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Abstract

In simple regression analyses, the inference on the intercept depends on the knowl-
edge of the slope. This paper studies the problem of testing the intercept of a
simple regression model when slope is under suspicion. Depending on the situa-
tion the slope may be unknown or unspecified, known or specified, and uncertain
if the suspected value is unsure. The three different scenarios on the slope lead to
three different tests of the intercept. Here we define the unrestricted test (UT),
restricted test (RT) and pre-test test (PTT) for the intercept parameter depend-
ing on the level of knowledge on the slope. The test statistics, their sampling
distributions, and power functions of the tests are derived and compared when
the error variance is assumed to be known.
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1 Introduction

The simple regression mode describes the linear relationship between dependent variable

(y) and independent variable (x). For an n pairs of observations, (xi, yi), for i = 1, 2, · · · , n
the model is written as

yi = β0 + β1xi + ei, (1.1)

where e
′

is are assumed to be normally distributed with mean 0 and variance σ2, x
′

is are

known real values of the independent variable, and β0 and β1 are the unknown intercept

and slope parameters respectively. We consider the problem of testing H0 : β0 = β00 (a

fixed value) when there is uncertain information available on the value of β1.

Inferences about population parameters could be improved using non-sample prior infor-

mation (NSPI) from trusted sources (cf Bancroft, 1944). Such information, which is usually

provided by previous studies or expert knowledge or experience of the researchers, and is

not related to the sample data. An appropriate statistical test on the value (expressed in
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the form) null hypothesis will be useful to eliminate the uncertainty on this suspected in-

formation. Then the outcome of the preliminary testing on the uncertain NSPI is used in

the hypothesis testing to improve the performance of the statistical test (Khan and Saleh,

2001; Saleh, 2006; Yunus and Khan, 2010).

The suspected value of the slope may be (i) unknown or unspecified if NSPI is not

available, (ii) known or specified if the exact value is available from NSPI, and (iii) uncertain

if the suspected value is unsure. For the three different scenarios, three different of statistical

tests, namely the (i) unrestricted test (UT), (ii) restricted test (RT) and (iii) pre-test test

(PTT) are defined.

In the area of estimation with NSPI there has been a lot of work, notably Bancroft (1944,

1964), Hand and Bancroft (1968), and Judge and Bock (1978) introduced a preliminary

test estimation of parameters to estimate the parameters of a model with uncertain prior

information. Khan (2003, 2008), Khan and Saleh (1997, 2001, 2005, 2008), Khan et al

(2002), Khan and Hoque (2003), Saleh (2006) and Yunus (2010) covered various work in

the area of improved estimation using NSPI, but there is a very limited number of studies

on the testing of parameters in the presence of uncertain NSPI. Although Tamura (1965),

Saleh and Sen (1978, 1982), Yunus and Khan (2007, 2010), and Yunus (2010) used the NSPI

for testing hypothesis using nonparametric methods, the problem has not been addressed

in the parametric context.

This paper considers statistical tests with NSPI and the criteria that are used to compare

the performance of the UT, RT and PTT are the size and power of the tests. A statistical

test that has a minimum size is preferable because it will give a smaller probability of a

Type I error. Furthermore, a test that has maximum power is preferred over any other

tests because it guarantees the highest probability of rejecting any false null hypothesis. A

test that minimizes the size and maximizes the power is preferred over any other tests. In

reality, the size of a test is (kept) fixed, and then the choice of the best test is based on its

maximum power.

We define the following three different tests:

For the UT, let ϕUT be the test function and TUT be the test statistic for testing H0 : β0 =

β00 (known constant) against Ha : β0 > β00 when β1 is unspecified.

For the RT, let ϕRT be the test function and TRT be the test statistic for testing H0 : β0 =

β00 against Ha : β0 > β00 when β1 is β10 = 0 (specified).

For the PTT, let ϕPTT be the test function and TPTT be the test statistic for testing

H0 : β0 = β00 against Ha : β0 > β00 following a pre-test (PT) on the slope. For the

PT, let ϕPT be the test function for testing H∗
0 : β1 = β10 (a suspected constant) against

H∗
a : β1 > β10. If the H∗

0 is rejected in the PT, then the UT is used to test the intercept,

otherwise the RT is used to test H0. Thus, the PTT depends on the PT which is a choice

between the UT and RT.

For the above tests we define following unrestricted estimator of β1 and intercept β0:

β̃1 =
∑n

i=1(Xi−X)((Yi−Y )∑n
i=1(Xi−X)2

=
Sxy

Sxx
and β̃0 = Y − β̃1X, where X = 1

n

∑
X and Y = 1

n

∑
Y .

