sim-only HRS 
model

Transport focus; 
lacks EMS detail

 

 Ref. [10] Solar-H2 system 
for buildings

Harmony Search 
metaheuristic

Sim. using SAC, 
LPSP

Simplified tank and 
FC cost model

MATLAB sim. 
only

No real-time EMS or 
controller design

 

 Ref. [11] Wind–H2 MG 
(grid+island)

Hierarchical 
MPC (HLC+LLC)

Sim. via MLD HESS degradation 
and switching

Wind site; no 
controller yet

No HW test; 
validation pending

 

 Ref. [12] Islanded 
wind–solar MG 
+ H2 tanks

Cascaded MPC Sim. + lab-scale Tank selection via 
MLD

Lab MG; no 
low-cost 
controller

Complex logic; not 
scalable

 

 Ref. [13] DC MG with 
HRS logic

IDA-PBC + 
SMRC

Sim. only Unified bidirectional 
conv. model

MATLAB only No exp. system or 
real MG deployment

 

 Ref. [14] Standalone H2 + 
MH storage

Predictive PMS 
(NN vs. 
rule-based)

Lab-scale 
validation

Implicit FC/storage 
modelling

Emulated RES, 
real FC

No scalable EMS; 
economic aspects 
missed

 

 Ref. [15] Wind-Batt-H2
hybrid sizing 
impact

PMS + PSO + 
GA

Sim. with real 
profiles

FC/EZ transient 
incl.

MATLAB; FC 
data from lab

No embedded 
control; high-level 
analysis

 

 Ref. [16] DC MG w/ 
battery + H2
storage

IDA-PBC + MPC 
(2-layer)

Sim. with 
loads/RES

Lyapunov-based 
nonlinear FC/EZ 
models

Simulink-based No field deployment 
or embedded use

 

 Ref. [17] PV/H2 DC MG 
EMS

DEMPC with 
local controllers

Sim. with MINLP 
solver

PV/FC/EZ + 
converter models

Simulation only Switching losses 
ignored; no HW test

 

 Ref. [18] H2 in P2X 
systems

m-SDWOA 
optimisation

Sim. vs 
WOA/PSO

DC-bus, EZ trends Sim. (evo. algo 
toolkit)

No EMS/HW link; 
idealised behaviour

 

 Ref. [19] HRS for 
transport + OR 
services

Supervisory 
optimal 
scheduling

Sim. w/ hist. 
data

Dispatch models for 
FC/EZ

No HW; market 
model only

OR-centric; lacks 
microgrid dynamics

 

 Ref. [20] PV-BESS H2
prod. EMS

Seasonal Z-score 
EMS

4-case study sim. EZ efficiency + 
seasonal logic

MAT-
LAB/Simulink

No controller 
implementation

 

 Ref. [21] Wind-integrated 
EV charging

MPC + EBDC 
(decentralised)

Sim. on multi-EV 
buildings

No H2 components Simulated 
decentralised 
nodes

EV-focused; not 
applicable to H2
MGs

 

 This 
Work

Islanded H2 DC 
MG for 
aquaculture

Adaptive Droop 
+ Autonomous

Five real-time 
experiments

2nd-order dynamic 
models (EZ, FC)

Raspberry Pi, 
Node-RED, 
Grafana, 
Python

Cost-effective, 
real-time, scalable, 
hardware-validated

 

2. Hydrogen DC microgrid

This study explores the renewable energy solutions in ocean en-
vironments through hydrogen DC microgrids envisioned to power an 
aquaculture facility, fostering environmental conservation and eco-
nomic growth. The aquaculture industry plays a crucial role in ad-
dressing food availability and poverty, aligning with the United Nations 
Sustainable Development Goals [22]. The integration of a hydrogen 
microgrid exemplifies a promising solution to meet the energy needs 
of fish cultivation while minimising ecological impact. In this scenario, 
a remote coastal area with abundant access to ocean resources is chosen 
for its suitability for aquaculture activities, shown as indicative in 
Fig.  1. The components of the microgrid include offshore 1 kW of 
wind turbines, 1 kW of wave generators, 1 kW of fuel cells, 1.5 kW 
of electrolysers, 25.2 kWh of batteries, and 5 kW of solar panels 
on floating platforms to harness consistent energy from the ocean. 
These sources are connected to the microgrid through DC/DC power 
converter devices to ensure compatibility with the DC link voltage. 
A 25.2 kWh battery bank serves for short-term energy storage, while 
an electrolyser produces hydrogen for medium-to-long-term energy 
storage, facilitating grid resilience.
4 
To facilitate power distribution and control, an advanced control 
system is designed in this study for power electronics devices. The 
controller utilises feedback control loops to adjust the power output 
and voltage levels of the electronic devices, which enable bidirectional 
power flow between the energy sources, storage systems, and loads, 
while ensuring voltage regulation within acceptable limits. Addition-
ally, sensing and monitoring devices are deployed throughout the 
microgrid to provide real-time data on voltage, current, SoC, temper-
ature and power flow, facilitating system analysis and performance 
evaluation. Data acquisition software platforms, such as NodeRed, 
Grafana and Python-based frameworks, are utilised for data logging, 
visualisation, and analysis. These activities are performed in a cen-
tral controller. The supervisory software allows operators to remotely 
monitor system performance, adjust control parameters, and responds 
to system events in real-time, enhancing operational efficiency and 
reliability.

To enhance system robustness and avoid single points of failure, the 
DC microgrid is designed with three segmented battery banks, each 
rated at 8.4 kWh (configured as 2.8 kWh ×3). This modular archi-
tecture ensures that in the event of a single battery bank failure, the 
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Fig. 1. Islanded Hydrogen DC Microgrid.
remaining banks can continue supporting critical operations without 
interrupting the power supply. The battery system functions as the 
backbone of the DC microgrid, ensuring stable voltage regulation and 
transient response. In addition, the control system includes comprehen-
sive monitoring features through the Raspberry Pi controller, which 
continuously tracks the SoC or battery energy levels (𝐵𝐿(𝑡)), voltage, 
temperature, and fault conditions across all energy storage units. To 
prevent unsafe conditions, the system has predefined upper and lower 
𝐵𝐿(𝑡) thresholds, triggering alerts or automated shutdown when these 
are breached. If communication is lost or processor faults are detected, 
a watchdog timer mechanism initiates a fallback shutdown protocol, 
either handled manually via a central operating unit or automatically if 
limits are exceeded. Real-time data logging and fault flags ensure trace-
ability, while ongoing monitoring of thermal and electrical parameters 
maintains operational safety and long-term system reliability.

