


i

The impacts of agricultural 

intensification on arthropod 

assemblages at global 

and local scales

Simon John Attwood (BSc Hons)

A thesis submitted for the award of 

Doctor of Philosophy

University of Southern Queensland

2009



ii

Abstract

Agriculture has often resulted in large-scale habitat loss and simplification of 

ecosystems and the loss of biological diversity. However, agricultural landscapes can 

also provide habitat for a wide range of species. Whilst ecological research has tended 

to focus on natural habitats or native habitat components situated in agricultural 

systems, there is a growing realisation that production land can play an important role 

in ecological processes and conservation outcomes. In this thesis I explored a number 

of questions pertaining to the relationship between agriculture and biodiversity:

1. What drives agricultural change and how have different global patterns of 

agricultural development impacted upon biological diversity?

2. How do abundance and richness of different arthropod taxa and feeding guilds 

respond to land-use change globally?

3. How and why do Formicidae populations and assemblages vary among 

different land uses in a heterogeneous agricultural landscape?

4. Do body-size and morphological features of Araneae, Coleoptera and 

Formicidae assemblages differ among different land uses in an agricultural 

landscape?

5. How do arthropod assemblages of crops differ depending on the type of 

habitat that borders the crop field?

6. Does the rate of pest-predation in cropping vary depending on the adjacent 

habitat type?

Agricultural land-use change is often driven by an interacting combination of 

biophysical factors and socio-economic and political factors, and frequently impacts 

negatively on biodiversity. In this study I identified four broad patterns of how 

agriculture can impact on biodiversity globally, related to the history of agriculture in 

a region, and the trajectory of agricultural management intensification.

The impact of agriculture and the utilisation of agricultural land uses by 

arthropods are of particular importance, given the role that arthropods can play in 

driving fundamental ecosystem processes and functions upon which healthy 
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agricultural systems depend. In order to examine global trends in responses of 

arthropod communities to land-use change, I undertook a series of meta-analyses 

incorporating data from over 250 studies from the scientific literature. From this I 

found that arthropod richness declined along a gradient of agricultural intensification 

from native vegetation to improved pasture, to reduced-input cropping, to intensive 

cropping. Within feeding guilds, both predators and decomposers exhibited this 

response, but not herbivores. The decline of arthropod richness was greater between 

native vegetation and agricultural land than it was between different categories of 

agricultural land, implying that on average, the retention of native vegetation may be 

a more effective strategy in maintaining arthropod species richness than wildlife-

friendly farming. However, low-intensity agricultural land uses were consistently 

more biodiverse than their intensive counterparts, indicating that wildlife-friendly 

farming may also be an effective conservation strategy where retaining native 

vegetation is not feasible or cost effective, or where native vegetation is already 

sufficiently protected or managed. 

Having identified a range of globally consistent patterns of arthropod assemblage 

responses to different agricultural land-use and management change scenarios, I 

examined these in a geographically localised context, in a heterogeneous mixed 

farming landscape in southern Queensland, Australia. I examined patterns of 

Formicidae abundance, richness, and assemblage composition in three land-use types 

(native woodland, grazed pastures and crops) and the interfaces between them. The 

patterns of richness decline amongst land-use types observed for ants in the field 

study were broadly similar to those found in the global analyses. However, whilst the 

native woodland sites were the most biodiverse and the intensively managed cropping 

was biologically very impoverished, the pasture treatment contributed to landscape-

level ant diversity in having a distinctive ant assemblage and several morphospecies 

restricted to this land-use type. This indicated that not only remnants of woody 

vegetation, but also elements of the agricultural matrix, should be considered in 

biodiversity management in agricultural landscapes.

I also examined if assemblages displayed different morphological trait patterns

among the land-use types, potentially due to the differing levels of habitat 

modification and disturbance in the land uses. There were more small-bodied beetles 

and spiders in intensively managed cropping areas than in pastures and woodlands, 

and the incidence of highly mobile macropterous beetles was greatest in intensively 
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managed cropping. This indicates that intensively managed land uses may create 

suitable conditions for, and confer an advantage on, taxa that have small body size 

and high degrees of vagility. Such findings could be attributable to a range of factors, 

such as highly vagile, winged taxa being better able to rapidly colonise crops 

following disturbance events.

The ecological influence of a land-use type can extend beyond its boundaries. I 

examined how arthropod assemblages differed in crop fields that were bordered by 

different habitats, and whether sites at the edge of the field differed in their 

assemblage to those in the interior. This was tested using pitfall trap stations at crop 

field edges and crop interiors that differed in whether they were bordered by a patch 

of native woodland/grassland or a linear grass strip. The richness, abundance and 

assemblage composition of ants was different at a cropping/woodland edge than it 

was between the edge formed by cropping and linear strips of vegetation. The ant 

assemblage in cropping field interiors differed depending upon which habitat type 

was adjacent to the field. Whilst I found differences in assemblage composition in 

cropping habitats, depending on whether the adjacent habitat type was native 

woodland or a linear grass strip, predation rates of Heliothis armigera (Lepidoptera: 

Noctuidae) eggs placed in crops bordered by different habitats did not differ. 

However, the distance from the edge (regardless of adjacent habitat type) did appear 

to influence predation rates, with removal of eggs being greater at the edges of crops 

than in the cropping field itself. This higher rate of egg predation appears to indicate

that predator densities may be higher at edge habitats than in crops, and therefore

edges may be important sources of predatory arthropods. 

This study has contributed to an understanding of how arthropod assemblages are 

shaped by different agricultural land uses and habitat types in a part of the world 

where European-style agriculture is a relatively recent introduction (‘frontier’ 

regions). From this study I conclude that agricultural landscapes in frontier regions

have considerable potential to support a range of arthropod groups, providing that 

they contain remnants of native vegetation, and some relatively low intensity land 

uses such as pastures. The distinct ant assemblages and treatment-specific taxa found 

in the pasture systems indicate that mixed-land use farming is likely to have greater 

biodiversity value than monocultural practices and hence should be encouraged at the 

policy and on-ground management levels. Furthermore, it appears that relatively low 

intensity habitat types such as the edges and boundaries of crops and other land-use 
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types may contribute to maintaining arthropod biodiversity and localised pest control 

potential. Finally, this study indicates that more attention given to examining the 

biodiversity attributes of agricultural land uses in frontier regions (where the focus of 

biodiversity research and conservation is often centred on remnants of native habitat 

rather than components of the agricultural matrix) may provide important insights 

into the roles that different farm environments can play in conserving biodiversity 

and maintaining ecosystem function.
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Chapter 1

Introduction—Agricultural 

development and its implications 

for biodiversity 

The sections of this chapter outlining historical development of European 

agriculture underpinned part of the published paper:

Attwood, S.J., Park, S.E., Maron, M., Collard, S.J., Robinson, D., Reardon-Smith, 

K.R.S. & Cockfield, G. (2009) Declining birds in Australian agricultural landscapes 

may benefit from some aspects of the European agri-environment model. Biological 

Conservation, 142, 1981–1991.
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1.1 Introduction

1.1.1 Preamble 

A typical agricultural field is brimming with life, a complex food chain that includes 

top-level predators and tiny, unheralded detritivores and fungivores. Whilst the 

incumbent fauna are generally small, often microscopic, the sheer numbers are 

staggering: a cubic metre of topsoil may contain 100,000 springtails (Larink, 1997), 

whilst an acre of pasture grassland may contain two million individual spiders 

(Bristowe, 1958; Wise, 1993), themselves devouring around 40 kg ha-1 yr-1 of prey 

(Kajak et al. 1971 in Nyfeller, 2000). 

The complex array and intricate spatial arrangement of land-use types and 

disturbance processes associated with mosaic agricultural landscapes results in an 

equally complex assemblage of arthropods. Whilst agricultural practices and land 

uses shape arthropod assemblages in many ways, arthropods also play fundamental 

roles in the ecosystem processes that drive and influence agricultural 

productionarthropods are predators, pests, soil engineers and pollinators. It is a 

need to understand the response of arthropod communities to different land-use types 

(along a disturbance/modification gradient from natural to intensive) and the 

implications of these responses for conservation of arthropod diversity and arthropod-

driven ecosystem processes that underpin much of this thesis. 

As this study analyses global as well as local data, and given the enormously 

influential nature of land-use history and trajectory on faunal associations in 

agricultural landscapes, the impacts of agriculture on biodiversity are better 

understood in the context of bio-geographical and socio-political drivers and 

characteristics. Consequently, in this chapter I will present an overview of 

agricultural development and drivers of land-use and management change, examine 

global variation in the complex agriculture/biodiversity relationship, and identify how 

such factors may impact on biological diversity globally.

1.1.2 The origins and prehistoric dispersal of agriculture

The transition from a hunter-gatherer niche to one based on settlement and the 

deliberate production of food (rather than its periodic and intermittent acquisition) 

was arguably the most pivotal advance of modern humans (Harris, 1996). The 
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development of agriculture liberated Homo sapiens from the need to locate and 

subdue or collect food and allowed longer periods of residency in the same locale. 

The area of resources needed to support a family or tribe was also greatly affected by 

the development of farming—from hunter-gatherer communities requiring several 

square kilometres to meet their resource requirements, to agrarian communities 

requiring only a few hectares (Bellwood, 2005).

This increase in resource productivity per unit area permitted an explosion in 

human populations. Estimates vary for different parts of the world, but Smith (1979, 

in Bellwood, 2005) suggests that the population of Southwest Asia may have 

increased from 100,000 to 5 million people between 8,000 and 4,000 BC. The 

societal impacts of such resource and population changes were considerable, and it 

has been hypothesised that agriculture formed the foundation upon which the 

‘modern’ template for civilisation was constructed (Tudge, 2004; Bellwood, 2005) 

and thus catalysed the accelerated development of technology, art and culture (Atahan 

et al. 2007). However, the processes by which the cultivation of plants and the 

domestication of animals developed, and indeed when this development occurred, 

continue to be a source of debate and evolving opinion (Vasey, 2002). 

It is thought that the cultivation of plants began in the Southwest Asian ‘fertile 

crescent’ (discernable via grains of wheat and barley different from those in the wild 

(Tudge, 2004)) and eastern Asia at the end of the last glacial maximum (the present 

interglacial beginning approximately 12,000 years BP). This development was 

determined to a considerable extent by two key elementsa change in climate to 

warm, wet and relatively stable conditions and the availability of wild food plants 

suitable for domestication (Bellwood, 2005; Atahan et al. 2007). Climatic conditions 

prior to this period would have been cold, dry and highly variable, and as such, any 

early attempts at cultivating and domesticating plants would eventually have failed 

(Bellwood, 2005). 

Whilst it would appear that farming has a number of advantages over hunting and 

gathering, Tudge (2004) offers evidence that early farmers were not necessarily better 

off than their hunter-gatherer ancestors—for instance, rudimentary agriculture is 

relatively labour-intensive compared to hunting in a prey-rich environment. Tudge 

proposes that communities that had previously feasted on the bountiful wild fauna 

and flora of what is now the Persian Gulf would have been forced to inhabit the more 

barren uplands as melting glaciers began to flood the lowland. With hunting grounds 
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submerged, they may have been forced into regularly cultivating the grasses that 

previously might only have a formed a limited part of their diet (and perhaps were 

sporadically cultivated). 

Regarding the relative benefits of farming and hunting/gathering, Diamond and 

Bellwood (2003) propose three compelling reasons why agriculture may be a highly 

effective strategy, and why it subsequently expanded to neighbouring communities: 

i) agriculture leads to higher and more predictable food yields per area of 

land, which can in turn support higher population densities, thus 

increasing the power, prestige and influence of a community; 

ii) agriculture enables populations to be relatively sedentary and thus able to 

accumulate food surpluses, which in turn enables them to advance 

technologically and develop a more complex social, political and military 

culture; 

iii) farmers, due to prolonged contact with domesticated stock that acted as 

vectors of disease, were able to acquire some level of immunity to 

diseases such as measles, whilst hunter-gatherer societies were less able to 

develop such immunity. 

There are numerous theories regarding the spread of agriculture, including the 

dispersal of Neolithic farmers from Southwest Asia into (for instance) Europe (demic 

diffusion), and the adoption of farming practices by neighbouring hunter-gatherer 

communities (cultural diffusion) (Harris, 1996). Whilst it is outside the scope of this 

thesis to consider critically the main competing theories, a review by Diamond and 

Bellwood (2003) encapsulates a number of the recent ideas. Their basic hypothesis is 

that food production based upon the domestication of wild plants and animals 

developed independently a number of times globally, and spread outwards due to the 

advantages that agriculture conveyed. The authors, using linguistic analyses as a 

basis, maintain that the agrarian societies gradually expanded and replaced hunter-

gatherer communities and their culture. This process would also have included some 

degree of interbreeding between hunter-gatherers and agriculturalists, some hunter-

gatherers occasionally adopting farming practices and occasional reversion of some 

farmers to a hunter-gatherer existence. Whatever the means of spread, by 

approximately 4,000 years BP, agriculture had expanded to five continents, had 

transformed the human world and would begin to transform the non-human world. 
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In more recent times, agriculture has expanded rapidly. Around 1700, there were 

approximately 300–400 million ha of cropland, which rose to an estimated 1500–

1800 million ha in 1990 (Lambin et al. 2003). The global area of permanent cropping 

and arable land increased by 11.3% between 1961 and 2003 (Food and Agriculture 

Organisation (FAOSTAT), 2008). However, this figure obscures the differing land-

use change trajectories between developed and developing nations. In developed 

nations there was a total decrease in arable land area of 6.8%, whereas developing 

nations reported an increase in area of 24% (FAOSTAT, 2008). These figures 

included 57.4% and 32% increases from 1961–2003 for Brazil and China 

respectively (FAOSTAT, 2008). Meanwhile, the total area under pasture increased 

from some 500 million ha in 1700 to about 3100 million ha in 1990 (Lambin et al. 

2003). The global area of permanent pasture increased by 9.1% between 1961 and 

2003 (FAOSTAT, 2008). Similar geo-political differences were observed for pasture 

as for cropping—in developed nations there was a total decrease in pasture land area 

of 2.6%, whereas developing nations reported an increase in area of 15.2% 

(FAOSTAT, 2008). Again, increases were considerably greater for both Brazil and 

China, with increases of 38% and 40.5% respectively (FAOSTAT, 2008). Conversion 

to pasture was largely at the expense of forests/woodlands and natural grasslands, 

steppes and savannas. Forest area was reduced from 5000–6200 million ha in 1700 to 

4300–5300 million ha in 1990, and grassland/steppe/savannah cover from 

approximately 3200 million ha in 1700 to around 1800–2700 million ha in 1990 

(Lambin et al. 2003). 

1.1.3 What drives agricultural land-use change?

There are many drivers of the historic spread and development of farming and 

associated spatio-temporal patterns of land-use change. However, they typically are 

related to a combination of the biophysical attributes of land (e.g. altitude, slope, or 

soil type) and social, economic and political factors (Veldkamp and Lambin, 2001). 

Biophysical attributes provide an explanation of why agriculture has a non-random 

distribution in the landscape, favouring lowlands, less-undulating terrain, and deeper, 

more productive soils, often resulting in native vegetation persisting in steeper, rocky 

areas. Lambin et al. (2001; 2003) greatly illuminated the underlying socioeconomic 

and political causes of several globally prevalent agricultural land-use change 

scenarios. For instance, tropical deforestation for agriculture is often attributed to 
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rapid population growth, poverty and shifting cultivation pressures, which are 

underpinned by changing economic opportunities, often triggered or supported by

government policies, settlement schemes, development projects or incentives and 

interests in plantation or extractive industry interests. Such drivers effectively lead to 

an opening up of forest frontiers through infrastructure development, population 

migration and displacement and disempowerment of indigenous peoples (Lambin et 

al. 2001; 2003).

Whilst agricultural expansion often involves the replacement or modification of 

native vegetation, agricultural intensification is the alteration, often through increased 

inputs per unit area, of management of land already used for farming. The 

intensification of agriculture, through a suite of processes such as increased agro-

chemical use, increased mechanisation, increased fertilisation and irrigation, pasture 

improvement and the development of new crop cultivars, has resulted in greatly 

increased yields (Matson et al. 1997; Tilman et al. 2001). For instance, cereal yields 

(kg/ha) increased globally by c. 240% between 1961 and 2006, with yields in the 

developing world increasing by c. 190% and yields in the developed world by c. 

275% during the same period (FAOSTAT, 2008). The causes of agricultural 

intensification include land scarcity, (often linked to high population growth/density)

and increased market demand for, and value of, particular agricultural products. This 

can lead to a need for increased production per hectare and/or an increased area of 

production (Lambin et al. 2003). 

Whilst the land-use changes discussed above are driven by national and regional 

influences, they are increasingly being driven by global dynamics, as global 

interconnectedness of economic and trade systems increases (Lambin et al. 2003). As 

such, land-use decisions and changes that previously operated at local scales are now 

determined by a wide range of global market, information, capital and policy 

processes (Yi et al. 2008).

1.2 Agriculture and biodiversity

1.2.1 Broad impacts of agricultural land-use change on biodiversity

1.2.1.1 Agriculture as a major threat to biodiversity

Land-use change from indigenous native vegetation systems to agricultural land 

exerts the greatest influence on biodiversity globally (Sala et al. 2000), with a broad 



7

swathe of taxa impacted, from birds (Waltert et al. 2004) to arthropods (Attwood et 

al. 2008 (Chapter 2 of thesis)). The loss of habitat is far from evenly distributed 

among habitat types, reflecting the productivity of the soil and the ease of conversion. 

For instance, a high percentage of tropical and sub-tropical dry broadleaved forests,

grasslands and savannas, which tend to occur on more fertile soils, have recently been 

converted or heavily modified for agriculture (Millennium Ecosystem Assessment, 

2005).

As introduced in section 1.1.3, there are two very broad ways in which agriculture 

can impact negatively upon biodiversity: i) the conversion of native vegetation to 

farmland, often causing substantial changes to vegetation structure and composition, 

soil processes, food chain interactions and a wide range of other physico-chemical 

and biological features and processes (Armbrecht and Perfecto, 2003; Waltert et al. 

2005; Yimer et al. 2007); and ii) changes to the management of land that has already 

been modified for agricultural production. This latter mechanism frequently manifests 

as an increase in the intensification of management and operates through processes 

such as increased agro-chemical input, mechanisation and system homogenisation 

and simplification (Benton et al. 2003). This results in a loss of resources for taxa 

dependent upon traditional agricultural management. However, changes to 

management can also entail the abandonment of extensively managed agricultural 

land, leading to a loss of species associated with early successional semi-natural 

habitats (Schmitt and Rákosy, 2007). 

The conversion of native systems to farmland today occurs primarily in tropical 

and sub-tropical regions (Green et al. 2005) and ecologically detrimental changes to 

existing farming systems are generally reported from the long-established, traditional 

farming systems in Europe. Despite this, there is an increasing realisation that the 

nature and intensity of agriculture and the presence or absence of particular 

agricultural land uses or features can have a considerable bearing upon biodiversity in 

more recently farmed regions such as Australia (Haslem and Bennett, 2008a; 2008b) 

and Costa Rica (Perfecto et al. 1997; Hughes et al. 2002; Sekercioglu et al. 2007). 

1.2.1.2 Agricultural expansion and coincidence with areas of high biodiversity

There is a considerable degree of coincidence between areas of high biodiversity,

human impacts and anthropogenic land-use change. In sub-Saharan Africa, there is a 

positive correlation between the species richness of birds, mammals, snakes and 



8

amphibians and human population density (Balmford et al. 2001). A similar 

relationship was found for neotropical bird richness and human population pressure 

(Fjeldså and Rahdek, 1998) and richness of plants, mammals, reptiles and amphibians 

and human population density in Europe (Araújo, 2003). Such spatial relationships

often lead to the coincidence of habitat loss and biodiversity (e.g. Balmford and 

Long, 1994), and agriculture is a prevalent land use in areas of considerable 

biodiversity value such as Endemic Bird Areas (Scharlemann et al. 2004). 

To explore and illustrate the relationship between biodiversity and agricultural 

production at the national scale, I investigated the relationships between three metrics 

of avian diversity (species richness, number of endemics and number of IUCN 

threatened species) and three measures of agricultural expansion and impact. 

Although my thesis is centered on arthropods, national species-level data for such 

groups are extremely sparse, whilst birds are among the most extensively studied and 

well-documented taxa. Lists of bird species richness data were compiled for each 

country using Avibase (Bird Studies Canada, 2008), which provides an account of the 

number of different bird species, number of endemic bird species and number of 

IUCN Threatened bird species recorded in each world country up to 2008 (see 

Appendix A.1). Data on cattle headage (absolute numbers to nearest thousand), total 

agricultural land area (hectares) and cropping land area (hectares) were generated for 

each country for the earliest available date (1961) and the most recent available date 

(2005) from FAO production data (FAOSTAT, 2008). Countries with <100,000 

hectares of production land were excluded from analyses, as very small changes in 

actual production area tended to give large percentage changes in land-use cover, thus 

potentially skewing results. I calculated the percentage change in each agricultural 

metric between 1961 and 2005 and performed a series of Spearman’s rho correlation 

tests to examine relationships between agricultural land-use trends expressed as 

percentage change in a given agricultural metric (e.g. percentage increase or decrease 

in number of cattle between 1961 and 2005) in a country and i) the total bird species 

richness, ii) number of endemic species and iii) number IUCN Threatened species in 

that country. 

Despite using data at a rather coarse grain (i.e. based upon national boundaries 

rather than on spatial location or biogeographical parameters) there was a high degree 

of coincidence between the measures of biodiversity value and agricultural expansion 

over the last four decades (Table 1.1). This was particularly evident for percentage 
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change in cattle headage and percentage change in agricultural land area, with 

countries that have high avian diversity, high numbers of endemics or many 

Threatened species, typically also exhibiting rapid rates of increase in cattle numbers 

and area of land under agricultural production. However, the relationship was far less 

evident for cropping (Table 1.1), with no correlation found between the increase in 

area of cropped land and number of endemics or number of threatened species. This 

implies that the spread of pasture has been far more pervasive than the spread of 

arable cultivation in nations with high biodiversity. In some regions, the conversion 

of native systems to agriculture appears to have decelerated, but this may be because 

so little habitat remains in many instances (Millennium Ecosystem Assessment, 

2005). Given the recent demands for biofuels, the trend for land conversion may 

accelerate in regions with suitable land remaining. 

This analysis indicates that for an important component of biological diversity, 

the threats from agricultural expansion (change in total agricultural area) and the 

expansion and intensification of cattle production (through increased pastoral area 

and/or increased headage per unit of area) continue to be significant global 

phenomena. Given there can be high correlation rates between bird hotspots and 

priority areas for other biodiversity (Brooks et al. 2001), applied research relating to 

biodiversity in agricultural systems globally is of paramount importance for 

informing both policy and management.
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Table 1.1. Spearman’s rho correlation results for three metrics of avian diversity at national scale 

(number of species, number of endemic species, number of threatened species) and three agricultural 

metrics (% change in cattle numbers, % change in area of agricultural land and % change in area of 

cropping). 

Biodiversity 

measure

Agricultural change measure Spearman’s 

Rho

d.f. P (two-

tailed)

% change in cattle headage (1961–2005) 0.308 134 0.001

% change in agricultural land area (1961–

2005)

0.309 138 0.001

Species richness

% change in cropped land area (1961–

2005)

0.286 133 0.001

% change cattle 0.551 134 0.001

% change agricultural land 0.402 138 0.001

Endemic species 

richness

% change cropping land 0.063 133 0.473

% change cattle 0.443 134 0.001

% change agricultural land 0.430 138 0.001

IUCN threatened 

species richness

% change cropping land -0.66 133 0.488

1.2.2 Global agricultural development scenarios and biodiversity impacts

It is evident from the literature and this analysis that agricultural land-use trends and 

impacts on biodiversity differ among world regions. In order to illuminate 

commonalities and differences in land-use trajectory and the likely implications for 

biodiversity, I consider four common scenarios of land-use change and biodiversity 

response. The four categories are: 

Traditional & intensive—regions with a long historic association with 

extensive/traditional agriculture that have subsequently experienced recent 

intensification of management (e.g. north-western Europe);

Traditional & abandoned—regions with a long historic association with 

extensive/traditional agriculture that have subsequently experienced recent land 

abandonment and succession (e.g. south-western Europe);

Frontier & extensive—regions with a relatively brief historic association with 

agriculture, managed extensively (e.g. some Central American coffee plantations).

Frontier & intensive—regions with a relatively brief historic association with 

agriculture, managed intensively (e.g. cropping systems of SE & SW Australia).
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1.2.2.1 Traditional & intensive (long history of traditional agriculture with recent 
intensification)

Figure 1.1a details the important changes in agricultural development and associated 

environmental impacts experienced in Britain and much of north-western Europe. 

This is a depiction of a long-farmed landscape, where a rich biota has adapted to, or 

followed the geographical advance of, extensively-practiced agriculture (Donald et al. 

2002). This long historical trend is followed by recent social, economic and political 

drivers, resulting in a broadscale shift to intensified, even industrialised, farming in a 

homogenised and uniform landscape. In seeking greatly increased productivity, 

enormous changes were wrought upon the traditional farming landscapes from WWII 

onwards (Robinson and Sutherland, 2002). For instance, between 1961 and 2006 

cereal yields per hectare increased by 300% in France, 270% in Germany and 230% 

in the UK (FAOSTAT, 2008). Changes to management and their consequences 

during this period include (Gillings and Fuller, 1998; Newton, 2004):

• Removal of habitat features such as hedgerows and other non-farmed habitats 

such as uncultivated field headlands and margins, small woodlands, ponds and 

ditches.

• The loss of species-rich habitats such as lowland grassland, calcareous 

grassland, fen and marshes.

• A switch from spring-sown to autumn-sown crops, resulting in reduced habitat 

suitability for a range of arable-dependent taxa.

• A loss of traditional cropping rotations and a specialisation of either cropping or 

grazing on farms that had formerly been mixed, thus reducing landscape 

heterogeneity and spatially segregating resources and habitats important to 

wildlife. 

• The intensification and productive improvement of grasslands, through nitrogen 

and phosphorus input, increased stocking rates, use of fewer stock breeds (and 

hence more homogeneous grazing strategies), the replacement of hay 

production with silage production and the cessation of seasonal grassland 

flooding.

• The increased use of agro-chemicals such as herbicides and insecticides, with 

concomitant effects on botanical diversity and invertebrate abundance and 

diversity.
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The impacts of this fifty-year wave of modernisation amount to both habitat loss 

(more on-farm land put into production) and habitat degradation (where changes to 

crop and grassland management result in loss of food resources and microhabitats) 

(Gillings and Fuller, 1998). This has resulted in population declines and local 

extinctions of a wide variety of taxa (Robinson and Sutherland, 2002), including 

plants (Green, 1990; Stoate et al. 2001), small mammals (Tew et al. 1992), birds 

(Gillings and Fuller, 1998; Newton, 2004) and invertebrates (Burel et al. 2004). 

Many of the species most severely impacted by these changes are those that are 

adapted to traditionally managed anthropogenic landscapes and land uses. These 

include open country specialists dependent upon a range of early- to mid-successional 

habitats (Sutherland, 2004), and species that have become gradually adapted over 

evolutionary time to low intensity farming. It is these ‘farmland specialists’ that have 

had food resources and habitat availability and suitability reduced by the recent 

advent of intensive agriculture.

The impacts of agricultural intensification on arthropods, whilst not commanding 

the same attention as impacts on farmland birds, have been considerable, if not 

greater (Thomas et al. 2004). For instance, a review of farming practice impacts on 

various arthropod groups indicated that insecticide commonly had detrimental 

impacts on non-target arthropods that can be beneficial to agriculture, such as carabid 

and staphylinid beetles, spiders and Hymenoptera. In another study, a move to 

monocultures impacted severely on beetles and spiders and intensive grazing or 

cutting of grass was shown to affect orthopterans detrimentally (Wilson et al. 1999). 

A host of other recent studies indicate that the intensification of agriculture and 

consequent habitat loss and deterioration are implicated in the declines of a wide 

range of taxa, including macro moths (Conrad et al. 2006), butterflies (Feber et al. 

2007; Schmitt and Rákosy, 2007) and dung beetles (Hutton and Giller, 2003). 

Impacts not only reduce arthropod diversity and abundance, but also affect fauna 

dependent upon arthropods for food (Wickramasinghe et al. 2004) and ecosystem 

services vital for human food production, such as pollination (Steffan-Dewenter and 

Westphal, 2008). 
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Agro-environmental timeline for British Isles – 8,000 yrs BC to present  (chronologically not to scale)

Period

Population

Milestones

Agricultural 
development

Environmental 
outcomes

Year
c.10,000 –
c.5,500 B.P.

4000+

Hunter-
gatherer 

Expand grassy 
areas for game 

Fire 
management 
of grass

Ring-barking 
trees

Climate 
warming 
& glacial 
retreat

Natural 
responses of 
veg to climate 
change (> 
deciduous 
woodland) 

Opening-up of 
vegetation

Natural & 
human 
processes

Mesolithic

c.5,500 B.P.

c.14,000

Introduction 
of agricultural 
practices 
from S & C 
Europe

Mixed 
farming 
adopted

Early 
cropping; 
stock (sheep 
& goats)

Woodland 
managed for 
grazing, 
fodder & 
poles

Neolithic

Devt. of 
small fields in 
woodland 
matrix

Land clearing 
increased

<mature 
trees, >open 
woodland 
structure

c.5,000 –
c.3,000 B.P.

‘tens of 
thousands’

First metal 
technology

Agriculture 
dominant way 
of life in 
lowland Britain

>range of 
crops

Intensification 
via manure 
application

Charcoal from 
woodland

> lowland 
vegetation 
clearing

Nutrient loss & 
soil erosion on 
cropping

Wild cattle 
extirpated; 
large mammal 
decline 

Moorland and 
heath devt.

Bronze Age

c.200,000 to c. 
2 million

c.2,800 B.P. 
– c.500 AD

Iron 
technology, 
Roman 
occupation & 
departure

Clearing of 
upland 
vegetation

By Iron Age, 
50% of 
Mesolithic 
woodland 
cleared

Increased 
‘edge’ habitat 
and associated 
fauna/flora

Well-planned, 
enclosed fields 
in crop 
rotation, 
pasture and 
woodland

Romans 
brought new 
crops and 
technology

Iron Age & 
Roman

550 – 1086

<1 million to 
1.75 million

Anglo-Saxon 
& Norman

Enclosed field 
system until 
post-Roman; 
open systems 
appeared in 
Dark Ages

Likely advance 
of farmland

Much of 
country well-
ordered rural 
landscape

Loss of 
woodland, 
heathland, 
wetlands; 
>woodland 
management

Extensive 
woodland in 
parts of 
England 
(c.15% cover 
in Domesday)

Domesday 
Charter, 
1086

1086 – 1700 

1.75 million to 
5 million

Agriculture 
expands

Advances –
e.g. water mill

Intensification -
new crops, 
legumes and 
fertilisation; 
yields up by 
1/3 from C15 
to C18

Wildwood gone, 
managed 
woodlands 
remain

Clearing of 
uplands (1600, 
Scotland ‘very 
denuded’)

c.10% woodland 
cover by 1350

Plague 
reduced 
European pop. 
by 35-40%

‘Little Ice Age’

Medieval and 
beyond

1700 - 1800

5 million to 9 
million

Beginnings 
of large scale 
fossil fuel 
use and 
industry

c. 4.5 million 
ha of crops 
and c.7 
million of 
pasture

Enclosure 
Act – 2800 
acts of 
enclosure 
1760-1850

>urban 
settlement

Last age of 
coppice, coal 
replaces 
charcoal

810,000 ha 
of woodland

Hedgerow 
planting 
accumulates 
biodiversity

Large losses 
of heathland

18th Century

1800 – 1900 

Transition 
to industrial 
society

Fossil fuel 
dominance

Intensification -
continuous 
crop rotations

Advances, e.g. 
steam 
ploughing

Arable covers 
6 million ha by 
1870

>urban 
settlement

Non-native 
forests 
plantations

Loss of 
wetlands and 
associated 
fauna (e.g. 
Ruff)

Increase in 
some birds –
e.g. skylark

9 million to 
32.5 million 

1900 - 1950 

19th Century

1950 -
present

Early 20th

Century
Late 20th

Century

32.5 million to 
c.50 million 

Two World Wars

Increased 
industrialisation 
& urbanization

Felling of 
woodland for 
WW, > 
forestry tree 
cover

Land use still 
mostly 
agricultural

Concern: 
demise of 
‘rural 
England’

Crop area 
fluctuates; 
intensified 
grazing

WWII – more 
tractors

Govt. 
payments 
and price 
intervention

Agro-
chemicals

c.50 million to 
c.59 million  

>public access to 
countryside; spread 
of suburbia; 
globalization; 
environmental 
movement

Agricultural 
intensification: > 
field size, hedge 
removal, > 
machinery, 
>chemical use, 
industrialized 
animal husbandry

Common 
Agricultural Policy

Production 
subsidies

Homogenised 
countryside & wildlife 
declines

Concern over 
environment and 
sustainability of 
farming

Agri-environmental 
payments

Interest in organic 
production
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fertilisation; 
yields up by 
1/3 from C15 
to C18

Wildwood gone, 
managed 
woodlands 
remain

Clearing of 
uplands (1600, 
Scotland ‘very 
denuded’)

c.10% woodland 
cover by 1350

Plague 
reduced 
European pop. 
by 35-40%

‘Little Ice Age’

Medieval and 
beyond

1700 - 1800

5 million to 9 
million

Beginnings 
of large scale 
fossil fuel 
use and 
industry

c. 4.5 million 
ha of crops 
and c.7 
million of 
pasture

Enclosure 
Act – 2800 
acts of 
enclosure 
1760-1850

>urban 
settlement

Last age of 
coppice, coal 
replaces 
charcoal

810,000 ha 
of woodland

Hedgerow 
planting 
accumulates 
biodiversity

Large losses 
of heathland

18th Century

1800 – 1900 

Transition 
to industrial 
society

Fossil fuel 
dominance

Intensification -
continuous 
crop rotations

Advances, e.g. 
steam 
ploughing

Arable covers 
6 million ha by 
1870

>urban 
settlement

Non-native 
forests 
plantations

Loss of 
wetlands and 
associated 
fauna (e.g. 
Ruff)

Increase in 
some birds –
e.g. skylark

9 million to 
32.5 million 

1900 - 1950 

19th Century

1950 -
present

Early 20th

Century
Late 20th

Century

32.5 million to 
c.50 million 

Two World Wars

Increased 
industrialisation 
& urbanization

Felling of 
woodland for 
WW, > 
forestry tree 
cover

Land use still 
mostly 
agricultural

Concern: 
demise of 
‘rural 
England’

Crop area 
fluctuates; 
intensified 
grazing

WWII – more 
tractors

Govt. 
payments 
and price 
intervention

Agro-
chemicals

c.50 million to 
c.59 million  

>public access to 
countryside; spread 
of suburbia; 
globalization; 
environmental 
movement

Agricultural 
intensification: > 
field size, hedge 
removal, > 
machinery, 
>chemical use, 
industrialized 
animal husbandry

Common 
Agricultural Policy

Production 
subsidies

Homogenised 
countryside & wildlife 
declines

Concern over 
environment and 
sustainability of 
farming

Agri-environmental 
payments

Interest in organic 
production

Agro-environmental timeline for British Isles – 8,000 yrs BC to present  (chronologically not to scale)

Period

Population

Milestones

Agricultural 
development

Environmental 
outcomes

Year
c.10,000 –
c.5,500 B.P.

