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We analytically study a scattering of long linear surface waves on stationary currents in a duct (canal) of
constant depth and variable width. It is assumed that the background velocity linearly increases or
decreases with the longitudinal coordinate due to the gradual variation of duct width. Such a model admits
an analytical solution of the problem in hand, and we calculate the scattering coefficients as functions of
incident wave frequency for all possible cases of sub-, super-, and transcritical currents. For completeness
we study both cocurrent and countercurrent wave propagation in accelerating and decelerating currents.
The results obtained are analyzed in application to recent analog gravity experiments and shed light on the
problem of hydrodynamic modeling of Hawking radiation.
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I. INTRODUCTION

Since 1981 when Unruh established the analogy
in wave transformation occurring at the horizon of a
black hole and at a critical point of a hydrodynamic
flow [1], there have been many attempts to calculate the
transformation coefficients and find the analytical
expression for the excitation coefficient of a negative-
energy mode (see, for instance, [2–5] and references
therein). In parallel with theoretical study there were
several attempts to model the wave scattering in spa-
tially inhomogeneous currents experimentally and deter-
mine this coefficient through the measurement data [6,7]
(similar experiments were performed or suggested in
other media, for example, in the atomic Bose-Einstein
condensate—see [8] and numerous references therein).
In particular, the dependence of amplitude of a negative-
energy mode on the frequency of incident wave in a
water tank was determined experimentally [6]; however,
several aspects of the results obtained in this paper were
subject to criticism.
The problem of water wave transformation in spatially

inhomogeneous currents is of significant interest itself
and there is a vast number of publications devoted to
theoretical and experimental study of this problem.
However, in applying to the modeling of Hawking’s

effect, the majority of these publications suffer a draw-
back which is related to the parasitic effect of dispersion,
whereas the dispersion is absent in the pure gravitational
Hawking effect.
Below we consider a model which describes a pro-

pagation of small-amplitude long surface water waves
in a duct (canal) of constant depth but variable width.
The dispersion is absent, and the model is relevant to the
analytical study of the Hawking effect. We show that the
transformation coefficients can be found in the exact
analytical forms both for cocurrent and countercurrent
wave propagation in gradually accelerating and decelerat-
ing currents.
We believe that the results obtained can be of wider

interest, not only as a model of Hawking’s effect but
also in application to real physical phenomena occurring
in currents in nonhomogenous ducts, at least at rela-
tively small Froude numbers. We consider all possible
configurations of the background current and inci-
dent wave.

II. DERIVATION OF THE
GOVERNING EQUATION

Let us consider the set of equations for water waves on
the surface of a perfect fluid of a constant density ρ and
depth h. Assume that the water moves along the x axis
with a stationary velocity UðxÞ which can be either an*Yury.Stepanyants@usq.edu.au
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increasing or a decreasing function of x. Physically such
a current can be thought of as a model of water flow in a
horizontal duct with a properly varying width bðxÞ. We
will bear in mind such a model, although we do not
pretend here to consider a current in a real duct, but
rather to investigate an idealized hydrodynamic model
which is described by the equation analogous to that
appearing in the context of black hole evaporation due to
Hocking radiation [1–5,9–11].
In contrast to other papers also dealing with the

surface waves on a spatially varying current (see, e.g.,
[2–5]), we consider here the case of shallow-water
waves when there is no dispersion, assuming that the
wavelengths λ ≫ h.
In the hydrostatic approximation, which is relevant to

long waves in shallow water [12], the pressure can be
presented in the form p ¼ p0 þ ρgðη − zÞ, where p0 is the
atmospheric pressure, g is the acceleration due to gravity, z
is the vertical coordinate, and ηðx; tÞ is the perturbation of
free surface (−h ≤ z ≤ η). Then the linearized Euler equa-
tion for small perturbations having also only one velocity
component uðx; tÞ takes the form

∂u
∂t þ

∂ðUuÞ
∂x ¼ −g

∂η
∂x : ð1Þ

The second equation is the continuity equation which is
equivalent to the mass conservation equation for shallow-
water waves,

∂S
∂t þ

∂
∂x ½SðU þ uÞ� ¼ 0; ð2Þ

where Sðx; tÞ is the portion of the cross-section of a duct
occupied by water, Sðx; tÞ ¼ bðxÞ½hþ ηðx; tÞ�, where bðxÞ
is the width of the duct.
For the background current Eq. (2) gives the mass

flux conservation Q≡ρUðxÞSðxÞ¼ ρUðxÞbðxÞh¼ const.
Inasmuch as h ¼ const, we have UðxÞbðxÞ ¼ Q=ρh ¼
const, and Eq. (2) in the linear approximation reduces to

bðxÞ ∂η∂t þ
∂
∂x ½bðxÞðUηþ uhÞ� ¼ 0: ð3Þ

Thus, the complete set of equations for shallow-water
waves in a duct of a variable width consists of Eqs. (1) and
(3). This set can be reduced to one equation of the second
order. To this end let us divide first Eq. (3) by bðxÞ and
rewrite it in the equivalent form,

∂η
∂t þ U

∂η
∂x ¼ −hU

∂
∂x

u
U
: ð4Þ

Expressing now the velocity component u in terms of the
velocity potential φ, u ¼ ∂φ=∂x, and combining Eqs. (1)
and (4), we derive

� ∂
∂tþ U

∂
∂x

��∂φ
∂t þU

∂φ
∂x

�
¼ c20U

∂
∂x

�
1

U
∂φ
∂x

�
; ð5Þ

where c0 ¼
ffiffiffiffiffi
gh

p
is the speed of linear long waves in

shallow water without a background current.
As this equation describes wave propagation on the

stationary moving current of perfect fluid, it provides
the law of wave energy conservation which can be
presented in the form (its derivation is given in
Appendix A)

∂E
∂t þ

∂J
∂x ¼ 0; ð6Þ

where

E ¼ i
U

�
φ̄

�∂φ
∂t þ U

∂φ
∂x

�
− φ

�∂φ̄
∂t þU

∂φ̄
∂x

��
;

J ¼ EU −
ic20
U

�
φ̄
∂φ
∂x − φ

∂φ̄
∂x

�
;

and the overbar denotes complex conjugation.
Solution of the linear equation (5) can be sought in the

form φðx; tÞ ¼ ΦðxÞe−iωt, then it reduces to the ordinary
differential equation (ODE) for the function ΦðxÞ,
�
−iωþ U

d
dx

��
−iωΦþ U

dΦ
dx

�
¼ c20U

d
dx

�
1

U
dΦ
dx

�
:

ð7Þ

If we normalize the variables such that U=c0 ¼ V,
x=L ¼ ξ, and ωL=c0 ¼ ω̂, where L is the characteristic
spatial scale of the basic current, then we can present the
main equation in the final form,

Vð1 − V2Þ d
2Φ
dξ2

− ½ð1þ V2ÞV 0 − 2iω̂V2� dΦ
dξ

þ Vω̂2Φ ¼ 0;

ð8Þ

where the prime stands for here and below differentiation
with respect to the entire function argument (in this
particular case with respect to ξ).
If the perturbations are monochromatic in time, as above,

then the wave energy E and energy flux J do not depend on
time; therefore, as follows from Eq. (6), the energy flux
does not depend on x too, so J ¼ const.
For the concrete calculations we chose the piece-linear

velocity profile, assuming that the current varies linearly
within a finite interval of x and remains constant out of this
interval (see Fig. 1),
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VaðξÞ ¼

8>><
>>:

V1 ≡ ξ1; ξ ≤ ξ1;

ξ; 0 < ξ1 < ξ < ξ2;

V2 ≡ ξ2; ξ ≥ ξ2;

VdðξÞ ¼

8>><
>>:

V1 ≡ −ξ1; ξ ≤ ξ1;

−ξ; ξ1 < ξ < ξ2 < 0;

V2 ≡ −ξ2; ξ ≥ ξ2;

ð9Þ

where VaðξÞ pertains to the accelerating current, and VdðξÞ
to the decelerating current. To simplify further calculations,
we have chosen, without the loss of generality, the origin
of the coordinate frame such that the velocity profile is
directly proportional to �ξ in the interval ξ1 ≤ ξ ≤ ξ2 as
shown in Fig. 1. For such velocity configurations it is
convenient to set L¼ðx2−x1Þc0=ðU2−U1Þ¼ ðx2−x1Þ=
jV2−V1j.
The choice of piece-linear velocity profile allows us to

reduce the governing equation (8) to the analytically
solvable equation and obtain exact solutions. The corre-
sponding water flow can be realized in a duct with a
variable width, which is constant, b ¼ b1, when ξ ≤ ξ1,
then gradually varies along the ξ axis as bðξÞ ¼ b1ξ1=ξ in
the interval ξ1 ≤ ξ ≤ ξ2, and after that remains constant
again, b2 ¼ b1ξ1=ξ2 when ξ ≥ ξ2. Schematically the sketch
of a duct with gradually decreasing width that provides an
accelerating current is shown in Fig. 2.
Equation (8) should be augmented by the boundary

conditions at ξ → �∞ which specify the scattering prob-
lem, as well as by the matching conditions at ξ ¼ ξ1 and
ξ ¼ ξ2. The latter conditions reduce to the continuity of the
function ΦðξÞ and its derivative Φ0ðξÞ (see Appendix B for
the derivation),

Φðξ1;2 þ 0Þ ¼ Φðξ1;2 − 0Þ; Φ0ðξ1;2 þ 0Þ ¼ Φ0ðξ1;2 − 0Þ:
ð10Þ

On the basis of Eq. (8) and matching conditions (10),
we are able to study analytically all possible cases of

orientation of an incident wave and a current, assuming that
the current can be subcritical (V1;2 < 1), transcritical
(V1 > 1, V2 < 1 or vice versa V1 < 1, V2 > 1), or super-
critical (V1;2 > 1).

III. QUALITATIVE ANALYSIS OF THE PROBLEM

Before the construction of an exact solution for wave
scattering in currents with the piece-linear velocity profiles,
it seems reasonable to consider the problem qualitatively to
reveal its specific features which will help in the inter-
pretation of results obtained.
Consider first a long sinusoidal wave propagating on a

current with constant U. Assume, in accordance with the
shallow-water approximation, that the wavelength λ ≫ h.
The dispersion relation for such waves is

ðω − kUÞ2 ¼ c20k
2; ð11Þ

where k ¼ ðk; 0; 0Þ is a wave vector related with a wave-
length λ ¼ 2π=jkj.
A graphic of the dispersion relation is shown in Fig. 3 for

two values of the current speed, subcritical, U < c0, and
supercritical, U > c0. Since we consider dispersionless
shallow-water waves, graphics of the dependences ωðkÞ
are straight lines formally extending from minus to plus
infinity. We suppose, however, that the frequency ω is a
non-negative quantity which is inversely proportional to the
wave period; therefore, without loss of generality, we can
ignore those portions of dispersion lines which correspond
to negative frequencies (in Fig. 3 they are shown by
inclined dashed lines). The dashed horizontal line in
Fig. 3 shows a particular fixed frequency of all waves
participating in the scattering process.

FIG. 1. Sketch of (a) accelerating and (b) decelerating back-
ground currents.

FIG. 2. The sketch of a duct with the decreasing width that
provides spatially accelerating background current.
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For cocurrent propagating waves with k↑↑U the
dispersion relation (11) reduces to ω ¼ ðU þ c0Þjkj,
whereas for countercurrent propagating waves with k↓↑U
it is ω ¼ jU − c0jjkj. Thus, the dispersion lines for surface
waves on a current are not symmetrical with respect to the
vertical axis k ¼ 0. When the current speedU increases, the
right branch 1 turns toward the vertical axis (cf. lines 1 and 3
in Fig. 3). The left branch 2 in this case tilts toward the
negative half-axis k; it coincides with it when U ¼ c0; and
then, when U > c0, it goes to the lower half-plane and
becomes negative. However, its negative portion 20 goes up,
passes through the axis k and appears in the upper half-plane
as the dispersion line 4. Thus,waves corresponding to lines 3
and 4 are downstream propagating waves, whereas there are
no upstream propagating waves if U > c0. From the
physical point of view this means that the current is so
strong that it pulls downstream even countercurrent propa-
gating waves. As was shown, for instance, in Refs. [13–15],
in such a strong current, waves on branch 3 have positive
energy, whereas waves on branch 4 have negative energy.
To consider wave propagation on a spatially variable

current when it accelerates or decelerates along the x axis,
let us use the Jeffreys-Wentzel–Kramers–Brillouin (JWKB)
method, which physically presumes that the wavelengths
are much less than the characteristic scale of inhomoge-
neity, λ ≪ L (whereas still λ ≫ h and the shallow-water
approximation is valid). This condition can be presented
in the form L=λ ¼ L=ðc0TÞ ¼ Lω=ð2πc0Þ ¼ ω̂=2π ≫ 1
(where T ¼ 2π=ω is the wave period) and if it is fulfilled,
the JWKB solution of Eq. (8) can be sought in the form
(see, e.g., [16,17])

ΦðξÞ ¼ exp

�
iω̂

Z
qðξÞdξ

�
;

qðξÞ ¼ q0ðξÞ þ ω̂−1q1ðξÞ þ ω̂−2q2ðξÞ þ � � � : ð12Þ
Substitution of these expressions into Eq. (8) gives two

linearly independent solutions,

Φð�ÞðξÞ ¼
ffiffiffiffiffiffiffiffiffiffi
VðξÞ

p
exp

�
iω̂

Z
dξ

VðξÞ � 1
þOðω̂−1Þ

�
; ð13Þ

and the general solution of Eq. (8) is the linear combination
of these two particular solutions,