The DC microgrid experimental platform for analysing ocean sce-
narios highlights the potential application of an islanded hydrogen DC 
microgrid in sustainable fish cultivation. The experimental results can 
also explore the amount of oxygen supply required for fish cultivation 
using the electrolyser. Ensuring an adequate oxygen supply is vital 
for the well-being and development of aquatic organisms, promoting 
optimal growth rates, reducing disease risks, and showcasing the re-
sponsible development of marine resources through the integration 
of renewable energy and aquaculture systems [23]. Submersible fish 
cages and cultivation infrastructure are designed for the specific ocean 
environment, promoting sustainable fish farming practices.

The modelling of various microgrid components used to emulate the 
practical scenarios for the experiment is presented as follows.

2.1. Solar generators

The output power from solar irradiation using solar panels, can be 
determined using the following equation [24]: 

𝑃 = 𝜂 × 𝐴 × 𝑆𝐼(1 − 0.005(𝑡 − 25)) (1)
𝑠 𝑠 𝑜

5 
where 𝜂𝑠 represents the conversion efficiency (in percentage), 𝐴 is the 
area of PV panels (in m2), and 𝑡𝑜 is the outside air temperature (in ◦C).

For a system with multiple solar panels, the total output power can 
be expressed as the sum of individual panel outputs: 

𝑃𝑠𝑇 =
𝑁
∑

𝑛=1
𝑃𝑠,𝑛 (2)

where 𝑛 (ranging from 1 to N) denotes the number of solar generators.

2.2. Wind turbines

Wind power generation depends on wind velocities at the power 
rating and site of a wind turbine. The electric power as a piece-wise 
function of the wind speed is expressed as follows [24]: 

𝑃𝑤 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if 𝑣𝑓 ≤ 𝑣 or 𝑣 ≤ 𝑣𝑐
𝑃𝑟 ×

𝑣3−𝑣3𝑐
𝑣3𝑟−𝑣3𝑐

if 𝑣𝑐 < 𝑣 < 𝑣𝑟

𝑃𝑟 if 𝑣𝑟 ≤ 𝑣 < 𝑣𝑓

(3)

where 𝑃𝑟 is the rated electrical power in Watts, 𝑣𝑟 is the rated wind 
speed in m/s, 𝑣 represents wind speed, 𝑣𝑐 is the cut-in wind speed, and 
𝑣𝑓  is the cut-off wind speed.

For a system with multiple wind turbines, the total output power 
can be calculated as follows: 

𝑃𝑤𝑇 =
𝐽
∑

𝑗=1
𝑃𝑤,𝑗 (4)

where 𝑗 (ranging from 1 to J) denotes the number of wind generators.

2.3. Wave generators

Wave generators harness ocean wave power through various mech-
anisms, making a universal performance model complex. A simplified 
expression for the time-averaged power output 𝑃𝑤𝑣 is given by [25]: 
𝑃 = 𝜂 ⋅𝑤 ⋅ 𝜌 ⋅𝐻2 ⋅ 𝑇 (5)
𝑤𝑣 𝑤𝑣 𝑠 𝐸
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where 𝜂𝑤𝑣 represents the efficiency of the absorber and power take-
off, 𝑤 is the absorber size, 𝜌 is the water density, 𝐻𝑠 is the spectral 
significant wave height, and 𝑇𝐸 denotes the mean energy period.

Due to the fluctuating nature of wave power, microgrid control 
strategies must account for its inherent variability. Mechanical and 
electrical smoothing techniques can mitigate fluctuations, but the
power system must remain adaptable.

2.4. Storage systems

Battery energy levels for charging/discharging cycles can be repre-
sented as follows [24]:
𝐵𝐿(𝑡) = 𝐵𝐿(𝑡 − 1) + 𝜏𝑃𝑐 (𝑡)𝜂𝑐 if the battery is charged (6)

𝐵𝐿(𝑡) = 𝐵𝐿(𝑡 − 1) + 𝜏𝑃𝑑 (𝑡)∕𝜂𝑑 if the battery is discharged (7)

subject to power limits:
0 < 𝑃𝑐 (𝑡) < 𝑃𝑐,𝑚𝑎𝑥

𝑃𝑑,𝑚𝑎𝑥 < 𝑃𝑑 (𝑡) < 0

and battery energy level limits:
𝐵𝐿𝑚𝑖𝑛 < 𝐵𝐿(𝑡) < 𝐵𝐿𝑚𝑎𝑥

where 𝑃𝑐 (𝑡) is the charging power of the battery at time 𝑡, 𝑃𝑑 (𝑡) is the 
discharging power of the battery, 𝐵𝐿(𝑡) is the battery energy level, 𝜏 is 
the time period interval, and 𝜂𝑐 and 𝜂𝑑 are the charging and discharging 
efficiencies, respectively.

2.5. Fuel cells

Let 𝐻fr be the extracted hydrogen flow rate from the storage. The 
fuel cell power output (𝑃fc) is calculated using the following model: 

𝑃fc = 𝜂fc ×𝐻fr × 𝐸h (8)

where 𝜂fc is the efficiency of the fuel cell (assumed to be 0.60), 𝐸h is 
energy content of hydrogen (assumed to be 237,000 J/g)

This generic model provides a representation of any fuel cell power 
generation based on the extracted hydrogen flow consumption. The 
model considers the efficiency of the fuel cell (𝜂fc) and the energy 
content of hydrogen (𝐸h), providing valuable insights into the power 
generation process.

2.6. Hydrogen electrolyser model

Let 𝐸ip be the energy input in kilowatt-hours (kWh), 𝜂elz be the 
efficiency of the electrolyser (assumed to be 70%), 𝑈h2 be the energy 
density of hydrogen (33.33 kWh per kg of H2), 𝐷h2 be the density of 
hydrogen at standard temperature and pressure (0.08988 kg per m3).

The mass of hydrogen produced (𝐻2p) and its volume (𝑉h2) are 
calculated as follows:

𝐻2p =
𝐸ip × 𝜂elz

𝑈h2
(9)

𝑉h2 =
𝐻2p

𝐷h2
(10)

The hydrogen production rate (𝐻2pr) is calculated based on the time 
interval (𝜏): 

𝐻2pr =
𝑉h2
𝜏

(11)

This generic model provides a representation of hydrogen produc-
tion and flow rate based on the energy input and efficiency of an 
electrolyser. The model considers the energy density and density of 
hydrogen to quantify the produced mass and volume, and it calculates 
the production rate over a specified time interval.
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2.7. Hydrogen storage model

Let 𝐻2𝑠𝑡,𝑡+1  be the storage level at time 𝑡 + 1, 𝐻2𝑝𝑟  be the rate of 
hydrogen production from electrolysers, 𝐻2𝑐𝑟  be the rate of hydrogen 
consumption by fuel cells, 𝜏 be the time step in seconds, and 𝐻2𝑠𝑡,𝑚𝑎𝑥𝐶
be the maximum storage capacity.