4000+

Hunter-
gatherer 

Expand grassy 
areas for game 

Fire 
management 
of grass

Ring-barking 
trees

Climate 
warming 
& glacial 
retreat

Natural 
responses of 
veg to climate 
change (> 
deciduous 
woodland) 

Opening-up of 
vegetation

Natural & 
human 
processes

Mesolithic

c.5,500 B.P.

c.14,000

Introduction 
of agricultural 
practices 
from S & C 
Europe

Mixed 
farming 
adopted

Early 
cropping; 
stock (sheep 
& goats)

Woodland 
managed for 
grazing, 
fodder & 
poles

Neolithic

Devt. of 
small fields in 
woodland 
matrix

Land clearing 
increased

<mature 
trees, >open 
woodland 
structure

c.5,000 –
c.3,000 B.P.

‘tens of 
thousands’

First metal 
technology

Agriculture 
dominant way 
of life in 
lowland Britain

>range of 
crops

Intensification 
via manure 
application

Charcoal from 
woodland

> lowland 
vegetation 
clearing

Nutrient loss & 
soil erosion on 
cropping

Wild cattle 
extirpated; 
large mammal 
decline 

Moorland and 
heath devt.

Bronze Age

c.200,000 to c. 
2 million

c.2,800 B.P. 
– c.500 AD

Iron 
technology, 
Roman 
occupation & 
departure

Clearing of 
upland 
vegetation

By Iron Age, 
50% of 
Mesolithic 
woodland 
cleared

Increased 
‘edge’ habitat 
and associated 
fauna/flora

Well-planned, 
enclosed fields 
in crop 
rotation, 
pasture and 
woodland

Romans 
brought new 
crops and 
technology

Iron Age & 
Roman

550 – 1086

<1 million to 
1.75 million

Anglo-Saxon 
& Norman

Enclosed field 
system until 
post-Roman; 
open systems 
appeared in 
Dark Ages

Likely advance 
of farmland

Much of 
country well-
ordered rural 
landscape

Loss of 
woodland, 
heathland, 
wetlands; 
>woodland 
management

Extensive 
woodland in 
parts of 
England 
(c.15% cover 
in Domesday)

Domesday 
Charter, 
1086

1086 – 1700 

1.75 million to 
5 million

Agriculture 
expands

Advances –
e.g. water mill

Intensification -
new crops, 
legumes and 
fertilisation; 
yields up by 
1/3 from C15 
to C18

Wildwood gone, 
managed 
woodlands 
remain

Clearing of 
uplands (1600, 
Scotland ‘very 
denuded’)

c.10% woodland 
cover by 1350

Plague 
reduced 
European pop. 
by 35-40%

‘Little Ice Age’

Medieval and 
beyond

1700 - 1800

5 million to 9 
million

Beginnings 
of large scale 
fossil fuel 
use and 
industry

c. 4.5 million 
ha of crops 
and c.7 
million of 
pasture

Enclosure 
Act – 2800 
acts of 
enclosure 
1760-1850

>urban 
settlement

Last age of 
coppice, coal 
replaces 
charcoal

810,000 ha 
of woodland

Hedgerow 
planting 
accumulates 
biodiversity

Large losses 
of heathland

18th Century

1800 – 1900 

Transition 
to industrial 
society

Fossil fuel 
dominance

Intensification -
continuous 
crop rotations

Advances, e.g. 
steam 
ploughing

Arable covers 
6 million ha by 
1870

>urban 
settlement

Non-native 
forests 
plantations

Loss of 
wetlands and 
associated 
fauna (e.g. 
Ruff)

Increase in 
some birds –
e.g. skylark

9 million to 
32.5 million 

1900 - 1950 

19th Century

1950 -
present

Early 20th

Century
Late 20th

Century

32.5 million to 
c.50 million 

Two World Wars

Increased 
industrialisation 
& urbanization

Felling of 
woodland for 
WW, > 
forestry tree 
cover

Land use still 
mostly 
agricultural

Concern: 
demise of 
‘rural 
England’

Crop area 
fluctuates; 
intensified 
grazing

WWII – more 
tractors

Govt. 
payments 
and price 
intervention

Agro-
chemicals

c.50 million to 
c.59 million  

>public access to 
countryside; spread 
of suburbia; 
globalization; 
environmental 
movement

Agricultural 
intensification: > 
field size, hedge 
removal, > 
machinery, 
>chemical use, 
industrialized 
animal husbandry

Common 
Agricultural Policy

Production 
subsidies

Homogenised 
countryside & wildlife 
declines

Concern over 
environment and 
sustainability of 
farming

Agri-environmental 
payments

Interest in organic 
production

Fig. 1.1.a Chronological sequence of agricultural and land-use development, and the environmental consequences for the British Isles. The region has a long history of 
traditional agricultural practices, whilst experiencing recent intensification. Based on information from Rackham, 1986; Buckland and Dinnin, 1993; Simmons, 2001. 
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Environmental 
outcomes

Agro-environmental timeline for Australia – 60,000 yrs BP to present  (chronologically not to scale)

Period

Population

Milestones

Agricultural 
development

Year
c.60,000 –
45,000 B.P.

Possibly 100,000 
in late Pleistocene

Hunter-gatherer 
(marine/littoral 
initially)

Sea-level rise 
forced adaptation 
to inland systems

First humans. 
Climate change, 
sea-level rise, 
drying of interior

Natural responses of 
vegetation to climate 
change. Extinction of 
much of large-bodied 
megafauna – 85% of 
fauna >44kg extinct, all 
marsupials >100kg 
extinct

Late 
Pleistocene

c.10,000 B.P.

?

Aboriginal 
occupation of 
much of 
continent

Rising sea levels

Fire-stick ‘farming’ –
seasonal selective burning 
of vegetation creates 
mosaic of successional
stages, promotes fauna –
analogous to crop rotation

Knowledge of spatio-
temporal availability of and 
management of resources

Holocene

Vegetation systems influenced by 
anthropogenic burning (shift from 
fire-sensitive to fire-promoting 
species)

Reduced transpiration and 
reduced rainfall

Human populations limited by 
ecological constraints, e.g. 
climatic and physico-chemical 
constraints

Tasmania cut-off (sea-level rise)

1788 - 1800

Estimated 6-700,000 
Aborigines; ? 
Europeans

European settlement; 

Displacement of 
Indigenous populations 
Introduction of disease 
(e.g. small pox)

Initial introduction of 
domestic stock and 
small-scale cropping. 
Small scale vegetation 
clearing

Convicts generally from 
urban environs, no 
experience of farming. 
Very real prospect of 
starvation for settlers

Late 18th Century

1800 – 1900 

Greatly increased European 
settlement

< Aboriginal populations

Land clearing, urban devt.

Broad loss, fragmentation 
and degradation of 
woodlands and forests

Altered fire regimes –
<frequent, >intensive

Altered vegetation 
composition and soil 
erosion from grazing

Fauna declines & 
extinctions

?/? 

1900 - 1950 

19th Century Early 20th

Century
Late 20th

Century

Aboriginal 
67,000; ? 
European

Two World Wars

Increased 
industrialisation 
& urbanization

Large-scale habitat loss, 
degradation, species 
decline and extinction

Soil erosion

>species adapted to 
open agricultural 
environments

Establishment of feral 
animal and pest plant 
populations

Post-WWI – soldier 
settlements on 
marginal lands

WWII – >use of 
machinery

Increased cropping

Increase in national 
parks and reserves

6,000-4,000 B.P. 
(continuing to 
18th C)

Uncertain, but > due to  
hunting technology and 
favourable climate

Sustainable 
management of 
resources continued, 
but more effective 
hunting techniques 
(hunting with dogs, 
stone weapons) and 
higher human 
population densities

Devt. stone tools, 
introduction of dingo, 
human population 
increase

Mainland faunal 
continental extinctions 
– e.g. thylacine, 
Tasmanian Devil

These species 
persisted on 
Tasmania, where 
dingo absent

Holocene 
to 18th C

Bush very hard to 
clear by hand and 
farming very 
rudimentary –
impacts very 
localised

Cessation of aboriginal 
land management

Broad establishment of 
cropping and grazing 
systems

Irrigation enables 
expansion of agriculture

Wool exportation – 16 
million sheep by 1849

1950 - present 

c.20 million; 
86% in urban 
centres

Vast scale of land clearing

Urban and suburban devt. 

Environmental movement; land 
clearing legislation; Aboriginal 
land rights

Agricultural intensification 
(machinery; irrigation; agro-
chemicals; intensive animal 
industries)

1990s: Landcare movement, 
focus on sustainable production 
and natural resource 
management

Increased conservation on 
private land

Massive habitat loss – 1962-75, 
1.5m ha of Brigalow woodland 
cleared for agriculture

Pop. declines and local 
extinctions

Continued remnant habitat 
degradation and agricultural 
matrix intensification

Nationwide community projects 
aimed at ameliorating impacts

Environmental 
outcomes
Environmental 
outcomes
Environmental 
outcomes

Agro-environmental timeline for Australia – 60,000 yrs BP to present  (chronologically not to scale)

Period

Population

Milestones

Agricultural 
development

Year
c.60,000 –
45,000 B.P.

Possibly 100,000 
in late Pleistocene

Hunter-gatherer 
(marine/littoral 
initially)

Sea-level rise 
forced adaptation 
to inland systems

First humans. 
Climate change, 
sea-level rise, 
drying of interior

Natural responses of 
vegetation to climate 
change. Extinction of 
much of large-bodied 
megafauna – 85% of 
fauna >44kg extinct, all 
marsupials >100kg 
extinct

Late 
Pleistocene

c.10,000 B.P.

?

Aboriginal 
occupation of 
much of 
continent

Rising sea levels

Fire-stick ‘farming’ –
seasonal selective burning 
of vegetation creates 
mosaic of successional
stages, promotes fauna –
analogous to crop rotation

Knowledge of spatio-
temporal availability of and 
management of resources

Holocene

Vegetation systems influenced by 
anthropogenic burning (shift from 
fire-sensitive to fire-promoting 
species)

Reduced transpiration and 
reduced rainfall

Human populations limited by 
ecological constraints, e.g. 
climatic and physico-chemical 
constraints

Tasmania cut-off (sea-level rise)

1788 - 1800

Estimated 6-700,000 
Aborigines; ? 
Europeans

European settlement; 

Displacement of 
Indigenous populations 
Introduction of disease 
(e.g. small pox)

Initial introduction of 
domestic stock and 
small-scale cropping. 
Small scale vegetation 
clearing

Convicts generally from 
urban environs, no 
experience of farming. 
Very real prospect of 
starvation for settlers

Late 18th Century

1800 – 1900 

Greatly increased European 
settlement

< Aboriginal populations

Land clearing, urban devt.

Broad loss, fragmentation 
and degradation of 
woodlands and forests

Altered fire regimes –
<frequent, >intensive

Altered vegetation 
composition and soil 
erosion from grazing

Fauna declines & 
extinctions

?/? 

1900 - 1950 

19th Century Early 20th

Century
Late 20th

Century

Aboriginal 
67,000; ? 
European

Two World Wars

Increased 
industrialisation 
& urbanization

Large-scale habitat loss, 
degradation, species 
decline and extinction

Soil erosion

>species adapted to 
open agricultural 
environments

Establishment of feral 
animal and pest plant 
populations

Post-WWI – soldier 
settlements on 
marginal lands

WWII – >use of 
machinery

Increased cropping

Increase in national 
parks and reserves

6,000-4,000 B.P. 
(continuing to 
18th C)

Uncertain, but > due to  
hunting technology and 
favourable climate

Sustainable 
management of 
resources continued, 
but more effective 
hunting techniques 
(hunting with dogs, 
stone weapons) and 
higher human 
population densities

Devt. stone tools, 
introduction of dingo, 
human population 
increase

Mainland faunal 
continental extinctions 
– e.g. thylacine, 
Tasmanian Devil

These species 
persisted on 
Tasmania, where 
dingo absent

Holocene 
to 18th C

Bush very hard to 
clear by hand and 
farming very 
rudimentary –
impacts very 
localised

Cessation of aboriginal 
land management

Broad establishment of 
cropping and grazing 
systems

Irrigation enables 
expansion of agriculture

Wool exportation – 16 
million sheep by 1849

1950 - present 

c.20 million; 
86% in urban 
centres

Vast scale of land clearing

Urban and suburban devt. 

Environmental movement; land 
clearing legislation; Aboriginal 
land rights

Agricultural intensification 
(machinery; irrigation; agro-
chemicals; intensive animal 
industries)

1990s: Landcare movement, 
focus on sustainable production 
and natural resource 
management

Increased conservation on 
private land

Massive habitat loss – 1962-75, 
1.5m ha of Brigalow woodland 
cleared for agriculture

Pop. declines and local 
extinctions

Continued remnant habitat 
degradation and agricultural 
matrix intensification

Nationwide community projects 
aimed at ameliorating impacts

Agro-environmental timeline for Australia – 60,000 yrs BP to present  (chronologically not to scale)

Period

PopulationPopulation

MilestonesMilestones

Agricultural 
development
Agricultural 
development

Year
c.60,000 –
45,000 B.P.

Possibly 100,000 
in late Pleistocene

Hunter-gatherer 
(marine/littoral 
initially)

Sea-level rise 
forced adaptation 
to inland systems

First humans. 
Climate change, 
sea-level rise, 
drying of interior

Natural responses of 
vegetation to climate 
change. Extinction of 
much of large-bodied 
megafauna – 85% of 
fauna >44kg extinct, all 
marsupials >100kg 
extinct

Late 
Pleistocene

c.10,000 B.P.

?

Aboriginal 
occupation of 
much of 
continent

Rising sea levels

Fire-stick ‘farming’ –
seasonal selective burning 
of vegetation creates 
mosaic of successional
stages, promotes fauna –
analogous to crop rotation

Knowledge of spatio-
temporal availability of and 
management of resources

Holocene

Vegetation systems influenced by 
anthropogenic burning (shift from 
fire-sensitive to fire-promoting 
species)

Reduced transpiration and 
reduced rainfall

Human populations limited by 
ecological constraints, e.g. 
climatic and physico-chemical 
constraints

Tasmania cut-off (sea-level rise)

1788 - 1800

Estimated 6-700,000 
Aborigines; ? 
Europeans

European settlement; 

Displacement of 
Indigenous populations 
Introduction of disease 
(e.g. small pox)

Initial introduction of 
domestic stock and 
small-scale cropping. 
Small scale vegetation 
clearing

Convicts generally from 
urban environs, no 
experience of farming. 
Very real prospect of 
starvation for settlers

Late 18th Century

1800 – 1900 

Greatly increased European 
settlement

< Aboriginal populations

Land clearing, urban devt.

Broad loss, fragmentation 
and degradation of 
woodlands and forests

Altered fire regimes –
<frequent, >intensive

Altered vegetation 
composition and soil 
erosion from grazing

Fauna declines & 
extinctions

?/? 

1900 - 1950 

19th Century Early 20th

Century
Late 20th

Century

Aboriginal 
67,000; ? 
European

Two World Wars

Increased 
industrialisation 
& urbanization

Large-scale habitat loss, 
degradation, species 
decline and extinction

Soil erosion

>species adapted to 
open agricultural 
environments

Establishment of feral 
animal and pest plant 
populations

Post-WWI – soldier 
settlements on 
marginal lands

WWII – >use of 
machinery

Increased cropping

Increase in national 
parks and reserves

6,000-4,000 B.P. 
(continuing to 
18th C)

Uncertain, but > due to  
hunting technology and 
favourable climate

Sustainable 
management of 
resources continued, 
but more effective 
hunting techniques 
(hunting with dogs, 
stone weapons) and 
higher human 
population densities

Devt. stone tools, 
introduction of dingo, 
human population 
increase

Mainland faunal 
continental extinctions 
– e.g. thylacine, 
Tasmanian Devil

These species 
persisted on 
Tasmania, where 
dingo absent

Holocene 
to 18th C

Bush very hard to 
clear by hand and 
farming very 
rudimentary –
impacts very 
localised

Cessation of aboriginal 
land management

Broad establishment of 
cropping and grazing 
systems

Irrigation enables 
expansion of agriculture

Wool exportation – 16 
million sheep by 1849

1950 - present 

c.20 million; 
86% in urban 
centres

Vast scale of land clearing

Urban and suburban devt. 

Environmental movement; land 
clearing legislation; Aboriginal 
land rights

Agricultural intensification 
(machinery; irrigation; agro-
chemicals; intensive animal 
industries)

1990s: Landcare movement, 
focus on sustainable production 
and natural resource 
management

Increased conservation on 
private land

Massive habitat loss – 1962-75, 
1.5m ha of Brigalow woodland 
cleared for agriculture

Pop. declines and local 
extinctions

Continued remnant habitat 
degradation and agricultural 
matrix intensification

Nationwide community projects 
aimed at ameliorating impacts

Fig. 1.1.b Chronological sequence of agricultural and land-use development and environmental consequences for Australia. The region has a short history of agriculture, with 
recent intensification. Based on Flannery, 1994; Roberts et al. 2001; Dodson and Mooney 2002; Johnson and Wroe, 2003; Prideaux et al. 2007; Bryce Barker pers. comm. 
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1.2.2.2 Traditional & abandoned (long history of traditional agriculture with recent 
land abandonment)

The demise of traditional farmland and its characteristic fauna and flora due to the 

intensification of management practices has received a great deal of consideration 

from researchers, politicians, the media and the wider public. On the other hand, the 

issue of the deterioration of traditionally managed agro-ecosystems due to the 

abandonment of the land has received rather less attention. For instance, in Europe, 

habitats exist in many cases because of rather than despite traditional agricultural 

management (Sutherland, 2004). Accordingly, many species are dependent upon the 

maintenance of this relatively low-intensity anthropogenic intervention to maintain a 

diverse mosaic of early- to mid-successional habitats (Sutherland, 2004). 

The abandonment of agricultural land may be attributed to a range of factors, 

including reform of the Common Agricultural Policy, EU expansion, the break-up of 

large collective or state farms, demographic shifts in the farming community, rural 

unemployment and depopulation, globalisation and climate change (MacDonald et 

al. 2000; DLG, 2005; Giupponi et al. 2006). The areas abandoned are often 

marginal, less-productive agricultural land that is more topographically difficult to 

access with farm machinery and is located further from population centres (Giupponi 

et al. 2006). This scenario appears to be particularly prevalent in central, eastern and 

southern Europe (Osterman, 1998; DLG, 2005). 

Whilst the environmental consequences of agricultural land abandonment are 

highly variable and depend upon location-specific characteristics, the successional 

encroachment of scrub into areas which previously had an open structure (e.g. old 

fields, meadows) is a common biological response (MacDonald et al. 2000). 

Accordingly the response of biota is also likely to vary, but generally consists of a 

proliferation of ruderal species in the initial stages of succession, as pioneer species 

dominate recently abandoned areas. There is generally a later increase in diversity in 

mid-successional periods, followed by a reduction in diversity as the woodland 

canopy closes (MacDonald et al. 2000) and climax species dominate. In contrast to 

the impacts of agricultural intensification in traditional farming systems, which are 

expressed very quickly as biodiversity loss, the biodiversity effects of land 

abandonment are likely to take several years to be expressed for some taxa (Schmitt 

and Rákosy, 2007). The loss of species dependent on managed, early-successional 

habitats, due to land abandonment, has been recorded by numerous researchers in the 
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Spanish dehesas. The dehesas is an example of a traditional agrosilvopastoral

agricultural system that supports very high biodiversity, consisting of managed holm 

oak Quercus ilex (L.) and cork oak Quercus suber (L.) woodlands interspersed with 

pastoral land and low-input cultivation (Plieninger and Wilbrand, 2001). These 

systems are threatened by both agricultural intensification and abandonment. The 

latter process has been identified as the major driving force affecting the ecology of 

Mediterranean forests (Fabbio et al. 2003), leading to scrub encroachment, reduced 

tree productivity, more intense and frequent forest fires and loss of small-scale 

habitat mosaics of different closely-aligned land-use types (Plieninger and Wilbrand, 

2001; WWF, 2008). Peco et al. (2005) found considerable differences in the 

vegetation structure and composition of grassland sites in the Spanish dehesas that 

were grazed or abandoned, with the former being characterised by prostrate, early 

flowering species, and the latter by tall, late flowering species. The loss of traditional 

management leading to loss of structural and compositional integrity is also likely to

have impacts upon a range of species that are dependent upon these diverse systems 

(Plieninger and Wilbrand, 2001). These include a number of threatened bird species, 

such as the Spanish imperial eagle Aquila adalberti (Brehm) and the Eurasian black 

vulture Aegypius monachus (L.), as well as wintering common cranes Grus grus (L.), 

and numerous passerine species (Tellería, 2001; Plieninger and Wilbrand, 2001). 

Whilst the dehesas have been a subject of conservation and research focus, the 

abandonment of traditional agricultural lands and consequences for biodiversity is 

also an area of conservation concern in many parts of Eastern Europe (Cremene et al. 

2005). For instance, vascular plants, gastropods, and diurnal and nocturnal 

Lepidoptera all exhibited different responses in species richness along a successional 

gradient from managed hay meadow, to abandoned hay meadow, to birch forest to 

mature forest in Romania (Baur et al. 2006). In particular, richness of diurnal 

Lepidoptera was greater in the two hay meadow treatments, whilst richness of 

nocturnal species was higher in the two forest types. This study demonstrates the 

complexity of responses of various taxa to agricultural land abandonment and 

subsequent succession. 
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1.2.2.3 Frontier & extensive (relatively recent introduction of modern agriculture, 
with low intensity management or land uses)

Despite the (often correct) assumption that the introduction of agriculture into native 

systems previously unaltered by large scale farming practices is strongly detrimental 

to biodiversity, there are some notable exceptions. These occur where the 

management is of low intensity or where much of the native system’s structural 

and/or compositional integrity is retained. An example from the neotropics that has 

received considerable attention is that of rustic and shade coffee plantations, where 

the coffee plants are either planted into the existing forest (rustic) or form the 

‘understorey’ of a relatively intact native forest, thus retaining habitat structure and 

(in some cases) plant diversity (Armbrecht and Perfecto, 2003). Several authors have 

reported that traditional, low intensity, rustic shade coffee plantations are able to 

support populations of wintering neotropical migratory birds that are comparable in 

richness and composition to native forest and richer than other anthropogenic land 

uses (e.g. Wunderle and Latta, 1994; Greenberg et al. 1997). Perfecto et al. (2003) 

also demonstrated that traditional coffee plantations had similar ant species richness 

as native forest, and considerably greater richness than intensive coffee plantations. 

The apparent success of biodiversity conservation in traditional and shade coffee 

plantations has created a market for ‘bird-friendly’ coffee and similar eco-labelling 

market strategies for growers and companies utilising these farming strategies 

(Philpott and Dietsch, 2003). 

Similar research has also been conducted in cocoa plantations of differing 

management intensity in various world regions. Results have varied considerably 

among studies, taxa and regions, indicating that the introduction of low intensity 

agricultural disturbance into indigenous vegetation systems may elicit very complex 

biotic responses. For instance, in Sulawesi, arthropod abundance and diversity did 

not vary among cocoa plantations of differing management intensity, but the ratio of 

phytophagous and entomophagous arthropods shifted in favour of phytophages as 

cocoa production intensified (Klein, et al. 2002). Also in Sulawesi, ant community 

composition in forest and cocoa agroforestry was found to be relatively similar, 

whereas assemblages of beetles were markedly different between forest and cocoa 

plantations (Bos et al. 2007). The same study also examined the impact of changes in 

canopy shade cover (as a surrogate for management intensification) and found that 

ant richness declined greatly with increasing modification of the habitat. This 
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indicates that by maintaining components of natural systems in production systems, 

some biotic elements can be retained, but as the production system intensifies, these 

elements may be lost. It may be that by retaining critical elements of native systems 

in low-intensity farming systems, the habitat still provides the necessary resources 

for many native biota adapted to natural systems, thus keeping the habitat within the 

niche parameters of many taxa. However, it is also possible that in some cases time-

lags between land-use change (e.g. from forest to plantation with forest elements) 

and local species extinctions may be masking eventual assemblage composition 

changes. Finally, botanical diversity and carbon sequestration were found to decline 

along a gradient of cocoa production intensification in Cameroon, indicating that less

intensively managed systems are likely to provide both biodiversity and other 

ecosystem service benefits compared to more intensively managed systems in 

tropical regions (Herve and Vidal, 2008). 

1.2.2.4 Frontier & intensive (relatively recent introduction of modern agriculture, 
with highly intensive management or land uses)

The introduction of intensive agriculture to regions previously dominated by native 

vegetation systems has a particularly deleterious impact upon biodiversity 

(Aratrakorn et al. 2006; Attwood et al. 2008 (Chapter 2 of thesis)). A sobering 

example of this phenomenon is the agricultural landscapes in south-eastern and 

south-western Australia. European-style agriculture was only introduced to Australia 

a little over 200 years ago (see Fig. 1.1b), but in that time has come to dominate 

terrestrial systems, with almost 60% of Australia’s land area supporting some sort of 

agriculture (FAOSTAT, 2008). In the south-east, the dominance of agriculture is 

even greater, with 81% of New South Wales being under agricultural management in 

1996/97 (Australian Natural Resources Atlas, 2007). 

Such a rapid transition from a system consisting entirely of native vegetation 

systems to one dominated by European-style agriculture has wrought enormous 

changes on native ecosystems. A stark example is that of the grassy box woodlands 

of south-east Australia, which prior to European settlement covered large areas of 

what is now the wheat-sheep belt of the south-east (Prober et al. 1998). These 

woodlands, consisting of an open canopy structure of tree species and an understorey 

of native grasses and herbs, have been severely fragmented and degraded by 

cropping and livestock grazing and now cover a tiny fraction of their former extent 
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(Prober et al. 1998). Other vegetation types have also been severely depleted, such as 

temperate native grasslands, reduced to 1.25% of their pre-European extent 

(Fensham and Fairfax, 1997). In Queensland, clearing rates of native vegetation were 

approximately 1% of coverage per annum between 1956–1994 (Fensham and 

Fairfax, 2003), with Acacia harpophylla (Muell. ex Benth.) forests reduced from 

91.3% of their original area in 1956 to just 8.1% in 1994 (Fensham and Fairfax, 

2003). The cleared areas are now largely used as broad acre cropping, cattle pasture, 

or have been abandoned to A. harpophylla regrowth (Bowen et al. 2009). 

The impacts of habitat loss, fragmentation and degradation on fauna, attributable 

to agriculture, have been similarly dramatic. In particular, the decline of woodland 

birds continues to be a cause for conservation concern in Australian landscapes (Ford 

et al. 2001). Several of the correlates of declines are attributable to agricultural 

development and management practices. For example, the clearing of native 

vegetation for agriculture tends to occur on the most productive land (Robinson and 

Traill, 1996), therefore leading to the disproportionate loss of vegetation types that 

occur on that land (Ford et al. 2001). The rapid decline of populations of a range of 

taxa dependent upon native vegetation in Australia and other ‘frontier’ regions may 

in part be due to the discrepancy between environmental stimuli (e.g. habitat loss) 

and adaptive response. Many research papers and media articles have discussed the 

idea of ‘extinction debt’, whereby species’ populations have a response lag between 

the land clearing event and the populations reaching a new equilibrium (Cowlishaw, 

1999). Such thinking has led to predictions of a 40% reduction in bird species 

richness for the Mount Lofty Ranges near Adelaide, due to a 90% reduction in native 

vegetation cover compared to pre-European estimated cover (Ford and Howe, 1980). 

Another, more insidious, threat to wildlife populations in these recently farmed 

landscapes is that of agricultural intensification, effectively analogous to the 

intensification of farming systems that has been so ecologically damaging in western 

Europe. This can manifest in many ways, including a transition from grazing to 

cropping systems, the replacement of dryland cropping with irrigated cropping 

(NSW DECC, 2006) and the removal of habitat resources such as paddock trees 

(Maron and Fitzsimons, 2007; Fischer et al. 2009). 

Compared to the vast number of studies in European farming systems, research 

into the impacts on biodiversity of agricultural intensification in Australia are rare in 

the literature. However, interesting results are reported in two separate studies that 
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examined ant assemblages in native vegetation compared to farmed systems. Both 

Majer (1977) and Lobry de Bruyn (1993) found that ant richness was much higher in 

the native compared to the agricultural system. Other studies around the world have 

reported results that support the idea that biodiversity may decline with increased 

intensity of agriculture in regions of recent agricultural arrival, in a manner similar to 

declines observed in regions of long-established agriculture (e.g. Lavelle and 

Pashanasi, 1989; Perfecto et al. 1997; Escobar, 2004).

Whilst much of Australia’s biodiversity conservation focus has been on the 

reserve system and native remnants on private land, there is a growing realisation 

that the agricultural matrix (i.e. land used predominantly for production) is the 

dominant form of land cover in many regions, and exerts a strong influence on native 

remnants embedded in the matrix (Fischer et al. 2005; Attwood et al. 2009). The 

value of the agricultural matrix for biodiversity may also have been underestimated 

(Fischer and Lindenmayer, 2002; Haslem and Bennett, 2008a). This, coupled with 

the importance of elements of biodiversity in providing ecosystem services, has 

alerted a number of researchers to the importance of undertaking ecological research 

in multiple elements of agricultural landscapes (Bridle et al. 2007; Haslem and 

Bennett, 2008a; 2008b). 

1.2.3 Agriculture and arthropods

The expansion, contraction, intensification and extensification of farming have 

enormous and increasingly well-documented effects on a vast range of taxa, ranging 

from iconic threatened bird species to human populations. However, the greatest 

changes to ecosystem function and resilience and the most profound alterations to 

ecosystem service provision may occur through the impacts of agriculture on 

arthropods, ‘the little things that run the world’ (Wilson, 1987). Arthropods are one 

of the oldest extant groups of organisms. For instance, the earliest dated fossil insect 

specimen is that of Rhyniognatha hirsti (Tillyard), which dates back some 400 

million years (Engel and Grimaldi, 2004). Such antiquity also gives testament to the 

resilience and evolutionary tenacity of arthropods, indicating that they survived and 

proliferated after the Permian and Cretaceous mass extinctions (Kim, 1993). Today, 

arthropods are the most diverse group of organisms with over one million described 

species (May, 1988), with estimates including 30 million tropical arthropod species, 

based upon extrapolations of beetle richness from tropical tree species (Erwin and 
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Scott, 1980). Arthropods are also the most abundant multi-cellular organisms on the 

planet and constitute by far the greatest faunal biomass in tropical rainforest (Wilson, 

1987). In addition to richness, abundance and evolutionary longevity, terrestrial 

arthropods are also known to inhabit a wide range of systems and habitat types—

insects and other arthropods are found in caves (Howarth, 1983), deserts (Cloudsley-

Thompson, 1975), high montane areas (Edwards, 1987) and other extreme 

environments (Edwards, 1987). 

Some of the most intriguing aspects of arthropods in production systems are the 

roles they play in ecosystem processes, the extent to which they maintain or inhibit 

the delivery of ecosystem services and how arthropod-driven processes are affected 

by changes in arthropod richness, abundance, community composition and feeding-

guild representation. The debate over how biological diversity influences and 

supports ecosystem function is complex and controversial, but there is no doubt that 

continued ecosystem function is dependent upon the persistence of multiple

components of a biotic assemblage. Furthermore, agriculture is, to a great extent, 

dependent upon the effective functioning of ecosystem processes such as nutrient 

cycling, soil aggregation, water movement and waste decomposition (Daily, 1997). 

Two of the main theories pertaining to the relationship between biodiversity and 

ecosystem function (and therefore ecosystem services) are the rivet hypothesis (all 

taxa in a system have some effect on ecosystem function, so to lose any may impact 

upon system function) and the redundancy hypothesis (that only a sub-set of species 

in a community are significant contributors to system processes) (Ehrlich and 

Ehrlich, 1981; Lawton and Brown, 1993; Naeem et al. 1995; Wolters, 2001). The 

issue of functional redundancy is of particular interest, as it implies that ecosystem 

function will continue in a relatively unimpaired manner as long as the functionally 

important taxa are retained, or if previously ‘redundant’ taxa step into a vacant role 

when a functionally important taxon is lost from a system. A review of the 

relationship between arthropod assemblages and ecosystem function is beyond the 

scope of this chapter or thesis, but a wide range of responses of various ecosystem

processes to altered arthropod assemblage richness and composition has been 

reported in the literature. These range from increased function with increased 

assemblage richness (Slade et al. 2007; Letourneau et al. 2009), decreased function 

with increased assemblage richness (Finke and Denno, 2004) and increased function 

with increased interspecific functional dissimilarity (Heemsbergen et al. 2004). 
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From both ecological and agronomic perspectives, arthropods and agriculture are 

inextricably linked, from insect pests to their arthropod predators and parasitoids, and 

from the highly mobile pollinators and the relatively sessile soil organisms that break 

down organic matter and play such a vital role in the nutrient cycle. It is therefore 

unsurprising that the study of arthropods in agricultural landscapes has culminated in 

a wealth of literature addressing a wide range of issues and topics. However, the 

responses of arthropods to land-use transition and evolving management, the 

complex interactions between arthropods and their environment, the biogeographical 

and geopolitical differences in land use, and the intricate relationship between biotic 

assemblages and ecosystem processes indicate that we still have much to discover 

and describe. 

1.3 Research focus of thesis

1.3.1 Overview of research rationale

The research focus and selected questions were driven by several factors. Firstly, 

agriculture is the dominant terrestrial land-use type both globally and in Australia, 

with projections indicating that it will continue to expand in global area to meet 

growing demands for food and biofuels (Millennium Ecosystem Assessment, 2005). 