The restricted estimator (under H∗
0 ) of the slope and intercept are β̂1 = β10 and β̂0 =
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Y − β̂1X.

The following section provides the three tests. Section 3 derives the distribution of the

test statistics. The power functions of the tests are obtained in Section 4. An illustrative

example is given in Section 5. The comparison of the power of the tests and concluding

remarks are provided in Sections 6 and 7.

2 The Three Tests

For testing the intercept parameter under three different scenarios of the slope, the test

statistics of the UT, RT and PTT for known σ2 are given as follows. The test statistic of

the UT for testing H0 : β0 = β00 against Ha : β0 > β00 is defined by

TUT
z =

√
n(β̃0 − β00)

SE(β̃0)
=

(β̃0 − β00)
σ√
n
(1 + nx2

Sxx
)1/2

=

√
n(y − β̃1x− β00)

σ(1 + nx2

Sxx )
1/2

, (2.1)

where standard error (SE) of β̃0 is σ√
n

(
1 + nx2

Sxx

)1/2
. Under H0, TUT

z follows standard

normal distribution N(0, 1), and under Ha the distribution is N

( √
n(β0−β00)

σ(1+nx2

Sxx )1/2
, 1

)
with β0−

β00 > 0 and β00 is the value of β0.

The test statistic of the RT is given by

TRT
z =

(β̂0 − β00)

SE(β̂0)
=

β̂0 − β00

σ/
√
n

=

√
n(y − β00)

σ
∼ N(0, 1). (2.2)

Note that β̂0 = y − β̂1x = y − β10x and SE(β̂0) =

√
V ar(β̂0) =

σ√
n
. Under Ha the TRT

z

follows a normal distribution with mean β0−β00

σ/
√
n

and variance 1. If β1 is specified to be β10

then under Ha it follows a normal distribution with mean (β0−β00)+(β1−β10)x
σ/

√
n

and variance

1, where β0 − β00 > 0 and β1 − β10 > 0.

For the preliminary test (PT) H∗
0 : β1 = β10 against H∗

a : β1 > β10, the test statistic of

the PT is given by

TPT
z =

β̃1 − β10

SE(β̃1)
=

β̃1 − β10

σ/
√
Sxx

∼ N

(
β1 − β10

σ/
√
Sxx

, 1

)
, (2.3)

where SE(β̃1) = σ/
√
Sxx. Under the null hypothesis the above test statistic follows the

standard normal distribution.

Furthermore, we propose the PTT for testing H0, following the PT on β1. Let us choose

positive number αj (0 < αj < 1) and real values (zαj ), such that P
(
TUT
z > zα1 | β0 = β00

)
=

α1, P
(
TRT
z > zα2

| β0 = β00

)
= α2 and P

(
TPT
z > zα3

| β1 = β10

)
= α3. Then, the PTT

for testing H0 when β1 is uncertain, it is given by the test function

Φz =

{
1, if

[
TPT
z ≤ zα3 , T

RT
z > zα2

]
or
[
TPT
z > zα3 , T

UT
z > zα1

]
.

0, otherwise.
(2.4)
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The size of the PTT is then

αz = P
{
TPT
z ≤ zα3 , T

RT
z > zα2

}
+
{
TPT
z > zα3 , T

UT
z > zα1

}
(2.5)

3 Distribution of Test Statistics

For the derivation of the power function of the UT and RT we need the sampling distribu-

tions of the TUT and TPT , and that of the PTT the joint distribution of (TUT , TPT ) and

(TRT , TPT ) are essential. Let {Kn} be a sequence of alternative hypotheses defined as

Kn : (β0 − β00, β1 − β10) =

(
λ1√
n
,
λ2√
n

)
= n−1/2λ, (3.1)

where λ = (λ1, λ2) are fixed real numbers, β0 is true value and β00 is NSPI. Under Kn

the value of β0 − β00 is greater than zero (or β0 − β00 > 0), and under H0 the value of

β0 − β00 = 0.