The storage level (𝐻2𝑠𝑡,𝑡+1 ) is updated based on the difference be-
tween the production rate and consumption rate over the time step: 

𝐻2𝑠𝑡,𝑡+1 = 𝐻2𝑠𝑡,𝑡 + (𝐻2𝑝𝑟 −𝐻2𝑐𝑟 ) × 𝜏 (12)

The storage level is then constrained not to exceed the maximum 
capacity or go below zero:
𝐻2𝑠𝑡,𝑚𝑖𝑛 < 𝐻2𝑠𝑡 < 𝐻2𝑠𝑡,𝑚𝑎𝑥

The maximum storage capacity (𝐻2𝑠𝑡,𝑚𝑎𝑥𝐶 ) is assumed to be 1000 
units of hydrogen.

This model provides a representation of hydrogen storage manage-
ment based on production and consumption rates. The model ensures 
that the storage level is updated over time, considering the production 
and consumption dynamics, and it constrains the storage level within 
specified limits. To operate these components, in the next section, the 
dynamic voltage controllers are proposed.

3. Proposed DCVC framework

This section proposes DCVC framework aimed at ensuring the 
smooth operation of the hydrogen DC microgrid. The framework con-
sists of two aspects: voltage control to efficiently operate the hydrogen 
fuel cells and electrolyser; and algorithm development for autonomous 
operation of the microgrid without human interruption. The combina-
tion of the voltage control and algorithm development is presented as 
follows.

3.1. Voltage control

The focus is on dynamic control of hydrogen flow rates, and for 
this purpose, droop controls are introduced. These controls play a 
crucial role in regulating the electrolyser, fuel cell, and battery energy 
flow, ultimately enhancing the microgrid’s resilience and reliability, 
especially during adverse weather conditions.

It is important to note that managing small-scale power generation 
and demand poses challenges due to the inherent high uncertainty in 
both generation and demand, particularly when compared to larger 
power networks. To address this complexity, a precisely designed con-
trol system is essential to prevent oscillations in the DC link voltage 
arising from unbalanced supply–demand issues [26]. The control sys-
tem should effectively navigate the uncertainties to maintain stability 
and reliability in the microgrid’s power distribution, ensuring a seam-
less and secure operation despite the dynamic and unpredictable nature 
of small-scale power generation and demand.

3.1.1. Dynamic hydrogen flow rate model
Let K𝑣 be the droop coefficient, 𝑉ref be the reference voltage, and 

𝑉dc(𝑡) be the measured DC link voltage.
The hydrogen flow rate (𝐻fr) is calculated as follows: 

𝐻fr = K𝑣 ⋅ (𝑉ref − 𝑉dc(𝑡)) (13)

This equation represents the linear relationship between the coeffi-
cient (K𝑣), the difference between the reference voltage (𝑉ref), and the 
measured DC link voltage (𝑉dc(𝑡)), providing a measure of the hydrogen 
flow rate that depends on power demands. This general Eq. (13) is 
used for both the operation of electrolyser and fuel cells, although the 
coefficient value will be different for both cases. For the electrolyser, 
K𝑣 will be represented by K𝑒𝑧 and K𝑓𝑐 for the fuel cells. 

𝐾𝑣(𝑡) = 𝐾𝑣0 + 𝛼 ⋅ |𝛥𝑉 (𝑡)| (14)

where:
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Fig. 2. Battery operational principles.

• 𝐾𝑣0 is the nominal base droop gain,
• 𝛼 is the adaptive gain factor (tuning parameter),
• |𝛥𝑉 (𝑡)| = 𝑉ref − 𝑉dc(𝑡) is the magnitude of the voltage deviation, .

The parameter 𝛼 is chosen based on the maximum expected voltage 
deviation 𝛥𝑉max and the desired maximum gain 𝐾𝑣,max using: 

𝛼 =
𝐾𝑣,max −𝐾𝑣0

𝛥𝑉max
(15)

This ensures that the gain transitions smoothly from nominal to 
maximum over the operating voltage range.

The calculated hydrogen flow rate is then limited to the range [0, 
0.0055] to ensure the physical feasibility of the power supply 𝐻fr, min <
𝐻fr < 𝐻fr, max. This constraint ensures that the hydrogen flow rate (𝐻fr) 
remains within the specified bounds.

3.1.2. Operating principle of fuel cells and electrolysers
For fuel cells, if DC link voltage is lower than the nominal voltage 

(380V), such as 370 V, then the highest capacity of hydrogen will 
flow to supply maximum power from the fuel cells for maintaining 
reliability and stability of the microgrid. In contrast, the lowest amount 
of hydrogen will flow if the DC link voltage is high, such as 375 V. This 
dynamic hydrogen flow is mapped through by designing droop control 
characteristics, whose slope is determined by physical constraints.

The rate of hydrogen production by an electrolyser depends on the 
power consumption. If the electrolyser consumes the highest capac-
ity power, then the highest amount of hydrogen will be produced. 
To maintain DC link voltage within limits, the electrolyser has been 
operated by dynamic power consumption strategies. For low DC link 
voltage but higher in magnitudes, 𝑉𝑑𝑐 (𝑡), such as 385 V, low hydrogen is 
produced by consuming low power, whereas high hydrogen is produced 
by consuming the highest power consumption of electrolyser during 
the highest 𝑉𝑑𝑐 (𝑡), such as 390 V. By consuming more power during 
high renewable power generation, the electrolyser maintains a stable 
microgrid operation by regulating 𝑉𝑑𝑐 (𝑡).

3.1.3. Battery control strategy
The operation of the microgrid heavily relies on the battery bank, 

and its role is described by the battery droop coefficient (K𝑏), a refer-
ence voltage, and measured DC link voltage. The power supplied by the 
battery (𝑃b(𝑡)) is determined by the droop control equation: 
𝑃b(𝑡) = K𝑏 ⋅ (𝑉ref − 𝑉dc(𝑡)) (16)

This equation governs the power adjustments required to regulate 
the DC link voltage (𝑉 (𝑡)) towards the nominal voltage of 380 V. If 
𝑑𝑐
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𝑉dc(𝑡) surpasses 𝑉ref, 𝑃b(𝑡) becomes a negative value, signifying that the 
battery is charging to stabilise 𝑉𝑑𝑐 (𝑡). Conversely, the battery discharges 
when 𝑉dc(𝑡) is below 𝑉ref, actively maintaining the nominal voltage in 
the DC link. The continuous charging and discharging cycles by the 
battery bank aim to sustain the nominal voltage, as depicted in Fig.  2. 
The battery bank is deemed the heart of the microgrid system, ensuring 
reliable, secure, and resilient operation.