Furthermore, continued agricultural expansion and fragmentation of indigenous 

vegetation means that non-agricultural habitats will become increasingly spatially 

juxtaposed with agricultural land use. As a result, the impacts and influence of 

agricultural expansion and development on biodiversity is likely to be an area that 

will command increasing policy, research and conservation attention. Consequently, 

this research was conducted in mosaic, mixed-land use agricultural systems, in an 

attempt to describe and explain how arthropod assemblages are stratified by different 

degrees of habitat modification and management intensification and consider what 

implications this may have for both conservation and ecosystem processes.

Secondly, given the increased dominance of agricultural land uses, there is a 

growing need to establish if there are reliable global generalisations we can make 

about responses of different elements of biodiversity to commonly occurring land-

use types. Whilst there are many thousands of individual studies examining the 

responses of various aspects of biodiversity to a wide range of agricultural land-use 

and management scenarios, the responses are often complex and sometimes 
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contradictory among different biotic assemblages, biogeographical regions and 

management practices. Whilst assessing each interaction between biodiversity and 

agriculture on an individual case-by-case basis is very informative, there is a need to 

look for broader and more general patterns in the responses of biodiversity to some 

of the more frequently occurring agricultural land-use change and management 

scenarios. Such generalisations, if found, would be of considerable importance for 

land managers and researchers in rapidly assessing the likely impact of land-use 

change or altered agricultural management practices. To do this I employed meta-

analytical techniques to determine global trends for arthropod biodiversity in 

response to commonly encountered agricultural land-use change scenarios.

Thirdly, disturbance processes are known to have impacts on both within-taxon 

and within-assemblage morphological responses, such as body size and dispersal 

capability (Magura et al. 2006). Given that morphological traits are so intimately 

linked to life history traits, function and interspecific interactions, changes to among-

assemblage morphology, such as body size (often linked to nutritional status of 

habitat, vulnerability to disturbance-related mortality and taxon reproductive 

strategies) and wing morphology (linked to dispersal capabilities and post-

disturbance colonisation) can provide insights into the many ways in which 

agricultural land uses affect arthropods. In particular, I wished to examine if 

assemblage morphological traits differed among land uses, or if the close proximity, 

frequent juxtaposition and complex spatial arrangement of different land uses 

resulted in a more homogenous distribution of morphological traits across the 

landscape. Given that studies examining assemblage morphological traits along 

urban intensification gradients have sometimes found differing results for different 

taxa (e.g. Alaruikka et al. 2002), the consistency of morphological responses among

different taxonomic groups, and why certain groups may display certain trait 

responses to disturbance are also important considerations that I explored in this 

study.

Fourthly, edge habitats constitute a relatively large proportion of mosaic 

agricultural landscapes and are known to influence assemblages of many taxa 

(including arthropods) in a variety of ways. This can include concentrations of taxa 

at habitat edges, the movement of taxa across or parallel to edges, and high rates of 

predation or competition at edges. The degree of contrast between the habitats or 

land uses that constitute an edge can also greatly influence the ease with which 
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organisms can pass from one habitat to another, and so can help shape the structure 

and composition of assemblages across landscapes. In agricultural systems these 

factors can manifest in differences in assemblages between intensive cropping fields 

and neighbouring land uses that are less intensively managed and more structurally 

complex, and the movement of organisms between these two habitat types, with 

implications for functional issues such as predation and pest invasion and 

suppression. Two common features of Australian agricultural landscapes are native 

vegetation remnants (valued for conservation) and linear strips of grassy vegetation 

that separate cropping fields (generally not valued for conservation). In this study I 

seek to examine how the influence of edge habitat type (native remnant and linear 

strip) on assemblages within crops influence arthropod movement between crops and 

edge habitats, various aspects (e.g. taxonomic, morphological) of arthropod 

assemblage composition and how edge habitats may influence rates of pest 

predation.

There are also many knowledge gaps which need urgently to be filled in relation 

to biodiversity and ecosystem function/services in agricultural systems in ‘frontier’ 

regions (i.e. regions that have had a relatively short association with farming). Much 

of the research that has investigated biodiversity responses in relation to agriculture 

in ‘frontier’ regions has focussed on the changes to biotic assemblages as a result of 

transitions from native vegetation systems (often forest) to pastoral or cropping 

systems. By contrast, much of the research examining the value of agricultural 

systems or discrete components of such systems has been undertaken in regions with 

a long-historic association with agriculture (chiefly Europe). Where there have been 

some exceptions (such as studies on coffee plantations of varying management 

intensity in Latin America), the results have been very useful in indicating where 

agriculture may be able to contribute to biodiversity conservation and maintenance of 

ecosystem services. Conducting research in multiple agricultural land-use types and 

features in a region that has only been farmed for approximately the last 150 years

will lead to insights regarding the responses of taxa to different land-use types, and in 

particular how taxa utilise the agricultural matrix. 

Finally, terrestrial arthropods are sometimes overlooked in biodiversity research, 

perhaps owing to difficulties of taxonomy in many regions of the world. However, 

any such difficulties are offset by the importance of arthropods in driving ecological 

processes and their positive and negative interactions with agricultural production. 
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By examining arthropods, I aim to investigate how arthropod functional groups are 

affected by land-use change and transition, and distance to habitat edges and edge 

habitat type in fields of crops. I intend to discuss results in terms of potential 

ecosystem function implications and provide information to participating landholders 

that they consider to be of direct interest and relevance to their production practices. 

1.3.2 Primary research questions

The primary research questions addressed in this thesis are:

1. What are the dominant drivers of agricultural change and how have the 

different global patterns of agricultural development impacted upon 

biological diversity?

2. How do abundance and richness of different arthropod taxa and feeding 

guilds respond to land-use change globally?

3. How and why do Formicidae populations and assemblages vary among

different land uses in an agricultural landscape in Australia, and are these 

responses consistent with global patterns of abundance, richness and 

functional group representation?

4. Do body-size and morphological features of Araneae, Coleoptera and 

Formicidae differ among different land uses in an agricultural landscape?

5. How do arthropod assemblages of crops differ depending on whether the crop 

field is bordered by native woodland or a linear vegetation strip, and do 

assemblages change with distance from the crop edge?

6. Does the rate of pest-predation in cropping vary with adjacent habitat type

and distance from the crop edge?

Question 1 was explored as part of this introductory chapter (see in particular 

sections 1.1.3, 1.2.1, 1.2.2 and Figs. 1.1a & 1.1b)—the other questions were 

investigated during three distinct research stages:
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1. Global overview: a series of meta-analyses that assess the responses of 

multiple arthropod taxonomic groups and feeding guilds to agricultural land-

use change and cropping management scenarios globally.

2. Intensification gradient study: a field study in southern Queensland that 

examines variation in arthropod biodiversity and assemblage morphological

traits along a gradient of agricultural land-use intensification, from grazed 

native woodland remnants, through pastures, to cropping.

3. Influence of edge habitat: a field study in southern Queensland that examines 

how arthropod assemblages at crop edges and interiors are influenced by the 

presence of either an adjacent native remnant (woodland/grassland complex) or a 

linear grassy strip (separating the study crop from an adjacent crop).

1.4 Chapter summaries

Chapter 2 is a quantitative and qualitative literature review in the form of a series of 

meta-analyses that examine the responses of various arthropod taxa to a range of 

land-use comparison scenarios in the scientific literature. Using richness and 

abundance data from over 250 studies, I examined whether there are general trends 

in the responses of arthropod groups and feeding guilds to different mechanisms of 

agricultural intensification (both land-use change and altered cropping management). 

I investigated whether arthropod richness and abundance, at both taxonomic and 

functional group levels, differed between less intensive and more intensive land-use 

types. Furthermore, I sought to inform the land sparing versus wildlife-friendly 

farming debate (sensu Green et al. 2005) by indicating the points along a land-use 

intensification gradient where the greatest declines in biodiversity occur—for 

instance, is the majority of biodiversity lost in the land-use transformation from a 

native vegetation system to an agricultural land-use system, or during the 

management intensification transition from one agricultural land-use type to another?

Chapter 3 is a landscape-specific field examination of the trends identified in the 

meta-analysis, focussed on the responses of ant assemblages (such as abundance, 

richness, community composition) to a gradient of agricultural intensification. The 

field work was conducted in a mosaic agricultural landscape in southern Queensland, 

using three of the land-use categories included in the meta-analysis (thus allowing 
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direct local testing comparisons of global response patterns), namely native 

woodland, pasture and cropping. Of particular interest were whether the different 

land-use types had distinct assemblages, whether assemblages at land-use interfaces 

contained different assemblages to those in the two bordering habitats, and whether 

the pasture or cropping treatments contained taxa that were not present in the 

woodland treatment. The results of the fieldwork were compared to global patterns of 

abundance, richness and functional group responses to different land-use types, 

derived from a series of meta-analyses. 

Chapter 4 enhances the taxonomic comparisons of other chapters by examining

another aspect of arthropod assemblages likely to be affected by land-use change and 

disturbance—body size and morphology. Research on patterns of arthropod 

assemblage body sizes in response to land-use disturbance/modification has indicated 

a range of responses. These include trends such as increases in small taxa in highly 

disturbed land-use types and a decrease in small taxa in late-successional habitats. 

Therefore, the rationale for this chapter was to determine how body-

size/morphological attributes of three taxonomic groups responded to agricultural 

land-use types of differing degrees of disturbance. I examined a range of body size 

(for spiders, beetles and ants) and wing morphology (for beetles) metrics along the 

land-use intensification gradient described for Chapter 3. These taxa were selected as 

they are known to be sensitive to environmental changes and other studies have 

indicated a range of morphological responses to other disturbance processes (e.g. 

urbanisation). The main aims of the study were to examine if morphological traits 

relating to resource availability, reproductive strategies and dispersal differed among 

land uses of differing levels of disturbance/modification, or if the traits were 

uniformly distributed across the landscape. I also wished to examine if responses 

differed among different broad taxonomic groups. From these findings I sought to 

provide insights into the potential mechanisms that influence arthropod assemblage 

patterns in mosaic agricultural landscapes and examine if responses differed among 

different broad taxonomic groups.

Having explored how arthropod assemblages differ across multiple land-use 

types, Chapter 5 focuses on the arthropod assemblages of one particular land-use 

type (cereal cropping), and in particular how the nature and extent of the 

neighbouring land use affects arthropod community composition at crop edges and 

some distance into the crop itself. I compared the arthropod assemblages of cropping
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edge and interior habitats that differed in the type of habitat that bordered the crops 

(native vegetation remnant compared to a linear grass strip or margin). I also 

investigated biodiversity-driven ecosystem service provision in crops bordered by 

different habitat types by examining predation rates of an agricultural pest at the crop 

edges and crop interiors with different adjacent habitat types. The majority of field 

margin research has been restricted to European systems, where the importance of 

semi-natural habitats for biodiversity and ecosystem service maintenance is well 

recognised. In Australia, the value of such habitats is less certain. This chapter 

explores the potential for a habitat feature often considered to be classically 

European to provide similar biodiversity and ecosystem service benefits in a region 

where agricultural establishment has been relatively recent. This included 

investigating if linear vegetation strips have biodiversity value or a potential 

ecosystem service role, when compared to the edges of more extensive blocks of 

indigenous habitat. 

Chapter 6 synthesises the chief findings and conclusions of each chapter and 

summarises how this research contributes to increased knowledge and understanding 

of the drivers of arthropod assemblages in complex agricultural landscapes, the 

impacts that agricultural management can have on arthropod taxa and the 

implications for the ecosystem processes that they help drive. Limitations of the 

study are discussed, as are the management and policy implications of the research. 

Finally, some potential avenues for future research are highlighted.
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Chapter 2

Do arthropod assemblages display 

globally consistent responses to 

intensified agricultural land use 

and management?

This chapter is presented as published:

Attwood, S.J., Maron, M., House, A.P.N. & Zammit, C. (2008) Do arthropod assemblages 

display globally consistent responses to intensified agricultural land use and management? 

Global Ecology & Biogeography, 17, 585–599.

Approximate percentage contributions of authors as follows:

Attwood – 90%, Maron – 5%, House – 2.5%, Zammit – 2.5%.
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2.1 Introduction

A key focus in applied ecology and conservation is understanding the impact of 

agricultural intensification on biological diversity, environmental health and the

sustainability of production (Tilman, 1999; Tilman et al. 2001). Factors such as 

increased human population pressure and demand for food, and shifts from small-

scale independent producers to large-scale agri-businesses have all helped drive the 

intensification of global agriculture (Ormerod et al. 2003; Tudge, 2004). Intensified 

management practices contributed to an increase in global cereal yield per hectare of 

over 240% from 1961 to 2005 (FAO, 2006). During the same period, the area of 

cereal harvest in developing countries increased by 126% and the area under oil

crops in the developing world rose by over 200% (FAO, 2006). The recent surge in 

demand for biofuels is also leading to increased pressure to clear native forests for 

palm oil and sugar cane production (Birdlife International, 2007; Carter et al. 2007).

Given that global food demand is anticipated to more than double between 2005 and

2050 (Green et al. 2005), it is unlikely that the intensification and expansion of 

agriculture will abate in the short to medium term. 

The impact of agricultural intensification on biological diversity is of particular 

concern (McLaughlin and Mineau, 1995; Benton et al. 2003), with intensively 

managed agriculture recognised as a major cause of global biodiversity loss 

(Ormerod et al. 2003). Practices such as clearing of native vegetation, agrochemical 

application, monocropping and overgrazing by livestock have all been implicated in 

the loss of biological diversity (Stoate et al. 2001; Tilman et al. 2001). Agriculture 

impacts on biodiversity via two broad processes: the conversion of natural systems 

into production land, and the intensification of management on land that is already 

human-dominated and highly modified (Foley et al. 2005; Donald and Evans, 2006).

Examples abound of the impacts of both processes on biodiversity. Aratrakorn et al. 

(2006) reported a 60% reduction in avian species richness when Indonesian forest 

was converted to palm plantations and Sala et al. (2000) identified land-use change 

as the greatest threat to biodiversity in the 21st Century. The intensification of land 

management is believed to have caused the Corn Bunting Miliaria calandra L., a 

formerly abundant farmland bird in the UK, to decline by 89% between 1970 and 

2001 (Gregory et al. 2004). In addition, there are biogeographical patterns to 

agricultural impacts on biodiversity. The majority of the transformation of native into 



31

agricultural systems is occurring in the developing world (Green et al. 2005). This 

translates into a considerable proportion of broad land-use change occurring at lower 

latitudes, where species richness is generally higher. Despite such well-documented 

impacts, landscapes dominated by agriculture can often be dynamic and complex 

mosaics of different land uses and habitats, capable of supporting an array of 

biological communities (Benton et al. 2003). 

Arthropods constitute the vast majority of known species on the planet (Wilson, 

1992), and some groups (e.g. ants) are known to be sensitive and reliable indicators 

of environmental change (Andersen and Majer, 2004). As such, arthropods may be 

useful in describing responses of a range of biological and environmental metrics to 

altered land use and shifting management practices. Many groups of arthropods are 

also important drivers of ecosystem functions such as nutrient cycling, pest control, 

pollination and soil structure maintenance (Petchey and Gaston, 2002; Tscharntke et 

al. 2005a). A potential impairment of ecosystem function due to arthropod diversity 

decline could have serious implications for primary production (Cardinale et al.

2004), and there are increasing concerns regarding the sustainability of ecologically 

simplified farming systems, dependent upon high levels of artificial inputs (Altieri,

1999). 

Agriculture can affect arthropod assemblages in many ways. For instance, the 

transformation of native systems into pasture or cropping land usually has a dramatic

effect on vegetation structure and composition, and habitat connectivity (Dunn, 

2004). Such land-use conversion can result in considerable changes to the structure 

of arthropod communities (Decaens et al. 2004) and arthropod species interactions 

(Armbrecht and Perfecto, 2003). Furthermore, the direct and indirect impacts of 

agricultural management and inputs can also have a pronounced effect on arthropod 

diversity and abundance (Thorbek and Bilde, 2004), with concomitant implications 

for ecosystem function and key ecosystem services.

In this study, we sought to determine whether arthropod biodiversity displays 

globally consistent response trends to agricultural intensification. Although many 

individual studies show that biodiversity declines with agricultural expansion and 

intensification, we wished to establish if this pattern was evident across a range of 

regions, habitats, agricultural systems and taxa. To do this, we undertook a series of 

meta-analyses of the responses of arthropods to a range of agricultural land-use and 

management intensification scenarios presented in the scientific literature. Although 
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there are various criticisms of meta-analytical approaches, not least the ‘file-drawer’ 

phenomenon (Roberts et al. 2006), whereby studies that find a significant effect are 

more likely to be published and cited, they remain a valuable means of gaining a 

quantitative overview of the often vast array of published results on a given topic.

Meta-analyses are often used for examining several studies focusing on a very 

specific question, particularly in the fields of medicine and psychology (Gurevitch 

and Hedges, 1993). However, our primary research premise, that agricultural 

intensification affects arthropod richness and abundance, is rather broad, and our 

information base comprises a wide range of habitats and methodologies. 

Consequently, we elected to use a range of meta-analytical approaches that allows 

comparisons of results across analytical techniques. Each represented a trade-off 

between the statistical robustness of the technique and the number of studies that 

could be considered using a particular approach. 

The paper aims to address the following questions relating to both broad scale

land use and cropping management:

(i) Is arthropod richness and abundance greater in native vegetation than in 

agricultural production land? (ii) Is there a general trend in arthropod richness and 

abundance along a land-use intensification/anthropogenic disturbance gradient from 

native vegetation to intensive cropping? (iii) Do patterns of richness and abundance 

among land uses differ among different feeding guilds and taxonomic groups? (iv) 

Are the identified patterns in richness and abundance consistent between meta-

analytical techniques of differing robustness and sophistication? 

2.2 Methods

2.2.1 Arthropod measures

Given the complexity of arthropod assemblages, the sheer wealth of literature 

examining arthropods in different land-use types, and our pragmatic concerns about 

keeping the paper to a manageable scale, we opted to omit some groups from our 

study. Highly mobile taxa (including Diptera, Hymenoptera (excluding Formicidae) 

and Lepidoptera), which we thought may be more influenced by landscape-scale 

factors than land-use type (Dauber et al. 2005), were omitted from the analyses

(although see Schweiger et al. 2005, who found that taxa with different dispersal 

capabilities responded similarly to land-use intensity, albeit at a 4 х 4 km landscape 
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rather than the patch scale generally used in this study). Whilst this obviously limits 

the scope of the study slightly, the authors feel that a sufficiently broad range of taxa 

are included to provide some insights into the general responses of arthropods to 

land-use change, particularly at the patch scale.

We used two basic measures of arthropod response to land-use and management 

intensification: abundance and richness. All were readily available in the studies 

sampled. Abundance was determined as the total number of individual organisms 

collected in a land-use treatment in a given study, whilst richness was the total 

number of different taxonomic or morphological units recorded in each treatment.

For studies that only presented data in terms of diversity indices, we followed the 

approach of Bengtsson et al. (2005) and included them only in vote-counting 

analyses.

In order to determine feeding guild responses, we assigned taxa to one of three 

feeding guilds where applicable: predators, decomposers and herbivores. Feeding 

guild classification followed that described in the paper under examination (where 

possible), or a range of literature (e.g. Moran and Southwood, 1982). For some taxa, 

classification was straightforward (e.g. predators for Araneae), but for others was 

more ambiguous. Ultimately, we adopted a relatively conservative approach; for 

instance, we classified Formicidae as omnivorous, even though some taxa are 

predatory. Again, on occasions where the paper had already classified taxa according 

to a feeding guild, or where a specific taxon (e.g. at genus level) was predominantly 

predatory, herbivorous, etc., we favoured that categorisation. 

2.2.2 Land-use comparisons

We divided abundance and richness responses to agricultural intensification into two 

categories: responses to broad land use and responses to different types of crop

management. The former contrasted arthropod responses among land uses commonly 

found in mosaic landscapes: native woodland, native grassland, introduced/improved 

pasture and cropping, each representing a point along a gradient of increasing 

anthropogenic disturbance. The latter compared conventional cropping systems (e.g. 

tilled, pesticide-treated) with reduced-input alternatives such as no-till or organic 

systems. To reduce the complexity of land-use categorisation, we compared 

arthropod abundance and richness between the following land-use types:

1. Native vegetation (NV) compared to agricultural land (Ag);
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2. Wooded native vegetation (WNV) compared to introduced/improved pasture 

(IP);

3. Native grassland (NG) compared to introduced/improved pasture (IP);

4. Introduced/improved pasture (IP) compared to cropping (C);

5. Reduced input cropping (RIC) compared to conventional cropping (CC).

Each land-use category contained the following land-use types from the 

literature:

WNV—woodland, forest, heathland, scrub (excluding restoration plantings);

NG—native grassland, unimproved meadows, native savannah and steppe.

NV—This category was compared to Ag (agricultural land – see below). In many 

cases, it was the WNV from WNV:IP comparisons or NG from NG:IP comparisons. 

It also applied when any native system was compared to cropping in a study.

Ag—pasture, cropping and horticulture (not forestry or silviculture). For studies 

where WNV or NG were compared to IP and C, Ag was calculated as the mean 

abundance or richness in IP and C for the vote-counting and proportional analyses;

IP—fertilised and/or introduced sown pastures (grazed and ungrazed). Included 

sown pasture on former arable land;

C—any cropped system that was not part of the RIC:CC comparison (i.e. IP:C, 

NV:Ag);

RIC—cropping that featured at least one of several management options: 

no/reduced-till, unfertilised, reduced-pesticide/herbicide/fungicide, organic, rotation, 

intercropping, mulched;

CC—conventional cropping that provided direct ‘intensive’ comparison in studies 

that investigated RIC management. Therefore, RIC and CC were paired comparisons.

2.2.3 Literature search

We sourced published literature relating to arthropods in agricultural landscapes up 

to September 2007 using the internet-based scientific literature search engine Scopus 

(www.scopus.com), searching the database using a series of keywords (Appendix 

B.1). Keywords were divided into thirty-five taxonomic terms representing our target 

taxa and fourteen land-use/management-related terms. The choice of search taxa was 

based upon reference to standard texts (e.g. Naumann, et al. 1991) and the authors’ 

experience of which arthropods may be important in agricultural landscapes. We 



35

then paired each taxonomic term with each land-use term as the basis for our search

(e.g. search conducted using ‘Araneae’ and ‘crop’). Finally, we undertook further 

searches in general internet search engines to locate ‘grey literature’ (Roberts et al.

2006). Although unlikely to have detected all relevant studies, we feel that the 

techniques used were sufficient to obtain a substantial and representative sample. We 

located 259 studies (Appendix B.2) that presented data for arthropod abundance 

and/or richness in at least one of the chosen land-use comparisons. We then

subjected the studies to three different meta-analytical techniques: a vote-counting 

method, a proportional approach and (where data allowed) a fixed-effects/random 

effects meta-analysis following the procedure in Gurevitch and Hedges (1993). The 

three approaches varied in their robustness and the level of detail that they demanded 

from the data in a given study.

2.2.4 Data extraction and analysis

We extracted abundance and richness data from the results section text, tables of 

means and other numerical data, appendices, graphs and figures from each of the 

papers.

In some studies, we found several treatments in a comparison that matched the 

categories forming our investigation. For example, a woodland (WNV) site being 

compared to three different pasture (IP) treatments (WNV1, IP1, IP2 and IP3, where 

numerical suffix refers to order in which IP site is reported in the study results) could 

be treated as a single comparison (WNV1 compared to IP1 or WNV compared to 

mean of IP1, 2 & 3) or as three distinct comparisons (WNV1 compared to IP1, WNV1

compared to IP2, etc). Several authorities have highlighted the importance of

maintaining independence between comparisons within studies (e.g. Gurevitch and

Hedges, 1993; Bengtsson et al. 2005). Similar issues arose regarding the 

independence of data from the same locality over multiple time periods and whether 

different taxonomic groups from the same study could be treated independently. We 

therefore devised a set of decision rules to deliver a consistent and conservative 

approach to addressing potential independence issues:

1. Our chief aim was to examine taxon responses and feeding guild responses (as 

well as combined responses) among different land uses. Therefore, we opted to 

follow the lead of Bengtsson et al. (2005) and treat different taxa within the 
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same study as independent samples. Where possible, and in the overwhelming 

majority of cases, we analysed taxa at the taxonomic level of order or family. 

2. For all studies that presented means, standard errors/standard 

deviations/confidence limits and sample sizes we used only paired land-use 

comparisons, in order to avoid potential inaccuracies from pooling or 

averaging standard errors or standard deviations. For example, for arthropod 

richness in WNV1 compared to IP1, IP2 and IP3, we used WNV1 richness 

compared to IP1 richness. In this instance, we would omit data from IP2 and 

IP3. Similarly, when means, variances and sample sizes were presented for 

multiple time-periods, we used the final time-period only (again to avoid 

calculating an incorrect pooled or averaged standard error or standard 

deviation) (Gurevitch and Hedges 1993). We deviated from this rule only for 

studies that examined arthropod responses to a particular disturbance event in 

cropping (e.g. a tillage event, pesticide application). In this instance, we 

selected the first sample following the disturbance event in order to capture the 

immediate assemblage response. To be as consistent as possible, we also used 

the means from these approaches for the vote-counting and proportional 

techniques. 

3. Some studies did not include the data necessary for conducting a fixed/random-

effects meta-analysis, and therefore were only suitable for the vote-counting 

and proportional analyses (see below). In such instances, we were able to 

include data for multiple samples of land-use types (e.g. WNV1 compared to 

the mean of IP1, IP2 and IP3) and the mean of all time periods for a sample. 

We waived this latter rule only for studies examining arthropod responses to a 

particular disturbance event in cropping, following the approach described 

above and selecting only the data immediately following the disturbance event.

2.2.5 Data analysis

All studies were included in the vote-counting and proportional analyses. Those 

containing measures of variance and sample sizes were also analysed using the

fixed/random-effects meta-analysis.

For the vote-counting analysis, we attributed a (+) or (-) to each land-use 

comparison, depending on whether the arthropod abundance or richness was greater 

in the less intensive or the more intensive land-use/management regime. This 
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resulted in a total of (+) and (-) scores for each comparison, the frequency of which 

we compared to a random distribution of responses using the binomial sign test 

(Siegel and Castellan, 1988). We conducted the sign tests using SPSS Version 14.0 

for Windows. 

For the proportional analysis, we transformed the abundance and/or richness data 

for each land-use comparison in a study into the proportion of abundance or richness 

in the less intensive compared to the more intensive land uses. We then calculated 

the average proportional abundance or richness across all studies. If the resulting 

average proportion in the less intensive land use was greater than 0.5, then the

richness or abundance was greater in the less intensive land-use/management regime, 

indicating both the direction and the magnitude of the average effect size. 

Conversely, if the resulting average was less than 0.5, then richness or abundance 

was greater in the more intensive land use. To examine whether higher proportions 

of abundance or richness were found in the less intensive treatments across studies, 

we calculated 95% confidence intervals on the mean value for each across-study 

land-use comparison. If the 95% confidence intervals did not include 0.5, then we 

considered richness or abundance to differ between the land-use categories. 

For the ‘formal’ meta-analysis, we employed both the fixed-effects and random-

effects models as appropriate.  For each land-use category comparison, we tabulated 

mean abundance and/or species richness, the standard deviation and the sample size

for each study. The pooled SD for each comparison was then calculated following 

the methods in Bengtsson et al. (2005). We then calculated Hedges’ d effect size and 

the variance of d for each study (Gurevitch and Hedges, 1993; Rosenberg et al. 

2000). We divided the effect size by the pooled SD and multiplied by a term that 

adjusts for small sample size (Gurevitch and Hedges, 1993). A positive d value 

indicated greater abundance or richness in the less intensive land use, and a negative 

value greater abundance or richness in the more intensive land use. 

To assess the average effect size across the studies, we combined the effect sizes

for each individual study in a fixed-effects model (Gurevitch and Hedges, 1993; 

Rosenberg et al. 2000). If the average effect size E++ was greater than zero, this 

indicated that abundance or richness was higher in the less intensive land use for a 

given comparison. The upper and lower limits of the 95% confidence intervals were 

also established and we considered the effect size was significant if the 95% C.I.

limits of the overall effect size E++ did not include zero (Gurevitch and Hedges, 
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1993; Rosenberg et al. 2000; Bengtsson et al. 2005). The fixed-effect model also 

calculated a homogeneity test statistic Q. Where Q was significant, the effect sizes 

comprising E++ were heterogeneous, differing among the studies. In this event, we 

recalculated the average effect size E++ using a random effects model that assumes 

random variation among studies in a class (Gurevitch and Hedges, 1993). The 

random-effects model also calculated the 95% confidence intervals and Q. We 

conducted all meta-analytical calculations using MetaWin (Rosenberg et al. 2000).

2.3 Results

2.3.1 Arthropod richness

2.3.1.1 Combined taxa richness

Richness was greater in less intensive compared to more intensive land uses when all 

arthropod data were combined (Fig. 2.1a & 2.1d; Table 2.1). All three meta-

analytical techniques reported significantly greater arthropod richness in native 

vegetation (NV) compared to agricultural land (Ag). We found similarly consistent 

results for the other land-use comparisons, with significantly greater arthropod 

richness in the less intensive land use for wooded native vegetation compared to 

pasture (WNV:IP), native grassland compared to pasture (NG:IP), pasture compared 

to cropping (IP:C) and reduced-input cropping compared to conventional cropping 

(RIC:CC) (Figure 2.1a; Table 2.1). 
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Fig. 2.1.

The Hedges’ E++ average effect size (mean effect size averaged across all studies in a land-use 

comparison) for fixed and random effects meta-analyses of arthropod abundance and richness 

responses for various land-use comparisons (+/- 95% C.I.). Figs. 2.1 (a), (b) & (c) depict the responses 

of all taxa combined, predators and decomposers, respectively for multiple land-use comparisons. Fig. 

2.1 (d) depicts the abundance and richness responses in native vegetation compared to agricultural land 

for all taxa, predators, decomposers and herbivores. The dashed line indicates the point at which 

richness/abundance are equal between the two land-use comparisons. Comparisons where the 95% 

C.I.s do not cross zero are considered to exhibit significantly greater richness or abundance in the less 

intensive land-use type (α = 0.05). The number above the data points is the number of different taxa

analysed for each land-use comparison.  

Abbreviations: WNV:IP = wooded native vegetation compared to improved/introduced pasture; 

NG:IP = native grassland compared to improved/introduced pasture; IP:C = improved/introduced 

pasture compared to cropping; RIC:CC = reduced-input cropping compared to conventional cropping; 

pred – predators; dec – decomposers; herb – herbivores.
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Table 2.1. Combined arthropod and feeding guild richness results for vote-counting, proportional and fixed/random effects meta-analyses for land-use and cropping management 

comparisons. Vote-counting/binomial sign test columns contain number of studies for each comparison (percentage of studies that found greater arthropod richness in less intensive 

land use in parentheses). Proportional analysis columns contain the richness proportion in the less intensive land use averaged across all studies, +/- 95% confidence intervals. The 

fixed/random-effects meta-analysis columns contain the Hedges’ E++ (the mean effect size averaged across all studies in a land-use comparison) +/- 95% confidence intervals, Q 

heterogeneity statistic and number of studies used in each comparison.

* P = <0.05. ** = significant among-study heterogeneity (where Q was significant for fixed-effects meta-analysis, random effects meta-analysis was used). 

NV:Ag = native vegetation compared to agriculture; WNV:IP = wooded native vegetation compared to improved/introduced pasture; NG:IP = native grassland compared to 

improved/introduced pasture; IP:C = improved/introduced pasture compared to cropping; RIC:CC = reduced input cropping compared to conventional cropping.

Binomial sign test proportional meta-analysis fixed effects/random effects meta-analysis
N studies (% > 
in less intensive 
land use)

Signif. (P 
value)

mean 
proportion 
in less 
intensive 
land use

+/- 95% 
C.I.

ratio of richness in 
less intensive 
compared to  more 
intensive land use

Hedges’ E++
(average effect 
size)

+/- 95% C.I. Q N  

All taxa NV:Ag 173 (81) <0.001* 0.62* 0.03 1.62 1.17* 0.30 114.0** 74
WNV:IP 85 (79) <0.001* 0.62* 0.04 1.60 1.69* 0.5 40.24 31
NG:IP 27 (85) 0.001* 0.62* 0.05 1.64 1.20* 0.56 19.57 17
IP:C 73 (69) 0.001* 0.57* 0.03 1.33 0.54* 0.34 43.87 34
RIC:CC 132 (67) <0.001* 0.55* 0.02 1.20 0.51* 0.31 37.55 39

predators NV:Ag 45 (82) <0.001* 0.64* 0.07 1.79 1.19* 0.86 15.17 19
WNV:IP 21 (95) <0.001* 0.70* 0.01 2.30 1.67* 0.74 5.76 7
NG:IP 12 (100) <0.001* 0.65* 0.07 1.84 1.64* 0.86 9.64 9
IP:C 32 (66) 0.071 0.54 0.05 1.19 0.42 0.59 25.09** 16
RIC:CC 66 (62) 0.64 0.55* 0.04 1.23 0.41* 0.37 29.61 24

decomposers NV:Ag 43 (86) <0.001* 0.64* 0.05 1.81 1.34* 0.54 37.77** 23
WNV:IP 20 (100) <0.001* 0.64* 0.08 1.77 1.68* 0.72 11.57 12
NG:IP 5 (100) 0.063 0.75* 0.14 3.02 N/A N/A N/A N/A
IP:C 18 (72) 0.096 0.59* 0.05 1.44 0.64* 0.39 9.77 12
RIC:CC 18 (78) 0.031* 0.56* 0.05 1.29 0.87* 0.68 6.50 5

herbivores NV:Ag 18 (50) 1 0.55 0.12 1.23 N/A N/A N/A N/A
WNV:IP 10 (30) 0.344 0.50 0.19 0.99 N/A N/A N/A N/A
NG:IP 5 (60) 1 0.50 0.03 1.01 N/A N/A N/A N/A
IP:C 3 (100) 0.25 0.60* 0.10 1.54 N/A N/A N/A N/A
RIC:CC 7 (29) 0.453 0.43 0.13 0.76 N/A N/A N/A N/A
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For both quantitative analytical techniques, the difference in richness between the 

less intensive and the more intensive land use was greatest in the comparison between 

native and agricultural systems. This pattern was particularly pronounced for the 

random-effects meta-analysis, where the average effect size was much greater 

between WNV:IP (Hedges’ E++ = 1.69 ± 0.5, df = 30) and NG:IP (Hedges’ E++ = 

1.2 ± 0.56, df = 16) than between IP:C (Hedges’ E++ = 0.54 ± 0.34, df = 33) and 

RIC:CC (Hedges’ E++ = 0.51 ± 0.31, df = 38) (Fig. 2.1a; Table 2.1).  This indicates

that the differences in arthropod richness between native systems and agricultural 

systems are greater than those between different categories of agricultural land use.