ΦðxÞ ¼ AFΦðþÞðxÞ þ ABΦð−ÞðxÞ; ð14Þ

where AF and AB are amplitudes of cocurrent propaga-
ting F-wave and countercurrent propagating B-wave,
respectively.
In the current with a spatially varying velocity VðξÞ,

wave propagation and transformation have a regular
character, if VðξÞ ≠ 1 [i.e., if UðxÞ ≠ c0]; then Eq. (8)
does not contain critical points.
In subcritical currents, when 0 < V1;2 < 1 everywhere,

an incident wave arriving from the left (F-wave) or from
the right (B-wave) partially transmits through the domain of
inhomogeneity and partially transforms into the reflected
wave of B- or F-type, respectively. Notice that in this case
waves of both types have positive energy.
In supercritical currents, when V1;2 > 1 is everywhere,

as was mentioned above, both F-wave and B-wave can
propagate only in the direction of the current; however,
F-wave has positive energy, whereas B-wave has negative
energy. An incident wave of any type propagating from left
to right partially transforms into the wave of another type,
so that at the infinity, ξ → ∞, waves of both types appear.
In contrast to these cases, in a transcritical current there is

a critical point where VðξÞ ¼ 1. The existence of such a
point has only a minor influence on the cocurrent propa-
gating F-wave, but exerts a crucial action on the B-wave,

because its “wave number” qð−Þ0 → ∞ when VðξÞ → 1.
Because of this, an arbitrarily small but finite viscosity
leads to dissipation of a B-wave that attains a neighborhood
of the critical point. As the result of this, the energy flux J
does not conserve, in general, when waves pass through
this critical point. However, as will be shown below, the
energy flux conserves in spatially accelerating transcritical
currents, but does not conserve in decelerating currents.
Indeed, in an accelerating current where 0 < V1 <

1 < V2, an incident wave can arrive only from the left
as the F-type wave only. In the subcritical domain (ξ < 1) it
transforms into the B-wave that runs backward, toward
ξ ¼ −∞. After passing the critical point, being in the
supercritical domain (ξ > 1) it transforms into the B-wave
that runs forward toward ξ ¼ þ∞. As a result, there is no
B-wave that attains the critical point; hence, there is no
dissipation, and energy flux conserves. On the contrary, in
decelerating currents (where V1 > 1 > V2 > 0) B-waves,
no matter incident or “reflected,” run to the critical point
and dissipate there; therefore the energy flux does not
conserve in this case.
A specific situation occurs when the incident B-wave

propagates from plus infinity in the subcritical current

FIG. 3. The dispersion dependences for surface waves on
uniformly moving shallow water. Lines 1 and 2 pertain to
cocurrent and countercurrent propagating waves, respectively,
in a subcritical current (U < c0). Lines 3 and 4 pertain to positive-
and negative-energy waves, respectively, in a supercritical current
(U > c0) both propagating downstream.
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toward the critical point and generates an F-wave on the
current inhomogeneity. If the current is supercritical on the
left of the critical point, then no one wave can penetrate into
that domain. Thus, the wave energy of the incident B-wave
partially converts into a reflected F-wave and partially
absorbs in the vicinity of the critical point due to vanish-
ingly small viscosity. We will come to the discussion of
these issues in Sec. V when we construct exact solutions of
the scattering problem for Eq. (8) where it is possible.
A qualitative analysis presented above demonstrates that

the most interesting results can be obtained for the tran-
scritical currents and that the critical points play a crucial
role in such currents. However, in the vicinity of a critical
point the velocity of arbitrary type UðxÞ can generally be
approximated by a linear function, UðxÞ ∼ x. This makes
an additional argument in favor of studying wave scattering
in currents with piece-linear velocity profiles.

IV. WAVE SCATTERING IN INHOMOGENEOUS
CURRENTS WITH A PIECE-LINEAR

VELOCITY PROFILE

Consider now exact solutions of the problem of surface
wave scattering in inhomogeneous currents with piece-
linear velocity profiles described by Eqs. (9) and shown in
Fig. 1. The basic equation (8) has constant coefficients out
of the interval ξ1 < ξ < ξ2, where the current velocity
linearly varies with ξ (either increasing or decreasing).
Therefore out of this interval, solutions to this equation can
be presented in terms of exponential functions with the
purely imaginary exponents describing sinusoidal travel-
ing waves.
Within the interval ξ1 < ξ < ξ2 Eq. (8) with the help of

change of variable ζ ¼ ξ2 reduces to one of the hyper-
geometric equations,

ζð1 − ζÞ d
2Φ
dζ2

− ð1 ∓ iω̂Þζ dΦ
dζ

þ ω̂2

4
Φ ¼ 0; ð15Þ

where the upper sign pertains to the case of accelerating
current, and the lower sign to the case of decelerating
current.
The matching conditions at ξ ¼ ξ1 and ξ ¼ ξ2 are given

by Eqs. (10).

A. Wave transformation in subcritical currents

Assume first that an incident wave propagates from left
to right parallel to the main current which is subcritical in
all domains, V1 < V2 < 1. As mentioned above, in the left
(ξ < ξ1) and right (ξ > ξ2) domains Eq. (8) has constant
coefficients, and in the intermediate domain (ξ1 < ξ < ξ2),
where VðξÞ ¼ ξ, this equation reduces to one of hyper-
geometric equations (15). These equations are regular in the
subcritical case, and their coefficients do not turn to zero.
Two linearly independent solutions can be expressed in

terms of the Gauss hypergeometric function 2F1ða; b; c; ζÞ
(see Sec. 6.4 in book [18]). Thus, the general solution of
Eq. (8) for the accelerating current in three different
domains can be presented as follows:

ΦðξÞ ¼ A1eiκ1ðξ−ξ1Þ þ A2e−iκ2ðξ−ξ1Þ; ξ ≤ ξ1; ð16Þ

ΦðξÞ ¼ B1w2ðξ2Þ þ B2w3ðξ2Þ; ξ1 ≤ ξ ≤ ξ2; ð17Þ

ΦðξÞ ¼ C1eiκ3ðξ−ξ2Þ þ C2e−iκ4ðξ−ξ2Þ; ξ ≥ ξ2; ð18Þ

where κ1¼ ω̂=ð1þV1Þ, κ2¼ ω̂=ð1−V1Þ, κ3¼ ω̂=ð1þV2Þ,
κ4 ¼ ω̂=ð1 − V2Þ, A1;2, B1;2, C1;2 are arbitrary constants,
and

w2ðζÞ ¼ ζ2F1ð1 − iω̂=2; 1 − iω̂=2; 2; ζÞ;
w3ðζÞ ¼ 2F1ð−iω̂=2;−iω̂=2; 1 − iω̂; 1 − ζÞ: ð19Þ

The Wronskian of these linearly independent functions
is [18]

W ¼ w0
2ðζÞw3ðζÞ − w2ðζÞw0

3ðζÞ

¼ Γð1 − iω̂Þ
Γ2ð1 − iω̂=2Þ ð1 − ζÞiω̂−1: ð20Þ

Similarly the general solution of Eq. (8) for the decel-
erating current can be presented. In the domains ξ < ξ1 and
ξ > ξ2 solutions are the same as above, whereas in the
intermediate domain ξ1 < ξ < ξ2 the general solution is

ΦðξÞ ¼ B1 ~w2ðξ2Þ þ B2 ~w3ðξ2Þ; ð21Þ

where the linearly independent functions are

~w2ðζÞ ¼ ζ2F1ð1þ iω̂=2; 1þ iω̂=2; 2; ζÞ;
~w3ðζÞ ¼ 2F1ðiω̂=2; iω̂=2; 1þ iω̂; 1 − ζÞ; ð22Þ

with the Wronskian

~W ¼ ~w0
2ðζÞ ~w3ðζÞ − ~w2ðζÞ ~w0

3ðζÞ

¼ Γð1þ iω̂Þ
Γ2ð1þ iω̂=2Þ ð1 − ζÞ−iω̂−1: ð23Þ

1. Accelerating currents. Transformation of
downstream propagating incident wave

Assume that the incident wave has a unit amplitude
A1 ¼ 1, and calculate the transformation coefficients,
setting C2 ¼ 0 and denoting the amplitudes of the reflected
wave by R≡ A2 and the transmitted wave by T ≡ C1

(R and T play the role of transformation coefficients, as
they are usually determined in hydrodynamics—see, e.g.,
[19,20] and references therein).
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Using the matching conditions at the boundaries of
domains (see Appendix B), we find

B1w2ðV2
1Þ þ B2w3ðV2

1Þ ¼ Rþ 1; ð24Þ

B1w0
2ðV2

1Þ þ B2w0
3ðV2

1Þ ¼
iω̂
2V1

�
1

1þ V1

−
R

1 − V1

�
; ð25Þ

B1w2ðV2
2Þ þ B2w3ðV2

2Þ ¼ T; ð26Þ

B1w0
2ðV2

2Þ þ B2w0
3ðV2

2Þ ¼
iω̂
2V2

T
1þ V2

: ð27Þ

From these equations we derive the transformation
coefficients,

R ¼ 1

Δ

�
ω̂2½w2ðV2

1Þw3ðV2
2Þ − w2ðV2

2Þw3ðV2
1Þ�

4V1V2ð1þ V1Þð1þ V2Þ
− w0

2ðV2
1Þw0

3ðV2
2Þ þ w0

2ðV2
2Þw0

3ðV2
1Þ

þ iω̂
2

�
w2ðV2

1Þw0
3ðV2

2Þ − w0
2ðV2

2Þw3ðV2
1Þ

V1ð1þ V1Þ
−
w2ðV2

2Þw0
3ðV2

1Þ − w0
2ðV2

1Þw3ðV2
2Þ

V2ð1þ V2Þ
��

; ð28Þ

T ¼ −
iω̂
Δ
ð1 − V2

2Þiω̂−1
V1ð1 − V2

1Þ
Γð1 − iω̂Þ

Γ2ð1 − iω̂=2Þ ; ð29Þ

B1 ¼ −
iω̂
Δ

1

V1ð1 − V2
1Þ
�

iω̂
2V2ð1þ V2Þ

w3ðV2
2Þ − w0

3ðV2
2Þ
�
; ð30Þ

B2 ¼
iω̂
Δ

1

V1ð1 − V2
1Þ
�

iω̂
2V2ð1þ V2Þ

w2ðV2
2Þ − w0

2ðV2
2Þ
�
; ð31Þ

where

Δ ¼ w0
2ðV2

1Þw0
3ðV2

2Þ − w0
2ðV2

2Þw0
3ðV2

1Þ þ
ω̂2½w2ðV2

1Þw3ðV2
2Þ − w2ðV2

2Þw3ðV2
1Þ�

4V1V2ð1 − V1Þð1þ V2Þ

þ iω̂
2

�
w2ðV2

1Þw0
3ðV2

2Þ − w0
2ðV2

2Þw3ðV2
1Þ

V1ð1 − V1Þ
þ w2ðV2

2Þw0
3ðV2

1Þ − w0
2ðV2

1Þw3ðV2
2Þ

V2ð1þ V2Þ
�
: ð32Þ

The modules of transformation coefficients jTj and jRj,
as well as modules of intermediate coefficients of wave
excitation in the transient domain, jB1j and jB2j, are shown
in Fig. 4 as functions of dimensionless frequency ω̂ for the
particular values of V1 ¼ 0.1 and V2 ¼ 0.9. Qualitatively

similar graphics were obtained for other values of V1

and V2.
In the long-wave approximation, when ω̂ → 0, the

hypergeometric function 2F1ða; b; c;dÞ degenerates (see
Appendix C), and then the transformation coefficients
reduce to

R ¼ 1 − V1=V2

1þ V1=V2

; T ¼ 1þ R ¼ 2

1þ V1=V2

: ð33Þ

These values are purely real and agree with the trans-
formation coefficients derived in Ref. [15] for surface
waves in a duct with the stepwise change of cross-section
and velocity profile, and such an agreement takes place also
for other wave-current configurations considered below.
Notice only that here the transformation coefficients are
presented in terms of velocity potential φ, whereas in
Ref. [15] they are presented in terms of free surface
elevation η. The relationship between these quantities is
given at the end of Appendix A.
In Fig. 5(a) we present the graphic of jΦðξÞj (see line 1)

as per Eqs. (16)–(18) with A1 ¼ 1 and other determined

FIG. 4. Modules of transformation coefficients as functions of
dimensionless frequency ω̂ for V1 ¼ 0.1, V2 ¼ 0.9. Line 1: jTj.
Line 2: jRj. Line 3: jB1j. Line 4: jB2j. Dashed line 5 represents the
asymptotic for the reflection coefficient R ∼ ω̂−1.
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transformation coefficients A2 ¼ R as per Eq. (28), C1 ¼ T
as per Eq. (29), and C2 ¼ 0. Coefficients B1 and B2 are
given by Eqs. (30) and (31). The plot was generated for the
particular value of ω̂ ¼ 1; for other values of ω̂ the graphics
are qualitatively similar.

The solution obtained should be in consistency with the
energy flux conservation [14,15], which is derived in
Appendix A in terms of the velocity potential φ,

V2ð1 − jRj2Þ ¼ V1jTj2: ð34Þ
Substituting here the transformation coefficients R and T

from Eqs. (28) and (29), we confirm that Eq. (34) reduces to
the identity.
To characterize the rate of energy flux transmission, one

can introduce the energy transmission factor

KT ¼ V1

V2

jTj2 ⟶ω̂→0 4V1=V2

ð1þ V1=V2Þ2
: ð35Þ

Then one can see that although the modulus of the
transmission coefficient is greater than one (see line 1 in
Fig. 4) the total energy flux (34) through the duct cross-
section conserves because the cross-section decreases in the
transition from the left to the right domain, and the trans-
mitted energy flux is less than the incident one (KT < 1).