The significance of the battery bank becomes evident in islanded ar-
eas where renewable energy sources generate power based on weather 
conditions. While fuel cells act as an independent source, their con-
tinuous operation is contingent on the availability of hydrogen. The 
microgrid’s reliance on renewable energy and the intermittent nature 
of these sources underscores the critical role of the battery bank in 
maintaining stability.

Although the system integrates long-term storage through electrol-
yser and fuel cell systems, the battery bank plays a critical role in 
short-duration voltage regulation and fast transient suppression. Unlike 
hydrogen devices, batteries respond almost instantaneously to power 
imbalances, thereby stabilising the DC link during fast fluctuations and 
reducing stress on hydrogen components.

3.2. Autonomous algorithm

The overall operational principle of the microgrid is centred around 
maximising power generation from renewable sources like solar PV, 
wind, and wave generators through maximum power point tracking. 
However, to ensure microgrid stability, especially during periods of 
over power generation when the battery is fully charged and the 
electrolyser operates at full capacity, power generation curtailment is 
implemented.

Key parameters guiding the flexible operation of the microgrid 
involve the combined working principle of hydrogen fuel cells, elec-
trolyser, and battery operations. The operation is illustrated in Fig.  3, 
which provides a comprehensive view based on DC link voltage. The 
battery is continually active, either charging or discharging to maintain 
the DC link voltage close to the nominal voltage, 380 V. When 𝑉𝑑𝑐 (𝑡)
exceeds the nominal voltage, the electrolyser engages. In contrast, if it 
falls below the nominal voltage, fuel cells come into operation, support-
ing the DC link voltage within defined limits. This dynamic operation 
ensures stable microgrid performance in remote areas, simultaneously 
supplying oxygen for maintaining a healthy aquaculture fish cultivation 
and powering industries with zero-emission greenhouse gas emissions.

The algorithm of the microgrid is detailed in flowchart Fig.  4. 
To initiate the microgrid, the battery banks are first activated. If the 
𝐵𝐿(𝑡) is outside the specified limit, the battery remains in standby 
mode, and the fuel cell charges the battery until the 𝐵𝐿(𝑡) is within 
the limit. If the battery energy level exceeds the minimum threshold, 
the battery operates using the proposed voltage control outlined in 
Eq. (16). Operating the microgrid during high 𝐵𝐿(𝑡) is permissible.

It is crucial to wait until the DC link voltage approaches the nominal 
voltage before activating renewable energy sources like solar PV, wind, 
and wave generators. Under these conditions, the microgrid is fully 
capable of maintaining a balance between power supply and demand. 
The 𝑉𝑑𝑐 (𝑡) is continuously monitored, and if it experiences overvoltage, 
the electrolyser is activated; otherwise, the fuel cell is turned on during 
under voltage. The electrolyser operates according to the dynamic 
operation described in Eq. (13). It remains active as long as the 𝑉𝑑𝑐 (𝑡) is 
within the specified range; otherwise, it is deactivated. Conversely, the 
fuel cells start operating as long as the 𝑉𝑑𝑐 (𝑡) is within the acceptable 
range.

Once the microgrid is in operational mode, the fuel cells monitor 
the 𝐵𝐿(𝑡) status. If the 𝐵𝐿(𝑡) falls below the minimum threshold, the 
fuel cells supply power to the loads and charge the battery. If the 
battery 𝐵𝐿(𝑡) reaches its maximum capacity, the power from renewable 
energy sources is curtailed to ensure microgrid stability. This systematic 
approach ensures the reliable and secure operation of the microgrid.
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Fig. 3. DC link voltage-based operational principles.
3.3. Stability analysis

The droop control-based voltage regulation assumes small-signal 
perturbations around the nominal operating voltage. The following 
assumptions are explicitly stated: (1) Small deviations around the nom-
inal operating voltage 𝑉𝑟𝑒𝑓 ; (2) Linear approximation of system dy-
namics near equilibrium points; (3) Component behaviours modelled 
via linearised second-order dynamics derived from empirical data; and 
(4) Linear response within operational bandwidth for electrolysers, fuel 
cells, and battery storage.

Droop control strategy defines the power response to voltage devi-
ations as: 
𝑃 (𝑡) = 𝐾𝑣

(

𝑉𝑟𝑒𝑓 − 𝑉𝑑𝑐 (𝑡)
)

(17)

Linearising around equilibrium points (𝑃0, 𝑉0 = 𝑉𝑟𝑒𝑓 ): 

𝑃 (𝑡) = 𝑃0 + 𝛥𝑃 (𝑡), 𝑉𝑑𝑐 (𝑡) = 𝑉0 + 𝛥𝑉 (𝑡) (18)

Thus, for small deviations: 
𝛥𝑃 (𝑡) = −𝐾𝑣𝛥𝑉 (𝑡) (19)

The DC-link voltage dynamics are governed by: 

𝐶𝑑𝑐
𝑑𝑉𝐷𝐶 (𝑡)

𝑑𝑡
= 𝑃𝑔𝑒𝑛(𝑡) − 𝑃𝑙𝑜𝑎𝑑 (𝑡) (20)

Expressed in small-signal terms: 

𝐶𝑑𝑐
𝑑(𝛥𝑉 (𝑡))

𝑑𝑡
= 𝛥𝑃𝑔𝑒𝑛(𝑡) − 𝛥𝑃𝑙𝑜𝑎𝑑 (𝑡) (21)

Considering droop control responses for fuel cell (generation), elec-
trolyser (load), and battery (bi-directional):
𝛥𝑃𝐹𝐶 (𝑡) = −𝐾𝑓𝑐𝛥𝑉 (𝑡), (22)

𝛥𝑃𝐸𝑍 (𝑡) = −𝐾𝑒𝑧𝛥𝑉 (𝑡), (23)

𝛥𝑃𝐵𝑎𝑡(𝑡) = −𝐾𝑏𝛥𝑉 (𝑡) (24)

Hence, the combined small-signal power deviation is: 
𝛥𝑃𝑡𝑜𝑡𝑎𝑙(𝑡) = −(𝐾𝑓𝑐 +𝐾𝑏 +𝐾𝑒𝑧)𝛥𝑉 (𝑡) (25)

This gives the simplified voltage dynamic equation: 

𝐶
𝑑(𝛥𝑉 (𝑡))

= −(𝐾 +𝐾 +𝐾 )𝛥𝑉 (𝑡) (26)
𝑑𝑐 𝑑𝑡 𝑓𝑐 𝑏 𝑒𝑧
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Rearranging: 
𝑑(𝛥𝑉 (𝑡))

𝑑𝑡
+

(𝐾𝑓𝑐 +𝐾𝑏 +𝐾𝑒𝑧)
𝐶𝑑𝑐

𝛥𝑉 (𝑡) = 0 (27)

This first-order differential equation takes the form:
𝑑(𝛥𝑉 (𝑡))

𝑑𝑡
+ 𝑎𝛥𝑉 (𝑡) = 0, (28)

where 𝑎 =
(𝐾𝑓𝑐 +𝐾𝑏 +𝐾𝑒𝑧)

𝐶𝑑𝑐
> 0 (29)

The general solution is: 
𝛥𝑉 (𝑡) = 𝛥𝑉 (0)𝑒−𝑎𝑡 (30)

Since 𝑎 > 0, voltage deviations decay exponentially, indicating 
asymptotic stability.