2.3.1.2 Feeding guild richness

The results for predatory taxa were very similar to those for the combined taxa, with 

all analytical techniques indicating greater richness in the less intensive land uses for 

NV:Ag, WNV:IP, NG:IP and RIC:CC (Fig. 2.1b & 2.1d; Table 2.1). However, we 

found there was no significant difference in predator richness between 

improved/introduced pasture and cropping (IP:C) for all three analyses (Fig. 2.1b; 

Table 2.1). We detected elements of this trend in individual taxa, such as spiders, 

which displayed significantly greater richness in WNV:IP for all analyses, and 

exhibited no differences in richness between IP:C (Table 2.2).

We calculated that decomposer richness responses were similar overall to the 

combined and predatory taxa results (Fig. 2.1c & 2.1d; Table 2.1). Richness was 

greater in the less intensive land use for NV:Ag, WNV:IP and RIC:CC for all three 

techniques and greater in the less intensive land use for IP:C for two of the three 

approaches.

We did not find the same clear decrease in richness of herbivores with increasing 

land-use intensity that we found for combined taxa, predators and decomposers. 

Insufficient studies were available to use the fixed/random-effects meta-analysis, and 

we found only one instance where there was significantly greater herbivore richness 

in a less intensive land-use type using the other techniques (IP:C using the 

proportional analysis, see Table 2.1). We detected no other significant differences 

between land-use types. 
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2.3.2 Arthropod abundance

2.3.2.1 Combined taxa abundance

We found greater combined arthropod abundance in native vegetation than 

agricultural land (NV:Ag) on average for all three analyses (Fig. 2.1d; Table 2.3). 

However, our fixed/random-effects meta-analysis reported no difference in overall 

arthropod abundance between WNV:IP, NG:IP and IP:C (Fig. 2.1a). Results for these 

land-use comparisons were similarly equivocal for the vote-counting and proportional

techniques, with only WNV:IP showing significantly greater abundance in the less 

intensive land-use type using these two approaches (Table 2.3) and greater abundance 

in pasture than cropping for the proportional approach. This suggests that arthropod 

abundance responds less consistently to land uses of differing management intensity 

than arthropod richness. Conversely, we found considerable concordance among the 

techniques in finding significantly greater arthropod abundance in reduced-input 

compared to conventional cropping (RIC:CC) (Fig. 2.1a; Table 2.3).

2.3.2.2 Feeding guild abundance

Both the random-effects and the proportional meta-analyses indicated significantly 

greater predator abundance in native vegetation than agricultural land (Fig. 2.1d; 

Table 2.3). We also found significantly greater predator abundance in reduced-input 

compared to conventional cropping (RIC:CC) (Fig. 2.1b; Table 2.3). The predatory 

taxa spiders, carabids, coccinellids, neuropterans and staphylinids also exhibited 

significantly greater abundance in reduced-input compared to conventional cropping 

(Table 2.4). We obtained mixed results for predator abundance in the other land-use 

comparisons (Fig. 2.1b; Table 2.3).

We found that decomposers tended to exhibit a similar response to predators, with 

significantly greater abundance in reduced-input compared to conventional cropping 

(RIC:CC) and significantly greater abundance in native vegetation compared to 

agriculture (NV:Ag) found in all analyses (Fig. 2.1c & 2.1d; Table 2.3). Again, we 

found mixed results for the other land-use comparisons (Fig. 2.1c; Table 2.3).

In contrast to the results of the combined data, predators and decomposers, 

herbivore abundance differed little between the land-use categories. There were no 

differences in herbivore abundance among any of the broad land-use comparisons 

(NG:Ag, WNV:IP, NG:IP & IP:C) and only one of three analyses found greater 
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herbivore abundance in reduced-input compared to conventional cropping (Fig. 2.1d; 

Table 2.3). Analyses of chrysomelids, curculionids and homopterans supported these 

findings (Table 2.4).

2.3.3 Analytical technique

Results from different meta-analytical approaches were largely consistent for both 

arthropod richness and abundance. The vote-counting approach reported significant 

differences in 45% of comparisons (55% for richness, 35% for abundance), the 

fixed/random-effects approach found significant differences in 63% of comparisons 

(93% for richness, 39% for abundance) and the proportional approach delivered 

significant differences in 70% of comparisons (75% for richness, 65% for 

abundance). 
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Table 2.2. Taxonomic richness results for vote-counting, proportional and fixed/random effects meta-analyses for land-use and cropping management comparisons. 

Vote-counting columns contain percentage of studies that found greater richness of focal taxon in less intensive land use (binomial sign test not conducted due to 

typically small sample sizes). Proportional analysis columns contain the richness proportion in the less intensive land use averaged across all studies (+/- 95% 

confidence intervals). The fixed/random-effects meta-analysis columns contain the Hedges’ E++ (the mean effect size averaged across all studies in a land-use 

comparison) (+/- 95% confidence intervals). * P = <0.05. NV:Ag = native vegetation compared to agriculture; WNV:IP = wooded native vegetation compared to 

improved/introduced pasture; IP:C = improved/introduced pasture compared to cropping; RIC:CC = reduced input cropping compared to conventional cropping.

– denotes insufficient studies to conduct analyses.

Taxa NV:Ag WNV:IP IP:C RIC:CC
% of 
studies 
where 
richness > 
in less 
intensive 
land use

mean 
proportion 

in less 
intensive 
land use

Hedges’ 
E++

% of 
studies 
where 

richness > 
in less 

intensive 
land use

mean 
proportion 

in less 
intensive 
land use

Hedges’ 
E++

% of 
studies 
where 

richness > 
in less 

intensive 
land use

mean 
proportion 

in less 
intensive 
land use

Hedges’ 
E++

% of 
studies 
where 

richness > 
in less 

intensive 
land use

mean 
proportion 

in less-
intensive
land use

Hedges’ 
E++

Acari 80 0.61 
(0.10)*

– – – – – – – – – –

Araneae 93 0.66 
(0.07)*

1.28 
(0.64)*

100 0.72 
(0.12)*

1.65 
(1.01)*

73 0.60 (0.13) 2.19 
(2.44)

50 0.56 (0.05)* 0.20 
(0.51)

Carabidae 78 0.61 
(0.14)

– – – – 38 0.49 (0.09) – 74 0.55 (0.04)* 0.75 
(1.10)

Chilopoda 80 0.73 
(0.18)*

– – – – – – – – – –

Collembola – – – – – – 83 0.59 (0.06)* – 80 0.55 (0.07) –
Diplopoda 100 0.74 

(0.07)*
– – – – 40 0.59 (0.14) – – – –

Formicidae 80 0.61 
(0.05)*

1.28 
(0.54)*

82 0.62 
(0.08)*

1.75 
(2.26)

67 0.63 (0.10)* – 90 0.58 (0.04)* –

Isoptera 83 0.63 
(0.27)

– 80 0.58 
(0.31)

– – – – – – –

Scarabaeidae 89 0.60 
(0.04)*

1.43 
(1.00)*

82 0.60 
(0.06)*

1.83 
(1.35)*

– – – – – –

Staphylinidae 100 0.76 
(0.13)*

– – – – 71 0.55 (0.04)* – 46 0.51 (0.03) -0.06 
(0.61)
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Table 2.3. Combined arthropod and feeding guild abundance results for vote-counting, proportional and fixed/random effects meta-analyses for land-use and 

cropping management comparisons. Vote-counting/binomial sign test columns contain number of studies for each comparison (percentage of studies that found 

greater arthropod abundance in less intensive land use in parentheses). Proportional analysis columns contain the abundance proportion in the less intensive land use 

averaged across all studies, +/- 95% confidence intervals, and the ratio of abundance in less intensive compared to more intensive land use. The fixed/random-

effects meta-analysis columns contain the Hedges’ E++ (the mean effect size averaged across all studies in a land-use comparison) +/- 95% confidence intervals, Q 

heterogeneity statistic and number of studies used in each comparison. 

Binomial sign test proportional meta-analysis fixed effect/random effects meta-analysis
N studies (% > 
in less 
intensive land 
use)

Signif. 
(P 
value)

mean
proportion in 
less intensive 
land use

+/- 95% 
C.I.'

ratio of abundance in
less intensive 
compared to more 
intensive land use

Hedges’ 
E++
(average 
effect size)

+/- 95% C.I.' Q N  

All taxa NV:Ag 320 (64) <0.001* 0.61* 0.03 1.53 0.65* 0.31 239.24** 167
WNV:IP 189 (63) <0.001* 0.61* 0.04 1.55 0.44 0.45 158.63** 95
NG:IP 33 (61) 0.296 0.55 0.06 1.20 0.48 0.52 20.26 17
IP:C 134 (55) 0.261 0.55* 0.05 1.23 0.29 0.31 74.39 59
RIC:CC 539 (70) <0.001* 0.59* 0.02 1.43 0.46* 0.10 385.20** 283

predators NV:Ag 88 (58) 0.165 0.59* 0.06 1.43 0.77* 0.65 37.11 46
WNV:IP 55 (62) 0.105 0.64* 0.08 1.77 0.91 0.96 25.24 25
NG:IP 10 (50) 1 0.55 0.11 1.23 0.48 1.16 6.97 7
IP:C 55 (49) 1 0.50 0.07 1.00 0.43 0.61 23.31 20
RIC:CC 274 (78) <0.001* 0.63* 0.02 1.69 0.58* 0.14 146.57 144

decomposers NV:Ag 88 (70) <0.001* 0.64* 0.06 1.77 0.536* 0.531 110.34** 55
WNV:IP 57 (75) <0.001* 0.68* 0.08 2.08 0.46 0.84 67.70** 31
NG:IP 10 (70) 0.344 0.61* 0.09 1.58 0.44 0.47 7.50 8
IP:C 36 (61) 0.243 0.58 0.10 1.37 0.30 0.54 21.91 20
RIC:CC 73 (66) 0.01* 0.57* 0.06 1.34 0.53* 0.41 72.80** 36

herbivores NV:Ag 38 (50) 1 0.52 0.10 1.08 0.54 1.37 20.57** 11
WNV:IP 22 (45) 0.832 0.52 0.13 1.07 0.27 3.22 5.15 5
NG:IP 5 (60) 1 0.44 0.15 0.78 N/A N/A N/A N/A
IP:C 14 (57) 0.791 0.59 0.14 1.41 N/A N/A N/A N/A
RIC:CC 114 (45) 0.303 0.51 0.04 1.03 0.26* 0.22 99.45** 63

* P = <0.05. ** = significant among-study heterogeneity (where Q was significant for fixed-effects meta-analysis, random effects meta-analysis was used).
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NV:Ag = native vegetation compared to agriculture; WNV:IP = wooded native vegetation compared to improved/introduced pasture; NG:IP = native grassland 

compared to improved/introduced pasture; IP:C = improved/introduced pasture compared to cropping; RIC:CC = reduced input cropping compared to 

conventional cropping.
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Table 2.4. Taxonomic abundance results for vote-counting, proportional and fixed/random effects meta-analyses for land-use and cropping management 

comparisons. Vote-counting columns contain percentage of studies that found greater abundance of focal taxon in less intensive land use (binomial sign test not 

conducted due to typically small sample sizes). Proportional analysis columns contain the abundance proportion in the less intensive land use averaged across all 

studies (+/- 95% confidence intervals). The fixed/random-effects meta-analysis columns contain the Hedges’ E++ (the mean effect size averaged across all studies 

in a land-use comparison) (+/- 95% confidence intervals). 

Taxa  NV:Ag WNV:IP IP:C RIC:CC

% of 
studies 

mean 
proportion 

Hedges’ 
E++

% of 
studies 

mean
proportion 

Hedges’ 
E++

% of 
studies 

mean 
proportion 

Hedges’ 
E++

% of 
studies 

mean
proportion 

Hedges’ 
E++

Acari 56 0.55 (0.09) 0.52 
(0.63)

56 0.51 (0.10) – 67 0.58 
(0.14)

– 69 0.55 
(0.07)

0.62 
(0.26)*

Araneae 52 0.54 (0.08) 1.35 
(1.30)*

63 0.60 (0.11) 1.73 
(1.83)

81 0.67 
(0.11)*

0.796 
(1.445)

79 0.62 
(0.03)*

0.62 
(0.26)*

Carabidae 46 0.60 (0.18) -0.05 
(1.43)

– 0.49 (0.25) – 18 0.40 
(0.16)

– 73 0.6 
(0.04)*

0.72 
(0.38)*

Chilopoda 85 0.73 (0.16)* 0.73 
(2.11)

90 0.80 (0.14)* 0.76 
(2.61)

– – – 40 0.49 
(0.17)

–

Chrysomelidae – – – – – – – – – 40 0.46 
(0.18)

–

Coccinellidae – – – – – – – – – 84 0.70 
(0.09)*

0.69 
(1.06)

Collembola 50 0.48 (0.18) 0.16 
(1.28)

– – – 67 0.63 
(0.14)

0.964 
(1.223)

72 0.56 
(0.04)*

0.80 
(0.53)*

Curculionidae – – – – – – – – – 50 0.48 
(0.24)

–

Dermaptera 38 0.41 (0.30) -1.06 
(2.33)

– – – – – – 64 0.69 
(0.16)*

0.06 
(0.25)

Diplopoda 86 0.71 (0.17)* 0.88 
(0.41)*

90 0.72 (0.18)* -0.58 
(2.66)

67 0.72 
(0.24)

– – – –

Formicidae 69 0.61 (0.10)* 0.82 
(0.67)*

52 0.51 (0.12) -0.11 
(0.87)

58 0.64 
(0.15)

0.294 
(1.136)

80 0.62 
(0.07)*

0.55 
(0.40)*

Homoptera 25 0.36 (0.17) – – – – – – – 43 0.50 
(0.05)

0.36 
(0.40)
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Isopoda 55 0.58 (0.24) 0.45 
(0.95)

83 0.67 (0.35) – – – – – – –

Isoptera 87 0.71 (0.08)* 0.13 
(1.92)

83 0.72 (0.17)* 0.04 
(2.90)

25 0.41 
(0.34)

– – – –

Neuroptera – – – – – – – – – 80 0.69 
(0.15)*

–

Orthoptera 33 0.43 (0.18) 0.025 
(2.55)

– – – – – – 63 0.56 
(0.27)

–

Scarabaeidae 81 0.60 (0.13) 0.20 
(0.95)

64 0.61 (0.13) 0.25 
(0.74)

63 0.51 
(0.26)

– 71 0.57 
(0.23)

–

Staphylinidae 67 0.57 (0.20) – 100 0.67 (0.17)* – 33 0.43 
(0.11)

– 71 0.58 
(0.07)*

0.72 
(0.36)*

Thysanoptera – – – – – – – – – 62 0.53 
(0.08)

0.02 
(0.66)

* P = <0.05. NV:Ag = native vegetation compared to agriculture; WNV:IP = wooded native vegetation compared to improved/introduced pasture; IP:C = 

improved/introduced pasture compared to cropping; RIC:CC = reduced input cropping compared to conventional cropping.

– denotes insufficient studies to conduct analyses.
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2.4 Discussion

All three meta-analytical approaches found significantly higher richness in the less 

intensive land use for all land-use and management comparisons. These findings 

upheld our expectation that arthropod richness would decline as land-use and 

management intensity increased. This trend appeared to be consistent across a wide 

range of regions, biomes, management systems and taxa, with the exception of 

herbivorous taxa. A decline in biological richness may therefore be a general 

response (for most groups) to both the conversion of native vegetation into 

agricultural systems and the intensification of agricultural management. However, we 

found the response of arthropod abundance to land-use intensification somewhat 

more variable. Overall arthropod abundance was significantly greater in native 

vegetation than agricultural land and in reduced-input cropping than in conventional 

cropping in all three meta-analyses. We obtained broadly similar results for predators 

and decomposers, but not herbivores. For the other land-use comparisons, we found 

few differences in abundance between the less intensive and more intensive land uses.

In addition to exploring arthropod responses to land-use type, this review also 

illustrates the capacity for different meta-analytical techniques to accommodate 

studies depending on the amount of information provided in published research. For 

instance, the fixed/random-effects method requires the most information (mean, 

variance and sample size) for a study to be included in the analysis. Whilst the most 

rigorous approach, it is also the most exclusive – numerous studies that we included

in the vote-counting and proportional approaches were necessarily omitted from the 

fixed/random-effects approach due to a lack of information. Whilst the vote-counting 

and proportional approaches are rapid and convenient options, they have evident 

limitations. Vote-counting only gives the direction of the trend between treatments, 

offering no indication of the magnitude of difference. The proportional approach 

accounts for the magnitude of difference, but includes no provision for variance or

sample size. This approach may therefore also tend to report a higher rate of type-1 

errors. However, the ease of calculation makes it a useful ‘first-pass’ precursor to a 

more formal meta-analysis.
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2.4.1 Arthropod richness

We observed a general decline in arthropod richness with increasing land-use and 

management intensity. The broad process of agricultural intensification from intact, 

indigenous vegetation associations, through fragmented mixed-agricultural 

landscapes, to highly intensive, monotypic grazing or cropping systems can lead to a 

reduction in biological diversity via a range of impacts and threats. For instance, 

clearing native woody vegetation radically alters and simplifies habitat structure and 

composition, changes resource availability, unravels complex ecological associations, 

increases soil insolation and temperature, changes nutrient cycles, reduces niche 

availability, destabilizes microclimates and greatly alters soil structure and attributes 

(Gade, 1996; Barros et al. 2004). The introduction of domestic stock impacts further 

through soil compaction, accelerated nutrient inputs, cessation of plant regeneration, 

altered botanical composition and simplified sward structure (Abensperg-Traun et al. 

1996; Reid and Hochuli, 2007). A change from pasture to cropping may simplify the 

structure and composition of the system still further, particularly if the land-use 

change is from a relatively heterogeneous grazing system to a monocultural cropping 

system. Common cropping management practices such as deep tillage, agro-chemical 

application and mechanical harvesting may all serve to increase the frequency and 

severity of disturbance regimes in the new system (Thorbek and Bilde, 2004). The 

change from wooded native vegetation to pasture arguably represents the greatest 

degree of structural vegetation contrast between our focal land uses. Accordingly, the 

loss in richness from wooded native vegetation to pasture was the largest of all land-

use comparisons. 

There are a number of possible explanations for higher arthropod richness in less 

intensive land uses. Areas of low to moderate modification/intensification (such as

native vegetation and pasture) are likely to have greater habitat complexity, due in 

part to less exposure to intensive and uniform management than many cropping 

systems. Therefore, in complex land uses, niche opportunities are likely to be 

numerous, whilst fewer niches may be available in structurally and compositionally 

less-complex systems. (Bardgett, 2002; Willis et al. 2005). Consequently, 

opportunities for coexistence through resource partitioning, are likely to be reduced in 

simplified systems, resulting in lowered species richness.  More complex habitat 

composition and structure may allow greater access to a wider range of alternative 

food resources (Langellotto and Denno, 2004), thus supporting more omnivorous and 
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non-obligate predatory taxa. Increased predator density in areas of moderate to low 

disturbance (Landis et al. 2000) may also increase overall community richness 

through predator-mediated coexistence (Shurin and Allen, 2001). 

Another potential explanation for greater richness in less-disturbed habitats is that 

in frequently or intensely disturbed environments, community composition cannot 

progress beyond early pioneer stages. This frequent ‘resetting of the successional 

clock’ in areas of high disturbance results in environments that favour early 

successional species, while disadvantaging later successional species (Büchs et al.

2003). If the disturbance is sufficiently severe and frequent (such as in intensive 

cropping), it could feasibly exclude all but the most ruderal of taxa, thus potentially 

leading to overall lower species numbers. 

That the herbivore feeding guild did not show the characteristic richness decline 

we observed for combined taxa, predators and detritivores is surprising. As herbivore 

diversity would be expected to increase with plant diversity (Siemann et al. 1998), we 

expected herbivore richness to be highest in heterogeneous land uses such as native 

vegetation. However, the finding may be related to the small sample sizes of studies 

(e.g. WNV:IP, n = 10 studies for vote-counting and proportional analyses) which also 

precluded the use of the fixed/random-effects analysis. 

The results from all three analytical approaches indicate that the reduction in 

arthropod richness from a native (wooded or grassland) system to an agricultural one 

(improved pasture or cropping) is greater than that from one agricultural system to 

another (improved pasture to cropping or reduced-input cropping to intensive 

cropping). The structural and compositional differences between complex native 

systems and simplified agricultural systems could represent a threshold of habitability 

for many species, whereas the differing degrees of modification in already altered 

agricultural habitats may represent less of an obstacle for the remaining taxa. Thus, 

many biological components of a native system are lost when it is transformed into an 

agricultural system. Further richness declines occur when the agricultural system is 

further modified (e.g. pasture to cropping), but the losses are of a smaller magnitude, 

possibly due to the tolerance of the remaining taxa to more frequent and intense 

disturbances.
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2.4.2 Arthropod abundance

Arthropod abundance decreased from native vegetation to agricultural land for 

combined taxa, predators and, to a lesser extent, decomposers. Many of the potential 

causal factors could be attributed to the land-use change process discussed for 

richness decline above, and have also been extensively explored by Langellotto and 

Denno (2004). The natural enemies hypothesis predicts that vegetatively and 

structurally complex habitats should support greater predator abundance than 

simplified habitats (Andow, 1991). Our results support this view. More complex 

habitats may offer greater and more varied food resources, allow refuge from intra-

guild predation and cannibalism, provide favourable microclimates and enable access 

to alternative food resources (Langellotto and Denno, 2004). 

We also found statistically greater abundance of predatory, decomposer and 

combined arthropod taxa in reduced-input cropping compared to conventional 

cropping. The reduced intensity, frequency and scale of physical disturbances (e.g. 

tillage) could lead to lower mortality and post-disturbance emigration of predatory 

arthropods in reduced-input cropping systems (Stinner and House, 1990; Thorbek and 

Bilde, 2004), whilst a reduction in the use of pesticides, or a move towards pest-

specific chemicals, could reduce non-target arthropod mortality (Hummel et al. 

2002). Arable weeds have also been reported as an important resource and source of 

habitat heterogeneity that may benefit arthropods (Kromp, 1989). Arthropods, 

including predators of phytophagous species, have been observed to increase in 

‘weedy’ crops (Brooks et al. 2005). Therefore, a reduction in general herbicide 

application could increase weed prevalence in cropping systems, resulting in

increased habitat heterogeneity and greater arthropod abundance. The reduction of 

chemical inputs to cropping systems can also have positive impacts on adjacent non-

cropped habitats (Boutin and Jobin, 1998), improving the condition of refugial 

habitats and potentially increasing arthropod immigration into cropping systems (Bell 

et al. 2002). 

For native grassland compared to pasture and pasture compared to cropping, there 

were only two instances of significantly greater abundance in the less intensive land 

use (both using the proportional analysis). There are various possible explanations for 

this apparent lack of response. In some instances, there may have been species 

turnover changes in assemblage composition between land-use comparisons, but little 

change in overall abundance. As can be seen from the feeding guild and taxonomic 
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results (Tables 2.3 & 2.4), different taxa may respond to agricultural disturbance and 

management in various ways (Fuller et al. 2005). For instance, as disturbance 

increases, generalists may increase in abundance, whereas specialists may decline 

(Tejeda-Cruz and Sutherland, 2004), leading to assemblage change with relatively 

unchanging net abundance. 

As with richness, herbivores did not exhibit the same abundance responses 

between native vegetation and agriculture (NV:Ag) and reduced-input and 

conventional cropping (RIC:CC) as combined taxa, predators and decomposers (with 

the sole exception of increased abundance in RIC compared to CC for the random-

effects approach). For instance, only 45% of our studies found greater herbivore 

abundance in reduced-input compared to conventional cropping and 75% of studies 

found greater homopteran densities in agricultural land compared to native 

vegetation. It is interesting to compare these responses to those reported by Tonhasca 

and Byrne (1994) whose meta-analysis suggested that increased crop diversity 

reduced herbivorous arthropod abundance.

2.4.3 Practical implications

Arthropods are one of the most important groups in the delivery of vital ecosystem 

services to agriculture (Goehring et al. 2002). Increased arthropod richness may have 

utilitarian benefits given that arthropods are linked to a range of ecosystem functions, 

and a reduction in arthropod biodiversity may be expressed in reduced ecological 

function or impairment of ecosystem processes (Naeem et al. 1994; Wolters, 2001). 

Although there is debate over the extent to which biological diversity and the 

effective functioning of ecosystem processes are entwined (Tilman, 1999; Tscharntke 

et al. 2005a), and evidence that increased predator diversity can lead to reduced 

herbivore suppression (Finke and Denno, 2004), a precautionary approach should be 

taken to the decline of functionally significant taxa, such as arthropods. Their 

conservation and retention in production landscapes should therefore be a high 

priority. Arthropods in production-dominated systems are also an intrinsic component 

of the food chain of species with a high conservation profile such as birds. For 

example, declines in insect larvae are considered a major factor in the population 

declines of birds such as the Grey Partridge Perdix perdix L. (Gates and Donald, 

2000) and the provision and management of arthropod habitat in production systems 

is central to the recovery of this species (Thomas et al. 2001).
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An increase in arthropod abundance, particularly predatory arthropods, in 

reduced-input cropping could also have desirable outcomes for agricultural 

production (Östman et al. 2003). For instance, predatory arthropod and pest

invertebrate populations in cotton under integrated pest management (IPM) and non-

IPM cotton were investigated by Bambawale et al. (2004), who found fewer 

predators and greater bollworm damage in non-IPM pesticide plots. Spiders in 

particular are valued for their role as predators of within-crop pests and there are 

numerous experimental examples of their impacts on some pest species in agricultural 

systems (Marc et al. 1999; Sunderland and Samu, 2000). We found that spider 

abundance was significantly greater in reduced-input compared to conventional 

cropping for the proportional and random-effects analyses, indicating that reduced 

cropping management intensity may result in positive pest control outcomes. 

The non-linear biodiversity decline along our land-use intensification gradient 

(Figure 2.1a) may offer an insight into the effects of two prominent strategies for 

addressing the conservation of wild nature in agricultural landscapes (see Green et al. 

(2005), Fig. 3b). ‘Wildlife-friendly farming’ proposes that reduced intensity of 

farming practices (through the provision of semi-natural habitats and reduction in 

management inputs such as pesticides) can increase the biodiversity value of 

production land (McNeely and Scherr, 2002; Balmford et al. 2005) whilst 

simultaneously reducing external impacts on non-farmed habitat. However, Green et 

al. (2005) indicate that in some instances such practices may result in yield reduction, 

which in turn may require a greater area of land to be under agricultural production to

compensate for any production deficit. Alternatively, intensive agriculture leads to 

higher yields, thus reducing the need to transform natural systems into production 

land (‘land sparing’) (Balmford et al. 2005; Green et al. 2005). Our findings indicate 

that natural systems contain the majority of arthropod richness, and that the bulk of 

biodiversity is lost when native vegetation is converted to agriculture. Therefore, 

where considerable native vegetation remains, its retention should be a priority 

conservation strategy. However, in relatively low intensity compared to high intensity 

agricultural land uses (IP:C, RIC:CC - Fig. 2.1a) richness was greater in the less 

intensive land use. This would indicate that where little native vegetation remains, 

such as in intensively farmed landscapes, the inclusion of pastures and low input 

cropping, is likely to be an effective conservation strategy.
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Chapter 3

Ant diversity decline and habitat 

preference along an agricultural 

intensification gradient
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3.1 Introduction

Agriculture has been identified as a serious threat to biological diversity from local to 

global scales via processes such as habitat loss, fragmentation, land-use change and 

intensive land management (Matson et al. 1997; Tomich et al. 1998; Reidsma et al. 

2006). Remnants of native habitat in agricultural landscapes have often been 

portrayed as distinct from, and embedded in, a homogenous matrix of production 

land, consistent with the theories of island biogeography and metapopulation 

dynamics (Revilla et al. 2004). This has sometimes resulted in a rather narrow 

perspective of native remnants as a beleaguered source of dwindling biological 

diversity, with the agricultural matrix depicted as biologically impoverished and a 

source of exogenous threatening processes (Haila, 2002). Whilst there is evidence to 

support this view in some instances and for some taxa (Cook et al. 2002; Branch et 

al. 2003; Driscoll, 2005), examples abound where the relationship between land use

and the persistence and spatio-temporal distribution of taxa is far less straightforward 

(e.g. Cook et al. 2002; Driscoll, 2005). Production landscapes often support diverse 

biological assemblages, especially where the landscape consists of a mosaic of land-

use types undergoing different levels of disturbance (Benton et al. 2003; Eggleton et 

al. 2005). Areas of high heterogeneity may provide a rich array of habitats and 

resources for a wealth of taxa that address both their spatial and temporal 

requirements (Law and Dickman, 1998; Delgado and Moreira, 2000; Holland et al. 

2005; Clough et al. 2007). 

In many regions, a multiplicity of land uses, habitats and other landscape features 

can occur in a fine-grained and intricate spatial arrangement within a relatively small 

geographical area. This arrangement is often accompanied by, and frequently due to,

a complex history of land-use change and management. This is the case in much of 

eastern Australia, where a mosaic of native vegetation types, many managed for 

millennia using traditional aboriginal techniques such as periodic burning (Flannery, 

1994; Bowman, 1998), have been impacted in recent times (c. last 200 years) by 

European-derived agricultural practices (Henzell, 2007). These practices initially

included grazing of stock and clearing of native systems (Griffiths, 2002) coupled 

with a cessation of traditional fire management (Ward et al. 2001a). More recently, 

management has included broad-scale mechanical land clearing, pasture improvement 
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and both dryland and irrigated cropping (Landsberg and Wylie, 1988; Cogger et al. 

2003; Maron and Fitzsimons, 2007). 

Establishing the distribution, habitat preferences and requirements of particular 

taxa in such areas can be a daunting task. However, whether management objectives 

are biodiversity conservation, the maintenance of critically important taxa for the 

delivery of ecosystem goods and services such as nutrient cycling, or the control of 

pest species, understanding the distributional relationships between taxa and the 

production environment is of considerable importance (Holland et al. 2005; 

Blackshaw and Vernon, 2006). 

The study of arthropods has become increasingly popular as a means for 

landscape ecologists and conservation biologists to investigate the complexities of 

agricultural land-use change and its implications for biological communities (Duelli 

et al. 1999). This interest is reflected, for instance, in the scientific literature; since 

1985, the number of journal papers referring to arthropods and insects as indicators or 

in an agricultural context has greatly increased (Fig. 3.1). 
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Figure 3.1. Number of journal articles found by Google Scholar that contained the search 

combinations “arthropod* & agricultur*”, “arthropod* & indicator*”, “arthropod* & monitor*”, 

“insect* & agricultur*”, “insect* & indicator*”, “insect* & monitor*” in the body of the text for the 

years 1985-2007 (accessed 19th June 2009).

This increasing focus on arthropods may reflect greater awareness that many taxa 

contribute to the functioning of a range of ecosystem processes (Holland et al. 2005). 

Some groups are also known to exhibit reliable responses to a range of environmental 

and management stimuli, rendering them useful ‘indicators’ of system change, 
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condition and trajectory (Andersen and Majer, 2004). Advances in taxonomy and 

rapid identification techniques are also leading to more rapid processing of large 

samples, thus easing a number of pragmatic obstacles to the study of arthropods 

(Oliver and Beattie, 1996; Andersen and Majer, 2004). Formicidae (ants) is one group 

that has received considerable attention in a variety of ecological research situations 

around the world (Andersen and Majer, 2004). They play important roles in 

production landscapes as ecosystem engineers (Folgarait, 1998), predators (Abera-

Kalibata et al. 2007) and through the association of some species with homopteran 

pests (Buckley and Gullan, 1991). Ants are also near-ubiquitous in terrestrial 

landscapes (Ratchford et al. 2005), particularly in Australia, occurring in great 

abundance and with great diversity (Hoffmann and Andersen, 2003). Whilst Dauber 

et al. (2005) are correct in stating that single indicator taxon studies may be limited in

their usefulness, there is sufficient evidence to suggest that ants in particular remain 

an excellent group to use for assessing management actions and ecosystem changes 

(Underwood and Fisher, 2006). 

I aimed to investigate whether, and how, ant assemblages changed along a 

gradient of increasing agricultural intensification. I considered this question at two 

different scales: i) globally, using data from published studies that examined ant 

abundance and/or richness and ant functional group composition in native and 

anthropogenic habitats in agricultural landscapes, and ii) locally, via field sampling of

livestock-grazed remnants of native woodland (least disturbed), grazed 

pastures/grassland, and cereal cropping (most disturbed) in a sub-tropical eastern 

Australian landscape. For the field study, in addition to examining ant fauna in the 

core of each land-use type, I wished to examine changes in ant assemblages at the 

interfaces between the patches of different land uses. Edges make up a considerable 

proportion of both fragmented native systems and multiple-land use agricultural 

systems, and are an increasingly abundant physical feature of landscapes undergoing 

ongoing fragmentation. As such, they are thought to play important roles in shaping 

biological communities through environmental changes at the habitat boundaries, and 

also via the interactions between the taxa frequenting edges and those attempting to 

cross them (Dauber and Wolters, 2004; Ries et al. 2004). The ability or willingness of 

organisms to cross from one habitat to another can be influenced by the degree of 

contrast between neighbouring land uses, with ‘hard edges’ (high degree of contrast) 

often being less permeable to organism movement than ‘soft edges’ (low degree of 
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contrast) (Duelli et al. 1990; Ries et al. 2004). Such relationships have implications 

for the ability of some organisms to traverse and occupy a landscape that consists of 

a) a mosaic of different land uses with differing structures and disturbance levels, and 

b) consequent differing degrees of contrast between neighbouring land-use types (and 

hence an array of ‘hard’ and ‘soft’ edges). In this study I examined if ants that were 

found in the core of a particular land use were also evident at the edge of that land use 

where it interfaced with a neighbouring land use. Edges can also support edge-

specialist taxa that tend to favour edge habitats. This can be due to favourable 

physical conditions such as habitat structure or the concentration of resources along 

edges (Ries et al. 2004). Consequently, I also wished to discover if any ant taxa were 

present predominantly at edge habitats where two land uses interfaced, but largely 

absent from the land-use core areas.

Specifically, I addressed the following research questions: 

1. Do ant richness, diversity, abundance and assemblage composition vary along 

a gradient of increasing land-use intensification/disturbance?

2. Do interfaces between land uses have a distinct ant assemblage, or one

intermediate between those of the two adjacent land uses? 

3. Do ant functional groups vary among different land-use types? 

4. Are particular morphospecies of ants influenced by particular physical and 

structural characteristics of the habitat and landscape in the field study?