2. Accelerating currents. Transformation of upstream
propagating incident wave

If the incident wave arrives from plus infinity, then we set
in Eqs. (16) and (18) its amplitude C2 ¼ 1, the amplitude of
reflected wave C1 ¼ R, and the amplitude of transmitted
wave A2 ¼ T, whereas A1 ¼ 0. Then from the matching
conditions we obtain

B1w2ðV2
1Þ þ B2w3ðV2

1Þ ¼ T; ð36Þ

B1w0
2ðV2

1Þ þ B2w0
3ðV2

1Þ ¼ −
iω̂
2V1

T
1 − V1

; ð37Þ

B1w2ðV2
2Þ þ B2w3ðV2

2Þ ¼ 1þ R; ð38Þ

B1w0
2ðV2

2Þ þ B2w0
3ðV2

2Þ ¼ −
iω̂
2V2

�
1

1 − V2

−
R

1þ V2

�
:

ð39Þ

Solution of this set of equations is

R ¼ 1

Δ

�
ω̂2½w2ðV2

1Þw3ðV2
2Þ − w2ðV2

2Þw3ðV2
1Þ�

4V1V2ð1 − V1Þð1 − V2Þ
− w0

2ðV2
1Þw0

3ðV2
2Þ þ w0

2ðV2
2Þw0

3ðV2
1Þ

−
iω̂
2

�
w2ðV2

1Þw0
3ðV2

2Þ − w0
2ðV2

2Þw3ðV2
1Þ

V1ð1 − V1Þ
−
w2ðV2

2Þw0
3ðV2

1Þ − w0
2ðV2

1Þw3ðV2
2Þ

V2ð1 − V2Þ
��

; ð40Þ

T ¼ −
iω̂
Δ
ð1 − V2

1Þiω̂−1
V2ð1 − V2

2Þ
Γð1 − iω̂Þ

Γ2ð1 − iω̂=2Þ ; ð41Þ

B1 ¼
iω̂
Δ

1

V2ð1 − V2
2Þ
�

iω̂
2V1ð1 − V1Þ

w3ðV2
1Þ þ w0

3ðV2
1Þ
�
; ð42Þ

FIG. 5. Modules of function ΦðξÞ for wave scattering in
(a) accelerating and (b) decelerating subcritical currents with
V1 ¼ 0.1 and V2 ¼ 0.9 in the former case and V1 ¼ 0.9 and
V2 ¼ 0.1 in the latter case. Line 1 in each frame pertains to the
cocurrent propagating incident wave, and line 2 to the counter-
current propagating incident wave. Dashed vertical lines show the
boundaries ξ1 and ξ2 of the transient domain where the speed of
the background current linearly changes.
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B2 ¼ −
iω̂
Δ

1

V2ð1 − V2
2Þ
�

iω̂
2V1ð1 − V1Þ

w2ðV2
1Þ þ w0

2ðV2
1Þ
�
;

ð43Þ

where Δ is the same as in Eq. (32).
In the long-wave approximation, ω̂ → 0, we obtain the

limiting values of transformation coefficients

R ¼ 1 − V2=V1

1þ V2=V1

; T ¼ 1þ R ¼ 2

1þ V2=V1

: ð44Þ

These values again are purely real and agree with the
transformation coefficients derived in Ref. [15] for surface
waves in a duct with the stepwise change of cross-section
and velocity profile.
This solution is also in consistency with the energy flux

conservation, which now takes the form

V1ð1 − jRj2Þ ¼ V2jTj2: ð45Þ
Substituting here the expressions for the transformation

coefficients, (40) and (41), we confirm that Eq. (45) reduces
to the identity. The energy transmission factor KT in the
limit ω̂ → 0 remains the same as in Eq. (35).
The graphic of jΦðξÞj is presented in Fig. 5(a) by line 2.

The plotwasgeneratedon the basis of solution (16)–(18)with
C2 ¼ 1, A1 ¼ 0, and other determined transformation coef-
ficients C1 ¼ R as per Eq. (40) and A2 ¼ T as per Eq. (41).
Coefficients B1 and B2 are given by Eqs. (42) and (43).

3. Wave transformation in a decelerating
subcritical current

The decelerating current can occur, for example, in a
widening duct. To calculate the transformation coefficients
of waves in a decelerating current with a piece-linear
profile, it is convenient to choose the origin of coordinate
frame such as shown in Fig. 1(b).
The general solutions of the basic equation (8) in the left

and right domains beyond the interval ξ1 < ξ < ξ2 are the
same as in Eqs. (16) and (18), whereas in the transient
domain the solution is given by Eq. (21).
To calculate the transformation coefficients one can

repeat the simple but tedious calculations similar to those
presented above. The results show that the expressions for
the transformation coefficients remain the same as in
Eqs. (28)–(32) for the cocurrent propagating incident wave
and Eqs. (40)–(43), and (32) for the countercurrent propa-
gating incident wave, but in both these cases ω̂ should be
replaced by −ω̂ and wi by ~wi. The energy flux Eq. (34) for
the cocurrent propagating incident wave or Eq. (45) for the
countercurrent propagating incident wave conserves in
these cases too.
The graphics of jΦðξÞj are presented in Fig. 5(b) by

line 1 for the cocurrent propagating incident wave, and by
line 2 for the countercurrent propagating incident wave.

B. Wave transformation in a supercritical current

Assume now that the main current is supercritical every-
where, V2 > V1 > 1. In this case, there are no upstream
propagating waves. Indeed in such a strong current even
waves propagating with the speed −c0 in the frame moving
with the water are pulled downstream by the current whose
speedU > c0; therefore in the immovable laboratory frame
the speed of such “countercurrent” propagating waves is
U − c0 > 0. Such waves possess a negative energy (see, for
instance, [13–15]). Thus, the problem statement can contain
an incident sinusoidal wave propagating only downstream
from the ξ < ξ1 domain; the wave can be of either positive
energy with ω̂ ¼ ðV1 þ 1Þκ1 or negative energy with
ω̂ ¼ ðV1 − 1Þκ2. After transformation on the inhomo-
geneous current in the interval ξ1 < ξ < ξ2 these waves
produce two transmitted waves in the right domain, ξ > ξ2
one of positive energy and another of negative energy.
Below we consider such transformation in detail.
In the supercritical case the basic equation (8) is also

regular, and its coefficients do not turn to zero. To construct
its solutions in the intermediate domain ξ1 ≤ ξ ≤ ξ2 it is
convenient to rewrite the equation in a slightly different form,

ηð1− ηÞd
2Ψ
dη2

þ ½1− ð2∓ iω̂Þη�dΨ
dη

� iω̂
2

�
1 ∓ iω̂

2

�
Ψ ¼ 0;

ð46Þ
where η ¼ 1=ζ, ΨðηÞ ¼ η�iω̂=2Φ, upper signs pertain to
the accelerating current, and lower signs to the decelerating
currents.
Solutions of Eq. (8) in the domains where the current

speed is constant are

ΦðξÞ ¼ A1eiκ1ðξ−ξ1Þ þ A2eiκ2ðξ−ξ1Þ; ξ ≤ ξ1; ð47Þ
ΦðξÞ ¼ C1eiκ3ðξ−ξ2Þ þ C2eiκ4ðξ−ξ2Þ; ξ ≥ ξ2; ð48Þ

where κ1¼ ω̂=ðV1þ1Þ, κ2¼ ω̂=ðV1−1Þ, κ3¼ ω̂=ðV2þ1Þ,
κ4 ¼ ω̂=ðV2 − 1Þ.
In the intermediate domain ξ1 ≤ ξ ≤ ξ2 the solution

of hypergeometric Eq. (46) in the case of accelerating
current is

ΦðξÞ ¼ ξiω̂½B1w̆1ðξ−2Þ þ B2w̆3ðξ−2Þ�; ð49Þ
where two linearly independent solutions of Eq. (46) can be
chosen in the form (see Sec. 6.4 in the book [18])

w̆1ðηÞ ¼ 2F1ð−iω̂=2; 1 − iω̂=2; 1; ηÞ;
w̆3ðηÞ ¼ 2F1ð−iω̂=2; 1 − iω̂=2; 1 − iω̂; 1 − ηÞ ð50Þ

with the Wronskian

W̆ ¼ w̆0
1ðηÞw̆3ðηÞ − w̆1ðηÞw̆0

3ðηÞ

¼ ð1 − ηÞiω̂−1
η

Γð1 − iω̂Þ
Γð−iω̂=2ÞΓð1 − iω̂=2Þ : ð51Þ
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In the case of decelerating current the solution of
hypergeometric Eq. (46) is

ΦðξÞ ¼ ð−ξÞ−iω̂½B1ŵ1ðξ−2Þ þ B2ŵ3ðξ−2Þ�; ð52Þ

and linearly independent solutions can be chosen in the
form

ŵ1ðηÞ ¼ 2F1ðiω̂=2; 1þ iω̂=2; 1; ηÞ;
ŵ3ðηÞ ¼ 2F1ðiω̂=2; 1þ iω̂=2; 1þ iω̂; 1 − ηÞ ð53Þ

with the Wronskian

Ŵ ¼ ŵ0
1ðηÞŵ3ðηÞ − ŵ1ðηÞŵ0

3ðηÞ

¼ ð1 − ηÞ−iω̂−1
η

Γð1þ iω̂Þ
Γðiω̂=2ÞΓð1þ iω̂=2Þ : ð54Þ

1. Transformation of a positive-energy wave in an
accelerating current

Consider the first transformation of a positive-energy
incident wave (see line 3 in Fig. 3) with the unit amplitude
(A1¼1, A2¼0). Matching the solutions in different current
domains and using the chain rule d=dξ¼−2ξ−3d=dη, we
obtain at ξ ¼ ξ1

B1w̆1ðV−2
1 Þ þ B2w̆3ðV−2

1 Þ ¼ V−iω̂
1 ; ð55Þ

B1w̆0
1ðV−2

1 Þ þ B2w̆0
3ðV−2

1 Þ ¼ iω̂
2

V2−iω̂
1

V1 þ 1
; ð56Þ

where the prime stands for a derivative of a corresponding
function with respect to its entire argument.
Similarly from the matching conditions at ξ ¼ ξ2 we

obtain

C1 þ C2 ¼ V iω̂
2 ½B1w̆1ðV−2

2 Þ þ B2w̆3ðV−2
2 Þ�; ð57Þ

ðV2 − 1ÞC1 − ðV2 þ 1ÞC2 ¼ −
2i
ω̂
V iω̂−2
2 ðV2

2 − 1Þ½B1w̆0
1ðV−2

2 ÞþB2w̆0
3ðV−2

2 Þ�: ð58Þ

From Eqs. (55) and (56) we find

B1 ¼ −
Γð−iω̂=2ÞΓð1 − iω̂=2Þ

Γð1 − iω̂Þ V iω̂−2
1 ðV2

1 − 1Þ1−iω̂
�
w̆0
3ðV−2

1 Þ
V2
1

−
iω̂w̆3ðV−2

1 Þ
2ðV1 þ 1Þ

�
; ð59Þ

B2 ¼
Γð−iω̂=2ÞΓð1 − iω̂=2Þ

Γð1 − iω̂Þ V iω̂−2
1 ðV2

1 − 1Þ1−iω̂
�
w̆0
1ðV−2

1 Þ
V2
1

−
iω̂w̆1ðV−2

1 Þ
2ðV1 þ 1Þ

�
: ð60Þ

Substituting these in Eqs. (57) and (58), we find the transmission coefficients for the positive-energy mode Tp ≡ C1 and
negative-energy mode Tn ≡ C2,

Tp ¼ −
Γ2ð−iω̂=2Þ
2Γð1 − iω̂ÞV

iω̂−2
1 V iω̂−1

2 ðV2
1 − 1Þ1−iω̂ðV2

2 − 1Þ

×

�
w̆0
1ðV−2

1 Þw̆0
3ðV−2

2 Þ − w̆0
1ðV−2

2 Þw̆0
3ðV−2

1 Þ
V2
1V

2
2

þ ω̂2

4

w̆1ðV−2
1 Þw̆3ðV−2

2 Þ − w̆1ðV−2
2 Þw̆3ðV−2

1 Þ
ðV1 þ 1ÞðV2 − 1Þ

þ iω̂
2

�
w̆0
1ðV−2

1 Þw̆3ðV−2
2 Þ − w̆1ðV−2

2 Þw̆0
3ðV−2

1 Þ
V2
1ðV2 − 1Þ −

w̆1ðV−2
1 Þw̆0

3ðV−2
2 Þ − w̆0

1ðV−2
2 Þw̆3ðV−2

1 Þ
V2
2ðV1 þ 1Þ

��
; ð61Þ

Tn ¼
Γ2ð−iω̂=2Þ
2Γð1 − iω̂ÞV

iω̂−2
1 V iω̂−1

2 ðV2
1 − 1Þ1−iω̂ðV2

2 − 1Þ

×

�
w̆0
1ðV−2

1 Þw̆0
3ðV−2

2 Þ − w̆0
1ðV−2

2 Þw̆0
3ðV−2

1 Þ
V2
1V

2
2

−
ω̂2

4

w̆1ðV−2
1 Þw̆3ðV−2

2 Þ − w̆1ðV−2
2 Þw̆3ðV−2

1 Þ
ðV1 þ 1ÞðV2 þ 1Þ

−
iω̂
2

�
w̆0
1ðV−2

1 Þw̆3ðV−2
2 Þ − w̆1ðV−2

2 Þw̆0
3ðV−2

1 Þ
V2
1ðV2 þ 1Þ þ w̆1ðV−2

1 Þw̆0
3ðV−2

2 Þ − w̆0
1ðV−2

2 Þw̆3ðV−2
1 Þ

V2
2ðV1 þ 1Þ

��
: ð62Þ

The modules of transformation coefficients jTpj and jTnj together with the intermediate coefficients of wave excitation in
the transient zone jB1j and jB2j are shown in Fig. 6(a) as functions of dimensionless frequency ω̂ for the particular values of
V1 ¼ 1.1 and V2 ¼ 1.9. Qualitatively similar graphics were obtained for other values of V1 and V2.
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In Fig. 7(a) we present graphics of jΦðξÞj as per
Eqs. (47)–(49) for A1 ¼ 1, A2 ¼ 0, C1 ¼ Tp as per
Eq. (61), and C2 ¼ Tn as per Eq. (62). Coefficients B1

and B2 are given by Eqs. (59) and (60). The plot was
generated for two particular values of frequency, ω̂ ¼ 1
(line 1) and ω̂ ¼ 100 (line 2).
The transmission coefficients are in consistency with the

energy flux conservation law which has the following form:

J ¼ 2ω̂

V1

¼ 2ω̂

V2

ðjTpj2 − jTnj2Þ or jTpj2 − jTnj2 ¼
V2

V1

:

ð63Þ

If we introduce two energy transmission factors, for
positive- and negative-energy waves,

KTp ¼ V1

V2

jTpj2 and KTn ¼
V1

V2

jTnj2; ð64Þ

then we can see that both waves grow in such a manner that
KTp − KTn ¼ 1. This means that the positive-energy wave
not only dominates in the right domain [cf. lines 1 and 2 in
Fig. 6(a)], but it also carries a greater energy flux than the

incident one. Moreover, with a proper choice of V1 and V2

even the energy flux of the negative-energy wave can
become greater by modulus than that of the incident wave,
KTn > 1. Then we have KTp > KTn > 1. Figure 8 illus-
trates the dependences of energy transmission factors on

FIG. 8. The dependences of energy transmission factors KTp
andKTn on the frequency for a relatively small increase of current
speed (V1 ¼ 1.1, V2 ¼ 1.9), lines 1 and 2, respectively, and a
large increase of current speed (V1 ¼ 1.1, V2 ¼ 8.0), lines 3 and
4, respectively. Inclined dashed lines show the asymptotic
dependences KTn ∼ ω̂−2.