4. Experimental validation

The effectiveness of the proposed DCVC framework in managing an 
islanded DC microgrid is demonstrated in this section. The dynamic 
controllers have been applied to a fuel cell emulator, an electrolyser 
emulator, and battery banks, enabling flexible microgrid operation. The 
battery control system plays a central role in ensuring reliable and 
secure microgrid operation. The solar, wind and wave generators are 
emulated using 1 kW Kepco four-quadrant (bipolar) power supply. The 
fuel cells are also emulated using the 1 kW power supply while the 
electrolyser is emulated using a 1.8 kW ITECH programmable AC/DC 
electronic load. All the renewable energy generation data presented 
here are general indicative patterns and can be easily adapted for 
specific datasets. The entire code is implemented in the JavaScript 
environment using the Node-RED platform. Communication of electrol-
yser and load simulator data occurs through Ethernet and CAN lines 
using the Node-RED platform. The coding is executed on a small-scale 
computer — an 8 GB Raspberry Pi 5. For visualisation of outcomes, 
the open-source and powerful visualisation software Grafana is em-
ployed. The industry standard experiment for the hydrogen microgrid 
is demonstrated in Fig.  5. Both the software and hardware components 
used in this experiment are cost-effective compared to commercial 
alternatives. The utilisation of an open-source platform avoids the 
expensive subscription costs associated with commercial software, such 
as LabView.
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Fig. 4. The flowchart of the autonomous algorithm.
In the following sections, various case studies to illustrate the effec-
tiveness of the proposed control framework are conducted. Each case 
study aims to showcase specific aspects of the microgrid’s performance 
under various scenarios.

4.1. Case 1: Operation of the electrolyser

This case study explores the operation of the electrolyser, em-
9 
phasising its role in stabilising the DC link voltage within specified 
limits for the reliable operation of the microgrid. The experiment 
was conducted under intermittent renewable power input, resulting in 
natural fluctuations in the DC link voltage. These fluctuations caused 
the electrolyser to automatically activate in response to overvoltage 
conditions (> 385 V) and deactivate when voltage dropped below 378 
V. Data was collected at a sampling frequency of 0.5 Hz using the 
Raspberry Pi controller. The DC voltage and electrolyser power data 
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Fig. 5. The industry standard experimental set-up at Griffith University.
were analysed using time-domain techniques to extract transient char-
acteristics, including rise time, settling time, overshoot, and oscillation 
frequency. Fig.  6 presents the electrolyser’s operation, highlighting the 
dynamic production of hydrogen. The electrolyser adjusts its hydrogen 
production in response to the DC link voltage: increasing production 
when the voltage is high (approaching 390 V) and reducing production 
when the voltage is lower (near 380 V).

The electrolyser operates automatically based on the DC link voltage 
levels. It starts functioning when the voltage exceeds 385 V, as observed 
at 18:05:20, and shuts down when the voltage drops below 378 V, as 
seen at the end of 18:08:40. This automatic response helps maintain 
voltage stability within the microgrid.

The data analysis of the electrolyser’s first transient response re-
veals several key characteristics indicative of its power consumption 
behaviour and dynamic performance. The peak value of the power 
consumption reaches 1104 watts, significantly higher than the steady 
state value of 769 watts, suggesting a substantial initial power surge. 
The system’s rise time of 1.113 s indicates a relatively swift response 
to the input signal, achieving near-peak power consumption quickly. 
However, the settling time of 53.6347 s implies a prolonged period 
before the power consumption stabilises around the steady state value, 
reflecting the electrolyser’s need to overcome initial fluctuations. The 
overshoot of 43.5631% is notable, indicating that the power consump-
tion exceeds the steady state by a considerable margin during the 
initial transient phase, which could be attributed to the inertia and 
internal resistance of the electrolyser. The frequency of oscillation at 
0.125 Hz denotes a slow oscillatory behaviour, which suggests that the 
system experiences periodic fluctuations in power consumption before 
reaching equilibrium. These transient characteristics highlight the elec-
trolyser’s dynamic response under operational conditions, emphasising 
the importance of optimising control strategies to mitigate overshoot 
and reduce settling time, thereby enhancing overall system efficiency 
and stability.

Given the transient behaviour, the electrolyser is modelled as a 
second-order dynamic system whose response to voltage variations is 
represented through an experimentally derived transfer function: 

𝐺𝐸𝑍 (𝑠) =
𝐾𝐸𝑍

𝜏2𝐸𝑍𝑠
2 + 2𝜁𝐸𝑍𝜏𝐸𝑍𝑠 + 1

(31)

where the parameters are explicitly identified through experiments:

• Steady-state gain: 𝐾𝐸𝑍 = 769W/V
• Time constant: 𝜏𝐸𝑍 = 3.1 s
• Damping ratio: 𝜁𝐸𝑍 = 0.228

These parameters were empirically derived from the electrolyser’s 
transient response to step-changes in the DC-link voltage. The physical 
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interpretation of this second-order behaviour can include two domi-
nant dynamics: electrochemical reaction kinetics at the electrodes and 
thermal/mass-transport phenomena within the electrolyser stack.

The electrolyser’s dynamic parameters were identified using a least-
squares fitting approach applied to measured transient experimental 
data, fitting to the canonical second-order step-response equation: 

𝑦(𝑡) = 𝑦final

[

1 − 𝑒−𝜁𝜔𝑛𝑡
√

1 − 𝜁2
sin

(

𝜔𝑛

√

1 − 𝜁2 𝑡 + 𝜙
)

]

(32)

where the natural frequency is 𝜔𝑛 = 1
𝜏𝐸𝑍

 and the phase shift 𝜙 is 
obtained from experimental data. A comparison between the dynamic 
model response and the experimental response is presented in Fig.  7 to 
validate the model.

At 18:06:50 in Fig.  6(a), the transient behaviour of the electrolyser 
is not fully reflected except for a small spike. This is because the DC 
link voltage reaches its maximum value of 390 V, where the transient 
effect of the electrolyser operation is minimal. At this voltage level, 
the electrolyser operates smoothly with reduced transient fluctuations, 
ensuring stable DC link voltage.