5. Are the abundance/richness/functional group responses of ants to agricultural 

land use at the local scale (field study) in southern Queensland consistent with 

predictions based on the meta-analyses?

3.2 Method

3.2.1 Literature analyses

I adopted two analytical approaches to determining whether broad global 

generalisations could be drawn regarding the impacts of agriculture on ant diversity, 

abundance and assemblage composition:

a) A series of formal meta-analyses that examined abundance and richness 

responses among several land-use comparisons: native vegetation compared 

to agriculture, wooded native vegetation compared to improved pasture, 

improved pasture compared to cropping and reduced-input cropping 
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compared to conventional cropping (for further details of the methods 

employed and the studies included, please see Attwood et al. 2008 and 

Chapter 2 of this thesis).

b) A quantitative but non-statistical assessment of the relative functional group 

composition of wooded native vegetation compared to agricultural land, using 

data from field comparisons contained in the scientific literature. To do this I 

searched Web of Science and Scopus for papers using the search terms 

“Formicidae and agri*”, “Formicidae and pasture*” and “Formicidae and 

crop*”. I compiled papers that compared ants in wooded native vegetation to 

those in an agricultural land-use type. I then retained only those that provided 

a list or other account of the number of individuals per taxon of the ants that 

occurred in each land use (see Appendix C.2). Each taxon (where possible) 

was then assigned to one of eight functional groups (Cold Climate Specialists, 

Cryptic Species, Dominant Dolichoderinae, Generalised Myrmicinae, Hot 

Climate Specialists, Opportunists, Specialist Predators and Subordinate 

Camponotini), using a range of authorities to assist in the classification (such 

as Hoffmann and Andersen, 2003, but see Appendix C.2 for complete 

functional grouping references). This functional grouping approach to

classifying ants was developed in order to increase the utility of ants as 

bioindicators of environmental stress, and to better capture the likely 

responses of ant community dynamics to disturbance (and other stimuli) in the 

absence of taxon-specific responses (Andersen, 1995; Hoffmann and 

Andersen, 2003; Majer et al. 2004). The approach is designed to predict 

responses at both biogeographical scales and responses to disturbance and 

group interactions at individual sites. For greater detail of the biogeographical, 

disturbance and inter-group interactions of each functional group 

classification, see Hoffmann and Andersen, 2003, Table 1.Tropical Climate 

Specialists were not included in the analysis, as they a) did not occur in the 

field study area, and therefore could not be used in the literature/field 

responses comparison, and b) occurred very infrequently or in low numbers 

compared to other functional groups, and were therefore very unlikely to skew 

the results by being omitted (TCS represented 0.04% of the total abundance of 

all ants in the literature analysis). For each study I calculated the percentage 

contribution that each functional group made to the overall assemblage 
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composition for both the native vegetation and agricultural land treatments. 

This resulted in a ‘functional group profile’ for each land-use type in each 

study. I then calculated the mean percentage contribution that each functional 

group made across all studies for both native vegetation and agricultural land, 

and plotted the results. 

3.2.2 Study area and Study sites

The field study was performed in the rural areas around Pittsworth, Felton, 

Cambooya and Mt Tyson, to the immediate west and south-west of Toowoomba in 

south-east Queensland, Australia (420–560 m a.s.l., 27°26´–47´S, 151°33´–51´E)

(See Fig. 3.3). The climate is sub-tropical, with a mean annual daily maximum 

temperature of approximately 24.5 °C and mean annual precipitation of 700 mm, the 

majority of which falls from October to March (Bureau of  Meteorology, 2007). The 

area forms part of the eastern Darling Downs, a region to the west of the Great 

Dividing Range, situated within the Condamine River basin. The area was first 

discovered by Europeans in 1827, first settled in 1840, and opened up to commercial 

sheep production in 1847 (Vandersee, 1975). Since then, the region has seen the 

expansion of wheat production and cattle for dairying and beef, with the region now 

supporting a range of summer and winter cereal crops (e.g. wheat, sorghum), beef and 

dairy, and sheep, pig and intensive poultry production (Vandersee, 1975; Australian 

Bureau of Statistics, 1994; 2008a; 2008b. Fig 3.2).
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Fig. 3.2. Agricultural statistics summed for Cambooya Shire, Clifton Shire and Pittsworth Shire, of i) 

total area of land under cropping (ha), ii) total area of land under stock grazing (ha), iii) total number 

of cattle, and iv) total number of sheep and lambs for 1992–93, 2000–01 and 2005–06 (source data 

Australian Bureau of Statistics 1994; 2008a; 2008b). Grazing area data unavailable for 1992–3.
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The soils are black vertisols and the remaining hill slope vegetation is cattle-

grazed open woodland, largely consisting of canopy species Eucalyptus orgadophila

(Maiden & Blakely) and Eucalyptus crebra (F. Muell.), with understorey components 

including a variety of native and introduced grasses, forbs and scattered shrubs. 

Vegetation types for woodland were restricted to the Regional Ecosystems 11.8.5 (E. 

orgadophyla open woodland), 11.8.4 (E. melanophloia woodland) and 11.9.2 (E. 

melanophloia ± E. orgadophyla woodland) (as per Sattler and Williams, 1999).

Three broad land-use or land-cover types were examined: grazed remnants of 

native woodland, grazed pasture/grassland and cereal crops. The woodlands are 

almost entirely restricted to mid-upper hill slopes and hill tops, on soils generally 

considered unsuitable for agriculture. Woody vegetation has been removed from 

other parts of the landscape through a combination of land clearing and ring-barking, 

with a current woody vegetation cover of approximately 11–20 % in the Condamine 

region (of which the study area forms a part), compared to estimated pre-European 

cover (Accad et al. 2008). No lower area size limit was set for the inclusion of 

woodland patches, as small areas of native woodland are a predominant feature of the 

region. The size of woodland patches ranged from 7 ha to approximately 100 ha. All 

woodland remnants were grazed by cattle during or close to the time of sampling, 

which is a standard agricultural practice in this region.

Pasture/grassland sites were areas of formerly grassy woodland systems that had 

been historically cleared of wooded native vegetation. Since clearing, the grasslands 

had been subjected to various histories of fertilisation, reseeding and stocking rates, 

but all consisted of a combination of exotic and native grass species and all were 

grazed during or close to the time of sampling. 

Cropping sites were restricted to those used for cereal cropping (barley, oats, 

wheat or sorghum), but owing to prolonged drought (and therefore reduced cropping 

activity) this included both standing winter crops and stubble from the previous 

summer’s crop. The area of cropping fields ranged from 3.3 to 67 ha, with a mean 

area of 25 ha (± 21 ha S.D.).
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Fig. 3.3. Map of study area in southern Queensland. Each blue polygon is a sampling site of three core 

land uses and two habitat interfaces (see Fig. 3.4). Each site identified by landholder surname (and 

number if more than one site sampled under same tenure). Property where sampling sites destroyed by 

cattle not depicted. ‘Pittsworth’ is nearest town. 

3.2.3 Experimental design

The spatial arrangement of the landscape mosaic in the region followed a consistent 

pattern: woodland remnants invariably remained on higher, rockier ground, segueing 

into grassland/pastures on the mid-slopes, which in turn abruptly adjoined cropping 

land on the lower slopes and deeper soils. This allowed a block design for the study, 

but because of the consistent landscape arrangement, this was non-randomised. A 

transect was established that represented a gradient of land-use intensification, 

incorporating the three land-use types. This transect was replicated a total of ten times 

across the region spanning eight different properties (Figures 3.3 & 3.4). Due to 

trampling by cattle during sampling, all sampling points along one complete transect 

were destroyed, as well as the cropping core and cropping/pasture edge from another 

site. This resulted in nine replicates each of woodland core, woodland/pasture edge 

and pasture core and eight replicates of cropping core and cropping/pasture edge.
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Sampling points were located at five positions along the transect: the core of each 

land-use type and the two edges. The sampling point in the core of each land-use type 

was randomly located along the transect, but with the criterion that it must be situated

a minimum of 50 m from adjoining land uses. Therefore, each land-use core sampling 

point was at least 100 m from the next core sampling point. For the edges, a sampling 

point was randomly located along the land-use edge. The edge of pasture and 

cropping was easily determined as the point where the pasture abutted the complex of 

crop plants and bare ground that constituted the outermost perimeter of the crop field 

(generally c.0.5 m in width). The interface between the edge pasture edge and the 

woodland edge was determined as the edge of the tree line.
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Figure 3.4. Experimental design and spatial arrangement of sampling points in relation to land-use

gradient. WC = Woodland core, WE = Woodland/pasture edge, PC = Pasture core, CE = 

pasture/cropping edge, CC = Cropping core.

3.2.4 Ant sampling

Surface-dwelling arthropods were sampled using pitfall traps. Whilst there are known 

limitations and biases to pitfall trapping (Melbourne, 1999; Ward et al. 2001b), the 

technique is also recognised as a valid and useful approach to collecting large 

quantities of data for certain groups, including ants (Andersen, 1991). This technique 

was considered suitable for the comparative study as the aim was not to produce an 

exhaustive categorisation of site fauna. Pitfall traps consisted of plastic containers 

with an opening diameter of 115 mm and a depth of 80 mm. Five traps were placed 5

m apart from each other at each sampling point in a given land-use type (see Fig. 3.4) 

and allowed to settle with lids on for seven days to reduce digging-in effects 
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(Greenslade, 1973). In order to capture a comprehensive picture of each edge, traps 

were placed either side of the line of land-use division (see section 3.2.3 for how 

edges were determined), but no more than 0.2 m into the adjacent land use. Traps 

were then half-filled with 30% ethylene glycol solution and a few drops of household 

detergent. All traps were simultaneously opened for four days and nights in 

November 2005. Traps were then removed, and the contents transferred to a 70% 

ethanol solution. 

All ant specimens were identified to genus and morphospecies using a 

stereomicroscope and standard reference works (Shattuck 1999; Andersen, 2000; 

Shattuck and Barnett, 2001) and morphospecies identification was confirmed by staff 

at the Queensland Museum and compared to voucher specimens from other studies in 

the region. Specimens were attributed to functional groupings after Hoffmann and 

Andersen (2003) and Majer et al. (2004). 

3.2.5 Independent variables

In order to determine the relationship between ant assemblage composition and 

habitat factors, a number of variables relating to stand structure, ground cover and 

canopy cover were recorded at each sampling point (Table 3.1). Stand structure was 

measured within a 25 m² quadrat at each sampling point. Ground and canopy cover 

measures were estimated within four randomly located 1 m² quadrats (located within 

the 25 m²) at each sampling point and the mean calculated. Tree canopy cover (for 

both above and below 10 m in height) was estimated as the percentage cover of 

branches and foliage covering the 1 m² quadrat, when the observer was standing in 

the middle of the quadrat and looking vertically upwards. Shrub cover was estimated 

in a similar manner but with the observer lying down face upwards in the quadrat. 

Amount of each ground cover variable was estimated by standing above the quadrat 

and estimating percentage cover of each variable. The estimation process was aided 

by having the metal quadrat divided into one hundred equally sized squares by 

attaching ten pieces of cord to the vertical and horizontal borders of the quadrat. This 

made it easier to visualise quantities in percentage terms. Both litter depth and 

graminoid height were measured 20 times (at random points) in each 1 m² quadrat by 

placing a 1 m rule (marked in mm) vertically on the ground and measuring at eye 

level. The mean of these 20 measurements was taken for each quadrat. In addition to 

the fine scale cover measurements, four landscape level variables were calculated,
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from digitally rectified aerial photographs, for each sampling point: the percentage 

cover of i) woodland, ii) pasture and iii) cropping within 500 m of each sampling 

point, and the linear distance of cropping edge (i.e. cropping/pasture interface) within 

500 m of each sampling point. This latter variable represents the quantity of ‘hard-

edge’ (edge with a high degree of contrast between the two bordering land-use types).

Table 3.1. Environmental variables measured at each sampling point, with units of measurement and 

number of samples taken. * = variable used in multivariate analysis (see Table 3.6); † = variables 

combined and used in multivariate analysis (see table 3.6).

Variable Measure/units Number of 
readings at each 
sampling point

Tree stand structure Count within 25 m² 1

Shrubs >2 m height Count within 25 m² 1

Shrubs <2 m height Count within 25 m² 1

Trees canopy cover 10-30 m height † % cover within 1 m² 4

Trees canopy cover <10 m height † % cover within 1 m² 4

Shrubs >2 m height * % cover within 1 m² 4

Shrubs <2 m height * % cover within 1 m² 4

Forbs/herbs (non-woody) * % cover within 1 m² 4

Graminoids (tussock and mat separated) * % cover within 1 m² 4

Coarse Woody Debris (logs diameter >50 

mm) *

% cover within 1 m² 4

Coarse litter (debris diameter >10 mm 

<50 mm) *

% cover within 1 m² 4

Fine litter (debris <10 mm) * % cover within 1 m² 4

Litter depth mm within 1 m² 20

Graminoid height mm within 1 m² 20

Graminoid density None, low, medium, high 4

Bare ground * % cover within 1 m² 4

Crop residue % cover within 1 m² 4

Standing crop % cover within 1 m² 4

Cryptogams % cover within 1 m² 4

Rock cover * % cover within 1 m² 4

Cover of woodland in landscape % cover within 500 m radius 1

Cover of pasture in landscape * % cover within 500 m radius 1

Cover of cropping in landscape * % cover within 500 m radius 1

Quantity of ‘hard edge’ (cropping pasture 

interface) in landscape *

Linear measure within 500 m 

radius

1
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3.2.6 Data analyses

3.2.6.1 Richness, abundance and diversity

Total morphospecies richness and grand mean abundance (mean abundance in each 

trap and grand mean of this across all replicates of a particular treatment) were 

calculated for each sampling point (across the five traps). Two diversity indices were 

calculated using the PRIMER® software package (Clarke and Gorley, 2001): the 

Shannon diversity index (H) and the Margalef index. Two indices were selected as 

each index is known to have its own limitations and benefits; for instance, the 

Shannon index is less sensitive to rare species, whereas the Margalef index is more 

sensitive to species represented by few individuals (Southwood, 1966; Jameson, 

1989). 

Prior to analysis, abundance and richness data were tested for normality of 

distribution and transformed where required. To test for differences in ant richness, 

abundance and diversity measures among treatments, I used repeated measures 

ANOVAs, with land-use type as the repeated measure. Where Mauchly’s assumption 

of sphericity was violated, a re-evaluation of the F-ratio was conducted using new 

degrees of freedom, calculated using the Huynh-Feldt epsilon. Where a significant 

within-subject effect was detected (i.e. among land-use type), differences between 

each treatment were tested using paired t-tests. Differences among treatments in the 

mean abundance of individuals belonging to selected genera, individual 

morphospecies and functional groups were investigated using repeated measures 

ANOVAs. All univariate analyses were performed using SPSS 14.0 for Windows 

(SPSS for Windows, 2005). 

3.2.6.2 Assemblage composition

To examine if ant assemblage composition and relative abundance differed among 

treatments, I calculated a Bray-Curtis similarity matrix from the fourth root 

transformed morphospecies data for each sampling point (this transformation was 

used as there were very large abundance differences among taxa, treatments and 

replicates of treatments). The primary reason for this analysis was to determine if the 

ant assemblages exhibited greater similarity within land-use type or within their block 

location (e.g. was the ant assemblage at WC1 more similar to that at WC2, WC3, 

WC4, etc., than that at WE1, PC1, etc.). To reduce data ‘noise’, I excluded all 
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morphospecies that occurred at fewer than three sampling points, thus reducing the 

influence of rare species. Non-metric multidimensional scaling ordination was then 

used to try to visualise the patterns from the similarity matrix in two dimensions. The 

differences among ant assemblages for both treatment type and block were tested 

using ANOSIM, with 9999 permutations. The morphospecies contributing most to 

the observed differences were calculated using SIMPER. A similar procedure was 

used for the functional group data. All calculations were undertaken using PRIMER®

(Clarke and Gorley, 2001).

3.2.6.3 Morphospecies occurrence and environmental variables

To ascertain which of the measured environmental variables appeared to be driving 

the variation in species occurrence among sites I used canonical correspondence 

analysis (CCA). Prior to analysis I removed all morphospecies that occurred at fewer 

than five sites, leaving 45 morphospecies (Debuse et al. 2007). In order to then 

determine if the morphospecies data had a linear or Gaussian (i.e. < or > than three 

lengths of gradient; Ter Braak and Šmilauer, 2002) distribution, I performed a 

detrended correspondence analysis (DCA). Before conducting CCA I used a ranging 

approach to standardising the environmental data (some measures were percentage 

cover, some heights, some distances, etc.) to a value between 0 and 1, by dividing 

each measure in an environmental variable category by the highest scoring measure in 

that category. I then calculated a correlation matrix of the environmental variables. 

Where there was a Spearman rank correlation of greater than 0.6, I carefully 

considered the ecological implications of these findings and the potential removal or 

combining of variables. For instance, tree stand density within 25 m² of each 

sampling point was highly correlated (>R = 0.6) with canopy cover of trees >10 m 

height, canopy cover of trees <10m height, litter cover, litter depth and percentage 

woodland cover within 500 m. Adopting a case-by-case approach, I omitted tree 

stand structure and derived a combined (mean) value for cover of both tree height 

classes, thus reducing the number of tree-related patch-scale variables to one 

measure. Despite litter cover being correlated with tree density and cover, I 

considered that these variables may influence ant assemblages in different ways—e.g. 

tree cover influencing the degree of sunlight reaching the ground layer, leaf litter 

directly influencing food webs, resource availability and microclimatic conditions. 

Consequently, I retained leaf litter cover, but discarded the highly correlated leaf-
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litter depth. Similarly, whilst woodland cover was also correlated with these 

variables, it was retained as it operated at a much larger spatial scale than the patch 

scale-variables (500 m radius compared to 4 m²). As the three area-based landscape 

variables were auto-correlated, I retained the two that a preliminary CCA found 

exerted the strongest influence on the morphospecies occurrence variability. I 

conducted a CCA for all remaining variables (n = 14) and the 45 most frequently 

recorded ant morphospecies, using logN transformed ant data, manual forward 

selection of environmental variables and 5,000 unrestricted Monte Carlo permutation 

tests. 

To determine the amount of species variability attributable to a) patch-scale 

environmental variables and b) landscape-scale environmental variables, I performed 

variance partitioning partial ordinations with patch-scale measures (e.g. tree canopy 

cover) as the environmental variables and landscape-scale measures (e.g. crop area 

cover) as covariables, and then landscape scale measures as the environmental 

variables and patch-scale measures as covariables. This approach was based upon the 

methods of Borcard et al. (1992) and Debuse et al. (2007). All were performed with 

CANOCO Version 4.5 for Windows (Ter Braak and Šmilauer, 2002)

3.2.6.4 ‘Indicator’ taxa

In order to determine if any of the taxa were characteristic of a land-use type, I 

conducted analysis using IndVal (Dufrêne and Legendre, 1997), which calculates the 

rate of occurrence in each habitat type and assesses whether a species is present 

predominantly in one habitat type. By incorporating both the abundance of a taxon 

within a land-use type as well as the number of sites of that land-use type in which 

the taxon occurs, it offers a realistic appraisal of a taxon’s habitat specificity (Dufrêne 

and Legendre, 2004). The dataset used for this analysis was the same as for the 

CANOCO analysis. Thus, it only included morphospecies that occurred at more than 

five sampling points (n = 45 morphospecies to be tested). Only the land-use type was 

used as a typology (analogous to an independent variable), and 499 iterations of the 

analysis were performed. Any significant results were used as the basis for illustrating 

the distributions of target taxa along the land-use gradient. This was done by 

calculating the proportion of a taxon’s total occurrence (e.g. proportion of abundance

of individuals of that taxon in CC: nCC/ (nCC + nCE + nPC + nWE + nWC)) in each land-

use type, where a taxon occurred at two or more different sites. Graphics were then 
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produced for a taxon’s abundance occurrence in each land-use type based upon 

percentage of the total occurrence in each land-use type (0%, >0%–20%, >20%–

40%, >40%–60%, >60%–80% and >80%–100%) (see Fig. 3.11). 

3.3 Results

3.3.1 Meta-analysis (richness and abundance)

Averaged across all studies, both ant abundance and morphospecies richness were 

significantly greater in native vegetation (NV) than agricultural land (Ag), abundance 

and richness were significantly greater in reduced-input (RIC)  conventional cropping 

(CC), and richness but not abundance was significantly greater in improved pasture 

(IP) than cropping (C) (Fig. 3.5). Despite the greatest mean disparity in richness 

being between wooded native vegetation (WNV) and improved pasture (IP), high 

among-study heterogeneity precluded this result being statistically significant. No 

other differences between treatments were found.
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Fig. 3.5. The Hedges’ E++ average effect size (mean effect size averaged across all studies in a land-

use comparison) for fixed and random effects meta-analyses of ant abundance and richness responses 

for various land-use comparisons (+/- 95% C.I.). Comparisons where the 95% C.I.s do not cross zero 

(denoted by * in the legend) are considered to exhibit significantly greater richness or abundance in the 

less intensive land-use type (α = 0.05). 

Sample sizes: Abundance: NV:Ag = 24 comparisons from 17 studies; WNV:IP = 13 comparisons 

from 11 studies; IP:C = 6 comparisons from 5 studies; RIC:CC = 14 comparisons from 12 studies; 

Richness: NV:Ag = 20 comparisons from 15 studies; WNV:IP = 7 comparisons from 7 studies; IP:C 

= 5 comparisons from 4 studies.
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Abbreviations: WNV:IP = wooded native vegetation compared to improved/introduced pasture; 

NG:IP = native grassland compared to improved/introduced pasture; IP:C = improved/introduced 

pasture compared to cropping; RIC:CC = reduced-input cropping compared to conventional cropping.

3.3.2 Ant richness, abundance and diversity in field

A total of 12,968 ants were collected, representing 85 morphospecies from 27 genera 

and 6 sub-families (see Appendix C.1). Mean morphospecies richness declined 

significantly along the land-use intensification gradient (Table 3.2), with paired t-tests 

reporting significant differences between CC & CE, CC & PC, CC & WE, CC & 

WC, CE & WE, CE & WC, PC & WE and PC & WC ( see Table 3.3 and Fig. 3.6).

Richness was no different between an interface and the less intensive neighbour 

(e.g. WC:WE; PC:CE), but was significantly different between an interface and the 

more intensive neighbour (e.g. WE:PC; CE:CC), displaying a drop in richness with 

increasing intensification (Table 3.3).

A significant difference among treatments was reported for the repeated measures 

ANOVA of mean ant abundance (Table 3.2). However, paired t-tests revealed ant 

abundance was only significantly different between CC & PC (t7 = -3.118; P = 0.017) 

and between CC & WE (t7 = -3.237; P = 0.014) (Fig. 3.7).

Comparisons of the Margalef index mirrored the richness results with diversity 

declining with increasing intensification (Table 3.2). When comparing paired land 

uses, there were significant differences between CC & CE, CC & PC, CC & WE, CC 

& WC, CE & WE, CE & WC, PC & WE and PC & WC (Table 3.4 and Fig. 3.8). The 

ANOVA results for the Shannon index found an overall significant trend of diversity 

declining with land-use intensity (Table 3.2). Subsequent paired tests reported 

significant differences in ant Shannon diversity between WC & CC (t7 = -3.506; P = 

0.010); and WE & CC (t7 = -2.604; P = 0.035) (see Fig. 3.8).
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Table 3.2 Repeated measures ANOVA results for ant richness, abundance, Margalef diversity and 

Shannon diversity among different land uses. d.f. = 4,28 in all cases.

Measure F Significance

Ant morphospecies richness 19.2 0.001

Ant abundance 3.7 0.015

Ant Margalef diversity 19.3 0.001

Shannon diversity 3.2 0.01

Table 3.3 Paired t-test results between each land-use type for ant morphospecies richness. d.f. = 7 in 

all cases.

Paired land–use comparison t Significance (2-tailed)

CC & CE -4.2 0.004

CC & PC -6.3 0.001

CC & WE -8.7 0.001

CC & WC -6.9 0.001

CE & PC -1.3 0.245

CE & WE -3.8 0.006

CE & WC -3.5 0.01

PC & WE -2.8 0.022

PC & WC -2.4 0.04

WE & WC -0.8 0.94

Table 3.4 Paired t-test results between each land-use type for ant morphospecies Margalef diversity

Paired land–use comparison t d.f Significance (2-tailed)

CC & CE -3.7 7 0.008

CC & PC -5.8 7 0.001

CC & WE -11.9 7 0.001

CC & WC -7.3 7 0.001

CE & PC -1.2 7 0.285

CE & WE -3.9 7 0.006

CE & WC -4.6 7 0.003

PC & WE -2.5 8 0.04

PC & WC -3.9 8 0.05

WE & WC -1.6 8 0.2
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Fig. 3.6. Mean ant morphospecies richness in core land uses and edge habitats. WC = Woodland core, 

WE = Woodland/pasture interface, PC = Pasture core, CE = pasture/cropping interface, CC = Cropping 

core. Different letter denotes significant difference for paired t-tests among treatments at α = 0.05. N = 

8 replicates for CC & CE, N = 9 replicates for PC, WE & WC.
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3.3.3 Assemblage composition

The non multi-dimensional scaling and ANOSIM comparing assemblages among 

land-use type showed that the core land uses supported significantly different ant 

morphospecies assemblages (Global R = 0.482, p = <0.01; pairwise comparisons:

WC & PC: R = 0.45, p = <0.01; WC & CC: R = 0.955, p = <0.01; PC & CC: R = 

0.558, p = <0.01; Fig. 3.9). For edge habitats, no assemblage differences were

apparent in the pairwise comparisons between WC:WE, WE:PC and CE:PC. 

However, significant differences were found between WE:CE (R = 0.55, p = <0.01), 

CE:WC (R = 0.714, p = <0.01) and CE:CC (R = 0.392, p = <0.01) (Fig. 3.9).

The same data stratified by block (Fig. 3.10) showed a non-significant difference

among assemblages of different blocks (Global R = 0.17, p = 0.06). Despite this 

weaker effect, overall, ant assemblages appeared to have been influenced

predominantly by land-use type rather than due to spatial proximity of treatments or 

other local within-block factors.
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Fig. 3.9. nMDS of 4th rt transformed ant morphospecies assemblage data, Bray-Curtis similarity 

matrix,  stratified by land-use type. CC = cropping core, CE = cropping/pasture edge; PC = pasture 

core; WE = woodland pasture edge; WC = woodland edge. Stress = 0.23. Different superscript letter 

denotes significant difference in assemblage composition (α = 0.05). 
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Using SIMPER in PRIMER®, several morphospecies were consistently found to 

contribute most to differences between land-use types, including Iridomyrmex sp. 1 

(rufoniger group), Pheidole sp. 3, and Paratrechina sp.1 (See Table 3.5 for all paired 

land-use comparisons).

Table 3.5. Paired land-use type comparisons depicting the three morphospecies in each comparison 

that contributed the highest between-land-use dissimilarity (percentage contribution to between-

treatment dissimilarity in brackets), derived from SIMPER analyses.

Land use CC CE PC WE WC

CC N/A Iridomyrmex 1 

(11.2)

Paratrechina 1a 

(6.8)

Pheidole 3 (6.7)

Iridomyrmex 1

(8.7)

Pheidole 3 (6.4)

Notoncus 2 (4.4)

Iridomyrmex 1

(7.2)

Pheidole 2 (6.2)

Iridomyrmex 3 

(5.9)

Iridomyrmex 1 

(DD) (6.6)

Monomorium 1 

(GM) (5.3)

Pheidole 5b (GM) 

(4.9)

CE Iridomyrmex 1 

(11.2)

Paratrechina 1a 

(6.8)

Pheidole 3 (6.7)

N/A Iridomyrmex 1 

(8.6)

Pheidole 3 (5.2)

Paratrechina 1a 

(4.9)

Iridomyrmex 1 

(7.2)

Iridomyrmex 3 

(5.0)

Pheidole 2 (5.0)

Iridomyrmex 1 

(6.9)

Pheidole 3 (5.2)

Paratrechina 1a 

(4.0)

PC Iridomyrmex 1 

(8.7)

Pheidole 3 (6.4)

Notoncus 2 (4.4)

Iridomyrmex 1 

(8.6)

Pheidole 3 (5.2)

Paratrechina 1a 

(4.9)

N/A Iridomyrmex 1 

(7.2)

Iridomyrmex 3 

(4.8)

Pheidole 3 (4.8)

Iridomyrmex 1 

(6.7)

Pheidole 3 (5.4)

Melophorus 2a 

(3.2)

WE Iridomyrmex 1 

(7.2)

Pheidole 2 (6.2)

Iridomyrmex 3 

(5.9)

Iridomyrmex 1 

(7.2)

Iridomyrmex 3 

(5.0)

Pheidole 2 (5.0)

Iridomyrmex 1 

(7.2)

Iridomyrmex 3 

(4.8)

Pheidole 3 (4.8)

N/A Iridomyrmex 1 

(7.3)

Iridomyrmex 3 

(5.1)

Pheidole 2 (3.8)

WC Iridomyrmex 1 

(6.6)

Monomorium 1 

(5.3)

Pheidole 5b (4.9)

Iridomyrmex 1 

(6.9)

Pheidole 3 (5.2)

Paratrechina 1a 

(4.0)

Iridomyrmex 1 

(6.7)

Pheidole 3 (5.4)

Melophorus 2a 

(3.2)

Iridomyrmex 1 

(7.3)

Iridomyrmex 3 

(5.1)

Pheidole 2 (3.8)

N/A

The IndVal analysis found only five morphospecies that were significantly 

associated with a particular land-use type (Fig. 3.11 a-e). Four of these 

morphospecies were associated with an edge habitat, Camponotus 2 and Paratrechina 

1a were associated with the pasture/cropping edge, and Pachycondyla 1 and 

Melophorus 2a were associated with the woodland/pasture edge. 

Differences in the abundance and distribution of different morphospecies along 

the gradient could be better conceptualised and visualised by calculating how many 
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individuals of a taxon occurred in each land-use type compared to that taxon’s total 

abundance across all land uses. This was done by calculating the percentage of a 

taxon’s total abundance in each land-use type, where a taxon occurred at two or more 

different sites. For example, to calculate what percentage of a taxon’s total abundance 

was present in the cropping core I used the formula: nCC/ (nCC + nCE + nPC + nWE + 

nWC) to deliver a proportional figure and multiplied by 100 to derive a percentage (‘n’ 

is the total abundance of a taxon in each land use). As an illustration, Rhytidoponera

6 was trapped a total of 58 times, with the distribution among land-use types being 15 

individuals in WC, 26 in WE, 8 in PC, 6 in CE and 3 in CC. Using the above formula, 

this translated into 26 % of individuals being caught in WC, 45 % in WE, 14 % in 

PC, 10 % in CE and 5 % in CC. Diagrams a) to e) in Fig. 3.11 show the patterns in 

occurrence of taxa which had a significant ‘indicator value’ for a particular land-use 

type (P = <0.05), and diagrams f) to l) are included to illustrate the range of habitats 

utilised and the interspecific differences in distribution within the landscape. In order 

to better demonstrate these points a range of the ant taxa that typify each land-use 

association are illustrated.
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Fig. 3.11. Distributions of selected morphospecies based upon the proportion of the total occurrences that were recorded in each land-use type. Diagrams a–e are the 

taxa found to exhibit a significant ‘indicator value’ for a particular land-use type (α = 0.05). Diagrams f–l were taxa that showed non-significant responses, but have 

been illustrated in order to convey the wide range of ant taxa distributions along the intensification gradient.
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3.3.4 Functional groups

3.3.4.1 Literature analysis

Comparing ant functional group assemblage changes between native vegetation and 

agricultural land uses derived from the scientific literature, Fig. 3.12 indicates that 

certain functional groups make up a greater part of an ant assemblage in native 

systems whilst others are more proportionately abundant in agricultural systems. For 

instance, the Dominant Dolichoderine group was higher in proportional abundance in 

wooded native vegetation compared to agricultural land (n = 10 studies), although 

this result was driven to a considerable extent by three studies reporting very high 

abundance of the DD group in native vegetation compared to agriculture (see 

Appendix C.2). A less dramatic, though more consistently reported, decline from 

native to agricultural systems was found for the Subordinate Camponotini group (n = 

13 studies), indicating that this group may generally be negatively affected by

agriculture. Conversely, two groups displayed a marked increase from native to 

agricultural systems, the Generalised Myrmicinae and the Opportunists. The former 

(n = 16 studies), whilst showing an overall proportional assemblage increase when 

averaged across all studies, displayed a range of responses in individual studies, 

including greater proportional abundance in native vegetation. Opportunists, 

however, displayed greater proportional abundance in the agricultural treatment of 

comparisons in 70% of cases (n = 17 studies). 
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Fig. 3.12. Contribution of ant functional groups to overall assemblage composition in wooded native 

vegetation (NV) and agricultural land uses (Ag) averaged across 17 studies. Functional group 

abbreviations are: SP–Specialist predator; CCS–Cold Climate Specialist; SC–Subordinate 
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Camponotini; Cryp–Cryptic species; HCS–Hot Climate Specialist; Opp–Opportunist; DD–Dominant 

Dolichoderinae; GM–Generalised Myrmicinae. Details of studies and authorities used for assigning 

functional groups in Appendix C.2. 

3.3.4.2 Field data

ANOSIM showed that functional group assemblage composition differed among 

land-use treatments (Fig. 3.13) (Global R = 0.34, p = 0.01; pairwise comparisons: 

WC & PC: R = 0.238, p = 0.003; WC & CC: R = 0.862, p = 0.01; PC & CC: R = 

0.471, p = 0.01; CC & CE: R = 0.312, p = 0.03; CE & WE: R = 0.26; p = 0.007). 

There were no assemblage differences between WC:WE, WE:PC and PC:CE. There 

were no assemblage differences among blocks (Global R = 0.009, p = 0.399; Fig. 

3.14).

SIMPER analysis indicated that the Dominant Dolichoderine, Cold Climate 

Specialist and Subordinate Camponotini groups contributed greatly to the distinction 

between WC and PC, whereas Hot Climate Specialists, Dominant Dolichoderines 

and Generalised Myrmicinae were the most influential in distinguishing between PC 

and CC.