FIG. 7. Module of function ΦðξÞ for the scattering of positive-
and negative-energy waves (a) accelerating with V1 ¼ 1.1 and
V2 ¼ 1.9 and (b) decelerating with V1 ¼ 1.9 and V2 ¼ 1.1
supercritical currents for two particular values of frequency, ω̂ ¼
1 (line 1) and ω̂ ¼ 100 (line 2).

FIG. 6. Modules of transformation coefficients as functions of
dimensionless frequency ω̂ when (a) a positive-energy wave
scatters and (b) a negative-energy wave scatters in the current
with V1 ¼ 1.1, V2 ¼ 1.9. Line 1: jTpj. Line 2: jTnj. Line 3: jB1j.
Line 4: jB2j. Dashed lines 5 represent the asymptotics for
(a) jTnj ∼ ω̂−1 and for (b) jTpj ∼ ω̂−1.
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the frequency for a relatively small increase of current
speed (V1 ¼ 1.1, V2 ¼ 1.9) and a big increase of current
speed (V1 ¼ 1.1, V2 ¼ 8.0). In the latter case both KTp and
KTn are greater than 1 in a certain range of frequen-
cies ω̂ < ω̂c.
In the long-wave approximation, ω̂ → 0 (see

Appendix C) we obtain (cf. [15])

Tp ¼ 1þ V1=V2

2V1=V2

; Tn ¼ −
1 − V1=V2

2V1=V2

;

KTp ¼ ð1þ V1=V2Þ2
4V1=V2

; KTn ¼
ð1 − V1=V2Þ2

4V1=V2

: ð65Þ

2. Transformation of negative-energy wave
in an accelerating current

Consider now transformation of a negative-energy
incident wave (see line 4 in Fig. 3) with unit amplitude
(A1 ¼ 0, A2 ¼ 1). From the matching conditions at ξ ¼ ξ1
we obtain

B1w̆1ðV−2
1 Þ þ B2w̆3ðV−2

1 Þ ¼ V−iω̂
1 ; ð66Þ

B1w̆0
1ðV−2

1 Þ þ B2w̆0
3ðV−2

1 Þ ¼ −
iω̂
2

V2−iω̂
1

V1 − 1
: ð67Þ

The matching conditions at ξ ¼ ξ2 remain the same as in
Eqs. (57) and (58).
From Eqs. (66) and (67) we find

B1 ¼ −
Γð−iω̂=2ÞΓð1 − iω̂=2Þ

Γð1 − iω̂Þ V iω̂−2
1 ðV2

1 − 1Þ1−iω̂
�
w̆0
3ðV−2

1 Þ
V2
1

þ iω̂w̆3ðV−2
1 Þ

2ðV1 − 1Þ
�
; ð68Þ

B2 ¼
Γð−iω̂=2ÞΓð1 − iω̂=2Þ

Γð1 − iω̂Þ V iω̂−2
1 ðV2

1 − 1Þ1−iω̂
�
w̆0
1ðV−2

1 Þ
V2
1

þ iω̂w̆1ðV−2
1 Þ

2ðV1 − 1Þ
�
: ð69Þ

Substituting these in Eqs. (57) and (58), we find the transmission coefficients for the positive-energy mode Tp ≡ C1 and
negative-energy mode Tn ≡ C2,

Tp ¼ −
Γ2ð−iω̂=2Þ
2Γð1 − iω̂ÞV

iω̂−2
1 V iω̂−1

2 ðV2
1 − 1Þ1−iω̂ðV2

2 − 1Þ

×

�
w̆0
1ðV−2

1 Þw̆0
3ðV−2

2 Þ − w̆0
1ðV−2

2 Þw̆0
3ðV−2

1 Þ
V2
1V

2
2

−
ω̂2

4

w̆1ðV−2
1 Þw̆3ðV−2

2 Þ − w̆1ðV−2
2 Þw̆3ðV−2

1 Þ
ðV1 − 1ÞðV2 − 1Þ

þ iω̂
2

�
w̆0
1ðV−2

1 Þw̆3ðV−2
2 Þ − w̆1ðV−2

2 Þw̆0
3ðV−2

1 Þ
V2
1ðV2 − 1Þ þ w̆1ðV−2

1 Þw̆0
3ðV−2

2 Þ − w̆0
1ðV−2

2 Þw̆3ðV−2
1 Þ

V2
2ðV1 − 1Þ

��
; ð70Þ

Tn ¼
Γ2ð−iω̂=2Þ
2Γð1 − iω̂ÞV

iω̂−2
1 V iω̂−1

2 ðV2
1 − 1Þ1−iω̂ðV2

2 − 1Þ

×
�
w̆0
1ðV−2

1 Þw̆0
3ðV−2

2 Þ − w̆0
1ðV−2

2 Þw̆0
3ðV−2

1 Þ
V2
1V

2
2

þ ω̂2

4

w̆1ðV−2
1 Þw̆3ðV−2

2 Þ − w̆1ðV−2
2 Þw̆3ðV−2

1 Þ
ðV1 − 1ÞðV2 þ 1Þ

−
iω̂
2

�
w̆0
1ðV−2

1 Þw̆3ðV−2
2 Þ − w̆1ðV−2

2 Þw̆0
3ðV−2

1 Þ
V2
1ðV2 þ 1Þ −

w̆1ðV−2
1 Þw̆0

3ðV−2
2 Þ − w̆0

1ðV−2
2 Þw̆3ðV−2

1 Þ
V2
2ðV1 − 1Þ

��
: ð71Þ

The modules of transformation coefficients jTpj and jTnj
together with the intermediate coefficients of wave excitation
in the transient zone jB1j and jB2j are shown in Fig. 6(b) as
functions of dimensionless frequency ω̂ for the particular
values of V1 ¼ 1.1 and V2 ¼ 1.9. Qualitatively similar
graphics were obtained for other values of V1 and V2. The
graphic of jΦðξÞj is the same as the graphic shown in Fig. 7(a)
for the case of scattering of the positive-energy incidentwave.
The transmission coefficients are again in consistency

with the energy flux conservation law which now has the
following form:

J ¼ −
2ω̂

V1

¼ −
2ω̂

V2

ðjTnj2 − jTpj2Þ

or jTnj2 − jTpj2 ¼
V2

V1

: ð72Þ

As follows from this equation, the energy flux J is
negative everywhere, and the negative-energy wave domi-
nates in the right domain [cf. lines 1 and 2 in Fig. 6(b)].
Both transmitted waves grow in such a manner that the
energy transmission factors [see Eq. (64)] obey the equality

WAVE SCATTERING IN SPATIALLY INHOMOGENEOUS … PHYSICAL REVIEW D 96, 064016 (2017)

064016-11



KTn − KTp ¼ 1. Thus, the negative-energy wave not only
dominates in the right domain but also carries a greater
energy flux than the incident wave. At a certain relation-
ship between V1 and V2 the energy fluxes of positive-
and negative-energy waves can be greater on absolute
value than that of the incident wave; then we have
KTn > KTp > 1.
In the long-wave approximation, ω̂ → 0, we obtain (see

Appendix C)

Tp ¼ −
1 − V1=V2

2V1=V2

; Tn ¼
1þ V1=V2

2V1=V2

;

KTp ¼ ð1 − V1=V2Þ2
4V1=V2

; KTn ¼
ð1þ V1=V2Þ2

4V1=V2

; ð73Þ

i.e., in comparison with Eqs. (65), the energy transmission
factors are interchanged. The values of transmission coef-
ficients are purely real, but now Tp < 0 and Tn > 0; they
are in agreement with results derived in Ref. [15].

3. Wave transformation in a decelerating
supercritical current

In the case of a decelerating supercritical current
(V1 > V2 > 1) the configuration of the incident wave
and current is the same as above in this subsection.
Again there is no reflected wave in the left domain
ξ < ξ1, and there are two transmitted waves in the right
domain ξ > ξ2.
The main equation describing wave propagation is the

same as Eq. (46) with only formal replacement of ω̂ by −ω̂.
The general solutions of the basic equation (8) in the left
and right domains beyond the interval ξ1 < ξ < ξ2 are the
same as in Eqs. (47) and (48), whereas in the transient
domain the solution is given by Eq. (52).
To calculate the transformation coefficients one can

repeat the simple but tedious calculations similar to those
presented above. The result shows that the expressions for
the transformation coefficients remain the same as in
Eqs. (61) and (62) for the incident wave of positive energy

and Eqs. (70) and (71) for the incident wave of negative
energy, but in both these cases ω̂ should be replaced by −ω̂
and w̆i by ŵi. The corresponding energy fluxes for the
incident waves of positive and negative energies conserve,
and Eqs. (63) and Eq. (72) remain the same in these
cases too.
The graphics of jΦðξÞj for the scattering of positive- and

negative-energy waves are also the same in the decelerating
currents. They are shown in Fig. 7(b) in Sec. IV B 1 for two
particular values of frequency, ω̂ ¼ 1 (line 1) and ω̂ ¼ 100
(line 2).

C. Wave transformation in transcritical accelerating
currents 0 < V1 < 1 < V2

The specific feature of a transcritical current is the
transition of the background current speed UðxÞ through
the critical wave speed c0. In this case the basic equation (8)
contains a singular point where V ¼ 1; therefore the
behavior of solutions in the vicinity of this point should
be thoroughly investigated.
The general solution of Eq. (8) in different intervals of

the ξ axis can be presented in the form

ΦðξÞ ¼ A1eiκ1ðξ−ξ1Þ þ A2e−iκ2ðξ−ξ1Þ; ξ < ξ1; ð74Þ

ΦðξÞ ¼ B1w2ðξ2Þ þ B2w3ðξ2Þ; ξ1 < ξ < 1; ð75Þ

ΦðξÞ ¼ ξiω̂½B̆1w̆1ðξ−2Þ þ B̆2w̆3ðξ−2Þ�; 1 < ξ < ξ2;

ð76Þ

ΦðξÞ ¼ C1eiκ3ðξ−ξ2Þ þ C2e−iκ4ðξ−ξ2Þ; ξ > ξ2; ð77Þ

where κ1¼ ω̂=ð1þV1Þ, κ2¼ ω̂=ð1−V1Þ, κ3¼ ω̂=ðV2þ1Þ,
and κ4 ¼ ω̂=ðV2 − 1Þ.
To pass through the singular point where VðξÞ ¼ 1, let us

consider the asymptotic behavior of solution ΦðξÞ in the
vicinity of the point ξ ¼ 1. To this end we use the formula
valid for j argð1 − xÞj < π (see [21], formula 9.131.2),

2F1ða; b; c; xÞ ¼
ΓðcÞΓðc − a − bÞ
Γðc − aÞΓðc − bÞ 2F1ða; b; aþ b − cþ 1; 1 − xÞ

þ ΓðcÞΓðaþ b − cÞ
ΓðaÞΓðbÞ ð1 − xÞc−a−b2F1ðc − a; c − b; c − a − bþ 1; 1 − xÞ: ð78Þ

With the help of this formula let us present the asymptotic expansion of functions (75) and (76), keeping only the leading
terms

ΦðξÞ ¼ B2 þ
Γðiω̂ÞB1

Γ2ð1þ iω̂=2Þ þ
Γð−iω̂ÞB1

Γ2ð1 − iω̂=2Þ ð1 − ξ2Þiω̂ þOð1 − ξ2Þ; ξ2 → 1−0; ð79Þ

ΦðξÞ ¼ B̆2 þ
Γð1þ iω̂ÞB̆1

2Γ2ð1þ iω̂=2Þ þ
Γð1 − iω̂ÞB̆1

2Γ2ð1 − iω̂=2Þ ðξ
2 − 1Þiω̂ þOðξ2 − 1Þ; ξ2 → 1þ0: ð80Þ
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As one can see from these formulas, for real ω̂ solutions
contain fast oscillating functions from both sides of a
singular point ξ2 ¼ 1, which correspond to B-waves,
propagating against the current; these functions, however,
remain finite. To match the solutions across the singular
point let us take into consideration a small viscosity in
Eq. (1),