Following Yunus and Khan (2011), the test statistic of the UT, under Kn, is TUT
z ∼

N

( √
n(β0−β00)

σ(1+nx2

Sxx )1/2
, 1

)
. Under alternative hypothesis we then derive Zi, i = 1, 2, 3 as follows,

Z1 = TUT
z −

√
n(β0 − β00)

σ(1 + n x2

Sxx
)1/2

= TUT
z − λ1

k1
∼ N(0, 1), (3.2)

where k1 = σ(1 + nx2

Sxx )
1/2. Similarly, from equation (2.2) and (2.3), under Kn we obtain

Z2 = TRT
z − (β0 − β00) + (β1 − β10)x

σ/
√
n

∼ N(0, 1), (3.3)

and

Z3 = TPT
z − β1 − β10

σ/
√
Sxx

∼ N(0, 1). (3.4)

Since TRT
z and TPT

z are independent, the joint distribution under Ha is(
TRT
z

TPT
z

)
∼ N2

[ (
(β0−β00)+(β1−β10)x

σ/
√
n

β1−β10

σ/
√
Sxx

)
,

(
1 0
0 1

) ]

= N2

[ (
λ1+λ2x

σ
λ2

√
Sxx

σ
√
n

)
,

(
1 0
0 1

) ]
. (3.5)

In the same manner, we have(
TUT
z

TPT
z

)
∼ N2

  √
n(β0−β00)

σ(1+ nx2

Sxx
)1/2

β1−β10

σ/
√
Sxx

 ,

(
1 −ρ
−ρ 1

) 
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= N2

  λ1

σ(1+ nx2

Sxx
)1/2

λ2

√
Sxx

σ
√
n

 ,

(
1 −ρ
−ρ 1

)  , (3.6)

where ρ is correlation coefficient between TUT
z and TPT

z .
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Figure 1: The power of the UT, RT and PTT against λ1 with β1 > 0 and λ2 = 0, 1, 1.5, 2.
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4 Power Functions and Size of Tests

The power function for the UT, RT and PTT for known variance are derived as below. The

power function of the UT is

∏
z1

(λ) =

UT∏
(λ) = P (TUT

z > zα1 | Kn)

= P

(
Z1 > zα1 −

λ1

k1

)
= 1−G

(
zα1 −

λ1

k1

)
, (4.1)

and that of the RT is∏
z2

(λ) =
RT∏

(λ) = P (TRT
z > zα2 | Kn)

= P

(
Z2 > zα2 −

λ1 + λ2x

σ

)
= 1−G

(
zα2 −

λ1 + λ2x

σ

)
. (4.2)

When λ1 grows larger the power of the UT becomes higher. The power grows higher as λ1

becomes larger. Similarly, the power function of the PTT is given as

∏
z

(λ) =
PTT∏
z

(λ) = P (rejecting H0)

= P
(
TPT
z ≤ zα3 , T

RT
z > zα2

)
+
(
TPT
z > zα3 , T

UT
z > zα1

)
= P

(
TPT
z ≤ zα3

)
P
(
TRT
z > zα2

)
+ P

(
TPT
z > zα3 , T

UT
z > zα1

)
= G

(
zα3 −

λ2

√
Sxx

σ
√
n

)(
1−G

(
zα2 −

λ1 + λ2x

σ

))
+d1ρ

(
zα3 −

λ2

√
Sxx

σ
√
n

, zα1 −
λ1

k1
, ρ ̸= 0

)
, (4.3)

where d1ρ are bivariate normal probability integral. Here d1ρ is defined for every real p, q

and −1 < ρ < 1 as

d1ρ(p, q, ρ) =
1

2π
√
1− ρ2

∫ ∝

p

∫ ∝

q

exp

[
− 1

2(1− ρ2)
(x2 + y2 − 2ρxy)

]
dxdy, (4.4)

where p = zα3 − λ2

√
Sxx

σ
√
n

, q = zα1 − λ1

k1
and G(x) is a cumulative distribution function (cdf)

of the standard normal distribution.

Furthermore, the size of the UT, RT and PTT are given as

αUT
z = P

(
TUT
z > zα1 | H0

)
= 1−G

(
zα1 −

√
n(β0 − β00)

σ
√
[(1 + nx)2/Sxx]

| H0 : β0 = β00

)

= 1−G

(
zα1

−
√
n(β00 − β00)

k1

)
= 1−G (zα1

) , (4.5)
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Figure 2: The size of the UT, RT and PTT against λ1 with λ2 = 0, 1, 1.5, 2.