Of the individual functional groups, Dominant Dolichoderines (largely 

represented by members of the genus Iridomyrmex) constituted 77% and 71% of the 

assemblage in WC and WE compared to 56%, 63% and 56% in PC, CE and CC 

respectively, but the differences were not significant. Only the Generalised 

Myrmicinae differed significantly in abundance among land uses (F4, 28 = 4.940; P = 

0.004); pairwise t-tests: CC & PC (t7 = -3.051; P = 0.019); CC & WE (t7 = -3.892; P 

= 0.006); CC & WC (t7 = -3.574; P = 0.009). Other groups (e.g. Subordinate 

Camponotini, Cold Climate Specialists) did not differ among treatments (possibly 

due to high within-treatment heterogeneity) or were recorded too infrequently from 

some treatments to allow statistical analysis. The proportional representation of each 

functional group in each land-use type is depicted in Figs. 3.15 and 3.16. Of the 

groups tested statistically, only the proportion of Opportunists differed among land-

use types (F4,28 = 3.129; P = 0.03), with 31% of individuals being found in the CC 

treatment and 5 % in WC. Despite these findings, subsequent paired t-tests yielded 

no significant between land use difference—the nearest being greater proportion of 

Opportunists in CC compared to WC (t7 = 2.322; P = 0.053).
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Fig. 3.13. nMDS of 4th rt transformed ant functional group assemblage data, Bray-Curtis similarity 

matrix, stratified by land-use type. CC = cropping core, CE = cropping/pasture edge; PC = pasture 

core; WE = woodland pasture edge; WC = woodland edge. Stress = 0.18. Different suffix letter 

denotes significant difference in assemblage composition (α = 0.05). 
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Fig. 3.14. nMDS of 4th rt transformed ant morphospecies assemblage data, Bray-Curtis similarity 

matrix,  stratified by block/farm. Stress = 0.18. Global R non-significant, so no pairwise tests 

conducted.
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Fig. 3.15. Mean relative abundance of each functional group in five land-use treatments (expressed as 

a proportion of total abundance in each land use). CCS = Cold Climate Specialist; Cr = Cryptic; DD = 

Dominant Dolichoderine; GM = Generalised Myrmicinae; HCS = Hot Climate Specialist; Opp = 

Opportunist; SP = Specialist Predator; SC = Subordinate Camponotini.
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Fig. 3.16. Relative abundance of each functional group in native vegetation (WC) and agricultural 

land use (derived from summing data from CC, CE & PC) for field data (expressed as a proportion of 

total abundance in each land use). CCS = Cold Climate Specialist; Cr = Cryptic; DD = Dominant 

Dolichoderine; GM = Generalised Myrmicinae; HCS = Hot Climate Specialist; Opp = Opportunist; 

SP = Specialist Predator; SC = Subordinate Camponotini.
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3.3.5 Morphospecies occurrence and environmental variables

The combined effects of patch-scale habitat attributes (tree canopy cover, etc) and 

landscape-scale measures (area of pasture within a 500 m radius, etc.) accounted for 

an eigenvalue of 1.31 from a total eigenvalue of 2.96, indicating that about 45% of 

the variance was accounted for by the environmental variables measured (Fig. 3.17

and Table 3.6). Much of the variation that was explained by the measured variables 

was attributable to patch-scale habitat factors, rather than landscape factors (Fig. 3.17

and Table 3.6). 
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Fig. 3.17. Variation (as eigenvalues and percentage of total variation in parentheses) explained of ant 

morphospecies assemblage composition as determined by variance partitioning for (i) total variance, 

(ii) variance explained by all the environmental variables, (iii) variance explained by the patch-scale 

habitat attributes independently, (iv) variance explained by the landscape-scale attributes 

independently, (v) variance explained by interaction of patch-scale and landscape-scale attributes and 

(vi) variance due to unexplained factors.
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Table 3.6. Variation in ant morphospecies assemblage composition explained by each of fourteen 

environmental variables as determined by manual variance partitioning (5,000 permutations in each 

case). The first eleven variables are patch scale attributes (total variation explained = eigenvalue of 

0.95, 32.1% of total variation) and the final three are landscape-scale attributes (total variation 

explained = eigenvalue of 0.179, 6.1% of total variation).

Variable Eigen value Percentage of total 

variation

F ratio P - value

Rock cover (RC) 0.184 6.2 2.801 <0.001

Tree canopy cover (Tcov) 0.149 5.0 2.322 0.009

Fine litter cover (FL) 0.102 3.4 2.165 0.006

Coarse litter cover (CL) 0.084 2.8 1.775 0.099

Bare ground cover (BG) 0.078 2.6 1.705 0.02

Shrub cover over 2m 

(SCo2m)

0.077 2.6 1.258 0.223

Forb cover (FC) 0.066 2.2 1.116 0.31

Shrub cover under 2m 

(SCu2m)

0.056 1.9 1.012 0.398

Coarse woody debris 

(CWD)

0.053 1.8 0.924 0.51

Tussocky grass cover (TGC) 0.051 1.7 0.859 0.64

Mat-forming grass cover 

(MGC)

0.05 1.7 0.63 0.854

Crop/pasture edge in 500 m 

radius (CPedge)

0.061 2.1 1.001 0.438

Crop cover within 500 m 

radius (cropcov)

0.069 2.3 0.905 0.592

Pasture cover within 500 m 

radius (pastcov)

0.48 1.7 0.718 0.822

Several taxa were positively associated with attributes of woodland (e.g. 

‘Meranoplus 3’ and tree canopy cover, ‘Pachycondyla 1’ and low shrub cover), 

whilst others appeared to be more positively influenced by broad-leaved ground 

cover (‘Notoncus 2’), bare ground (‘Melophorus 1’) or the amount of cropping edge 

in the landscape (‘Tapinoma 1’ and ‘Meranoplus 1’) (Fig. 3.18). Some 

morphospecies also exhibited negative associations with certain habitat attributes, 

such as ‘Notoncus 2’ being negatively influenced by coarse litter cover and 

‘Meranoplus 1’ being negatively influenced by a range of variables associated with 

woodland (e.g. fine litter cover). 
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Fig. 3.18. Biplot based upon canonical correspondence analysis of ant morphospecies LN abundance 

using measures of patch-scale habitat attributes and landscape-scale land-use cover. Only 

morphospecies (in italics) showing minimum fit to the model of 10% are displayed. Habitat/landscape 

variable (plain type) arrows display strength and direction of correlation with morphospecies 

occurrence. The longer the arrow, the greater the power of that variable to explain variation in 

morphospecies occurrence. Arrows and taxa on similar trajectories display high degree of correlation; 

arrows and taxa on opposing trajectories display high negative correlation. Environmental variable 

abbreviations are: tree – tree canopy cover; FL – fine litter cover; CL – coarse litter cover; RC – rock 

cover; CWD – coarse woody debris cover; TGC – tussocky grass cover; SCu2m – shrubs (under 2 m) 

cover; SCo2m – shrubs (over 2 m) cover; MGC – mat-forming grass cover; BG – bare ground cover; 

FC – forb cover; pastcov – area of pasture cover in 500 m radius; cropcov - area of crop cover in 500 

m radius; CPedge – cropping/pasture interface distance. Ant genus abbreviations (with numerical 

suffix denoting morphospecies) are: Camp – Camponotus; Irido – Iridomyrmex; Meloph –

Melophorus; Meran – Meranoplus; Mono – Monomorium; Not – Notoncus; Oche – Ochetellus; Pach 

– Pachycondyla; Para – Paratrechina; Pheid – Pheidole; Tap – Tapinoma.
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3.4 Discussion

3.4.1 Diversity and assemblage composition

In the field study, ant morphospecies richness declined significantly with increasing

land-use intensity. This accorded with a) the global meta-analysis findings of

significantly greater ant richness in native vegetation than agricultural land, and 

generally greater richness in the less intensive land use of a land-use comparison 

(e.g. pasture compared to cropping) and b) the many studies reporting similar 

patterns for a wide range of arthropod taxa (e.g. spiders, Baldiserra et al. 2004; 

centipedes, Nakamura et al. 2003). These results indicate that loss of arthropod 

diversity with increased habitat simplification and modification, stemming from 

agricultural development, is a general phenomenon globally. 

Turnover of taxa among land uses also resulted in the formation of distinct ant 

assemblages evident in the woodland, pasture and cropping treatments. The results 

indicate that two basic mechanisms of assemblage change are apparent: i) taxon loss 

along the gradient leading to an impoverished ant assemblage in cropping, and ii) 

taxon turnover between the woodland and pasture/grassland treatments (i.e. both 

woodland and pasture exhibited habitat-specific species). The decline in taxonomic 

richness along the intensification gradient could be due to a range of interacting 

threats and processes. For instance, the relatively high levels of habitat complexity in 

the woodland and grassland are likely to provide greater resources, niche availability 

and opportunities for co-existence than the intensively disturbed and uniformly 

managed cropping land (Landis et al. 2000; Langellotto and Denno, 2004; Sarty et 

al. 2006), where microclimates and habitat structure have been dramatically altered. 

That land-use type was more influential in shaping ant assemblages than block-level 

factors is in accordance with the findings of Dauber et al. (2005) and Debuse et al. 

(2007), who found that ants were strongly affected by local habitat characteristics 

such as insolation and soil type, rather than broader landscape effects. These findings 

are further supported by the greater influence of patch-scale habitat attributes than 

landscape-scale habitat cover in explaining variation in the ant assemblages.

However, although not tested, it is possible that landscape level factors were diluted 

on occasions where a particular patch of a land-use type (e.g. a patch of woodland or 

a cropping field), was so large that it effectively dominated the landscape at the 500 
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m radius scale used in this study. This could potentially be overcome by using larger 

measurement parameters (e.g. radii of 1000 m, 5000 m) to assess landscape 

composition.

There were no differences in richness, abundance, or assemblage composition 

between habitat interfaces and their less intensively managed neighbour (i.e. WC ≈ 

WE; PC ≈ CE). One possible explanation is that some taxa preferring a particular 

land-use type may be willing to venture short distances into a neighbouring, more 

intensively managed and modified land use. However, they may be unwilling or 

unable to venture any substantial distance (e.g. in the case of this study, 50–200 m) 

into the less hospitable land use. This phenomenon of ecological filtering (sensu

Gascon et al. 1999) was prevalent in the cropping systems of this study, with thirty-

three taxa occurring in the WC and WE treatments only and a further thirty-five taxa 

occurring in WC, WE, PC and CE, but not CC. This indicates that for many taxa, 

cropping is an inhospitable land use, analogous to a filter with small pore diameter 

(sensu Gascon et al. 1999 and Tabarelli and Gascon, 2005). The difference in 

morphospecies composition between the ant assemblages in PC compared to CC 

appeared greater than the difference between the assemblages in PC compared to 

WC. Whilst this difference was not statistically verified, it may imply that the 

boundary between pasture/cropping is ‘harder’, and therefore less permeable (Stamps 

et al. 1987; Berggren et al. 2002), than the pasture/woodland interface. This appears 

to be feasible, as the physical delineation between PC & CC was far more abrupt 

than between PC & WC, where the boundary was visibly more diffuse, with 

elements of the ground cover being similar (grass tussocks in both woodland and 

pasture) and isolated paddock trees being present in the pasture in some cases. 

It was also interesting to note that certain taxa (e.g. Melophorus 1a, Paratrechina 

1a) were associated with edge habitats. Indeed, of the 571 specimens of Paratrechina 

1a recorded, only four specimens were not found at the pasture/cropping edge. Such 

occurrences may be due to abiotic factors such as nutrient concentration at edge 

habitats, or biotic factors such as prey availability, or interspecific interactions such 

as competition (Fagan et al. 1999; Landis et al. 2000)

The frequent and intense nature of physical disturbances associated with crop 

management and chemical application (Thorbek and Bilde, 2004) combined with the 

greater clay content (and hence smaller aggregate size) of the soil in cropping land 

(Andersen, 2003) may render this land use unsuitable for nesting by many ant 
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species. As well as species occurring in woodland but not the other land uses, eleven 

morphospecies occurred in pasture, but not woodland, indicating the potential value 

of agricultural matrix habitats. This may be due to competitive exclusion from less 

disturbed environments (Roxburgh et al. 2004), habitat association with particular 

resources such as grass seeds (Mott and McKeon, 1977), or a preference for areas 

with greater insolation due to lack of canopy cover (Vanderwoude et al. 2000). In 

addition, four taxa occurred in only CC and CE. However, this apparently specialised 

distribution may be due to insufficient sampling effort, as two of the four taxa were

represented by single records of minute species. There were also a number of 

examples of closely related taxa displaying consistent and mutually exclusive habitat 

specificity. For instance Notoncus sp. 1 (Notoncus capitatus (Forel)) was found only 

in WC and WE sites, whereas Notoncus sp.2 (Notoncus ectatommoides (Forel)) was 

found only in PC, CE and WE sites. As discussed above, potential explanations for 

this could include a clear habitat preference, competitive exclusion or a combination 

of these factors. In this instance, it is likely to be preference, as Braby et al. (1999) 

indicates that N. capitatus prefers moister environments than N. ectatommoides, 

which prefers drier locations (also Alan Andersen pers. comm.). Furthermore, 

competitive exclusion appears unlikely, as another study found both species in the 

same patch of remnant woodland (House et al. 2006). Several other such associations 

were apparent in the CCA biplot, with representatives of the genera Pheidole, 

Paratrechina and Meranoplus displaying markedly different habitat preferences. 

Similarly sharply demarcated distributions have been reported in Portugal for the 

invasive ant Linepithema humile (Mayr), which may have been excluded from some 

areas by a suite of dominant native species (Way et al. 1997).

Ecological theory related to edge effects suggests that the assemblage 

composition at WE should be different to that at WC due to microclimatic 

differences, altered resource availability and other influential biotic changes 

(Baldiserra et al. 2004; Ries et al. 2004; Watson et al. 2004). However, in this study, 

no differences were evident between the two treatments. Whilst this may be due to 

treatment proximity (minimum of 50 m apart) and subsequent auto-correlative 

effects, it may also be due to the modified nature of the woodlands that are naturally 

of an open stand structure, have a long history of stock grazing, are highly 

fragmented and have been invaded by a range of exotic pasture plants and other 

weeds. Grazing, for instance, can lead to trampling and altered soil structure and loss 
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of leaf litter and cryptogams, altered ground and shrub layer structure, altered 

botanical composition favouring less palatable species, nutrient enrichment and 

transport of weed propagules (Abensperg-Traun et al. 1996; Bromham et al. 1999). 

Weed invasion meanwhile can result in changes to hydrology, nutrient cycling, fire 

frequency and intensity and plant and animal community structure (Levine et al. 

2003), in addition to altered ground cover structure and impacts upon animal 

behaviour (Maron and Lill, 2005). Such degradation of habitat quality may mean that 

much of the ‘core’ woodland habitat of the region is operating functionally as ‘edge’ 

habitat. This may indicate that a priority conservation strategy for the region is to 

remove threatening processes and use active management to improve the condition 

of a proportion of woodlands in the region.

3.4.2 Functional group response.

Numerous studies around the world have demonstrated that ants respond predictably

to habitat disturbance and stress (Hoffmann and Andersen, 2003; Majer et al. 2004; 

van Hamburg et al. 2004; Ottonetti et al. 2006). Ant community responses have been 

simplified in numerous studies by compartmentalising taxa into functional groups 

based upon their response to disturbance. This is useful in allowing comparisons of 

ant assemblage responses to similar disturbance regimes that may consist of different 

species (e.g. in different biogeographical locations), but can be compartmentalised 

into the same functional groupings. The literature analysis of functional group 

responses indicated that there may be some globally predictable changes in ant 

functional group composition between native vegetation and agricultural land-use 

types. In the field study, there were relatively few statistically significant differences 

of functional group representation among land uses, although there were some 

interesting non-significant trends that may merit further investigation. For instance, 

Opportunistic taxa exhibited a near-significant proportional abundance increase with 

increasing land-use intensification in the field study and were more prevalent in 

agricultural than native land-uses types for the literature analysis. The morphospecies 

Rhytidoponera sp. 1 (metallica group) in particular was more abundant in intensive

land uses such as cropping than the less-disturbed woodland in the field study, but 

again this was a non-significant trend, and accordingly should be treated with 

caution. Such trends broadly accord with the summation of disturbance response for 

this group compiled by Hoffmann and Andersen (2003) and its greater prevalence in 
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habitats of low complexity (Lassau and Hochuli, 2004), and with the findings of 

Andersen (2003) that Opportunist ants were the most abundant on clay soils. The 

lack of significant results observed in the present study may be attributable to the fact 

that all land-use types in the study were subjected to disturbance, and it would be 

interesting to have compared the data from these sites with those from undisturbed 

native vegetation, if such sites could be found. 

The observed greater mean abundance of Generalised Myrmicinae in PC, WE 

and WC compared to CC may be due to more favourable nesting conditions due to 

much-reduced soil disturbance, and to the availability of small seeds from the 

abundant grass cover in both pasture and woodland. Other groups that displayed a 

predicted response of declining abundance with increasing intensification were the 

Subordinate Camponotini and the Specialist Predator group. The former in particular 

was more prevalent in the woodland core treatment than any other land-use type. 

This accords with the literature analysis findings, in that both of these groups 

declined in abundance from native vegetation to agricultural systems. 

However, much as Hoffmann and Andersen (2003) reported a mixture of positive 

and negative responses to disturbance for many genera and species groups, I also 

found contradictory responses among several taxa within functional groups and 

genera. For instance, Pheidole sp. 3 was more abundant in pasture than woodland, 

whereas Pheidole spp. 2 and 5(b) displayed the opposite habitat association. 

Similarly, several of the Crematogaster species displayed idiosyncratic habitat 

responses. This was further evidenced by the ANOSIM results reporting greater 

assemblage dissimilarity among land-use treatments for the morphospecies data than 

the functional group data. Whilst I did not include functional grouping in the 

canonical correspondence analysis, several taxa belonging to the climate specialist 

groups displayed interesting responses to habitat variables. For instance, at least three 

species of Melophorus (hot climate specialist) were associated with bare ground 

cover (particularly ‘Melophorus 1’), whilst ‘Notoncus 2’ (cold climate specialist) was 

strongly associated with forb cover, perhaps indicating that although this species 

favours open habitats, it may require broad-leaved cover within such habitats to 

stabilise microclimatic conditions. Overall, the functional group analysis proved 

useful in finding some broad trends (i.e. the literature analysis), but was not as 

sensitive in determining between different land-use types as the morphospecies data. 

These findings are very much in accordance with those of Nakamura et al. (2007), 
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and indicate that whilst very useful, the functional grouping approach (which often 

only requires identification to genus level), is best used to augment rather than 

replace finer scale taxonomic analysis.

3.4.3 Distributional complexities and conservation priorities

Whilst a small number of taxa were restricted to the native woodland patches (e.g. 

Fig. 3.11, b), the vast majority of taxa displayed individualistic responses that 

included presence in all habitats and populations restricted to, or peaking in, pasture 

sites. The study did not have a sufficiently exhaustive sampling regime to test the 

continuum model of faunal utilisation of human-modified landscapes (Fischer and 

Lindenmayer, 2006), (whereby each species has specific habitat requirements rather 

than adhering to human-defined concepts of what constitutes ‘habitat’). However, the 

results of within- and between-land-use sampling indicate that the model appears to 

provide a realistic description of biological distribution in complex mosaic 

landscapes, and that ‘habitat’ is a species-specific concept (Fischer et al. 2004). 

These field results also point to the underestimation of the conservation value of 

landscape components sometimes dismissed as an inhospitable matrix. For instance, 

many taxa found in woodlands were also found in pastures, whilst others were 

restricted to pastures. The pastures may operate as a surrogate habitat for species that 

inhabited the extensive swathes of native grassland that formerly occupied the more 

productive soils of the region (Fensham, 1997; Fensham and Fairfax, 1997). They 

may also provide important ephemeral and/or spatially scattered resources for a 

number of taxa, and they appear to increase ant richness at the landscape scale by 

providing habitat for species not present in woodlands (at least during the narrow 

sampling window). From a conservation perspective, this is important, as native 

grasslands (let alone mixed-native/exotic pastures) are often undervalued in terms of 

conservation value, particularly for fauna (Williams and Cary, 2001; Fischer et al. 

2004; Sheahan, 2009). The value of the matrix for biodiversity has long been 

recognised in the semi-natural landscapes of Europe that have long been managed 

primarily for agricultural production (Sutherland, 2004), and is now beginning to 

receive attention in regions of the world where biodiversity conservation has 

generally been restricted to reserved areas and remnants of native vegetation in 

human-dominated landscapes (Hughes et al. 2002; Haslem and Bennett, 2008a). For 

instance, Fischer et al. (2005) state that the matrix is vitally important for wildlife 
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and that by including the matrix in conservation management, one is able to include 

the most productive parts of the landscape. A ‘softening’ of the matrix (maintenance 

of a mosaic of land uses, use of native perennial pastures, retention and promotion of 

non-production components such as paddock trees, reduced-intensity cropping 

management, etc.) may help maintain resources for declining taxa (Manning et al. 

2004; Maron, 2005) and increase landscape connectivity (Fischer et al. 2005; 

Attwood et al. 2009). Increased connectivity due to sympathetic matrix management 

may also aid the incremental relocation of assemblages due to climate change 

(Donald and Evans, 2006). 

Despite the positive biological attributes of the pasture matrix, the areas in which 

ants were most diverse were woodlands. Several of these remnants were small 

(smallest was seven hectares), but still contained a wide range of taxa, thus 

supporting the argument of Fischer and Lindenmayer (2001) that small habitat 

patches are of considerable conservation value and may provide important habitat for 

less area-sensitive taxa such as invertebrates. However, Tscharntke et al. (2002) 

reported that whilst small habitat patches may be sufficient for polyphagous and 

generalist species, more specialist taxa are often lost. 

Habitat condition is also a major determinant of taxonomic assemblage. For 

instance, Driscoll and Weir (2005) found that different beetle species responded 

differently to habitat condition. Bromham et al. (1999) found that ants of the genera 

Camponotus and Iridomyrmex were more abundant in grazed compared to ungrazed 

woodland, whilst spiders of the families Amaurobiidae and Zordaridae showed the 

opposite trend. The woodlands in that study exhibited greater species richness than 

the agricultural land uses and contained assemblages distinct from the other land-use 

types. This implies that even degraded remnants of native vegetation are a source of 

biological value in highly modified agricultural landscapes and hence are a priority 

for protection and sympathetic management. 

Based on these findings, at least some components of ant (and possibly other 

arthropod) biodiversity can be retained in agricultural landscapes via a mixed land-

use mosaic that incorporates woodland patches and areas of pasture. Loss of 

woodland remnants (as much through senescence and degradation as through land 

clearing) would probably lead to the loss of the many species restricted to, or 

predominantly present in, woodlands. A move to broadacre cropping (unlikely in this 

region, but common practice elsewhere) would probably result in enormous 
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biodiversity loss due to the extirpation of both woodland-associated and grassland-

associated species. 
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Chapter 4

Agricultural land-use type 

influences body size and 

morphology of arthropod 

assemblages 
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4.1 Introduction

Measures such as taxonomic richness, abundance and feeding guild representation 

are often used to investigate the impacts of land use and management on biotic 

assemblages. However, other potential complementary approaches for assessing the 

impacts of land-use disturbance and modification on arthropod assemblages include 

comparisons of body size (Braun et al. 2004) and morphology (Ribera et al. 2001). 

Body size patterns and comparisons of morphological features, both within species 

and within assemblages (i.e. across species), may be particularly useful indicators of 

system disturbance as they are correlated with various aspects of organism life 

history, such as reproduction rate, developmental rates and dispersal (Braun et al. 

2004; Magura et al. 2006), which are in themselves related to taxon and assemblage 

abilities to recover from disturbances and recolonise areas after disturbance 

(Siemann et al. 1999). Body size and morphological patterns can also be related to 

ecological interactions relating to interspecific competition and resource use (Gotelli 

and Ellison, 2002; Magura et al. 2006), and may be useful as indicators of 

environmental stress or disturbance (McGeoch, 1998). 

Numerous studies have focussed upon the across species changes in body size 

metrics of arthropod (often carabid beetle) assemblages along urban or rural/urban 

gradients (e.g. Niemalä et al. 2002; Alaruikka et al. 2002; Ishitani et al. 2003; 

Magura et al. 2006) and in landscapes of differing disturbance and composition (e.g. 

Burel et al. 2004). However, studies examining body size and morphological 

changes within agricultural landscapes consisting of land uses of differing levels of 

intensification, disturbance and modification are much scarcer, with a study by 

Ribera et al. (2001) being a notable exception. A potential advantage of studies of 

body size and morphological attributes is that they do not necessarily require 

taxonomic analysis beyond the level of order or family (although within-taxon 

analyses are relatively common in the literature), thus rendering such studies well 

within the capacity of the non-expert, or suitable for very rapid data processing. 

An overarching conceptual premise of how environmental factors shape and 

influence biological characteristics is the habitat templet concept (Southwood, 1977; 

Ribera et al. 2001; Statzner et al. 2001). This states that habitat provides the templet 

upon which evolution forges species traits and characteristics (Ribera et al. 2001; 
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Statzner et al. 2001), whilst at the same time acting as a filter to sort species 

according to their current morphological characteristics and life history strategies. 

This latter process determines which taxa are able to occupy and persist in a 

particular habitat type (Ribera et al. 2001). Where habitats have remained relatively 

stable for a sufficient length of time for evolution to act, it may be that selection for 

traits that confer adaptation to the local environment are the dominant feature in

shaping these species’ traits and hence determining the composition of biotic 

assemblages. For instance, in deserts there are certain morphological and life history 

traits associated with water retention and coping with high diurnal temperature 

fluctuations that are common among many taxa and expressed in convergent 

evolution (for instance fused elytra that can reduce water loss in desert-dwelling 

ground beetles; Stantzer et al. 2001). 

In habitats that have been altered relatively recently, however, the incumbent 

biological assemblages are far more likely to have been influenced by the ‘filtration’ 

process than the evolutionary one. Such is the case with agricultural landscapes, 

where frequently changing land uses, shifting land-use/habitat boundaries and 

fluctuating frequency and intensity of disturbance regimes are likely to lead to 

biological assemblages that are in a state of non-equilibrium (Wallington et al. 

2005). Where this occurs in a mosaic of different land-use and land cover types, such 

as in mixed land-use farming landscapes, the array of land uses and differing 

disturbance regimes can lead to a correspondingly complex array of biotic 

assemblages. Such complexity is not only expressed taxonomically, but also in terms 

of common morphological features and life-history characteristics. Such 

morphological responses have been found by McIntyre (2008) for plant leaf traits in 

agricultural land-use types of differing intensity and modification, with observations 

including an increase in specific leaf area as land-use intensity (grazing, fertilisation 

and cultivation) increased. 

When applied to arthropod assemblages, such a phenomenon may become 

particularly apparent in more disturbed environments, with arthropod assemblages 

displaying more similar morphological and life history traits (effectively trait 

homogenisation) in highly disturbed environments (Stantzer et al. 2001). In the 

context of an agricultural landscape, intensively managed cropping systems are 

highly modified from the native systems that originally occupied that land, are 

subject to rapid plant growth and biomass removal through harvesting, and are 
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subjected to physical and chemical disturbance events such as tillage, harvest and 

agro-chemical application (Thorbek and Bilde, 2004). Consequently, one can 

reasonably expect that certain morphological traits may be more evident in the most 

intensively managed land-use types in a mosaic production landscape, such as 

cropping, compared to less intensively managed land uses. The habitat filtration 

processes that help shape community composition may be especially prevalent in 

agricultural landscapes in regions where agriculture is a relatively recent 

introduction, such as Australia. In such regions, evolutionary processes will have 

adapted biota to indigenous vegetation systems and environments with 

characteristically low or infrequent levels of disturbance, with agriculture very 

recently modifying or replacing these systems, forcing recent and rapid changes in 

assemblage composition (Attwood et al. 2008; see Chapter 2). 

Other studies that have examined arthropod size and morphological responses to 

disturbance, habitat condition and habitat succession have found a range of trends. 

For instance, some studies (e.g. Siemann et al. 1999; Cunningham and Murray, 

2007) have indicated greater abundance of small-bodied organisms in late 

successional compared to early successional habitats. Explanations for such patterns 

include shifts in feeding guild representation that are in turn related to body-size 

patterns (Cunningham and Murray, 2007). 

Meanwhile, numerous other studies have reported a prevalence of species with 

smaller body size and a greater occurrence of more vagile taxa in more disturbed 

environments (e.g. Blake et al. 1994; Magura et al. 2006; Gobbi et al. 2007). Others 

have found more subtle patterns in the frequency of morphological traits in response 

to disturbance, such as trends in carabid trochanter and femora structure that in turn 

have indicated trends in feeding guild assemblage composition (Ribera et al. 2001) 

and locomotion (Ribera et al. 1999). Whilst many studies have focussed upon a 

particular group of arthropods (often beetles of the family Carabidae), others have 

examined more than one group and found different responses, such as carabid beetle 

body size declining along a disturbance gradient, but spider body size displaying no 

response (Alaruikka et al. 2002). 

Due to increasingly frequent and intense disturbance events, mean organism body 

size and presence of apterous/brachypterous and large-bodied taxa often decrease as 

land use intensifies (although see Siemann et al. 1999; Braun et al. 2004 and 

Cunningham and Murray, 2007 for other patterns of response), and that abundance of 
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small-bodied individuals and macropterous taxa can increase with increased land-use 

disturbance (Gray, 1989; Ribera et al. 1999 & 2001). However, the relative 

proximity of land uses of differing levels of disturbance in agricultural landscapes

typical of southern Queensland may lead to a more diffuse and uniform distribution 

of morphological traits across the landscapes, as individuals move relatively freely 

between land-use types. Related to this is the fact that all components of the sampled 

landscapes in this study are subjected to production activities—for instance, the 

native woodland remnants are unfenced, grazed and frequented by cattle and hence 

are subjected to a similar disturbance regime as the pastures, despite having a 

different habitat structure. Therefore, this study sought to investigate if the mean of 

morphological traits observed across all individuals of a particular group (e.g. body 

size of all spiders, body size of all lycosids, wing morphology of all beetles) varied 

with habitat disturbance and modification in a complex fine-grained mosaic 

landscape consisting of different land-use types. Furthermore, given that various 

studies have found inconsistent patterns of morphological traits among different 

taxonomic groups in response to disturbance (e.g. Alaruikka et al. 2002), I sought to 

explore if observed morphological differences are consistent across three broad 

taxonomic groups (Araneae, Coleoptera and Formicidae) and within finer scale 

taxonomic groups (e.g. family and genera).

The specific research questions were:

1. Do mean arthropod body sizes decrease along a gradient of increasing land-

use intensification?

2. Are more macropterous individuals and fewer apterous/brachypterous 

individuals present in more disturbed/modified habitats?

3. Are observed patterns in morphological traits among land-use types 

consistent among different taxonomic groups?

4.2 Method

4.2.1 Study area and study sites

The study was performed at the study sites detailed in Chapter 3, in the rural areas 

around Pittsworth, Felton, Cambooya and Mt Tyson, west and south-west of 

Toowoomba in south-east Queensland, Australia (420–560 m a.s.l., 27°26´–47´S, 
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151°33´–51´E). For details of regional climate, soil and vegetation associations, see 

Methods section (Section 3.2.2) of Chapter 3. 

4.2.2 Experimental design

As with the sampling of ant morphospecies, arthropods were sampled in grazed 

remnants of native woodland, grazed pasture/grassland and cereal crops, during 

October and November 2005. No lower area size limit was set for the inclusion of 

woodland patches, as small, highly fragmented areas of native woodland are a 

dominant feature of the region. The size of woodland patches ranged from 7 ha to 

over 100 ha. Pasture/grassland sites were areas cleared of wooded native vegetation 

that had been converted to grassland or had undergone pasture improvement via 

reseeding and fertilisation. In most cases, the ground vegetation cover was a 

combination of both native and exotic species. All woodland remnants and 

pasture/grassland sites were grazed during or close to the time of sampling. Cropping 

sites were restricted to cereal cropping (oats, wheat or sorghum), but owing to 

prolonged drought (and therefore reduced cropping activity) this included both 

standing winter crops and stubble from the previous summer’s crop.

The sampling design was the same as described in detail for the ant 

morphospecies collection in Chapter 3 (Section 3.2.3). The spatial arrangement of 

the landscape mosaic in the region followed a consistent pattern: woodland remnants 

on higher, rockier ground, grassland/pastures on the mid-slopes, and cropping land 

on the lower slopes and deeper soils. This allowed a block design for the study, but 

because of the consistent landscape arrangement, this was non-randomised. A 

transect was established that represented a gradient of land-use intensification, 

incorporating the three land-use types. This transect was replicated a total of ten 

times across the region, spanning eight different properties (See Figures 3.3 and 3.4, 

Chapter 3). Due to trampling by cattle during sampling, all sampling points along 

one transect were destroyed, as well as the cropping core and cropping/pasture 

interface from another site. This resulted in nine replicates each of woodland core 

(WC), woodland/pasture edge (WPE) and pasture core (PC) and eight replicates of 

cropping core (CC) and pasture/cropping edge (PCE).

Sampling points were located at five positions along the transect: the core of each 

land-use type and the two interfaces (in order, WC, WPE, PC, PCE & CC). The 

sampling point in the core of each land-use type was randomly located along the
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transect, but with the criterion that it must be situated a minimum of 50 m from 

adjoining land uses. Therefore, each land-use core sampling point was at least 100 m 

from the next core sampling point. For the edges, a sampling point was randomly 

located along the land-use interface. For further details of the sampling design, see 

Methods, Chapter 3.

4.2.3 Arthropod sampling

Surface-dwelling arthropods were sampled using pitfall traps, consisting of plastic 

containers with an opening diameter of 115 mm and a depth of 80 mm. Five traps 

were placed 5 m apart from each other at each sampling point and allowed to settle 

with lids on for seven days to reduce digging-in effects (Greenslade, 1973). In order 

to capture a comprehensive picture of each edge, traps were placed either side of the 

line of land-use interface, but no more than 0.2 m into the adjacent land use. The 

interface of pasture and cropping was determined as the point where the pasture 

abutted the complex of crop plants and bare ground that constituted the outermost 

perimeter of the crop field (generally c.0.5 m in width). The interface of pasture and 

woodland was determined as the edge of the tree drip (extent of canopy projection) 

line. Traps were then half-filled with 30 % ethylene glycol solution and a few drops 

of household detergent. All traps were simultaneously opened for four days and 

nights in November 2005. Traps were then removed, and the contents transferred to 

70 % ethanol.

4.2.4 Arthropod measurements

A range of measures and observations were used for the focal taxa (all measurements 

taken using callipers accurate to 0.05 mm):

Spiders

The maximum width of the carapace and the longitudinal length of the carapace of 

all spider specimens were measured. Spider data analyses were conducted for “all 

spiders” (all specimens included), “adult spiders” and members of the families 

Linyphiidae and Lycosidae. Adult spiders were defined as those that had obviously 

developed palps or epigyne. 
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Beetles

The maximum pronotum width, pronotum length, maximum elytra width, elytra 

length and total body length (pronotum + elytra) were measured for each beetle 

specimen.