∂u
∂t þ

∂ðUuÞ
∂x ¼ −g

∂η
∂xþ ν

∂2u
∂x2 ; ð81Þ

where ν is the coefficient of kinematic viscosity.
Because of this correction to Eq. (1) we obtain the

modified Eq. (8) for ΦðξÞ,

νV2
d3Φ
dξ3

þ Vð1 − V2 − iνω̂Þ d
2Φ
dξ2

− ½ð1þ V2ÞV 0 − 2iω̂V2� dΦ
dξ

þ Vω̂2Φ ¼ 0: ð82Þ

Introducing a new variable ζ ¼ ξ2 and bearing in mind
that VðξÞ ¼ ξ for the accelerating current, we rewrite
Eq. (82),

2νζ2
d3Φ
dζ3

þ ζ½1 − ζ þ ð3 − iω̂Þν� d
2Φ
dζ2

−
�
iνω̂
2

þ ð1 − iω̂Þζ
�
dΦ
dζ

þ ω̂2

4
Φ ¼ 0: ð83Þ

From this equation one can see that in the vicinity of the
critical point, where jζ − 1j ∼ ε ≪ 1, the viscosity plays an
important role, if ν ∼ ε2. Setting ν ¼ ε2=2 and ζ ¼ 1þ εz,
we obtain an equation containing the terms up to ε2,

ð1þ εzÞ2 d
3Φ
dz3

− ð1þ εzÞ
�
z −

3 − iω̂
2

ε

�
d2Φ
dz2

−
�
ð1 − iω̂Þð1þ εzÞ þ iω̂

4
ε2
�
dΦ
dz

þ εω̂2

4
Φ ¼ 0: ð84Þ

Looking for a solution to this equation in the form of
asymptotic series with respect to parameter ε, ΦðzÞ ¼
Φ0ðzÞ þ εΦ1ðzÞ þ � � �, we obtain in the leading order

d
dz

�
d2Φ0

dz2
− z

dΦ0

dz
þ iω̂Φ0

�
¼ 0: ð85Þ

Integration of this equation gives the second order
equation

d2Φ0

dz2
− z

dΦ0

dz
þ iω̂ðΦ0 −D0Þ ¼ 0; ð86Þ

where D0 is a constant of integration.
This equation reduces to the equation of a parabolic

cylinder with the help of ansatz Φ0ðzÞ ¼ ez
2=4GðzÞ þD0,

d2G
dz2

þ
�
iω̂þ 1

2
−
z2

4

�
G ¼ 0: ð87Þ

Two linearly independent solutions of this equation can
be constructed from the following four functions Diω̂ð�zÞ
and D−iω̂−1ð�izÞ (see [21], 9.255.1). Thus, in the vicinity
of the critical point ξ ¼ 1 the solution can be presented in
the form

Φ0ðzÞ ¼ D0 þ ez
2=4½D1Diω̂ðzÞ þD2Diω̂ð−zÞ�; ð88Þ

where D0, D1, and D2 are arbitrary constants.
This solution should be matched with the asymptotic

expansions (79) and (80) using the following asymptotics
of functions of the parabolic cylinder when jsj ≫ 1 (see
[21], 9.246):

DpðsÞ ∼ spe−s
2=4

2F0

�
−
p
2
;
1 − p
2

;−
2

s2

�
; j arg sj < 3π

4
; ð89Þ

DpðsÞ ∼ spe−s
2=4

2F0

�
−
p
2
;
1 − p
2

;−
2

s2

�
−

ffiffiffiffiffiffi
2π

p
eiπp

Γð−pÞ s−p−1es
2=4

2F0

�
p
2
;
1þ p
2

;
2

s2

�
; ð90Þ

DpðsÞ ∼ spe−s
2=4

2F0

�
−
p
2
;
1 − p
2

;−
2

s2

�
−

ffiffiffiffiffiffi
2π

p
e−iπp

Γð−pÞ s−p−1es
2=4

2F0

�
p
2
;
1þ p
2

;
2

s2

�
; ð91Þ

where Eq. (90) is valid for π=4 < arg s < 5π=4, and
Eq. (91) is valid for −5π=4 < arg s < −π=4.
With the help of these formulas it is easy to see that the

oscillating terms in expansions (79) and (80) should be

matched with the last two terms in Eq. (88) which,
however, grow infinitely (the former grows, when
z → −∞, and the latter, when z → þ∞). To remove
infinitely growing terms from the solution, we need to
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set D1 ¼ D2 ¼ 0 in Eq. (88), and then after the matching,
we obtain in Eqs. (79), (80) and (75), (76)

B1 ¼ B̆1 ¼ 0 and B2 ¼ B̆2 ¼ D0: ð92Þ
Notice that from the physical point of view the former

equality, B1 ¼ B̆1 ¼ 0, is just a consequence of the fact
mentioned in Sec. III that in the transcritical accelerating
current the Bwaves (i.e., countercurrent propagating waves
on the left of critical point and negative-energy waves on
the right of it) cannot reach the critical point.
After that, assuming that the incident wave arriving from

minus infinity has a unit amplitude A1 ¼ 1, using matching
conditions (10) and putting Tp ≡ C1, Tn ≡ C2, we obtain

B2w3ðV2
1Þ ¼ Rþ 1; ð93Þ

B2w0
3ðV2

1Þ ¼
−iω̂R

2V1ð1 − V1Þ
þ iω̂
2V1ð1þ V1Þ

;

ð94Þ

Tn þ Tp ¼ V iω̂
2 w̆3ðV−2

2 ÞB̆2; ð95Þ

ðV2 þ 1ÞTn − ðV2 − 1ÞTp ¼ 2i
ω̂
V iω̂−2
2 ðV2

2 − 1Þw̆0
3ðV−2

2 ÞB̆2:

ð96Þ

This set can readily be solved yielding the following
transformation coefficients:

R ¼ −
w0
3ðV2

1Þ − iω̂w3ðV2
1
Þ

2V1ð1þV1Þ

w0
3ðV2

1Þ þ iω̂w3ðV2
1
Þ

2V1ð1−V1Þ
; ð97Þ

B2 ¼ B̆2 ¼
Rþ 1

w3ðV2
1Þ
; ð98Þ

Tn ¼
i
ω̂
V iω̂−1
2 ðV2

2 − 1Þ
�
w̆0
3ðV−2

2 Þ
V2
2

−
iω̂
2

w̆3ðV−2
2 Þ

V2 þ 1

�
B2; ð99Þ

Tp ¼ −
i
ω̂
V iω̂−1
2 ðV2

2 − 1Þ
�
w̆0
3ðV−2

2 Þ
V2
2

þ iω̂
2

w̆3ðV−2
2 Þ

V2 − 1

�
B2:

ð100Þ
In the long-wave approximation, ω̂ → 0, we obtain (see

Appendix C)

R ¼ 1 − V1

1þ V1

; Tp ¼ V2 þ 1

V1 þ 1
; Tn ¼ −

V2 − 1

V1 þ 1
;

KTp;n ¼
V1

V2

�
V2 � 1

V1 þ 1

�
2

; ð101Þ

where in the last formula the plus sign pertains to the
positive- and the minus sign to the negative-energy trans-
mitted wave.

These values are purely real, R > 0 and Tp > 0, whereas
Tn < 0. The problem of surface wave transformation in a
duct with the stepwise change of cross-section and velocity
profile is undetermined for such current; therefore in
Ref. [15] one of the parameters, Rη—the reflection coef-
ficient in terms of free surface perturbation, was undefined.
Now from Eq. (101) it follows that the transformation
coefficients in terms of free surface perturbation in
Ref. [15] are Rη ¼ Tpη ¼ −Tnη ¼ 1 (for the relationships
between the transformation coefficients in terms of velocity
potential and free surface perturbation see Appendix A).
Because of the relationships between the coefficients

(92), the solution in the domain ξ1 < ξ < ξ2 is described by
the same analytical function w3ðξ2Þ≡ ξiω̂w̆3ðξ−2Þ [see
Eqs. (9) and (11) in Sec. 6.4 of the book [18]]. In the
result, the energy flux is still conserved despite a small
viscosity in the vicinity of the critical point ξ ¼ 1,

J ¼ 2ω̂

V1

ð1 − jRj2Þ ¼ 2ω̂

V2

ðjTpj2 − jTnj2Þ > 0

or V2ð1 − jRj2Þ ¼ V1ðjTpj2 − jTnj2Þ: ð102Þ

As one can see from these expressions, the energy flux in
the reflected wave by modulus is always less than in the
incident wave; therefore over-reflection here is not pos-
sible. In the meantime the energy transmission factors
KTp;n can be greater than 1; this implies that the over-
transmission can occur with respect to both positive- and
negative-energy waves.
The transformation coefficients jRj, jTpj, and jTnj

together with the intermediate coefficients of wave exci-
tation in the transient zone, jB2j ¼ jB̆2j, are presented
in Fig. 9 as functions of dimensionless frequency ω̂ for
the particular values of speed, V1 ¼ 0.1 and V2 ¼ 1.9.
Qualitatively similar graphics were obtained for other
values of V1 and V2.

FIG. 9. Modules of the transformation coefficients as functions
of dimensionless frequency ω̂ for V1 ¼ 0.1, V2 ¼ 1.9. Line 1:
jTpj. Line 2: jTnj. Line 3: jRj. Line 4: jB2j ¼ jB̆2j. Dashed line 5
represents the asymptotic for jTnj ∼ ω̂−1.
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Notice that both the transmission coefficient of negative-
energy wave jTnj and the reflection coefficient of positive-
energy wave jRj decay asymptotically with the same
rate ∼ω̂−1.
Figure 10 illustrates the dependences of energy trans-

mission factors on the frequency for two cases: (i) when
both KTp;n < 1 (V1 ¼ 0.1, V2 ¼ 1.9), and (ii) when both
KTp;n > 1 in a certain range of frequencies ω̂ < ω̂c

(V1 ¼ 0.9, V2 ¼ 8.0).
In Fig. 11 we present graphics of jΦðξÞj as per Eqs. (74)–

(77) for A1 ¼ 1, A2 ¼ R as per Eq. (97), D1 ¼ Tn as per
Eq. (99), and D2 ¼ Tp as per Eq. (100). Coefficients B1 ¼
B̆1 ¼ 0 as per Eq. (92) and B2 ¼ B̆2 are given by Eq. (98).
Line 1 in this figure pertains to the case when V1 ¼ 0.1,
V2 ¼ 1.9, and line 2 to the case when V1 ¼ 0.9, V2 ¼ 8.0.

D. Wave transformation in transcritical decelerating
currents V1 > 1 > V2 > 0

In this subsection we consider the wave transformation
in the gradually decelerating background current assuming
that the current is supercritical in the left domain and
subcritical in the right domain. For the sake of simplifi-
cation of hypergeometric functions used below we chose
again the coordinate frame such as shown in Fig. 1(b). In
such a current the transition through the critical point,
where VðξÞ ¼ 1, occurs at ξ ¼ −1.
In the left domain, where the current is supercritical, only

downstream propagating waves can exist, with the positive
or negative energy. In contrast to that, in the right domain,
where the background current is subcritical, two waves of
positive energy can coexist; one of them is cocurrent
propagating and another one is countercurrent propagating.
The general solution of Eq. (8) in the different domains

can be formally presented with the help of functions ~w as
per Eq. (22) and ŵ as per Eq. (53),

ΦðξÞ ¼ A1eiκ1ðξ−ξ1Þ þ A2eiκ2ðξ−ξ1Þ; ξ < ξ1; ð103Þ

ΦðξÞ ¼ð−ξÞ−iω̂½B̂1ŵ1ðξ−2Þ þ B̂2ŵ3ðξ−2Þ�; ξ1 < ξ < −1;

ð104Þ

ΦðξÞ ¼ B1 ~w2ðξ2Þ þ B2 ~w3ðξ2Þ; −1 < ξ < ξ2 < 0;

ð105Þ

ΦðξÞ ¼ C1eiκ3ðξ−ξ2Þ þ C2e−iκ4ðξ−ξ2Þ; ξ > ξ2; ð106Þ

where κ1¼ω̂=ðV1þ1Þ, κ2¼ω̂=ðV1−1Þ, κ3¼ω̂=ð1þV2Þ,
κ4 ¼ ω̂=ð1 − V2Þ.
The matching conditions at ξ ¼ ξ1 provide [cf. Eqs. (55)

and (56)]

A1 þ A2 ¼ V−iω̂
1 ½B̂1ŵ1ðV−2

1 Þ þ B̂2ŵ3ðV−2
1 Þ�; ð107Þ

ðV1 − 1ÞA1 − ðV1 þ 1ÞA2

¼ 2i
ω̂
V−iω̂−2
1 ðV2

1 − 1Þ½B̂1ŵ0
1ðV−2

1 Þ þ B̂2ŵ0
3ðV−2

1 Þ�: ð108Þ

And similarly the matching conditions at ξ ¼ ξ2 provide

C1 þ C2 ¼ B1 ~w2ðV2
2Þ þ B2 ~w3ðV2

2Þ; ð109Þ

ð1 − V2ÞC1 − ð1þ V2ÞC2

¼ 2i
ω̂
V2ð1 − V2

2Þ½B1 ~w0
2ðV2

2Þ þ B2 ~w0
3ðV2

2Þ�: ð110Þ

With the help of Eq. (78) we find the asymptotic
expansions when ξ → −1�0,

FIG. 11. Modules of function ΦðξÞ for wave scattering in
accelerating trans-critical current with V1 ¼ 0.1 and V2 ¼ 1.9
(line 1) and V1 ¼ 0.9 and V2 ¼ 8.0 (line 2). Dashed vertical lines
3 and 4 show the transition zone where the current accelerates
from V1 ¼ 0.1 to V2 ¼ 1.9, and dashed vertical lines 5 and 6
show the transition zone where the current accelerates from V1 ¼
0.9 to V2 ¼ 8.0. The plot was generated for ω̂ ¼ 1.