The electrolyser’s transient behaviour also influences the flexible 
battery power supply. The battery system adjusts accordingly to sup-
port the microgrid, ensuring a stable and reliable power supply, shown 
in Fig.  6(c). The power generation pattern, including wave generator 
data, is indicative of typical operation shown in Figs.  6(b), 6(d), and 
6(f). In practice, wave power generation is more stable and predictable 
compared to wind and solar power, which means variations in power 
generation patterns do not significantly impact the overall microgrid 
operation.

In summary, the electrolyser effectively stabilises the DC link volt-
age by dynamically adjusting hydrogen production in response to volt-
age changes. Its operation ensures the microgrid remains within safe 
and reliable voltage limits. The detailed transient response analysis 
demonstrates the electrolyser’s quick reaction to voltage changes and 
minimal transient effects at high voltage levels. Additionally, the inte-
gration of the electrolyser with the battery system and other renewable 
sources highlights the microgrid’s capability to maintain stability and 
efficiency in varying operational conditions.

4.2. Case 2: Operation of fuel cells

This section focuses on the autonomous operation of fuel cells, 
aiming to maintain stable DC link voltage within defined limits to 
ensure the reliable and secure operation of the microgrid. Under normal 
conditions, the fuel cells remain inactive. However, they automatically 
activate when power generation significantly falls below demand, en-
suring economical and reliable system operation. To analyse the fuel 
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Fig. 6. Electrolyser’s operation based on DC link voltage: (a) electrolyser, (b) solar generator, (c) battery banks, (d) wind generator, (e) DC link and (e) wave 
generator.

Fig. 7. Dynamic modelling response of electrolyser vs practical data response.
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Fig. 8. Fuel cell’s operation based on DC link voltage: (a) fuel cells, (b) loads, (c) battery banks, (d) wind generator, (e) DC link and (f) wave generator.
cell’s transient response, a baseline load of 3.5/2.5 kW was applied 
with no solar generation, ensuring the fuel cell’s autonomous role could 
be clearly observed. The system’s data were recorded every 2 s and 
stored in an InfluxDB database running on the Raspberry Pi. The data 
was exported in Excel format and analysed using MATLAB to calculate 
key transient response parameters, including rise time, overshoot, and 
settling time.

Fuel cells activate when they detect a lower DC link voltage, such as 
375 V, indicating insufficient power generation compared to demand. 
Fig.  8(a) illustrates the operation of the fuel cells, showing transient 
power delivery in response to load changes. The fuel cells dynamically 
adjust their power output to meet the changing power demands. During 
poor power generation, the fuel cells run at full capacity, resulting in 
a low DC link voltage, such as 370 V, as depicted in Fig.  8(e).

The data analysis of the fuel cell’s transient response, as illustrated 
in Fig.  8, reveals several key characteristics indicative of its power 
generation behaviour and dynamic performance. The peak value of the 
power generation reaches 660.00 watts, which is significantly higher 
than the steady state value of 411.50 watts, indicating a substantial 
initial surge in power output. The system’s rise time of 2.00 s suggests a 
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relatively quick response to the input signal, reaching near-peak power 
generation swiftly. However, the settling time of 75.00 s indicates a 
prolonged period before the power output stabilises around the steady 
state value, reflecting the fuel cell’s challenge in overcoming initial 
fluctuations. The overshoot of 60.39% is particularly notable, showing 
that the power generation exceeds the steady state by a considerable 
margin during the initial transient phase, which could be attributed 
to the inertia and internal resistance of the fuel cell. The frequency of 
oscillation at 0.091 Hz denotes a slow oscillatory behaviour, suggesting 
that the system experiences periodic fluctuations in power generation 
before reaching equilibrium. These transient characteristics underscore 
the dynamic response of the fuel cell under varying operational condi-
tions, highlighting the need for optimising control strategies to mitigate 
overshoot and reduce settling time, thereby improving overall system 
efficiency and stability.

The transfer function representing the dynamic response of the 
fuel cell system, including the droop controller can be represented as 
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Fig. 9. Dynamic modelling response of fuel cells vs practical data response.
follows: 

𝐺𝐹𝐶 (𝑠) =
𝐾𝐹𝐶 𝜔2

𝑛,𝐹𝐶

𝑠2 + 2𝜁𝐹𝐶 𝜔𝑛,𝐹𝐶𝑠 + 𝜔2
𝑛,𝐹𝐶

(33)

where the experimentally identified parameters are:

• Steady-state gain: 𝐾𝐹𝐶 = 411W/V
• Natural frequency: 𝜔𝑛,𝐹𝐶 = 0.3365 rad/s
• Damping ratio: 𝜁𝐹𝐶 = 0.1585

This transfer function model characterises the transient behaviour 
of the fuel cell system when it responds to load changes, including the 
observed overshoot, rise time, and oscillatory behaviour. For validation 
purposes, Fig.  9 shows the step response of the dynamic model as 
compared to the response of the fuel cell emulator (E.).

The fuel cell dynamics can exhibit second-order behaviour due to 
inherent electrochemical processes, catalyst reaction kinetics, thermal 
management, and water transport phenomena inside the fuel cell stack. 
Similar to the electrolyser, the parameters were explicitly determined 
by fitting experimental transient step-response data to the standard 
second-order dynamic response formulation.

This experiment was conducted without running the solar power 
generator to appropriately evaluate the operation of the fuel cells. The 
absence of solar power generation allows for a clearer observation of 
the fuel cells’ autonomous response to varying power demands and 
their impact on maintaining a stable DC link voltage.

In summary, the autonomous operation of fuel cells plays a crucial 
role in stabilising the DC link voltage within a microgrid. By dynam-
ically adjusting their power output in response to changes in power 
demand, the fuel cells ensure reliable and economical operation. The 
detailed analysis of the transient response parameters demonstrates the 
fuel cells’ effectiveness in quickly stabilising the DC link voltage, even 
in the absence of solar power generation. This capability is essential for 
maintaining the overall stability and efficiency of the microgrid.

4.3. Case 3: Autonomous operation of the hydrogen microgrid

In this case study, the focus is on the autonomous operation of the 
hydrogen microgrid, where the dynamics of hydrogen fuel cells and 
electrolysers play a pivotal role in maintaining stability and reliability. 
This experiment was conducted under a dynamic load profile ranging 
from approximately 0 kW to 6 kW, with simulated PV generation 
input held constant during the test window. The system operated 
autonomously using voltage-based triggering for both electrolyser and 
fuel cell activation. Fig.  10 provides a comprehensive illustration of this 
autonomous operation.

Initially, when renewable energy generation surpasses load de-
mands, resulting in a higher DC link voltage at time 21:20:40, the 
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system autonomously triggers the activation of the electrolyser shown 
in Fig.  10(d). The electrolyser then starts with a transient phenomenon 
to produce hydrogen, guided by the voltage controller. This proac-
tive response manages the excess renewable power and facilitates the 
storage of hydrogen for future use.