All beetles were dissected (removal of elytra) to determine if wing morphology was 

macropterous (developed wing), brachypterous (small, rudimentary wings) or 

apterous (no wings). 

Ants

Ants were measured using ‘Weber’s length’ (Weber, 1946; Brown, 1953), the 

distance from the posterior-most border of the metapleural lobe, to the anterior-most 

border of the pronotum, excluding the neck. As the number of ants was an order of 

magnitude greater than that of spiders and beetles, a subset of measurements was 

taken for each identified morphospecies. The mean of 10 individuals (or, if fewer 

than 10 available, the number of available individuals of a particular taxon) were 

taken, and multiplied by the total number of individuals of that species in each pitfall 

trap and treatment. For dimorphic ants such as Pheidole spp., only the minor workers 

were included in the calculation.  

4.2.5 Data treatment and analyses

4.2.5.1 Mean body size

The grand mean body size (for each individual for beetles and spiders, for each taxon 

for ants, see above) at each site was calculated as the average size measure of every 

individual per pitfall trap. This was then averaged across all pitfall traps at a site for 

each treatment. Finally the mean body size for each treatment was calculated.

4.2.5.2 Body size class

Taxa were categorised according to body size classes as in Table 4.1. The total 

number of individuals in each body size class was used to generate the mean values 

for this analysis.
Table 4.1. Body size measurement classifications for ants, beetles and spiders.

Body size measure Size  class 1 Size class 2 Size class 3 Size class 4

Spider carapace width <1 mm 1–2 mm 2–4 mm >4 mm

Beetle total body length <2 mm 2–5 mm 5–10 mm >10 mm

Ant pronotum length <1 mm 1–2.5 mm >2.5 mm N/A
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4.2.6 Statistical analysis

Prior to analysis, data were logN transformed and tested for normality of distribution. 

Repeated measures ANOVA was used to test for differences in mean body size, body 

size class and wing morphology, with land-use type as the repeated measure. This 

followed the methods used by Magura et al. (2006), who used this approach in order 

to ensure independence of treatments in relatively close proximity along a gradient of 

increasing anthropogenic disturbance. Where Mauchly’s assumption of sphericity 

was violated, a re-calculation of the F-ratio was conducted using new degrees of 

freedom, calculated using the Huynh-Feldt epsilon. Where a significant within-

subject effect was detected, differences between each treatment were tested using 

paired t-tests. In order to explore the asymmetry of data for spiders and beetles 

among land-use types, I also calculated the skewness and Kurtosis of the data across 

land-use category. All analyses were performed using SPSS 14.0 for Windows 

(SPSS for Windows, 2005). 

4.3 Results

4.3.1 Araneae

4.3.1.1 Mean body size

A total of 1052 spiders were trapped across the five land-use categories (159 in WC, 

190 in WPE, 178 in PC, 244 in PCE and 281 in CC). Grand mean carapace width 

and carapace length differed among land-use types for both ‘all spiders’ (adults and 

immatures) and adult spiders only (Fig. 4.1 & 4.2; Table 4.2). Both carapace width 

and length declined with increasing land-use intensification/modification, with very 

similar results for both size measures and for all spiders combined and adult spiders 

only.

4.3.1.2 Body size class

The high abundance of size class 1 spiders (<1 mm) in the pasture/cropping interface 

(PCE) and the cropping core (CC) (Fig. 4.3 & Table 4.2) appeared to be driving the 

decline in mean spider body size observed in Figs. 4.1 & 4.2. Significantly more very 

small spiders were found in PCE and CC than the pasture or woodland treatments, 
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whilst no differences were found in the abundance of other size classes among land-

use categories. 
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Fig. 4.1 and 4.2. Grand mean LN spider carapace width and length for all spiders (4.1) and adult 

spiders (4.2) across land-use types. Land-use type abbreviations: WC = woodland core; WPE = 

woodland/pasture edge; PC = pasture core; PCE = cropping/pasture edge; CC = cropping core. 

Replicates are 9 each for WC, WPE & PC and 8 each for PCE & CC. Error bars are S.E. of mean and 

different letter denotes significant difference for paired t-tests among treatments at α = 0.05

Fig. 4.1
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Table 4.2. Repeated-measures ANOVA results for grand mean Araneae body-size statistics among 

different land-use treatments. D.f. = 4,28 in all cases.

Measure F P
mean spider carapace width among land uses (all spiders) 5.088 0.003

mean spider carapace length among land uses (all spiders) 4.554 0.006

mean spider carapace width among land uses (adult spiders) 10.702 <0.001

mean spider carapace length among land uses (adult spiders) 8.957 <0.001

mean abundance of spiders in  size class 1 (<1mm) among land uses 7.749 <0.001

mean abundance of spiders in  size class 2 (1–2 mm) among land uses 2.329 0.081

mean abundance of spiders in  size class 3 (2–4 mm) among land uses 0.512 0.728

mean abundance of spiders in  size class 4 (>4 mm) among land uses 1.031 0.411

4.3.1.3 Within-family

Within-family mean body size (carapace width and length) for Lycosidae and 

Linyphiidae was similar among land-use categories, although the frequent absence of 

individuals of these families from numerous sampling sites prohibited further 

analysis (i.e. Linyphiidae frequently absent from some woodland sites and Lycosidae 

frequently absent from all treatments at some sites). However, the similar mean body 

sizes and overlapping error bars in Fig. 4.4 & 4.5 indicate little difference among 

treatments for either family. 
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Fig. 4.3. Grand mean LN abundance of spiders in four size classes (based upon carapace width for all spiders) across land-use types. Size class attributions are Class 

1 – <1 mm; Class 2 – 1–2 mm; Class 3 – 2–4 mm; Class 4 – >4 mm. Land-use type abbreviations: WC = woodland core; WPE = woodland/pasture edge; PC = 

pasture core; PCE = cropping/pasture edge; CC = cropping core. Replicates are 9 each for WC, WPE & PC and 8 each for PCE & CC. Error bars are S.E. of mean 

and different letter denotes significant difference for paired t-tests among treatments at α = 0.05. 
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Fig. 4.4
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Fig. 4.4 Grand mean LN carapace width of a) Lycosidae spiders among land-use categories. Land-use 

type abbreviations: WC = woodland core; WPE = woodland/pasture edge; PC = pasture core; PCE = 

cropping/pasture edge; CC = cropping core. Replicates are 9 each for WC, WPE & PC and 8 each for 

PCE & CC. Error bars are S.E. of mean.

Fig. 4.5
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Fig. 4.5 Grand mean LN carapace width of Linyphiidae spiders among land-use categories. Land-use 

type abbreviations: WC = woodland core; WPE = woodland/pasture edge; PC = pasture core; PCE = 

cropping/pasture edge; CC = cropping core. Replicates are 9 each for WC, WPE & PC and 8 each for 

PCE & CC. Error bars are S.E. of mean.

4.3.1.4 Skewness and Kurtosis

Measures of spider carapace width/length data skewness and Kurtosis indicated the 

asymmetry of distribution of body size data in each land-use category (Figs. 4.6-4.9). 

The trend for high abundance of smaller spiders in the more highly disturbed and 
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modified land-use types detected in the previous analyses are particularly evident in 

Fig. 4.8 and 4.9, where the higher skewness and Kurtosis values in PCE and CC 

indicate that more small individual adult spiders were present in these land-use types. 

The relatively low skewness and Kurtosis values observed in the WC and WPE 

treatments (see Fig.4.8 and 4.9) indicate fewer small spiders and/or more large 

spiders in these less disturbed/modified environments.

Fig. 4.6
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Fig. 4.6. Skewness values for ‘all spider’ carapace width and length measurements. Land-use type 

abbreviations: WC = woodland core; WPE = woodland/pasture edge; PC = pasture core; PCE = 

cropping/pasture edge; CC = cropping core. Replicates are 9 each for WC, WPE & PC and 8 each for 

PCE & CC. 
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0

5

10

15

20

25

WC WPE PC PCE CC WC WPE PC PCE CC

width length

K
ur

to
si

s

Fig. 4.7. Kurtosis values for ‘all spider’ carapace width and length measurements. Land-use type 

abbreviations: WC = woodland core; WPE = woodland/pasture edge; PC = pasture core; PCE = 

cropping/pasture edge; CC = cropping core. Replicates are 9 each for WC, WPE & PC and 8 each for 

PCE & CC. 
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Fig. 4.8
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Fig. 4.8. Skewness of adult spider width and length measurements. Land-use type abbreviations: WC = 

woodland core; WPE = woodland/pasture edge; PC = pasture core; PCE = cropping/pasture edge; CC 

= cropping core. Replicates are 9 each for WC, WPE & PC and 8 each for PCE & CC. 

Fig. 4.9

0

5

10

15

20

25

WC WPE PC PCE CC WC WPE PC PCE CC

width length

K
ur

to
si

s

Fig. 4.9 Kurtosis of adult spider width and length measurements. Land-use type abbreviations: WC = 

woodland core; WPE = woodland/pasture edge; PC = pasture core; PCE = cropping/pasture edge; CC 

= cropping core. Replicates are 9 each for WC, WPE & PC and 8 each for PCE & CC. 

4.3.2 Coleoptera

4.3.2.1 Mean body size

A total of 751 beetles were collected across the five land-use categories (91 in WC, 

117 in WPE, 109 in PC, 228 in PCE and 206 in CC)..Despite an apparent trend for 

decreasing mean beetle body size with increasing land-use 

intensification/modification for several body size measures (Fig. 4.10), only mean 
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pronotum length differed significantly (Table 4.3). Subsequent paired t-tests did not 

find any differences for mean pronotum length among individual land-use pairs, 

however. No other significant differences were found for mean body size among land 

uses, which may be due to the high within-treatment variability that was found for all 

body-size measures. This is in contrast to the observed significant decline in body 

size of spiders along the land-use intensification gradient (Fig. 4.1 & 4.2; Table 4.2). 
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Fig. 4.10. Grand mean LN beetle pronotum length, pronotum width, elytra length, elytra width and total body length (pronotum length + elytra length) across land-

use types. Measurement abbreviations: ‘pro L’ – pronotum length; ‘pro W’ – pronotum width; ‘ely L’ – elytra length; ‘ely W’ – elytra width; ‘total L’ – total body 

length.  Land-use type abbreviations: WC = woodland core; WPE = woodland/pasture edge; PC = pasture core; CPE = cropping/pasture edge; CC = cropping core. 

Replicates are 9 each for WC, WPE & PC and 8 each for PCE & CC. Error bars are S.E. of mean. There were no significant pair-wise differences.
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Table 4.3. Repeated-measures ANOVA results for grand mean Coleoptera body-size statistics among 

different land-use treatments. d.f. = 4,28 in all cases.

Measure F P
mean beetle pronotum length among land uses 2.747 0.048

mean beetle pronotum width among land uses 2.402 0.074

mean beetle elytra length among land uses 1.381 0.266

mean beetle elytra width among land uses 1.947 0.13

mean beetle total body length among land uses 1.46 0.241

mean abundance of beetles in  size class 1 (<2mm) for total body length, among 

land uses

3.408 0.022

mean abundance of beetles in  size class 2 (2–5mm) for total body length, among 

land uses

4.556 0.006

mean abundance of beetles in  size class 3 (5–10mm) for total body length, 

among land uses

0.078 0.989

mean abundance of beetles in  size class 4 (>10mm) for total body length, among 

land uses

2.926 0.039

mean abundance of winged (macropterous) beetles among land use types 5.726 0.002

mean abundance of apterous and brachypterous beetles among land use types 2.033 0.117

4.3.2.2 Body size class

Whilst there were few differences reported among land uses for mean beetle body 

size, mean abundance in three of four size classes indicated significant differences 

(Fig. 4.11 & Table 4.3). These tended to show increased abundance of small 

individuals (size classes 1 & 2) in the more disturbed and modified land-use types 

than the less disturbed/modified land-use types. Significantly more beetles of size 

classes 1 (<2 mm body length) and 2 (2–5 mm) were present in the cropping core 

(CC) and cropping/pasture edge (PCE) than the woodland core (WC). Larger beetles 

showed less clear responses to land-use type, although beetles in size class 4 (>10 

mm) were significantly more abundant in woodland/pasture edge (WPE) than pasture 

(PC) or cropping (CC). 
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Fig. 4.11. Grand mean LN abundance of beetles in four size classes (based upon body length) across land-use types. Size class attributions are Class 1 – <2 mm; 

Class 2 – 2–5 mm; Class 3 – 5–10 mm; Class 4 – >10 mm. Land-use type abbreviations: WC = woodland core; WPE = woodland/pasture edge; PC = pasture core; 

PCE = cropping/pasture edge; CC = cropping core. Replicates are 9 each for WC, WPE & PC and 8 each for PCE & CC. Error bars are S.E. of mean and different 

letter denotes significant difference for paired t-tests among treatments at α = 0.05.
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4.3.2.3 Wing morphology

The abundance of macropterous beetles increased significantly with increasing land-

use modification, with abundance of macropterous individuals following the pattern 

CC>PCE>PC>WPE>WC (Fig. 4.12 and Table 4.3). However, no significant 

differences were found in the abundance of apterous/brachypterous individuals

among land-use types.

Fig. 4.12. Grand mean abundance of macropterous (winged) and apterous/brachypterous (no-

wings/short-wings) beetles among land-use types. Land-use type abbreviations: WC = woodland core; 

WPE = woodland/pasture edge; PC = pasture core; CPE = cropping/pasture edge; CC = cropping core. 

Replicates are 9 each for WC, WPE & PC and 8 each for PCE & CC. Error bars are S.E. of mean and 

different letter denotes significant difference for paired t-tests among treatments at α = 0.05. 

4.3.2.4 Skewness and Kurtosis

The beetle data displayed similar responses to the spider dataincreased skewness 

and Kurtosis in more disturbed/modified land uses, indicating a greater number of 

small-bodied individuals in those land-use types. However, the results appeared even 

more pronounced for beetles than for spiders (Fig. 4.13 & 4.14).
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Fig. 4.13.
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Fig. 4.13. Skewness values for beetle total body length measurements. Land-use type abbreviations: 

WC = woodland core; WPE = woodland/pasture edge; PC = pasture core; PCE = cropping/pasture 

edge; CC = cropping core. Replicates are 9 each for WC, WPE & PC and 8 each for PCE & CC. 

Fig. 4.14.
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Fig. 4.14. Kurtosis values for beetle total body length measurements. Land-use type abbreviations: WC 

= woodland core; WPE = woodland/pasture edge; PC = pasture core; PCE = cropping/pasture edge; 

CC = cropping core. Replicates are 9 each for WC, WPE & PC and 8 each for PCE & CC. 

4.3.3 Formicidae

4.3.3.1 Mean body size

No differences were found in mean ant body size among land-use types (Fig. 4.15; 

Table 4.4).
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Fig. 4.15. Grand mean LN ant body size across land-use types. Land-use type abbreviations: WC = 

woodland core; WPE = woodland/pasture edge; PC = pasture core; PCE = cropping/pasture edge; CC 

= cropping core. Replicates are 9 each for WC, WPE & PC and 8 each for PCE & CC. Error bars are 

S.E. of mean. 

Table 4.4. Repeated-measures ANOVA results for Formicidae grand mean body-size statistics among 

different land-use treatments. 

Measure F d.f. P
mean ant body size among land uses 0.674 4,28 0.615

mean abundance of ants in size class 1 (<1 mm) among 

land uses

5.121 4,28 0.003

mean abundance of ants in size class 2 (1–2.5 mm) among 

land uses

1.273 4,28 0.304

mean abundance of ants in size class 3 (>2.5 mm) among 

land uses

7.226 2.193,15.353† 0.005

† denotes Huynh-Feldt adjusted degrees of freedom. 

4.3.3.2 Body size class

Significantly fewer ants in body size class 1 (small: <1 mm) and class 3 (large: >2.5 

mm) were present in the cropping core (CC) treatment than the other land-use types 

(Fig. 4.16; Table 4.4). However, this may have been a function of significantly lower 

overall ant abundance in CC (see Chapter 3) than the other land-use types, rather than 

a specific body-size response. No other differences in body size class were apparent 

among other land-use types. 
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Fig. 4.16. Grand mean LN abundance of ants in three size classes (based upon meta-pleural length) 

across land-use types. Size class attributions are Class 1 – <1 mm; Class 2 – 1–2.5 mm; Class 3 –

>2.5 mm. Land-use type abbreviations: WC = woodland core; WPE = woodland/pasture edge; PC = 

pasture core; PCE = cropping/pasture edge; CC = cropping core. Replicates are 9 each for WC, WPE 

& PC and 8 each for PCE & CC. Error bars are S.E. of mean and different letter denotes significant 

difference for paired t-tests among treatments at α = 0.05. 

4.4 Discussion

In general, smaller spiders and beetles were more abundant in more disturbed 

habitats, and highly mobile, winged beetles were more abundant in highly disturbed 

cropping compared to relatively undisturbed woodland. There were fewer small and 

large ants in the most disturbed land use (cropping) compared to other land-use types, 

but this may be due to far lower overall ant abundance in cropping compared to other 

the land uses. In general, the patterns in morphology showed concordance with 

expectations that habitat type and degree of modification may act as an environmental 

filter in terms of trait representation among taxa, but there were a number of 

responses that appeared to differ across taxonomic groups. 

Spider carapace size (width and length) decreased significantly along the land-use 

modification gradient for all spiders combined (adults and immatures) and adult 

spiders only, with significantly greater numbers of very small spiders in more 

intensive land uses. However, there was no difference in the numbers of large spiders 

in the less-disturbed habitat types compared to the more disturbed areas. Therefore, it 

appears that the decline in assemblage average body size with intensifying land use 
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was predominantly due to very large numbers of small spiders in the more highly 

disturbed habitats.

Although not tested statistically (due to absences of these families from some 

treatments at some sites), there appeared to be little difference in within-family body 

size for either Lycosidae or Linyphiidae spiders. Linyphiids were far more abundant 

overall in the cropping (CC) and cropping pasture interface (PCE) than in woodland 

habitats (not statistically tested due to being absent from most replicates of woodland 

treatments), which may have been further driving the high numbers of very small 

spiders in disturbed land uses. This finding was supported by the relatively high 

values of skewness and Kurtosis for body size data from CC and PCE, indicating that 

the assemblages in those land uses were dominated by small-bodied individuals. 

Only mean pronotum length of beetles changed significantly along the land-use 

gradient. However, all other body-size measures (pronotum width, etc.) displayed a 

non-significant declining trend along the gradient. By contrast, significant differences 

in abundance were found among land-use types for three of the four size classes, with 

more small beetles tending to occur in the intensive land uses. These patterns were 

strongly supported by the skewness and Kurtosis data, indicating that assemblages in 

more disturbed/modified land-use types are dominated by small-bodied individuals. 

Significantly more macropterous beetles were found in the most disturbed/modified 

habitat (CC) than the less disturbed/modified WC, WPE and PC, but there were no 

equivalent patterns for apterous or brachypterous taxa. 

Finally, ants showed little response other than to confirm that far fewer ants were 

present in the CC treatment compared to the other treatments (see Ch. 3), except for 

size class 2, which incorporated specimens of the Rhytidoponera metallica (Smith) 

group, one of the few taxa to proliferate in the cropping core treatment. 

4.4.1 Declining spider body size with increasing land-use intensification

The observed decline in spider body size in the more modified land-use types was 

mainly due to the high abundance of very small spiders in highly modified areas. This 

was evident in the significantly greater abundance of size class 1 (<1 mm) spiders in 

the more disturbed areas and the observed high levels of skewness and Kurtosis for 

spider assemblages in these land-use types, further indicating high abundance of 

small spiders. It is feasible that greater small-spider representation in highly modified 

land uses may have been due to higher numbers of immature spiders (from within-
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field breeding or spillover from adjacent, less-disturbed habitats). However, the 

difference for ‘adult spiders only’ was greater than for adult and immature spiders 

combined, indicating that other factors related to body size may be driving the 

observed differences. Whilst not statistically tested (due to infrequent occurrence in 

less modified land-use types), the overall abundance of linyphiid spiders was much 

greater in the cropping (CC) and cropping/pasture interface (PCE) areas than other 

treatments, indicating that the results for decreasing spider body size along the 

modification gradient may have been largely driven by high Linyphiidae abundance 

in cropping and cropping-edge treatments. This is consistent with the findings of 

Pearce et al. (2005), who reported that linyphiid spiders in south-east Queensland 

were the most abundant in samples of ballooning spiders in cropping and adjacent 

field margin and roadside verge sites, and Fitzgerald (2007) who reported high 

abundances of linyphiids in cropping areas, with very few in woodland remnants. The 

high numbers of small species may also reflect the ability of spiders, and linyphiids in 

particular, to colonise agroecosystems by ballooning, following disturbances such as 

cultivation (Nyffeler and Sunderland, 2003; Thorbek and Bilde, 2004). Whilst the 

greater abundance of small spiders in cropping may reflect their ability to colonise 

frequently disturbed environments rapidly (Halley et al. 1996), it may also reflect a 

response to the distribution of preferred, small-bodied prey (Harwood et al. 2001). 

For instance, potential prey for small spiders, such as aphids, are often found in 

greater abundance in cropping than other less-disturbed land uses (e.g. Favret and 

Voegtlin, 2001). There are instances of generalist predatory arthropods aggregating 

according to prey density (e.g. Pearce et al. 2006), and this may well be reflected at 

the individual habitat patch scale (i.e. field or paddock as in this study). Meanwhile, a 

rather homogenous distribution was reported for lynyphiids in wheat (Holland et al. 

1999). A further factor potentially influencing spider distribution is that small species 

and individuals may be occupying cropping areas to avoid predation pressure, 

possibly from other spider taxa (Wise, 1993) or ants (Schmidt et al. 2008). Certainly, 

the treatment with the highest occurrence of small spiders (cropping) also had the 

lowest abundance of ants; it is feasible that high ant abundances may mediate 

numbers of small spiders through predation (Polis and Myers, 1989; Sanders and 

Platner, 2007) and this may be a potential relationship worth testing in the future. 

The quality of habitat and resources have also been proposed as influential 

determinants of both within- and among-taxon body size (Peters, 1983; Steffan-



119

Dewenter and Tscharntke, 1997; Cunningham and Murray, 2007), and given that the

cropping paddocks contained plants in generally poor health (due to drought), this 

may indicate that poor habitat quality was influential. Finally, avoidance of 

competition has been suggested as a reason for non-random body-size patterns in 

arthropod assemblages, particularly ants (Sanders et al. 2007). On this basis, there 

may be more than one factor influencing the high abundance of very small spiders in 

cropping areas, but it is likely that rapid colonisation of disturbed areas is a 

contributory factor. 

Larger taxa, being more vulnerable to fragmentation (Gaston and Blackburn, 

1996; although see Henle et al. 2004), were expected to be less abundant in highly 

disturbed areas such as cropping. However, this was not the case, with no difference 

in the abundance of the largest body size class (generally from the families Lycosidae 

and Oxyopidae) among land-use types. This may be due to the complex spatial 

arrangement and proximity of land-use types. Given the likelihood that woodland 

remnants in Australian agricultural landscapes may support lycosid assemblages 

containing generalist species that have a broad tolerance of different habitat types 

(Major et al. 2006), the spatial arrangement/proximity of other land-use types may 

permit movement among these land uses. This would enable large generalist 

predatory hunting spiders to persist, at least temporarily, in other land-use types.

4.4.2 Declining beetle body size with increasing land-use intensification

Whilst differences in mean beetle body size among land uses were less marked than 

for spiders, there were significantly greater numbers of the two smaller size classes of 

beetles (<2 mm and 2–5 mm respectively for total body length) in the more 

intensively disturbed and modified land-use types than the less disturbed land uses. 

The reasons for this may be related to small-bodied taxa suffering less mortality due 

to disturbance (Magura et al. 2006) and the faster development of smaller taxa and 

ability to subsist on fewer resources (Peters, 1983). However, when the body-size 

trends are considered in tandem with the trend for significantly more macropterous 

beetles in more disturbed/modified land-use types, it indicates that vagility, especially 

when coupled with an ability to rapidly colonise ephemeral and disturbed habitats 

such as cropping, may be a major determinant of beetle morphological distribution 

among land-use types (Ishitani et al. 2003; Magura et al. 2006). The presence of 

metathoracic wings has been identified as a morphological feature related to tolerance 
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of disturbed agricultural habitats in carabid beetles (Gobbi and Fontaneto, 2008) and 

the colonisation of streams following disturbance is related in part to the vagility and 

dispersal capabilities of organisms (Wallace, 1990). 

Conversely, there were no differences in the abundance of apterous or 

brachypterous taxa among the treatments, indicating that the proximity and 

complexity of spatial arrangement of landscape components may be sufficient to 

enable taxa of relatively low dispersal capability to negotiate the landscape.

Whilst there was far more evidence for trends involving small and highly mobile 

taxa, large beetles (>10 mm body length) were significantly more abundant in the 

woodland/pasture interface than in pasture or cropping. The majority of these beetles 

were large, flightless, predatory members of the family Carabidae. It may be that 

these individuals are using the woodland/pasture boundary as a navigable feature of 

the landscape (Ferguson, 2000) or are taking advantage of potentially higher densities 

of prey (Rand et al. 2006) that themselves are exploiting a habitat interface. 

The results seem to give an indication that dispersal may be a major factor in the 

morphological traits of beetles in highly disturbed land uses. However, the manner in 

which I included abundance of all individuals in both mean body size calculations 

and size class representation within a land-use type, means that the results may be 

greatly influenced by a few species that occur at very high abundances. If this is the 

case, it implies that reproductive strategy may be an important determinant of 

observed body size distribution patterns, with r-selected species (sensu MacArthur 

and Wilson, 1967) reproducing rapidly and profusely in highly disturbed, but 

ephemerally suitable, habitats.

4.4.3 Ant body size and increasing land-use intensification

Although significantly fewer small (size class 1) and large (size class 3) ants were 

present in the most modified land use (CC) than the other land uses, it appears that 

this was largely a function of their far lower overall abundance in the cropping core 

(CC) than the other land-use types, and is discussed at length in chapter 3. However, 

ants from the Rhytidoponera metallica group were rather abundant in the cropping 

areas (see Fig. 3.11 g). This accounted in part for similar abundances of size class 2 

ants (R. metallica being in this class) in all treatments. The high abundance of R. 

metallica in a highly modified environment from which many other taxa were absent 

is consistent with their reputation as a highly disturbance-tolerant organism 
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(Hoffmann and Andersen, 2003). The lack of differences in body size patterns for 

mean body size or size class for the woodland pasture and edge land-use types may 

be, in part, a function of the noisy data that can be associated with social insects and 

the influence on the results of potentially confounding variables such as distance of 

trapping points from nests and spatial array of foraging trails.

4.4.4 Alternative body-size/land-use intensification responses

The trend for decreasing body size with increased land-use intensification and 

modification are in accordance with some of the literature that have studied similar 

arthropod responses to disturbance/modification gradients (e.g. Blake et al. 1994; 

Ribera et al. 2001; Alaruikka et al. 2002; Magura et al. 2006). However, there is a

body of work that has found an opposite relationship, indicating that average body 

size of arthropods can be greater in early successional habitats (e.g. Siemann et al. 

1999; Cunningham and Murray, 2007). There are two broad explanatory approaches 

to this phenomenon: i) reduced body size due to poor-quality resources in late-

successional habitats, with small-bodied, specialised herbivorous species advantaged

(Cunningham and Murray, 2007) and ii) for some taxa (e.g. wasps) large-bodied 

species may be better dispersers (Gathmann et al. 1994, in Cunningham and Murray, 

2007). 

The instances in this study where mean body size across a taxonomic group did 

not decline with increasing land-use disturbance (e.g. ants) are similar to that recently 

reported by Ulrich et al. (2008). They found that the decreasing body size hypothesis 

(mean body size of an assemblage will decrease with increased environmental 

disturbance/modification), developed for predatory carabids, could not be generalised 

to necrophagous staphylinids that displayed no decline along an intensification 

gradient. It is also possible that many small ants (e.g. many individuals from the 

genera Monomorium and Pheidole) were found in the woodland areas because these 

areas are still subjected to disturbance (cattle grazing) and modification (weed 

invasion), that may favour small ant taxa. Ants may be sufficiently responsive to 

environmental stimuli (Andersen and Majer, 2004) for even moderate levels of 

disturbance to affect assemblage body-size patterns. Also, many small species of ant 

are specialised for living in leaf litter systems, sometimes specialised predators of 

collembola, and therefore are likely to be restricted to the woodland areas (Shattuck, 

1999; see also Sanders and Platner, 2007).
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In several instances, however, this study found a trend for decreasing mean body 

size of assemblages with increasing disturbance. Therefore, any influence of poor-

quality resources in late-successional habitats that may have been driving mean body 

size down in woodland (sensu Siemann et al. 1999 and Cunningham and Murray, 

2007) may have been overwhelmed by the considerable structural differences 

between the studied land-use types (i.e. mature trees, shrubs and litter/grass ground 

structure for woodland, more uniform grass cover and no trees for pasture, uniform 

vegetative structure, monoculture and bare-ground for cropping). More subtle factors 

such as resource quality may therefore have been far less of a determinant of 

arthropod distribution than land-use type in this study. 

A further confounding factor that resulted in inconsistent body size trends across 

taxonomic groups may have been that the approach I used to examine trends was at a 

very broad taxonomic level (i.e. order for spiders and beetles and sub-family for 

ants). However, whilst I could not perform statistical analyses at a finer scale 

taxonomic resolution due to higher taxa distributions being very land use specific 

(leading to many zero scores for some treatments), no patterns were apparent at the 

level of family for Lycosidae and Linyphiidae. Further investigation at the taxonomic 

level of species or morphospecies may have yielded interesting within-taxon patterns, 

but were outside the scope of a study intended to look for broad across-taxon patterns.

Such investigations may be particularly insightful for ‘disturbance specialists’ such as 

Rhytidoponera metallica ants, in order to see if a species that proliferates in disturbed 

environments displays a within-taxon body size trend consistent with that observed 

across many taxa.

4.5 Conclusion

There are many possible determinants of patterns in arthropod body sizes among 

land-use and habitat types. These include organism dispersal capability, habitat 

quality, habitat disturbance regimes and ecological interactions such as predation and 

competition. Although numerous other studies have examined single or closely 

related taxonomic groups (particularly carabid beetles) and found relationships 

between body size and habitat disturbance and/or modification, fewer studies have 

compared responses for unrelated taxa. In this study, I often found broadly similar 

results for beetles and spiders, but not for ants. The difference in body-size trends for 
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beetles and spiders may reflect the stark structural differences in the habitat types, 

compared to studies which examined similar habitat types in differing landscape 

contexts (Alaruikka et al. 2002). Furthermore, it has been suggested that body-size 

differences in some arthropod communities may only be detectable for large 

environmental differences; for instance, body-size differences were apparent between 

beetle communities between rainforest and pasture, but no body-size patterns were 

reported, for more subtle environmental changes such as fragmentation or aridity 

(Grimbacher et al. 2008). This study indicates that for some arthropod groups, habitat 

type exerts a strong influence on the body size and morphological features of taxa 

comprising the assemblage, and that these changes are discernable even in landscapes 

where land uses are arrayed in relatively close spatial proximity. Whilst these 

findings are of ecological interest in how land-use type can shape trait representation 

in arthropod assemblages, there may also be implications beyond purely ecological 

circles. For instance, given that morphological traits are closely related to life-history, 

arthropod provision of essential ecosystem services may be influenced by body-size 

representation in assemblages. For example, the pest control potential of a spider 

assemblage that consists largely of very small taxa and/or individuals may be very 

different from one that contains a more even spread of body-size representation. 
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Chapter 5

Adjacent habitat influences

arthropod assemblages and

predation rates in cereal crops
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5.1 Introduction

Agriculture is the dominant terrestrial land use globally (McNeely and Scheer, 2003) 

and, as the previous chapters have shown, exerts a considerable influence on 

biological diversity and ecosystems (McLaughlin and Mineau, 1995). In many 

regions of the world, the area of agriculture continues to expand. This, combined with 

projected future world population and food demand increases (UN, 2006), increased 

meat consumption in many developing nations (Delgado et al. 1998; 1999; IAASTD, 

2008), the redirection of crop production for biofuel production (IAASTD, 2008) and 

the demand for unseasonal fruit and vegetables in developed countries (Stutchbury, 

2007) ensure that the impacts of agriculture on the environment and biodiversity 

continue to be well-documented global issues (Benton et al. 2002; Gaston et al. 2003; 

Gallant et al. 2007). 

The structure, composition and disturbance profiles of many agricultural systems 

and land-use types are highly ephemeral, with land-use change, changing 

management regimes and production outputs driven by a number of influences, 

ranging from variable market demands, government policy changes, physico-

chemical limitations of the land and climatic changes and variability (Lambin et al. 

2001; 2003). This ephemerality, coupled with the inherent spatial and temporal 

complexity of a patchwork of land uses, often leads to highly dynamic ecological 

systems (Levin and Paine, 1974; Topping and Sunderland, 1998). For instance, in 

many tropical systems, the expansion of both large-scale, industrial agriculture and 

subsistence farming leads to the clearing, fragmentation and degradation of native 

vegetation systems (Bradshaw and Marquet, 2003; Lambin and Geist, 2003), with 

concomitant changes to biological assemblages. Alternatively, in systems that have a 

long association with agriculture, two principal trajectories can have dramatic impacts 

on the ecology of agricultural landscapes: (i) the change from traditional farming 

practices in favour of intensification of management, with the aim of increasing 

productivity (Tilman, 2001) and (ii) the abandonment of farming in marginal areas, 

leading to succession and land-use change (MacDonald et al. 2000; Poyatos et al. 

2003). Such changes amount to a ‘shifting mosaic’ (sensu Bormann and Likens, 

1979). This can be expressed at a range of scales, from the continental to the paddock 

scale, and may result in highly complex and transitional abiotic/biotic and 
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interspecific interactions that are rarely in a state of equilibrium (see Wallington et al. 

2005 and references therein). 

One well-known symptom of this combination of frequently-changing 

disturbance regimes and complex land-use arrangements is the ubiquity of edge and 

interface habitats in agricultural systems (Ries et al. 2004; Rand et al. 2006). As 

habitat loss and fragmentation continue, edge habitats are likely to remain a prevalent 

landscape feature, with an increase in edge to interior habitat ratios and increased 

spatial juxtaposition of native vegetation and production land-use interfaces (Rand et 

al. 2006). Accordingly, it is anticipated that there will be an increase in the influence 

of edge or edge-mediated effects on abiotic conditions and ecological processes both 

at habitat interfaces and in the adjacent habitat patches (Saunders et al. 1991; Burke 

and Goulet, 1998). Whilst the term ‘edge effect’ was originally intended to refer to 

observed increases in species abundance and richness at habitat edges (e.g. Leopold, 

1933), the term has expanded to encompass a wide range of physical and biological 

changes in factors ranging from nutrient transport and assemblage interactions (Fagan 

et al. 1999; Hartley and Hunter, 2005; Taylor et al. 2008) to trans-boundary soil 

organic carbon (Collard and Zammit, 2006). 