FIG. 10. The dependences of energy transmission factors on the
frequency (i) when both KTp < 1 (line 1) and KTn < 1 (line 2)
(here V1 ¼ 0.1, V2 ¼ 1.9); and (ii) when both KTp > 1 (line 3)
and KTn > 1 (line 4) in a certain range of frequencies ω̂ < ω̂c
(here V1 ¼ 0.9, V2 ¼ 8.0). Inclined dashed lines show the
asymptotic dependences KTn ∼ ω̂−2.
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ΦðξÞ ¼ B̂2 þ
Γð1 − iω̂ÞB̂1

2Γ2ð1 − iω̂=2Þ þ
Γð1þ iω̂ÞB̂1

2Γ2ð1þ iω̂=2Þ ðξ
2 − 1Þ−iω̂

þOðξ2 − 1Þ; ξ → −1−0; ð111Þ

ΦðξÞ ¼ B2 þ
Γð−iω̂ÞB1

Γ2ð1 − iω̂=2Þ þ
Γðiω̂ÞB1

Γ2ð1þ iω̂=2Þ ð1 − ξ2Þ−iω̂

þOð1 − ξ2Þ; ξ → −1þ0: ð112Þ

which are similar to Eqs. (79) and (80), and contain fast
oscillating terms corresponding to countercurrent propa-
gating B-waves as well.
To match solutions in the vicinity of critical point

ξ ¼ −1, we again take into consideration a small viscosity.
Bearing in mind that VðξÞ ¼ −ξ [see Fig. 1(b)] and setting
ζ ¼ ξ2 ¼ 1þ εz, ν ¼ ε2=2, we arrive at the equation
similar to Eq. (84),

ð1þ εzÞ2 d
3Φ
dz3

þ ð1þ εzÞ
�
zþ 3þ iω̂

2
ε

�
d2Φ
dz2

þ
�
ð1þ iω̂Þð1þ εzÞ þ iω̂

4
ε2
�
dΦ
dz

−
εω̂2

4
Φ ¼ 0: ð113Þ

This equation in the leading order on the small parameter
ε ≪ 1 reduces to [cf. Eq. (85)]

d
dz

�
d2Φ0

dz2
þ z

dΦ0

dz
þ iω̂Φ0

�
¼ 0: ð114Þ

Integrating this equation and substituting Φ0ðzÞ ¼
D0 þ e−z

2=4GðzÞ, we obtain again the equation of a para-
bolic cylinder in the form [cf. Eq. (115)]

d2G
dz2

þ
�
iω̂ −

1

2
−
z2

4

�
G ¼ 0: ð115Þ

Thus, the general solution to Eq. (114) in the vicinity of
critical point ξ ¼ −1 can be presented as

Φ0ðzÞ ¼ D0 þ e−z
2=4½D1Diω̂−1ðzÞ þD2Diω̂−1ð−zÞ�;

where D0, D1, and D2 are arbitrary constants.
The asymptotic expansions (89)–(91) show that this

solution remains limited for any arbitrary constants.
Moreover, the oscillatory terms in Eqs. (111) and (112)

become exponentially small after transition through the
critical point ξ ¼ −1. As was explained in Sec. III, this
means that the B-waves running toward the critical point
both from the left (negative-energy waves) and from the
right (countercurrent propagating positive-energy waves)
dissipate in the vicinity of the critical point. For this reason
the wave energy flux does not conserve in the decelerating
transcritical currents [see Eqs. (127) and (134) below].
Taking this fact into account, one can match solutions (111)
and (112),

D0 ¼
Γð−iω̂Þ

Γ2ð1 − iω̂=2ÞB1 þ B2 ¼
Γð1 − iω̂Þ

2Γ2ð1 − iω̂=2Þ B̂1 þ B̂2:

ð116Þ

After that, using the identity ΓðxÞΓð1 − xÞ ¼ π= sin πx,
we find for the constants D1 and D2 the following
expressions:

D1 ¼
−i

ffiffiffiffiffiffiffiffi
π=2

p
Γ2ð1þ iω̂=2Þ

e−iω̂ ln ε

sinh πω̂
B1;

D2 ¼
ω̂

ffiffiffiffiffiffiffiffi
π=2

p
2Γ2ð1þ iω̂=2Þ

e−iω̂ ln ε

sinh πω̂
B̂1: ð117Þ

Using the prepared formulas we can now calculate the
transformation coefficients for incident waves of either
positive or negative energy traveling in the duct from the
minus to plus infinity.

1. Transformation of downstream propagating
positive-energy wave

Assume first that the incident wave of unit amplitude
has positive energy, and let us set in Eqs. (103) and (106)
A1 ¼ 1, A2 ¼ 0, C1 ≡ T1, and C2 ¼ 0. Then from
Eqs. (107) and (108) we obtain [cf. Eqs. (55) and (56)]

B̂1ŵ1ðV−2
1 Þ þ B̂2ŵ3ðV−2

1 Þ ¼ V iω̂
1 ; ð118Þ

B̂1ŵ0
1ðV−2

1 Þ þ B̂2ŵ0
3ðV−2

1 Þ ¼ −
iω̂
2

V iω̂þ2
1

V1 þ 1
: ð119Þ

From this set of equations using the Wronskian (54), one
can find

B̂1 ¼ −
Γðiω̂=2ÞΓð1þ iω̂=2Þ

Γð1þ iω̂Þ V−iω̂−2
1 ðV2

1 − 1Þiω̂þ1

�
ŵ0
3ðV−2

1 Þ
V2
1

þ iω̂
2

ŵ3ðV−2
1 Þ

V1 þ 1

�
; ð120Þ

B̂2 ¼
Γðiω̂=2ÞΓð1þ iω̂=2Þ

Γð1þ iω̂Þ V−iω̂−2
1 ðV2

1 − 1Þiω̂þ1

�
ŵ0
1ðV−2

1 Þ
V2
1

þ iω̂
2

ŵ1ðV−2
1 Þ

V1 þ 1

�
: ð121Þ
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Similarly from the matching conditions (109) and (110) we obtain

B1 ~w2ðV2
2Þ þ B2 ~w3ðV2

2Þ ¼ T1; ð122Þ

B1 ~w0
2ðV2

2Þ þ B2 ~w0
3ðV2

2Þ ¼
−iω̂T1

2V2ð1þ V2Þ
: ð123Þ

Using the Wronskian (23), we derive from these equations

B1 ¼ −
Γ2ð1þ iω̂=2Þ
Γð1þ iω̂Þ ð1 − V2

2Þiω̂þ1

�
~w0
3ðV2

2Þ þ
iω̂
2

~w3ðV2
2Þ

V2ð1þ V2Þ
�
T1; ð124Þ

B2 ¼
Γ2ð1þ iω̂=2Þ
Γð1þ iω̂Þ ð1 − V2

2Þiω̂þ1

�
~w0
2ðV2

2Þ þ
iω̂
2

~w2ðV2
2Þ

V2ð1þ V2Þ
�
T1: ð125Þ

Substituting B1 and B2, as well as B̂1 and B̂2, in Eq. (116), we obtain the transmission coefficient

T1 ¼ −
2i
ω̂
V−iω̂−2
1

�
V2
1 − 1

1 − V2
2

�
iω̂þ1

ŵ0
1
ðV−2

1
Þ

V2
1

þ iω̂
2

ŵ1ðV−2
1
Þ

V1þ1
− Γð1−iω̂Þ

2Γ2ð1−iω̂=2Þ
h
ŵ0
3
ðV−2

1
Þ

V2
1

þ iω̂
2

ŵ3ðV−2
1
Þ

V1þ1

i

~w0
2ðV2

2Þ þ iω̂
2

~w2ðV2
2
Þ

V2ð1þV2Þ −
Γð−iω̂Þ

Γ2ð1−iω̂=2Þ
h
~w0
3ðV2

2Þ þ iω̂
2

~w3ðV2
2
Þ

V2ð1þV2Þ
i : ð126Þ

Calculations of the energy fluxes on each side of the
transient domain show that they are both positive, but
generally different; i.e., the energy flux does not conserve,

J1 ¼ Jðξ < −1Þ ¼ 2ω̂

V1

≠ J2 ¼ Jðξ > −1Þ ¼ 2ω̂

V2

jT1j2:

ð127Þ

This interesting fact can be explained by the partial wave
absorption in the critical point due to viscosity. The detailed
explanation of this is given in Sec. V. The difference in the
energy flux in the incident and transmitted waves is
independent of the viscosity, when ν → 0,

ΔJ ≡ J1 − J2 ¼ 2ω̂ð1=V1 − jT1j2=V2Þ

!ω̂→0 1 − V1V2

V1ð1þ V2Þ2
ðV1 − V2ÞJ1; ð128Þ

and it is easily seen that it can be both positive and negative.
In Fig. 12(a) we present the transmission coefficient jT1j

together with the intermediate coefficients of wave exci-
tation in the transient domain, jB1j, jB2j, jB̂1j, and jB̂2j, as
functions of dimensionless frequency ω̂ for the particular
values of current speed V1 ¼ 1.9 and V2 ¼ 0.1. As one can
see from this figure, the transmission coefficient gradually
increases with the frequency.
The graphic of jΦðξÞj is shown in Fig. 13 by lines 1

and 2. The plot was generated for ω̂ ¼ 1 on the basis of
solution Eqs. (103)–(106) with A1 ¼ 1, A2 ¼ 0, D1 ¼ T1

as per Eq. (126), and D2 ¼ 0. Coefficients B1 and B2 are

FIG. 12. Modules of the transmission coefficients jT1j [line 1 in
(a)] and jT2j [line 1 in (b)], as well as coefficients of wave
excitation in the transient domain, jB1j (line 2), jB2j (line 3), jB̂1j
(line 4), and jB̂2j (line 5), for the scattering of (a) positive-energy
wave and (b) negative-energy wave as functions of dimensionless
frequency ω̂ for V1 ¼ 1.9, V2 ¼ 0.1. Dashed line 6 in (b) repre-
sents the high-frequency asymptotic for jT2j ∼ ω̂−1.
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given by Eqs. (124) and (125), and coefficients B̂1 and B̂2

are given by Eqs. (120) and (121). The module of function
ΦðξÞ is discontinuous only in the critical point ξ ¼ −1, and
the phase of function ΦðξÞ quickly changes in the small
vicinity of this point.

2. Transformation of downstream propagating
negative-energy wave

Assume now that the incident wave is a unit amplitude
wave of negative energy and correspondingly set A1 ¼ 0,
A2 ¼ 1, C1 ¼ 0, and C2 ≡ T2. Then from Eqs. (107) and
(108) we obtain

B̂1ŵ1ðV−2
1 Þ þ B̂2ŵ3ðV−2

1 Þ ¼ V iω̂
1 ; ð129Þ

B̂1ŵ0
1ðV−2

1 Þ þ B̂2ŵ0
3ðV−2

1 Þ ¼ iω̂
2

V iω̂þ2
1

V1 − 1
: ð130Þ

From this set we find

B̂1 ¼ −
Γðiω̂=2ÞΓð1þ iω̂=2Þ

Γð1þ iω̂Þ V−iω̂−2
1 ðV2

1 − 1Þiω̂þ1

�
ŵ0
3ðV−2

1 Þ
V2
1

−
iω̂
2

ŵ3ðV−2
1 Þ

V1 − 1Þ
�
; ð131Þ

B̂2 ¼
Γðiω̂=2ÞΓð1þ iω̂=2Þ

Γð1þ iω̂Þ V−iω̂−2
1 ðV2

1 − 1Þiω̂þ1

�
ŵ0
1ðV−2

1 Þ
V2
1

−
iω̂
2

ŵ1ðV−2
1 Þ

V1 − 1Þ
�
: ð132Þ

From the matching conditions at ξ ¼ ξ2 [see Eqs. (109) and (110)] we obtain the similar expressions for the coefficients
B1 and B2 as in Eqs. (124) and (125) with the only replacement of T1 by T2. Substituting then all four coefficients B1, B2,
B̂1, and B̂2 in Eq. (116), we obtain the transmission coefficient T2,

T2 ¼ −
2i
ω̂
V−iω̂−2
1

�
V2
1 − 1

1 − V2
2

�
iω̂þ1

ŵ0
1
ðV−2

1
Þ

V2
1

− iω̂
2

ŵ1ðV−2
1
Þ

V1−1
− Γð1−iω̂Þ

2Γ2ð1−iω̂=2Þ
h
ŵ0
3
ðV−2

1
Þ

V2
1

− iω̂ŵ3ðV−2
1
Þ

2ðV1−1Þ
i

~w0
2ðV2

2Þ þ iω̂
2

~w2ðV2
2
Þ

V2ð1þV2Þ −
Γð−iω̂Þ

Γ2ð1−iω̂=2Þ
h
~w0
3ðV2

2Þ þ iω̂ ~w3ðV2
2
Þ

2V2ð1þV2Þ
i : ð133Þ

Calculations of the energy fluxes on each side of the
transient domain show that they are not equal again;
moreover, they have opposite signs in the left and right
domains,

J1 ¼ Jðξ < −1Þ ¼ −
2ω̂

V1

< 0;

J2 ¼ Jðξ > −1Þ ¼ 2ω̂

V2

jT2j2 > 0: ð134Þ

The wave of negative energy in the left domain prop-
agates to the right; its group velocity Vg is positive, but
because it has a negative energy E, its energy flux,
J ¼ EVg, is negative.