As power demand gradually increases (Fig.  10(b)) while renewable 
generation remains constant (Fig.  10(f)), the DC-link voltage drops 
below 375 V (Fig.  10(d)). In response, the fuel cell automatically 
activates to stabilise the voltage, as illustrated in Fig.  10(c). The fuel 
cell initiates power production in accordance with the voltage control 
strategy outlined in Section 4. Fig.  10(c) showcases how fuel cells dy-
namically adjust their power output to meet evolving power demands, 
ensuring a reliable and stable power supply.

It is worth noting that the electrolyser and fuel cells will not run 
simultaneously due to different voltage settings that indicate the status 
of power generation and power demand, which is captured in Figs. 
10(a) and 10(c). This separation ensures efficient management of the 
microgrid’s resources.

The intricate relationship between power generation and demand 
is visualised by monitoring the DC link voltage, which provides a 
comprehensive overview of the system’s performance. The autonomous 
operation of the hydrogen microgrid, supported by the coordinated 
interplay of the electrolyser and fuel cells, exemplifies an adaptive and 
responsive power control system.

In summary, the hydrogen microgrid effectively balances the fluctu-
ating nature of renewable energy sources with varying power demands, 
contributing to the overall resilience and sustainability of the micro-
grid. This adaptive and responsive power control system ensures that 
the microgrid can maintain stability and reliability, even as power 
demands and renewable energy generation fluctuate. The coordinated 
operation of the electrolyser and fuel cells provides a robust solution 
for managing power within the microgrid, enhancing its performance 
and sustainability.

4.4. Case 4: Comparison of electrolyser operation

In this experiment, a comparison of the electrolyser’s dynamic 
behaviour was carried out under two operating modes: manual control 
(without droop) and autonomous control (with droop). The manual 
case was implemented by adjusting the electrolyser’s power demand 
manually, while the droop-controlled case followed the automated 
strategy described in Section 3. In both scenarios, the system started 
at 0 W and underwent a step increase and decrease in power demand. 
Experimental data were logged in real-time using InfluxDB, exported in 
.xls format, and processed in MATLAB for side-by-side analysis. From 
Fig.  11, it can be observed that during the initial 0 to 15 samples, 
both systems — regardless of whether the droop controller is enabled 
— begin with a power demand of approximately 0 watts. During 



M.A. Hossain International Journal of Hydrogen Energy 189 (2025) 152033 
Fig. 10. Autonomous operation: (a) electrolysers, (b) loads, (c) fuel cells, (d) DC link, (e) battery banks, and (f) solar generation.
this period, their behaviours are synchronised, with both maintaining 
identical power levels. In the mid-phase of the graph, covering from 15 
to 55 samples, a clear difference emerges between the two systems. The 
system without the droop controller exhibits a step response, where the 
power demand abruptly increases to around 750 watts. In contrast, the 
system with the droop controller first shows an overshoot, with power 
demand spiking above 1000 watts before settling around 750 watts. 
This system also displays noticeable fluctuations during this period.

Oscillations in the droop-controlled case arise from real-time
voltage-feedback-driven corrections, which may overreact to transient 
events. In contrast, manual control operates in an open-loop fash-
ion, applying fixed setpoints without reacting to voltage deviations, 
resulting in more stable transitions.

As the power demand of the electrolyser is influenced by the net-
work power demand from 40 to 60 samples, the system without the 
droop controller manually decreases its power demand to about 350 
watts and maintains this level consistently. The droop-controlled sys-
tem also reduces its power demand to 350 watts, but with significant 
oscillations before it begins to stabilise around the same power level, 
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although with persistent minor fluctuations. In the final phase of the 
electrolyser operation, from 90 to 120 samples, both systems show a 
synchronised behaviour similar to the initial phase. The power demand 
gradually decreases to around 0 watts for both systems.

In summary, the comparison between manual and droop-
controlled electrolyser operation highlights key trade-offs in transient 
performance, responsiveness, and operational efficiency. The droop-
controlled system demonstrated a dynamic response during power tran-
sitions, including initial overshoot and oscillations, while the manually 
controlled system exhibited a smoother response, requiring continuous 
human intervention to track load changes.

In this experiment, although manual operation reduces voltage 
fluctuations, it is challenging for real-world deployment due to its de-
pendence on constant operator input. Additionally, staffing a full-time 
operator in a remote microgrid can incur a recurring cost of approxi-
mately AUD $80,000 per year, which is not justified when autonomous 
control can be achieved using a low-cost, open-source embedded con-
troller. Furthermore, delayed or imprecise manual responses can lead 
to hydrogen overproduction, underutilisation of renewable inputs, or 
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Fig. 11. Comparison of electrolyser operation with and without droop controller. Experimental data are collected using xls format from Grafana wavepage, which 
has been plotted on Matlab for side-by-side comparison.
excessive component cycling — all of which increase maintenance costs 
and reduce system lifespan.

To quantify the economic implications at scale, consider a 100 
MW electrolyser operating without real-time coordination. A modest 
2% daily inefficiency from delayed adjustments or curtailments results 
in 2 MWh/day of hydrogen energy loss. Assuming 50 kWh/kg pro-
duction efficiency and a hydrogen price of AUD $6/kg, this equates 
to 40 kg/day, or roughly AUD $240/day, amounting to nearly AUD 
$87,600 per year in unrealised value — a significant loss in long-term 
islanded or grid-constrained projects.

By contrast, the droop-controlled approach provides fully
autonomous operation, faster transient tracking, and adaptability to 
renewable fluctuations. While it introduces minor oscillations, these 
can be mitigated through filter integration — aspects that will be 
explored in future research. The benefits of automation, cost reduction, 
and dynamic performance make droop-based control especially suited 
for systems with high renewable penetration, limited communication 
infrastructure, or islanded microgrids. For applications prioritising 
minimal fluctuations — such as preserving electrolyser durability — 
a hybrid strategy combining predictive smoothing with adaptive droop 
control may provide the most effective balance between performance 
and protection.

4.5. Case 5: Comparison of battery controller application

In this case, the battery controller’s impact on voltage regulation 
was assessed by toggling its activation status under variable loading 
conditions. The experiment consisted of no-load and load intervals 
introduced at approximately 10:40 and 11:05, with the controller being 
alternately enabled and disabled. Voltage response and battery power 
were recorded using a 0.5 Hz sampling rate. The aim was to quantify 
the controller’s influence on voltage dip suppression and steady-state 
regulation across different system states.