αRT
z = P

(
TRT
z > zα2 | H0

)
= 1−G

(
zα2 −

λ2x

σ

)
, and (4.6)

αPTT
z = G (zα3)

(
1−G

(
zα2 −

λ2x

σ

))
+ d1ρ (zα3 , zα1 , ρ ̸= 0) . (4.7)
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5 A Simulation Example

To study the properties of the three tests we conduct a simulation study. The main aim is

to compute the power function of the tests and compare them graphically. In this simulated

example we generate random data using R package. The independent variable (x) and error

(e) are generated from the uniform distribution with a = 0, and b = 1 and from normal

distribution with µ = 0 and σ2 = 1, respectively. In each case n = 20 random variates

were generated. The dependent variable (y) is then determined by y = β0 + β1x + e for

β0 = 5 and β1 = ±2.5. For the computation of the power functions of the tests we set

α1 = α2 = α3 = α = 0.05. The graphs for the power functions and size of the three tests

for known error variance are provided by using the formulas in (4.1), (4.2) (4.3), (4.5), (4.6)

and (4.7). Identical graphs for the power and size curves are observed when the slope is

negative.

6 Comparison of Power and Size

From Figure 1, as well as from equation (4.1) we see that the power of the UT does not

depend on λ2 and ρ but it increases as the value of λ1 increases. Its form is sigmoid, starting

from a very small value of near zero at λ1 = 0, it approaches 1 when λ1 is large (about 20

in Figure 1 and 2). Thus the power of the UT changed significantly for any value of λ1 from

0 to 20. The minimum power of the UT is around 0.05 for λ1 = 0. The power curve of the

RT is also sigmoid for all values of λ1 and λ2. The power of the RT increases as the values

of λ1 and/or λ2 increase. Moreover, the power of the RT is always larger than that of the

UT and PTT for all values of λ1 and/or λ2. The minimum power of the RT is around 0.05

for λ2 = 0 (as well as for λ1 = 0) and increases to be around 0.1 for λ2 = 2. The maximum

power the RT is around 1 for λ1 around 10 or above. The power of the PTT also depends

on the values of λ1 and λ2. Like the power of the RT, the power of the PTT increases for

large value of λ1 and tend to decrease as λ2 grows larger. Moreover, the power of the PTT

tend to be larger than that of the UT. The minimum power of the PTT is around 0.05 for

λ2 = 0 and λ1 = 0, and it increases to be around 0.1 for λ2 = 2. The gap between the power

curves of the RT and PTT is obviously clear for all values of λ1 and λ2. Like the power of

RT, the power of PTT depends on any values of λ1 and λ2.

Figure 2 or equation (4.5) shows the size of the UT does not depend on λ2. It is constant

and remains unchanged for all values of λ1 and λ2. The size of the RT is also constant for all

values of λ1. However, the size of the RT increases as the value of λ2 increases. Moreover,

the size of the RT is always larger than that of the UT for all values of λ2 except for λ2 = 0

when both tests have the same size. Like the size of the RT, the size of the PTT increases

as λ2 grows larger. The difference between the size of the RT and PTT does not change

much as the value of λ2 increases. The size of the RT and PTT increase as the value of λ2

increases. Also, the size of the RT is larger than that of the UT and PTT except for λ2 = 0,

when they are the same.
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Figure 3: The power of the PTT and size against ρ and λ2

Figure 3 shows the power of the PTT depend on λ2 and ρ. It increases significantly the

value of ρ increases from ρ = −1 to ρ = 0 and stays the same for ρ from zero to 1. The

difference of the power of the PTT for λ2 = 0 and λ2 = 2 is significantly different as the

value of ρ increases. From this figure or equation (4.6 and 4.7) the size of the RT and PTT

depend on the value of λ2. They increase as the value of λ2 increases. Unlike the size of

the RT and PTT, the size of the UT does not depend on the value of λ2 and it remains

constants for all the values of λ2. The size of the RT is always greater than the size of the
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UT and PTT.

7 Concluding Remarks

Based on of the above analyses, the power of the RT is always higher than that of the UT

and PTT for all values of λ1, and the power of the PTT lies between the power of the RT

and UT for all values of λ1, λ2 and ρ. The size of the UT is smaller than that of the RT

and PTT. The RT has maximum power and size, and the UT has minimum power and size.

The PTT has smaller size than the RT and the RT has larger power than the UT. The PTT

protects against maximum size of the RT and minimum power of the UT.

As λ2 → 0 the difference between the power of the PTT and RT diminishes for all values

of λ1. That its, if the NSPI is accurate the power of the PTT is about the same as that of

the RT. Moreover, the power of the PTT gets closer to that of the RT as ρ −→ 1.

The size of the PTT becomes smaller as λ2 → 0. Once again if the NSPI is near accurate

the size of the PTT approaches that of the UT. Therefore, we recommend PTT when the

quality of the NSPI is good (i.e. λ2 → 0) and it performs even better than the UT and RT

when ρ → 1.
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