In the long-wave approximation, ω̂ → 0, we obtain (see
Appendix C)

T1 ¼
V2ðV1 þ 1Þ
V1ðV2 þ 1Þ ; T2 ¼

V2ðV1 − 1Þ
V1ðV2 þ 1Þ ;

KT1;T2 ¼
V2

V1

�
V1 � 1

V2 þ 1

�
2

; ð135Þ

where in the last formula the plus sign pertains to the
positive- and the minus sign to the negative-energy waves.
As one can see, the transmission coefficients are purely real
and positive, T1;2 > 0, in both cases.
The problem of surface wave transformation in a duct

with the stepwise change of cross-section and velocity
profile is undetermined for such current too; however, from

FIG. 13. Modules of function ΦðξÞ for wave scattering in
decelerating transcritical current with V1 ¼ 1.9 and V2 ¼ 0.1 for
ω̂ ¼ 1. Lines 1 and 2 pertain to the scattering of a positive-energy
incident wave, and lines 1 and 3 pertain to the scattering of a
negative-energy incident wave (line 1 is the same for both
positive- and negative-energy waves).
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the results obtained it follows that in terms of free surface
perturbation the transformation coefficients are

T1η ¼
V2

V1

�
V1 þ 1

V2 þ 1

�
2

; T2η ¼
V2

V1

V2
1 − 1

ðV2 þ 1Þ2 ð136Þ

(for the relationships between the transformation coeffi-
cients in terms of velocity potential and free surface
perturbation see Appendix A).
In Fig. 12(b) we present the transmission coefficient jT2j

together with the coefficients of wave excitation in the
intermediate domain, jB1j, jB2j, jB̂1j, and jB̂2j, as functions
of dimensionless frequency ω̂ for the particular values of
current speed V1 ¼ 1.9 and V2 ¼ 0.1. As one can see from
this figure, the transmission coefficient remains almost
constant for small frequencies when ω̂ < 1, then it
decreases with the frequency and asymptotically vanishes
as jT2j ∼ ω̂−1 when ω̂ → ∞.
The graphic of jΦðξÞj is shown in Fig. 13 by lines 1 and 3

[the left branches of function jΦðξÞj for the incident
negative- and positive-energy waves are the same]. The
plot was generated for ω̂ ¼ 1 on the basis of solution
Eqs. (103)–(106) with A1 ¼ 0, A2 ¼ 1, D1 ¼ 0, and D2 ¼
T2 as per Eq. (133). Coefficients B1 and B2 are given by
Eqs. (124) and (125), and coefficients B̂1 and B̂2 are given
by Eqs. (131) and (132). The module of function ΦðξÞ is
discontinuous only in the critical point ξ ¼ −1, but the
phase of function ΦðξÞ quickly changes in the small
vicinity of this point.

3. Transformation of a countercurrent propagating wave

Consider now the case when the incident wave prop-
agates against the mean current in the spatially variable
current from the right domain where the background
current is subcritical. There are no waves capable to
propagate against in the ξ < −1 domain where V > 1;
therefore there is no transmitted wave in this case.
However, the incident wave can propagate against the
current and even penetrate into the transient zone ξ1 < ξ <
ξ2 up to the critical point ξ ¼ −1 until the current remains
subcritical.
Because there are no waves in the domain ξ < −1, we

should set in Eqs. (103)–(106) A1 ¼ A2 ¼ B̂1 ¼ B̂2 ¼ 0,
C1 ≡ R, and C2 ¼ 1. Then the matching condition (116)
yields

B2 ¼ −
Γð−iω̂Þ

Γ2ð1 − iω̂=2ÞB1; ð137Þ

and from Eqs. (109) and (110) we obtain for the reflection
coefficient

R¼−
~w0
2ðV2

2Þ− iω̂
2

~w2ðV2
2
Þ

V2ð1−V2Þ−
Γð−iω̂Þ

Γ2ð1−iω̂=2Þ
h
~w0
3ðV2

2Þ− iω̂
2

~w3ðV2
2
Þ

V2ð1−V2Þ
i

~w0
2ðV2

2Þþ iω̂
2

~w2ðV2
2
Þ

V2ð1þV2Þ−
Γð−iω̂Þ

Γ2ð1−iω̂=2Þ
h
~w0
3ðV2

2Þþ iω̂
2

~w3ðV2
2
Þ

V2ð1þV2Þ
i :

ð138Þ

Then, from Eqs. (109) and (137) we find B1 and B2; in
particular, for B1 we obtain

B1 ¼
1þ R

~w2ðV2
2Þ − Γð−iω̂Þ

Γ2ð1−iω̂=2Þ ~w3ðV2
2Þ
: ð139Þ

Graphics of modulus of reflection coefficient jRj as well
as coefficients jB1j and jB2j are shown in Fig. 14 as
functions of dimensionless frequency ω̂ for the particular
values of V1 ¼ 1.9 and V2 ¼ 0.1.
In the long-wave approximation, ω̂ → 0, using the

asymptotics of hypergeometric function 2F1ða; b; c; dÞ
(see Appendix C), we obtain the limiting value of the
reflection coefficient

R ¼ 1 − V2

1þ V2

: ð140Þ

In terms of free surface perturbation this value corre-
sponds to Rη ¼ 1 (for the relationships between the trans-
formation coefficients in terms of velocity potential and
free surface perturbation see Appendix A). This formally
agrees with the solution found in Ref. [15].
In Fig. 15 we present graphics of jΦðξÞj as per

Eqs. (103)–(106) for A1 ¼ A2 ¼ 0, D1 ¼ 1, and D2 ¼ R
as per Eq. (138). Coefficients B1 and B2 are given by
Eqs. (139) and (137), and coefficients B̂1 ¼ B̂2 ¼ 0. A plot
was generated for three dimensionless frequencies: line 1:
for ω̂ ¼ 0.1; line 2: for ω̂ ¼ 1; and line 3: for ω̂ ¼ 100. The
phase of function ΦðξÞ infinitely increases when the
incident wave approaches the critical point ξ ¼ −1.

FIG. 14. Modulus of the reflection coefficients jRj (line 1)
and coefficients of wave excitation in the transient domain, jB1j
(line 2) and jB2j (line 3), as functions of dimensionless frequency
ω̂ for V1 ¼ 1.9, V2 ¼ 0.1. Dashed line 4 represents the high-
frequency asymptotic for jRj ∼ ω̂−1.
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The energy fluxes in the incident Ji and reflected Jr
waves in the right domain (ξ > ξ2) are

Ji ¼ −
2ω̂

V2

< 0; Jr ¼
2ω̂

V2

jRj2 > 0: ð141Þ

Thus, the total energy flux in the right domain ΔJ ≡
Ji − Jr ¼ −ð2ω̂=V2Þð1 − jRj2Þ < 0 is negative; it transfers
toward the critical point, where it is absorbed by the
viscosity.

V. DISCUSSION AND CONCLUSION

In this paper we have calculated the transformation
coefficients of shallow-water gravity waves propagating
on a longitudinally varying quasi-one-dimensional current.
Owing to the choice of a piece-linear velocity profile UðxÞ
[or, in the dimensionless variables, VðξÞ; see Fig. 1], we
were able to calculate analytically the scattering coeffi-
cients as functions of incident wave frequency ω̂ for
accelerating and decelerating sub-, super-, and transcritical
currents, as well as for all possible types of incident wave.
Presented analysis pertains to the dispersionless case

when the wavelengths of all waves participating in the
scattering process are much greater than the water depth in
the canal. However, the wavelengths λ can be comparable
with or even less than the characteristic length of current
inhomogeneity L. In the long-wave limit λ ≫ L, the
scattering coefficients are expressed through the simple
algebraic formulas which are in agreement with the for-
mulas derived in [15] for the case of abrupt change of canal
cross-section.
The most important property of scattering processes in

sub-, super-, and accelerating transcritical currents is that
the wave energy flux conserves, J ¼ const [see Eq. (6) and
the text below Eq. (8)]. This law provides a highly

convenient and physically transparent basis for the analysis
of wave scattering.
In the simplest case of subcritical currents [UðxÞ < c0, or

VðξÞ < 1], both accelerating and decelerating, all partici-
pating waves possess a positive energy, and the energy flux
of the unit amplitude incident wave (no matter whether
running from the left or from the right) is divided between
reflected and transmitted waves in such a manner that
jRj2 þ KT ¼ 1 [see Eqs. (34) and (33) for the wave running
from the left, and Eqs. (45) and (44) for the wave running
from the right].
In supercritical currents [VðξÞ > 1] there are positive-

and negative-energy waves both propagating downstream
but carrying energy fluxes of opposite signs. Propagating
through the inhomogeneity domain ξ1 < ξ < ξ2, they
transform into each other in such a way that the energy
flux of each wave grows in absolute value to the greater
extent the greater the velocity ratio is. As a result, at ξ > ξ2
the energy flux of each transmitted wave can become
greater (in absolute value) than that of the incident wave
(see Fig. 8). Quantitatively the increase of wave-energy
fluxes can be easily estimated in the low-frequency limit
using Eqs. (65) and (73).
The scattering process in accelerating transcritical cur-

rents (V1 < 1 < V2) looks like a hybrid with respect to
those in sub- and supercritical currents. The incident wave
can be the only cocurrent propagating wave of positive
energy. Initially, at ξ < ξ1, its energy flux (at unit ampli-
tude) J0 ¼ 2ω̂=V1, but in the domain ξ1 < ξ < 1 it partially
transforms into the countercurrent propagating reflected
wave, and at ξ ¼ 1 its energy flux is only J0ð1 − jRj2Þ [see
Eq. (102)]. Further, in the supercritical domain 1 < ξ < ξ2,
it generates a negative-energy wave, and the energy fluxes
of both waves grow in absolute value to the greater extent
the greater V2 is. And again this process can be better
understood in the low-frequency limit by means of
Eqs. (101).
The most interesting scattering processes take place in

decelerating transcritical currents (V1 > 1 > V2) where
B-waves (which are either countercurrent propagating
positive-energy waves or downstream propagating neg-
ative-energy waves; see Sec. III) run to the critical point
[where VðξÞ ¼ 1] and become highly oscillating in its
vicinity. For this reason we are forced to give up the model
of ideal fluid and to take into account an infinitesimal
viscosity in the neighborhood of the critical point. As a
result, the energy flux continues to conserve on the
left and right of the critical point, but changes in its
small vicinity. Let us illuminate the details of this
phenomenon.
Consider first an incident positive-energy F-wave arriv-

ing from the left. In the transient domain ξ1 < ξ < −1 it
partially transforms into the negative-energy B-wave. The
total wave flux conserves, whereas the energy flux of each
individual wave increases in absolute value up to the critical

FIG. 15. Module of function ΦðξÞ for a countercurrent propa-
gating incident wave which scatters in the decelerating tran-
scritical current with V1 ¼ 1.9 and V2 ¼ 0.1 for the particular
values of ω̂: line 1: ω̂ ¼ 0.1; line 2: ω̂ ¼ 1; and line 3: ω̂ ¼ 100.
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point (to a greater extent the greater V1 is). As follows from
the qualitative consideration on the basis of the JWKB
method (see Sec. III) and from exact analytical solutions
(see Sec. IV D), near the critical point the B-wave becomes
highly oscillating in space. This causes its absorption due to
viscosity; as will be shown below, the absorbtion is
proportional to ν=λ2. In contrast to that, the wavelength
of the cocurrent propagating F-wave does not change
significantly in the process of transition through the critical
point (see Sec. III); therefore the effect of viscosity onto this
wave is negligible. After transition this wave runs through
the nonunform subcritical domain −1 < ξ < ξ2 and parti-
ally transforms into another B-wave—a countercurrent
propagating wave of positive energy. This wave approach-
ing the critical point also becomes highly oscillating and
therefore absorbs in the vicinity of that point. The energy
flux of transmitted F-wave decreases proportional to V2.
The total change of energy flux in transition from
the incident to the transmitted wave is described by
Eqs. (128), and in the limit ω̂ → 0 is determined by the
product V1V2.
If the incident wave arriving from minus infinity is the

B-wave of negative energy carrying a negative-energy
flux [see J1 in Eq. (134)], then in the transient zone,
ξ1 < ξ < −1, it generates due to scattering on inhomo-
geneous current the F-wave of positive energy, so that
the wave fluxes of both waves grow in absolute value. The
B-wave absorbs due to viscosity in the vicinity of the
critical point ξ ¼ −1, whereas the F-wave freely passes
through this point with an insignificant change of its
wavelength. After passing through the critical point, the
F-wave generates in the domain −1 < ξ < ξ2 a new
B-wave of positive energy, which propagates a counter-
current toward the critical point and absorbs in its vicinity
due to viscosity. Therefore, the energy flux of the F-wave
increases first from zero at ξ ¼ ξ1 up to some maximal
value at ξ ¼ −1, then it decreases due to transformation of
wave energy into the B-wave to some value at ξ ¼ ξ2 [see
J2 in Eq. (134)], and then it remains constant. In the long-
wave approximation, ω̂ → 0, we obtain

ΔJ ≡ jJ2j − jJ1j ¼
�
V1

V2

jT2j2 − 1

�
jJ1j

¼ V2jJ1j
V1ð1þ V2Þ2

�
V2
1 − V1

�
4þ V2 þ

1

V2

�
þ 1

�
:

Analysis of this expression shows that because
V2 þ 1=V2 ≥ 2, then ΔJ can be positive (i.e., the energy
flux of the transmitted wave can be greater than the
energy flux of the incident wave by absolute value),
if V1 > 3þ 2

ffiffiffi
2

p
≈ 5.83.