The DC link voltage in the microgrid, comparing its performance 
with and without the application of a controller, is demonstrated in Fig. 
12(a). It represents the voltage fluctuations over time, giving insight 
into the system’s behaviour under both conditions. The comparison 
between the two phases — before and after the controller is activated — 
highlights the controller’s vital role in enhancing system performance. 
Before its activation, the voltage remains at a lower value of around 
374V. After the controller is engaged, the system reaches a higher 
voltage, demonstrating the controller’s effectiveness in regulating and 
maintaining the desired voltage level in the microgrid. This illustrates 
the importance of active control mechanisms in ensuring the stable and 
reliable operation of such systems.

To further extend the comparison, Fig.  12(b) illustrates the be-
haviour of the DC link voltage in the microgrid under different loading 
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conditions, highlighting the performance with and without a controller. 
Two distinct regions are marked as ‘‘No load’’ at around 10:40 and 
11:05, where the voltage stabilises near 380 V without any load. In the 
central portion, labelled as the ‘‘Load’’ condition, the voltage initially 
drops to around 375 V when a load is applied.

When the system operates without a controller, the initial voltage 
under the no-load condition is approximately 372.5 V. If the controller 
is activated, then the voltage reaches 380 V. In this condition, the load 
is introduced, and there is a noticeable dip in voltage, marking around 
376 V. In contrast, when the controller is deactivated for a short while, 
the voltage dip below 370 V. The bus voltage stabilises at around 375 
V when the controller is reactivated under load, demonstrating the 
controller’s ability to regulate the bus voltage more effectively, even 
under varying load conditions. The turning on and off of the load is 
demonstrated in Fig.  12(c) and the corresponding battery power drawn 
by the network is shown in Fig.  12(d).

4.6. Discussion

The observed overshoots of approximately 43% in the electrolyser 
emulator and 60% in the fuel cell emulator during transient events are 
primarily attributed to abrupt step changes in the load demand. These 
transitions challenge the response time of the power electronic convert-
ers and the intrinsic dynamic delays of hydrogen-based devices. While 
the system successfully stabilised within acceptable settling times, such 
high overshoots — if occurring frequently — can exert considerable 
stress on critical components such as DC/DC converters, valves, and 
control circuitry. This repeated stress may accelerate wear, thermal 
degradation, and reduce the operational lifespan of the system, particu-
larly under harsh or isolated conditions where component replacement 
is difficult. To address this, integrating predictive control elements such 
as model-based damping filters or feedforward compensators could 
help suppress the initial transient magnitude. The overshoots can also 
be minimised by implementing low-pass filters or derivative-based 
filtering techniques in the control loop, which smooth sudden refer-
ence changes and mitigate the impact of sharp load transitions. These 
advanced control strategies will be systematically explored and tested 
in future work to further enhance the system’s stability, responsiveness, 
and reliability under diverse dynamic operating conditions.

While the current control strategy primarily relies on voltage devi-
ation as a key feedback signal for coordinating multiple sources, this 
approach can be further enhanced by integrating additional system 
state variables into the decision-making process. In future develop-
ments, incorporating multi-variable indicators such as battery state of 
charge, hydrogen storage tank pressure, fuel cell/electrolyser tempera-
ture, and hydrogen purity levels could enable a more context-aware and 
adaptive control framework. These parameters would allow for more 
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Fig. 12. Comparative study with and without the battery controller (a) DC bus voltage, (b) DC bus voltage extended, (c) Load demands and (d) Battery powers.
intelligent prioritisation of energy sources based on resource availabil-
ity, component health, and operational constraints, thereby improving 
overall system resilience, efficiency, and lifetime performance.

The proposed control improves the system’s operational efficiency 
by minimising unnecessary hydrogen cycling and better aligning power 
supply with demand. Compared to uncoordinated operation, this re-
duces energy losses and enhances the lifespan of electrolysers and fuel 
cells, contributing to lower operational costs. While detailed economic 
analysis is beyond the current scope, future work will focus on mod-
elling cost savings and assessing the overall economic viability of the 
system.

5. Conclusions

This study proposed and experimentally validated a novel DC-link 
Voltage Control (DCVC) framework for islanded hydrogen DC micro-
grids that ensures stable, autonomous, and efficient operation under 
varying renewable generation and load conditions. The framework 
is based on adaptive droop control principles and includes dynamic 
voltage regulation mechanisms for fuel cells, electrolysers, and battery 
systems. In addition to experimental validation, a small-signal model 
of the proposed DC-link control framework was developed for fuel 
cell, electrolyser, and battery systems. The resulting voltage dynamic 
equation confirms that the system exhibits exponentially decaying volt-
age deviations, ensuring stable operation even under fluctuating power 
conditions.

Comprehensive hardware-in-the-loop testing on an
industry-standard hydrogen DC microgrid platform demonstrated the 
efficacy of the proposed approach across five operational case studies. 
Key findings include:
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• Electrolyser operation: The voltage-responsive hydrogen produc-
tion control maintained DC-link voltage stability with a 43.56% 
overshoot and 53.63 s settling time, highlighting the need for 
tailored transient mitigation strategies.

• Fuel cell performance: The controller dynamically regulated hy-
drogen injection in response to voltage under-shoots, with a rapid 
2 s rise time and 75 s settling time, enabling reliable support 
during power shortages.

• Battery control: Battery droop control minimised voltage oscil-
lations during load fluctuations, stabilising the DC bus around 
380V and significantly enhancing microgrid reliability under dy-
namic conditions.

• Coordinated operation: The autonomous algorithm effectively 
balanced the interactions among all distributed resources, en-
abling intelligent source prioritisation and hydrogen-battery syn-
ergy under both high and low generation scenarios.

Compared to fixed-priority or rule-based systems, the adaptive 
droop approach demonstrated superior flexibility, scalability, and con-
trol granularity — especially under experimental disturbances and 
varying load/generation profiles. In practice, it reduces manual tuning 
and adapts autonomously to system changes.

Moreover, by leveraging cost-effective hardware (Raspberry Pi, 
Node-RED, and Grafana) and experimentally derived transfer functions, 
this work bridges the gap between simulation-heavy studies and real-
world deployment. The resulting control architecture is fully replicable, 
low-cost, and suitable for decentralised energy systems in remote, 
offshore, or aquaculture-based applications, where commercial SCADA 
systems or centralised dispatch are expensive.
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While Model Predictive Control (MPC) remains a powerful tech-
nique for constrained optimisation and multi-objective control, its 
structure, complexity, and centralisation requirements differ signifi-
cantly from the real-time, decentralised droop-based framework pre-
sented in this study. As such, a direct performance comparison with 
MPC is beyond the scope of this work and would not constitute a fair 
or equivalent evaluation.

Future work will focus on extending the controller to a nonlin-
ear or multi-input adaptive form (e.g., voltage + 𝐵𝐿(𝑡) + hydrogen 
level), improving real-time gain scheduling algorithms, and enabling 
inter-microgrid communication and coordination in larger networks.
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