If there are two incident waves arriving simultaneously
from minus infinity so that one of them has positive energy
and another one negative energy, then at some relationships

between their amplitudes and phases it may happen that in
the transient zone in front of the critical point the super-
position of these waves and scattered waves generated by
them can annihilate either the positive-energy F-wave or
negative-energy B-wave. In the former case it will not be a
transmitted wave behind the critical point, because the
B-wave in its vicinity completely absorbs (the “opacity”
phenomena occurs). In the latter case there is no negative-
energy B-wave on the left of the critical point; therefore
there is nothing to absorb, and the F-wave passes through
this point without loss of energy (we assume that the
viscosity is negligible). Further, the F-wave spends some
portion of its energy transforming into the countercurrent
propagating B-wave of positive energy which ultimately
dissipates in the vicinity of the critical point. Nevertheless,
the residual energy flux of transmitted wave at ξ > ξ2 turns
to be equal to the total energy flux of two incident waves at
ξ < ξ1, and in such a very particular case the energy flux
conserves.
Finally, if an incident B-wave of positive energy arrives

from plus infinity, then in the inhomogeneous zone,
−1 < ξ < ξ2, it generates a cocurrent propagating F-wave
of positive energy. The energy fluxes of both of these
waves have opposite signs and decrease in absolute
value as one approaches the critical point. In the critical
point the energy flux of F-wave vanishes, and the
remainder of the B-wave absorbs. In this case the less
the V2 the higher the reflection coefficient jRj is, and this
is especially clear in the low-frequency approximation;
see Eq. (140).
The analysis presented above is based on the fact that the

wavelengths of scattered waves drastically decrease in the
vicinity of a critical point, where VðξÞ ¼ 1. In such case
either the dispersion or the dissipation, or both of these
effects, may enter into play. We will show here that at
certain situations the viscosity can predominate over the
dispersion. Considering the harmonic solution ∼eiκξ of
Eq. (82) in the vicinity of a critical point and neglecting the
term ∼V 0, we obtain the dispersion relation extending (11).
In the dimensional form it is

ðω − kUÞ2 ¼ c20k
2 − iνk2ðω − kUÞ: ð142Þ

The solution to this equation for a small viscosity
νk ≪ c0 is

ω ¼ jc0 � Ujjkj − iνk2=2: ð143Þ

The viscosity effect becomes significant when the
imaginary and real parts of frequency become of the
same order of magnitude. This gives jkj ∼ 2jc0 �Uj=ν.
Multiplying both sides of this relationship by h, we obtain
jkjh ∼ 2hjc0 � Uj=ν. For the countercurrent propagating
B-wave jc0 − Uj → 0; therefore the product jkjh can be
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small despite the smallness on ν. So, the condition jkjh ∼
2hjc0 − Uj=ν ≪ 1 allows us to consider the influence of
viscosity in the vicinity of a critical point, whereas the
dispersion remains negligibly small. In the meantime, the
wavelength of cocurrent propagating F-wave does not
change dramatically in the process of transition through
the critical point (see Sec. III). For such a wave the viscosity
is significant when jkjh ∼ 2hðc0 þUÞ=ν ≫ 1 which cor-
responds to the deep-water approximation.
Notice in the conclusion that the wave-current interac-

tion in recent years became a very hot topic due to
applications both to the natural processes occurring in
the oceans and as a model of physical phenomena
closely related with the Hawking radiation in astrophysics
[1–5,9–11]. The influence of high-momentum dissipation
on the Hawking radiation was considered in astrophysical
application [22] (see also [23] where the dissipative fields
in de Sitter and black hole spacetimes metrics were studied
with application to the quantum entanglement due to pair
production and dissipation). The peculiarity of our paper
is in the finding of an exactly solvable model which enabled
us to construct analytical solutions and calculate the
scattering coefficients in the dispersionless limit. We have
shown, in particular, that in the case of accelerating
transcritical current both the reflection coefficient of
positive-energy wave and transmission coefficient of

negative-energy wave decrease asymptotically with the
frequency as jRj ∼ Tn ∼ ω̂−1. This can be presented in
terms of the Hawking temperature TH ¼ ð1=2πÞðdU=dxÞ
(see, e.g., [3,10]) and dimensional frequency ω as jRj∼
Tn ∼ 2πTH=ω.
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APPENDIX A: ENERGY FLUX CONSERVATION

Let us multiply Eq. (5) by the complex-conjugate
function φ̄ and subtract from the result complex-conjugate
equation:

φ̄

� ∂
∂tþ U

∂
∂x

��∂φ
∂t þ U

∂φ
∂x

�
− φ

� ∂
∂tþ U

∂
∂x

��∂φ̄
∂t þ U

∂φ̄
∂x

�
¼ c20U

�
φ̄

∂
∂x

�
1

U
∂φ
∂x

�
− φ

∂
∂x

�
1

U
∂φ̄
∂x

��
: ðA1Þ

Dividing this equation by U and rearranging the terms we present this equation in the form

∂
∂t

�
φ̄

U

�∂φ
∂t þU

∂φ
∂x

�
−
φ

U

�∂φ̄
∂t þU

∂φ̄
∂x

��
þ ∂
∂x

�
φ̄

�∂φ
∂t þU

∂φ
∂x

�
−φ

�∂φ̄
∂t þU

∂φ̄
∂x

�
−
c20
U

�
φ̄
∂φ
∂x −φ

∂φ̄
∂x

��
¼ 0: ðA2Þ

If we denote

E ¼ i
U

�
φ̄

�∂φ
∂t þ U

∂φ
∂x

�
− φ

�∂φ̄
∂t þU

∂φ̄
∂x

��
; ðA3Þ

J ¼ EU − i
c20
U

�
φ̄
∂φ
∂x − φ

∂φ̄
∂x

�
; ðA4Þ

then Eq. (A2) can be presented in the form of the
conservation law

∂E
∂t þ

∂J
∂x ¼ 0: ðA5Þ

For the waves harmonic in time, φ ¼ ΦðxÞe−iωt,
both E and J do not depend on time, and Eq. (A5)

reduces to J ¼ const. Substituting in Eq. (A4) written in
the dimensionless form solution (16) for ξ < ξ1 and
solution (18) for ξ > ξ2, after simple manipulations we
obtain

J ¼ 2ω̂

V1

ð1 − jRj2Þ; ξ < ξ1; ðA6Þ

J ¼ 2ω̂

V2

jTj2; ξ > ξ2: ðA7Þ

Equating J calculated in Eqs. (A6) and (A7), we obtain
the relationship between the transformation coefficients
presented in Eq. (34).
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Using then solution (17) for ξ1 < ξ < ξ2, we obtain

J ¼ 2ω̂jB1w2ðξ2Þ þ B2w3ðξ2Þj2
− 2ið1 − ξ2ÞfjB1j2½w0

2ðξ2Þw2ðξ2Þ − w0
2ðξ2Þw2ðξ2Þ� þ jB2j2½w0

3ðξ2Þw3ðξ2Þ − w0
3ðξ2Þw3ðξ2Þ�

þ B1B2½w0
2ðξ2Þw3ðξ2Þ − w2ðξ2Þw0

3ðξ2Þ� − B1B2½w0
2ðξ2Þw3ðξ2Þ − w2ðξ2Þw0

3ðξ2Þ�g ¼ const: ðA8Þ

It was confirmed by direct calculations with the solutions (16)–(18) that J is indeed independent of ξ for other given
parameters.
In a similar way, for the supercritical accelerating current one can obtain in the intermediate interval ξ1 < ξ < ξ2

J ¼ 2ω̂

ξ2
jB1w̆1ðξ−2Þ þ B2w̆3ðξ−2Þj2 −

2iðξ2 − 1Þ
ξ4

fjB1j2½w̆0
1ðξ−2Þw̆1ðξ−2Þ − w̆0

1ðξ−2Þw̆1ðξ−2Þ�

þ jB2j2½w̆0
3ðξ−2Þw̆3ðξ−2Þ − w̆0

3ðξ−2Þw̆3ðξ−2Þ� þ B1B2½w̆0
1ðξ−2Þw̆3ðξ−2Þ − w̆1ðξ−2Þw̆0

3ðξ−2Þ�
− B̄1B2½w̆0

1ðξ−2Þw̆3ðξ−2Þ − w̆1ðξ−2Þw̆0
3ðξ−2Þ�g ¼ const: ðA9Þ

Here the coefficients B1 and B2 should be taken either from
Eqs. (59) and (60) for the scattering of positive-energy
wave or from Eqs. (68) and (69) for the scattering of
negative-energy wave.
The transformation coefficients R and T were derived in

this paper in terms of the velocity potential φ. But they can
also be presented in terms of elevation of a free surface η.
Using Eq. (4) for x < x1 and the definition of φ just after
that equation, we obtain for a wave sinusoidal in space

ðω − k · U1Þη ¼ khu ¼ ihk2φ: ðA10Þ

Bearing in mind that according to the dispersion relation
ω − k · U1 ¼ c0jkj, we find from Eq. (A10)

φ ¼ −i
c0
hjkj η ¼ −i

c0ðc0 �U1Þ
hω

η; ðA11Þ

where the plus sign pertains to cocurrent propagating
incident wave and the minus sign to countercurrent
propagating reflected wave.
Similarly for the transmitted wave for x > x2 we derive

φ ¼ −i
c0ðc0 þ U2Þ

hω
η: ðA12Þ

Substitute expressions (A11) and (A12) for incident,
reflected, and transmitted waves into Eq. (34) and bear in
mind that R≡ φr=φi, T ≡ φt=φi, and ω and c0 are constant
parameters,

V2½ð1þ V1Þ2 − ð1 − V1Þ2jRηj2� ¼ V1ð1þ V2Þ2jTηj2;
ðA13Þ

where

Rη ≡ ηr
ηi

¼ 1þ V1

1 − V1

R and Tη ≡ ηt
ηi

¼ 1þ V1

1þ V2

T: ðA14Þ

In such form Eq. (34) represents exactly the conservation
of energy flux (see [14,15]).

APPENDIX B: DERIVATION OF MATCHING
CONDITIONS FOR EQ. (8)

To derive the matching conditions in the point ξ1, let us
present Eq. (8) in two equivalent forms,

��
V −

1

V

�
Φ
�00

−
��

1þ 1

V2

�
V 0Φ

�0
− 2iω̂Φ0 −

ω̂2

V
Φ ¼ 0;

ðB1Þ
��

V −
1

V

�
Φ0
�0
− 2iω̂Φ0 −

ω̂2

V
Φ ¼ 0: ðB2Þ

Let us multiply now Eq. (B2) by ζ ¼ ξ − ξ1 and integrate
it by parts with respect to ζ from −ε to ε,

�
ζ

��
V −

1

V

�
Φ0 − 2iω̂Φ

�
−
�
V −

1

V

�
Φ
�				

ε

−ε

þ
Z

ε

−ε

��
1þ 1

V2

�
V 0 þ 2iω̂ −

ω̂2

V
ζ

�
Φdζ ¼ 0: ðB3Þ

In accordance with our assumption about the velocity,
function VðζÞ is piece-linear, and its derivative is piece-
constant. Assuming that function ΦðζÞ is limited on the
entire ζ axis, jΦj ≤ M, whereM < ∞ is a constant, we see
that the integral term vanishes when ε → 0. The very first
term, which contains ζ in front of the curly brackets f� � �g,
also vanishes when ε → 0, and we have
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��
V −

1

V

�
Φ
�				

ε

−ε
¼ 0: ðB4Þ

This implies that ΦðζÞ is a continuous function in the
point ζ ¼ ζ1.
If we then integrate Eq. (B1) with respect to ζ in the same

limits as above, we obtain

��
V −

1

V

�
Φ0 − 2iω̂Φ

�				
ε

−ε
− ω̂2

Z
ε

−ε

ΦðζÞ
VðζÞ dζ ¼ 0: ðB5Þ

Under the same assumptions about functions VðζÞ and
ΦðζÞ, the integral term here vanishes when ε → 0 and we
obtain

��
V −

1

V

�
Φ0 − 2iω̂Φ

�
−ε

¼
��

V −
1

V

�
Φ0 − 2iω̂Φ

�
ε

:

ðB6Þ

Because of the continuity of functions VðζÞ and ΦðζÞ in
the point ζ ¼ ζ1, we conclude that the derivative Φ0ðζÞ is a

continuous function in this point too. The same matching
conditions can be derived for the point ξ2 as well.

APPENDIX C: THE TRANSFORMATION
COEFFICIENTS IN THE LONG-WAVE LIMIT

The long-wave approximation in the dispersionless case
considered here corresponds to the limit ω → 0. In such a
case the wavelength of each wave is much greater than the
length of the transient domain, λ ≫ L, so that the current
speed transition from the left domain ξ < ξ1 to the right
domain ξ > ξ2 can be considered as sharp and stepwise.
Then using the relationships (see [18])

2F1ða; b; b; sÞ ¼ ð1 − sÞ−a and

s2F1ð1; 1; 2; sÞ ¼ − ln ð1 − sÞ;

we can calculate functions (19) and (22), as well as (50) and
(53), and their derivatives and obtain in the leading order in
ω̂ the following asymptotic expressions (bearing in mind
that ζ ¼ ξ2 and η ¼ ξ−2):

w2ðζÞ ¼ − ln ð1 − ζÞ; w0
2ðζÞ ¼

1

1 − ζ
; w3ðζÞ ¼ 1; w0

3ðζÞ ¼ Oðω̂2Þ;

~w2ðζÞ ¼ − ln ð1 − ζÞ; ~w0
2ðζÞ ¼

1

1 − ζ
; ~w3ðζÞ ¼ 1; ~w0

3ðζÞ ¼ Oðω̂2Þ;

w̆1ðηÞ ¼ 1; w̆0
1ðηÞ ¼ −

iω̂
2

1

1 − η
; w̆3ðηÞ ¼ 1; w̆0

3ðηÞ ¼
iω̂
2η

;

ŵ1ðηÞ ¼ 1; ŵ0
1ðηÞ ¼

iω̂
2

1

1 − η
; ŵ3ðηÞ ¼ 1; ŵ0

3ðηÞ ¼ −
iω̂
2η

:

Using these formulas, one can readily calculate the limiting values of transformation coefficients in the long-wave
approximation when ω̂ → 0. Their values are presented in the corresponding subsections.
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