The influence of habitat edges on biota in agricultural landscapes is of particular 

interest to a range of stakeholders, from conservation biologists to land managers and 

farmers. From a conservation perspective, edges can be both advantageous and 

disadvantageous for biota. For instance, both abundance and richness of small 

passerines have been observed to be lower at woodland edges and in highly 

fragmented woodlands due to the presence of the noisy miner Manorina 

melanocephala (Latham) (Piper and Catterall, 2003; Taylor et al. 2008). This hyper-

aggressive bird species has been advantaged by increases in edge habitat in eastern 

Australia associated with habitat loss, fragmentation and land-use change (Piper and 

Catterall, 2003; Taylor et al. 2008). Furthermore, species dependent on the ecological 

conditions associated with relatively unmodified and undisturbed ‘core’ habitat are 

often unable to persist in edge habitat. As edge effects can occur considerable 

distances into a patch of natural habitat (Murcia, 1995), such species can become 

locally extinct in highly fragmented landscapes containing only small and/or linear 

patches of habitat (Ewers and Didham, 2006). 

In a European context, edge habitats also encompass linear habitat features such 

as hedgerows and field margins. An extensive review of the functions and 
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interactions of field margins with agriculture in northern Europe has been undertaken 

by Marshall and Moonen (2002), which details their structure and ‘anatomy’. These 

include i) the boundary, the barrier between fields or different land uses, ii) the 

margin strip, a strip of vegetation that is established between the field and boundary, 

and iii) the crop edge, the outermost extent of the crop. Such edge and boundary 

habitats in extensively-managed European agricultural landscapes are of vital 

importance for a wide range of ‘farmland specialist’ taxa. Hedgerows, a familiar 

boundary vegetation feature in many European agricultural landscapes, provide 

valuable habitat and resources for birds such as the yellowhammer Emberiza 

citrinella (L.) and butterflies such as the brown hairstreak Thecla betulae (L.) which 

have undergone recent declines, due in part to a loss and degradation of edge habitat 

features (Dover and Sparks 2000; Hinsley and Bellamy, 2000). Such features are also 

of considerable cultural significance, with hedges often marking historically 

important parish boundaries in the UK (Rackham, 1986; Oreszczyn and Lane, 2000).

From a more utilitarian and agrarian perspective, edges, margins and boundaries 

are often valuable habitats for predatory and parasitic arthropods (Rand et al. 2006). 

Many margin strips, especially if they have a complex vegetation structure and 

composition, can provide such natural enemies with a range of pollen and nectar 

resources, alternative prey and hosts, shelter and microclimate stability (Landis et al. 

2000; Koji et al. 2006; Rand et al. 2006; Knight and Gurr, 2007), thus providing 

refuge from deleterious cropping activities and periodic resource depletion in 

cultivated systems (Thorbek and Bilde, 2004; Landis et al. 2000; Gavish-Redev et al. 

2007). Structurally and/or compositionally complex edge and margin habitat (e.g. 

such as botanically diverse field margins) may also be influential at a range of scales, 

with the diversity and abundance of arthropod natural enemies increasing with the 

area or diversity of non-cropped habitat in the landscape surrounding cropped fields 

(Elliot et al. 1998; Rand et al. 2006). This maintenance of natural enemy populations 

can have potentially beneficial implications for agricultural production, such as 

suppressing populations of phytophagous arthropods before they reach problematic 

densities, or reacting to and reducing populations of arthropods that do reach pest 

proportions (Weidenmann and Smith, 1997). 

Therefore, a potential beneficial effect of edge and margin habitats (be they linear 

habitat features or the outer edge of an adjacent habitat block) is their potential role as 

natural enemy sources, which, through the movement of beneficial arthropods from 
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the adjacent habitat into the adjoining crop, may help reduce numbers of pest 

arthropods (Landis et al. 2000).There are several possible explanations for this: such 

movements may be prompted by the difference in productivity between natural and 

semi-natural habitats and adjacent cultivated systems that are periodically more 

productive. Predator and parasite movement into crops may be in response to

temporarily high pest/prey densities (Rand et al. 2006). Such inter-habitat movements 

are related to the concepts of resource mapping (where an organism’s distribution 

matches that of its resources) and access to spatially separated resources (i.e. an 

organism’s required resources are situated in more than one habitat type, and 

therefore presence at edges optimises access to these disjunct resources) highlighted 

by Ries et al. (2004) that explain the concentration of organisms at habitat edges. 

Movements of mobile taxa between habitats may also be influenced by the 

permeability of the interface. In describing interface permeability, edges and 

boundaries are often classified as ‘hard’ (difficult to cross, often found between 

structurally different habitat patches) and ‘soft’ (more ‘porous’ to organisms, often 

found between structurally similar habitats) (Duelli et al. 1990; Ries et al. 2004). 

Whilst compositional, structural and disturbance-related factors may determine 

whether an edge or boundary is hard or soft, the height and density of vegetation in 

each adjoining habitat is thought to be particularly influential (Ries et al. 2004). 

Biotic changes at edges may also have secondary impacts on edge permeability for 

other taxa by advantaging aggressive competitor or predatory species (Dauber and 

Wolters, 2004).

In intensively managed landscapes, areas of relatively low disturbance and high 

heterogeneity can be vital refuges for arthropod natural enemies (Langellotto and 

Denno, 2004). Furthermore, higher trophic taxa such as predators are likely to be 

particularly heavily impacted by intensified land use, as their resources are easily 

fragmented (Tscharntke et al. 2007). Consequently, relatively undisturbed and 

complex edge habitats in intensive systems are an important source of habitat, refuge 

and food for such organisms. 

Two such low-disturbance/high heterogeneity potential sources of mobile 

beneficial arthropods in agricultural landscapes are i) natural habitat patches that 

border production land, and ii) linear habitat features that form the boundaries 

(margins) between agricultural fields. Whilst the edges of natural habitat patches are 

likely to be remnants of the previous indigenous vegetation type, linear habitats are 
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increasingly established by land managers partly for the purpose of encouraging and 

harbouring arthropod natural enemies (MacLeod et al. 2004). 

In general, native vegetation patches are likely to have greater structural and 

compositional complexity, experience less frequent and intensive disturbance and 

have more niche opportunities than cropping systems. Such factors are likely to lead 

to higher species richness and abundance of natural enemies in native vegetation. 

Factors such as greater structural complexity may also offer more refugia from 

antagonistic processes such as intra-guild predation leading to greater predatory 

arthropod abundance (Finke and Denno, 2002; Langellotto and Denno, 2004; 

Langellotto and Denno, 2006). For instance, a meta-analysis of arthropod responses 

to a range of agricultural land use types found greater richness and abundance of 

predatory taxa in native systems compared to agricultural land uses across a wide 

range of countries, vegetation types and land-use categories (Attwood et al. 2008; see 

Chapter 2 of thesis).

Although linear edge and boundary habitats occur in agricultural regions around 

the world, European examples of such habitats have received the overwhelming 

majority of management, policy, on-ground funding and research attention. Despite 

the emphasis on European crop edge, boundary and margin habitats, and the lack of 

studies in regions that have a more recent history of agricultural introduction and 

development, there has recently been considerable interest in the role that 

anthropogenic landscape features, or ‘countryside elements’, may play in biodiversity 

conservation in relatively recently established agricultural systems (Hughes et al. 

2002; Haslem and Bennett, 2008a). 

Australian agricultural landscapes often consist of a mosaic of land-use types 

ranging from cropping of various degrees of intensity, to improved and native 

pastures, to remnants of various woody native vegetation types. Such systems often 

contain linear strips of vegetation (often consisting of a mix of native and introduced 

grasses, forbs and woody vegetation) situated between fields or paddocks of crops. 

However, many parts of eastern and southern Australia are undergoing a process of 

agricultural intensification (Walcott et al. 2001) involving an increase in irrigated 

cropping (Maron and Fitzsimons, 2007) and a loss of low intensity agricultural land 

uses and semi-natural habitats such as native pastures (Attwood et al. 2009; Sheahan, 

2009). Such changes in land use and field size are likely to lead to a simplification of 

the agricultural landscapes of the region (sensu Benton et al. 2003). Furthermore, 
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these changes are likely to result in a reduction in edge habitats formed by a) low 

intensity land uses abutting cropping (due to loss of low intensity habitats such as 

native pastures) and b) linear vegetation strips and margins bordering cropping fields 

(Wilson et al. 1999). Given that these more complex habitats are likely to support 

relatively high arthropod biodiversity, which may in turn provide ecosystem service 

benefits to agriculture (Altieri, 1999; Landis et al. 2000; Langellotto and Denno, 

2004; Attwood et al. 2008; Letourneau et al. 2009), the loss of such edge habitats

may potentially lead to a loss of both biological diversity and associated system 

function. 

In order to investigate the possible implications of edge habitat change, I 

conducted a field study in mixed farmland in eastern Australia. Specifically, I aimed 

to examine the arthropod biodiversity value and pest-control potential of a linear crop

boundary or margin (referred to in text as ‘linear-edge’) compared to a native remnant 

woodland/crop boundary (‘woodland edge’ or ‘wood-edge’). 

A primary research focus was whether linear-edge habitats such as grassy 

margins, generally viewed as a quintessentially European habitat component, could 

fulfill similar conservation and ecosystem service roles (e.g. relatively high 

biodiversity compared to the dominant cropping land use) in the context of a region 

where agriculture was a relatively recent arrival. Furthermore, it is important to 

discover if the biodiversity benefits of native habitats and relatively low intensity land 

uses extend into the cropping systems, as this could multiply the potential benefits of 

relatively undisturbed habitats situated adjacent to crops. 

In addition to examining arthropods in general for this study, I focussed on ants in 

particular as they are sensitive to environmental gradients (Dauber and Wolters, 

2004), are known to be important generalist predators of agricultural pests (Way et al. 

2002; Atlegrim, 2005; Argawal et al. 2007), and influence predator assemblages 

through intraguild predation (Mansfield et al. 2003). Two practical considerations 

also favoured ants—they are readily caught in pitfall traps and are one of the few taxa 

to remain highly abundant during persistent drought (see Method, Chapter 3 and Fig. 

5.3). In addition, I examined the responses of other arthropods (at order level) and 

spiders, themselves considered to be generalist predators in cropping systems 

(Sunderland and Samu, 2000). In order to try and gauge the extent to which different 

edge habitat types may influence ecosystem service delivery, I also examined the 

predation rates of Heliothis eggs at the two different edge types. Finally, I examined 
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whether mean spider body size differed among the two edge habitat types and 

adjacent crops. This was done to determine if any morphological assemblage patterns 

were evident in a predatory group known to be important in both shaping ecological 

processes and delivering ecosystem service benefits (Sunderland and Samu, 2000).

The primary research questions were therefore:

1. Does the frequency and direction of movement of arthropods between the 

crop interior and the crop boundary differ among edge habitat types?

2. Do arthropod abundance, ant morphospecies richness, ant 

morphospecies/functional group assemblage composition, or spider body size 

differ between cropping edges adjacent to remnant woodland and linear 

grassy margins?

3. Do arthropod abundance, richness and composition differ between crop edges 

and crop interiors?

4. Do arthropod assemblages of within-crop areas differ from each other 

depending upon their nearest adjacent habitat type?

5. Does adjacent habitat type and distance into crop influence predation rates of

a common agricultural pest, Heliothis armigera?

5.2 Methods

5.2.1 Study area and study sites

The study was conducted on four farms in the Cambooya and Felton districts in

south-east Queensland, Australia (27º41’–50’ S; 151º48’–49’ E; see Fig. 5.1). The 

mean maximum summer (Dec–Feb) temperature is 29.8ºC; the mean minimum 

winter (June–August) temperature is 2.6ºC (Bureau of Meteorology, 2008). The mean 

summer (Dec–Feb) rainfall is 279 mm and mean winter (June–August) rainfall is 112

mm, with a mean total annual rainfall of 720 mm (BOM, 2008). The landscape is 

highly heterogeneous, consisting of cereal, legume, vegetable and fodder crops, 

cattle-grazed native, mixed and improved pastures and cattle-grazed remnants of 

Eucalyptus orgadophila (Maiden and Blakely) and E. crebra (F. Muell.) woodland.

The landscape also contains a range of semi-natural habitat components such as 

grassy field margins and headlands, isolated paddock trees and cropping paddocks 
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that are no longer cultivated and are in the process of reverting to native or exotic 

grassland with sporadic tree and shrub regeneration.

Fig. 5.1. Map of Queensland and sampling locations. Polygons represent paddock/woodland site where 

sampling took place. The photo on the far right depicts one field bordered by woodland and other 

fields, and depicts the woodland edge and linear edge sampling points. Please see following Figure 5.2 

for depiction of sampling points in one field.
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Fig. 5.2. Schematic of sampling locations in and around a selected sorghum field. Please compare to 

Figure 5.1.

5.2.2 Experimental design and sampling

I selected two commonly-occurring edge habitat types adjacent to crops of sorghum 

(Sorghum sp.): i) cropping abutting the edge of woodland and pasture elements 

(‘woodland-edge’) and ii) cropping abutting a grassy margin or other linear 
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vegetation strip that separated the experimental field from another cropping field 

(‘linear-edge’) (Fig. 5.2). Due to the severity of ongoing drought (see Fig. 5.3), only 

four crops of sorghum that adhered to this design could be located. All cropping sites 

were subjected to minimum or no-till management, and sampling was conducted 

when approximately half the sorghum plants were flowering (Vanderlip & Reeves, 

1972).
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Fig. 5.3. Five year running average total annual rainfall for southern Queensland study area (data 

1900–2008), with sampling years and median rainfall value indicated. Data from Bureau of 

Meteorology (2009).

5.2.2.1 Arthropod sampling

Three pitfall trapping sampling stations were placed along each edge type, with each 

sampling point consisting of an ‘ingoing’ trapping point on the edge-side and an 

‘outgoing’ trapping point on the crop-side. Therefore, sampling was conducted at the 

‘woodland edge’ (where woodland interfaces with crop field), the ‘linear strip edge’ 

(where linear vegetation strip interfaces with crop field), ‘woodland crop’ (cropping 

field proximate to woodland edge), and ‘linear edge crop’ (cropping field proximate 

to woodland edge) (see Fig. 5.2). The placement was determined using a random 

numbers table but with points at least 100 m apart in order to retain independence of 

sampling points. To sample edge arthropods at each sampling point, I erected a 

directional pitfall trap frame at the boundary between the crop and the edge of the 

adjacent vegetation (Fig. 5.4). Whilst directional pitfall trapping is not as frequently 

used as other pitfall trapping approaches, several authors have found that it is a useful 
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method for identifying the movements of ground-dwelling arthropods between 

adjoining habitat types (e.g. Duelli et al. 1990; Collinge and Palmer, 2002). I dug the 

frames into the ground and secured them with tent pegs in order to reduce the 

likelihood of ‘incoming’ arthropods falling into ‘outgoing’ pitfall traps. Three pitfall 

traps, consisting of plastic containers with an opening diameter of 115 mm and a 

depth of 80 mm, were placed in the ground on each side of the frame’s central barrier 

(Fig. 5.4). To sample within-crop arthropods, I placed a further three pitfall traps 20

m into the crop from each sampling station. These pitfall traps had covers similar to

the covering of the edge traps, in order to simulate conditions under the directional 

pitfall trap covers and protect the traps from any rain events. Each sampling point was 

replicated 12 times across the four farms, with sampling points at least 100 m apart 

and farms separated by at least 1.5 km. This resulted in a total of 12 each of edge side 

traps and crop-side traps at the woodland-edge and 12 each of edge side traps and 

crop-side traps at the linear-edge (see Fig. 5.4 for example of one trap set). 

Crop-sideEdge-side

Ingoing 
pitfall trap

Outgoing 
pitfall trap

Crop-sideEdge-side

Ingoing 
pitfall trap

Outgoing 
pitfall trap

Fig. 5.4. Directional pitfall trapping frame and trap placement. Each trapping frame was placed parallel 
to the boundary of the cropping paddock. 

After the pitfall traps were placed in the ground, they remained closed for one 

week to allow settling-in. After this period, I then half-filled all traps with 30% 

ethylene glycol solution and a few drops of household detergent. Traps were left open 

for seven days and nights, with all sampling conducted within a four-week period in 

November 2006. After the seven-day sampling period all traps were taken to the 

laboratory and the contents stored in 70% ethanol solution. I identified all ant 
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specimens to genus and morphospecies using a stereomicroscope and standard 

reference works (Shattuck 1999; Andersen, 2000; Shattuck and Barnett, 2001) and 

specimens were attributed to functional groupings after Hoffmann and Andersen 

(2003) and Andersen and Majer (2004). I also identified all arthropods to Order level,

and body length of all spiders from chelicerae to the tip of the spinnerets was

measured.

In addition to collecting arthropods using pitfall traps, I also sampled in the crop 

canopy using a Stihl leaf blower with a vacuum attachment. Only six replicates of 

each treatment across the landscape were sampled using the leaf blower, in order to 

avoid disturbance of cattle in some crops at the time of sampling (at property owner’s 

request). The treatments sampled were 1 m into the crop at the woodland-edge, 20 m 

into crop at the woodland-edge, 1 m into the crop at the linear-edge and 20 m into the 

crop at the linear-edge. The sampling locations were adjacent the pitfall sampling 

points (hence three per treatment at each site). I performed five suction samples at 

each of the three sampling points, each of ten seconds duration within a 1m radius 

and all five samples subsequently pooled. 

5.2.2.2 Heliothis egg predation

Heliothis armigera (Hübner) eggs (laid on paper towel), obtained from the 

Queensland Department of Primary Industries and Fisheries, were attached to pieces 

of card measuring approximately 2 × 2 cm. The number of eggs per card varied, and 

removing eggs from cards to have equal numbers on each would have destroyed the 

eggs. Therefore, I arranged them into sets of five cards with approximately equal total 

numbers of eggs (mean of 326 eggs per card set, +/- SD of 21, a variability of 6% in 

total egg numbers averaged across a set of cards) for the field trial. Whilst not as ideal 

as having exactly equal numbers of eggs for the five cards at each point, I felt that 6% 

variability in egg numbers across cards was unlikely to affect predation rates due to 

unequal prey availability and predator satiety. Sampling was conducted commencing 

at approximately 1700 hrs during three consecutive days in November 2006. I stapled

five egg cards to plant stems at a height of approximately 2 cm, at points 1 m and 20

m into the crop at each sampling point on the four farms. I recorded the number of 

eggs on each egg card at the time of placement. Twelve hours later, I collected the 

cards and sealed them in polythene bags, and placed these on ice for their return to 

the laboratory for counting. 
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5.2.2.3 Habitat Structure

The habitat types to be sampled differed to some extent in their habitat structure. In a 

qualitative sense, it was evident that woodland edges differed from linear strip edges, 

in that the former contained habitat elements such as coarse woody debris and leaf 

litter, and were sometimes overhung by the edge of the tree drip line. Meanwhile, 

crops abutting linear strip edges lacked the leaf litter often evident in crops abutting 

woodland edges. In order to capture some of these apparent differences, I recorded 

quantitative measures of habitat structure at the following six locations for each 

sampling point: Woodland-edge (the outermost margin of the crop where it abutted 

the adjacent woodland patch—Fig. 5.5, sampling point 5), woodland crop (20 m into 

the crop from the woodland/crop interface—Fig. 5.5, sampling point 4), woodland 

patch (20 m into the adjacent woodland patchFig. 5.5, sampling point 6), linear-

edge (the outermost margin of the crop where it abutted the adjacent linear grass 

stripFig. 5.5, sampling point 2), linear-crop (20 m into the crop from the linear 

grass strip/crop interfaceFig. 5.5, sampling point 3), next cropping field (20 m into 

the adjacent cropping field beyond the linear grass stripFig. 5.5, sampling point 1). 

The measures consisted of percentage cover of the following variables: tree cover, 

shrub cover, forb cover, tussock grass cover, mat-forming grass cover, coarse woody 

debris cover, leaf litter cover, rock cover, bare ground cover, crop cover and crop 

residue cover, and measurements for litter depth, grass height and grass density. 

Methods of measurement followed those described in Chapter 3 for habitat structure 

variables. The habitat measures were divided into local habitat (sampling points 2, 3, 

4 and 5) and adjacent habitat (1 & 6) types when used for analysis (see section 

5.2.3.4).
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Fig. 5.5 Habitat structure measurement sampling points (see text in 5.2.2.3)

5.2.3 Data Analysis

The abundances for Formicidae and Araneae and all arthropods combined were

determined by calculating the mean abundance for the three pitfall traps at each 

sampling point. Formicidae morphospecies richness and Order-level richness was 

calculated as the total number of morphospecies summed from the three pitfall traps 

at each sampling point. 

I classified all spiders into one of three size classes depending upon their body length:

Class 1: <2.5 mm; Class 2: >2.5–5 mm; Class 3: >5 mm (Alaruikka et al., 2002).

From this I calculated the mean abundance of each size class for the three pitfall traps 

in each sampling point. For each egg card, the proportion of eggs taken was 

calculated and from this I determined the mean proportion taken for each sampling 

point. All analyses were based upon a total of twelve replicates of each treatment. 

Prior to analysis, I tested data for normality and transformed them accordingly. All 

proportional data were arcsine square root transformed.

5.2.3.1 Univariate

In order to first determine if there were differences in arthropod measures between 

the ingoing and outgoing pitfall traps in the directional trap setup, I performed paired 

t-tests. As no significant differences were found, the mean richness, abundance, etc., 

of the ingoing and outgoing traps at each sampling point was derived and 

subsequently termed ‘woodland-edge’ (i.e. the mean of the ingoing and outgoing 
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traps at the woodland boundary) or ‘linear-edge’ (i.e. the mean of the ingoing and 

outgoing traps at the linear grass strip edge). 

I then used a series of linear mixed effects model analyses to test for differences 

in arthropod abundance, richness and (for spiders) body size class and egg card 

predation rates among the following habitat types: woodland-edge, linear-edge, 

woodland-crop and linear-crop. Distance (edge compared to 20 m into adjacent crop) 

and edge type (woodland or linear strip habitat for both distance classes) were 

included as fixed factors in the analysis, and farm was included as a random factor. 

Where a significant distance and/or edge habitat type treatment effect was found (P = 

<0.05), I used paired t-tests to test for differences between individual habitats (wood-

edge, woodland-crop, linear-edge, etc.). All univariate analyses were performed using 

SPSS 14.0 for Windows (SPSS for Windows, 2005). 

5.2.3.2 Assemblage composition

To examine if patterns of ant assemblage composition and relative abundance 

differed with edge habitat type and distance into crop (i.e. crop edge compared to 

crop interior), I first calculated a Bray-Curtis similarity matrix from the fourth root-

transformed morphospecies data for each sampling point and performed ordinations

using non-metric multidimensional scaling. This transformation was used to reduce 

the influence of very high abundances of some ant taxa in some samples. The 

differences among ant assemblages for both treatment and farm were tested using 

ANOSIM, with 9999 permutations. A similar procedure was used for the functional 

group data. In order to reduce data ‘noise’, I omitted all taxa from the assemblage 

analysis that occurred at only one trapping station. Finally, I identified the 

morphospecies that made the greatest percentage contribution to treatment 

dissimilarity using SIMPER. All multivariate analyses were undertaken using 

PRIMER® (Clarke and Gorley, 2001).

5.2.3.4 Influence of environmental variables on ant assemblage composition

Analysis of which environmental variables were most influential in shaping the ant 

assemblages at habitat-crop edges and crop interiors was performed in PRIMER®

(Clarke and Gorley, 2001), using the BEST analysis. Ant data were combined for 

edges (i.e. woodland-edge and linear-edge data combined) and for crop interiors 

(woodland-edge 20 m into crop combined with linear-edge 20 m into crop). Habitat 
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data (see section 5.2.2.3, above) were categorised as local environmental variables 

(those recorded at the point where the ants were sampled) and adjacent habitat 

environmental variables. The habitat variables were coded as ‘local’ or ‘next’ on this 

basis. BioEnv procedures were conducted for both edge (woodland-edge and linear-

edge combined) ant and habitat data and crop interior (woodland-edge 20 m into crop 

combined with linear-edge 20 m into crop), in order to examine if ‘local’ or ‘next’ 

habitat features were most influential in shaping ant assemblage composition both at 

crop edges and interiors. Consideration was given to excluding some correlated 

habitat variables, but as variables that showed a relatively high incidence of 

correlation (e.g. tree cover and leaf litter cover) may operate in ecologically distinct 

ways for arthropods, all variables were included in the analysis. The analysis was run 

using 99 permutations, using Spearman’s Rho.

5.3 Results

5.3.1 Arthropod richness and abundance

5.3.1.1 Directional pitfall trapping

A total of 26,098 arthropods (excluding Collembola) were trapped, which included 

20,275 ants and 807 spiders. There were 43 ant morphospecies from 17 genera with 

the most abundant genera being Iridomyrmex (12,182 individuals), Paratrechina

(5,173 individuals), Pheidole (2,224 individuals) and Rhytidoponera (415 

individuals). Paired t-tests revealed there were no significant differences in 

abundance or richness between ingoing and outgoing traps for any taxa (see Fig. 5.6

for ant data), and therefore I used the mean of the ingoing and outgoing traps to 

calculate ‘wood-edge’ and ‘linear-edge’ for all statistical analyses.
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Table 5.1 Linear mixed-model results for arthropod directional pitfall trapping among distance from 

edge and edge and crop types. Distance refers to the comparison between the edge (wood or linear) and 

20 m into the adjacent crop; edge type refers to the comparison between the two adjacent habitat types 

(wood or linear for both the edge and the adjacent crop). Size class 3 = (>5 mm body length), Size class 2 

= (2.5-5 mm body length), Size class 1 = < 2.5 mm body length. d.f. = 1,42 in all cases

Taxon Measure treatment F P
Order richness distance

edge type
1.493
3.073

0.229
0.087

Order level

Abundance distance
edge type

0.016
2.85

0.9
0.099

Morphospecies richness distance
edge type

6.676
24.047

0.013
0.001

Formicidae

Abundance distance
edge type

12.519
8.693

0.001
0.005

Abundance of individuals distance
edge type

0.452
1.452

0.505
0.235

Mean body length distance
edge type

0.028
1.732

0.869
0.195

Mean abundance of size class 3 distance
edge type

0.706
4.144

0.405
0.048

Mean abundance of size class 2 distance
edge type

0.487
0.836

0.489
0.365

Araneae

Mean abundance of size class 1 distance
edge type

0.35
0.418

0.852
0.521

Mean ant morphospecies richness differed with distance into the crop (edge 

compared to crop) and adjacent habitat type (woodland or linear grassy strip) (Fig. 

5.7 & Table 5.1). Richness in the woodland-edge was significantly greater than that 

of the other three treatment combinations (Fig. 5.7 & Table 5.1). Richness was also 

greater in the crop adjacent to the woodland-edge than the crop adjacent to the linear-

edge (Fig. 5.7 & Table 5.1). LogN grand mean ant abundance also differed 

significantly among treatments (Fig. 5.8 & Table 5.1) with significantly greater 

abundance at the woodland-edge than other land uses and significantly lower

abundance in the crop adjacent to the linear-edge than the other land uses (Fig. 5.8 & 

Table 5.1).
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Fig. 5.6 Mean ant abundance (LogN transformed), mean ant richness and mean abundance of selected ant functional groups (LogN transformed) for ingoing and 

outgoing directional pitfall traps at both woodland and linear strip edges. 
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from each edge type. N = 12 replicates for all treatments, error bars are S.E. of mean and different 

letter denotes significant difference for paired t-tests among treatments at α = 0.05
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Fig. 5.8 LogN grand mean ant abundance in woodland and linear-edge and 20m into crop from each 

edge type. N = number of replicates, error bars are S.E. of mean and different letter denotes significant 

difference for paired t-tests among treatments at α = 0.05

In contrast, no difference was found among treatments for either arthropod 

(excluding Formicidae) abundance or order/class level richness (Fig. 5.9 & Table 

5.1). Nor was there any significant difference in spider abundance among edge or 

crop treatments (Figs. 5.10; Table 5.1). However, adjacent habitat/edge type did 
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appear to influence the abundance of spiders in the largest size class (>5 mm), with 

significantly more of these spiders occurring in the linear-edge habitat than in the 

wood-edge or wood-crop habitats (Fig. 5.11).
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Fig. 5.9 LogN grand mean arthropod abundance and order/class level richness in woodland and linear-

edge habitats and 20m into crop from each edge type. N = 12 replicates in all cases, error bars are S.E. 

of mean.
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Fig. 5.10 LogN grand mean spider abundance in woodland and linear-edge habitats and 20m into crop 

from each edge type. N = 12 replicates in all cases, error bars are S.E. of mean.
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Fig. 5.11 grand mean spider size class abundance in woodland and linear-edge habitats and 20m into 

crop from each boundary type. N = 12 replicates in all cases, error bars are S.E. of mean. Paired t-tests 

only performed on size class 3. Different letter denotes significant difference at α = 0.05

5.3.1.2 Suction sampling

Only one significant difference was found for all comparisons of data from suction 

sampling, with greater abundance of predatory arthropods (spiders and coccinellid 

beetles) at 20 m than 1 m into the crop (Table 5.2). No differences were found in 

predatory arthropod abundance between the woodland and linear-edges and no 

differences in Thysanoptera or Homoptera abundance were apparent among the edge 

types or with distance into the crop (Table 5.2).

Table 5.2 Linear mixed-model results for LN transformed abundance of Thysanoptera, Homoptera 

and predatory arthropods (spiders and coccinellid beetles) from reverse-leaf blower suction samples. 

Comparisons are between crop edge and crop interior (1 m and 20 m distances into crop) (data from 

both edge types combined) and between woodland and linear-edge type (data from both cropping 

distances combined). d.f. = 1, 20 in all cases.

Arthropod group Mean ab (± S.D) crop 
edge (1 m)

Mean ab (± S.D) crop 
interior (20 m)

F P

Thysanoptera 3.14 (2.15) 3.81 (1.43) 1.78 0.19

Homoptera 3.03 (1.00) 2.65 (0.67) 1.41 0.25

Predatory arthropods 1.44 (0.5) 1.97 (0.56) 8.22 0.01*

Arthropod group Mean ab (± S.D) 
woodland edge

Mean ab (± S.D) 
linear-edge

F P

Thysanoptera 3.6 (1.52) 3.34 (2.14) 0.28 0.60

Homoptera 2.69 (0.88) 2.99 (0.85) 0.84 0.37

Predatory arthropods 1.65 (0.55) 1.76 (0.64) 0.42 0.53
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5.3.1.3 Egg card predation

The mean proportion of Heliothis armigera eggs taken was significantly greater 1 m 

into the crop than 20 m into the crop (F1,42 = 6.66; P = 0.014) (Fig. 5.12). When the 

proportion of eggs taken at different edge habitat types were compared using 

combined 1 m and 20 m samples, there were no significant differences (F1,42 = 1.61;

P = 0.21).
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Fig. 5.12 Mean arcsine square root transformed proportion of Heliothis eggs taken 1 m and 20 m into 

crop (edge habitat types combined). Error bars are S.E. of mean and different letter denotes significant 

difference for linear mixed-model analysis at α = 0.05

5.3.1.4 Ant morphospecies and functional group assemblage composition

The nMDS ordination and ANOSIM results indicated that the ant morphospecies 

assemblage at woodland/crop edges and the adjacent crops was different to that at 

linear strip edges and the adjacent crops (Fig. 5.13a; R = 0.186, P = <0.01). 

Similarly, the assemblage composition at crop boundaries (woodland and linear strip

treatments combined) was also significantly different from the assemblage in the 

crop itself (woodland and linear strip combined) (Fig. 5.13b; R = 0.128, P = 0.01). 

Where boundary and crop types were not combined (i.e. analysed as woodland-edge, 

linear-edge, woodland-crop and linear-crop), significant differences in assemblage 

composition were found between: wood-edge and linear-edge, wood-edge and linear-

crop, wood-crop and linear-edge, wood-crop and linear-crop and linear-edge, and 

linear-crop (Fig. 5.13c; Table 5.3). 
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Table 5.3 ANOSIM results for ant morphospecies assemblage composition.

Table 5.4 ANOSIM results for ant functional group assemblage composition. * denotes statistically 

significant difference in assemblage between/among treatments (α = 0.05). 

Fifty-one percent of the dissimilarity between the woodland treatments (edge and 

crop combined) and the linear strip treatments (edge and crop combined) was

accounted for by four taxa: ‘Iridomyrmex 1’ (more abundant in linear strip areas), 

‘Paratrechina 1a’ (more abundant in woodland areas), ‘Pheidole 3’ (more abundant

in woodland areas) and ‘Camponotus 1a’ (more abundant in woodland areas) (Table 

5.5). The same four morphospecies, together with ‘Rhytidoponera 1’, accounted for 

59% of the dissimilarity between the edge and crop areas (Table 5.6). These five taxa 

also accounted for much of the dissimilarity between the more detailed treatment 

comparisons (e.g. woodland-edge compared to woodland-crop).

Global test 
comparison

Global R P Pairwise test 
comparison

R P

Comparison of all 
treatments

0.195 <0.01 Wood-edge vs wood-crop

Wood-edge vs linear-edge

Wood-edge vs linear-crop

Wood-crop vs linear-edge

Wood-crop vs linear-crop

Linear-edge vs linear-crop

0.071

0.164

0.343

0.288

0.173

0.15

0.085

0.010

0.001

0.001

0.008*

0.011

Global test 
comparison

Global R P Pairwise test 
comparison

R P

Comparison of all 
treatments

0.125 0.01 Wood-edge vs wood-crop

Wood-edge vs linear-edge

Wood-edge vs linear-crop

Wood-crop vs linear-edge

Wood-crop vs linear-crop

Linear-edge vs linear-crop

0.092

0.045

0.342

0.067

0.097

0.103

0.051

0.172

0.001

0.098

0.063

0.034
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Table 5.5 Morphospecies percentage contribution to dissimilarity derived from SIMPER analysis 

between edge and crop treatments proximate to woodland, and edge and crop treatments adjacent to 

linear grass strip

Morphosp. Wood edge 
Av. 
abundance 

Linear edge 
Av. 
abundance

Av. 
Dissim.

Dissim.
/S.D.

% 
Dissim.

Cumulative 
% Dissim.

Iridomyrmex 1 110.7 213.8 9.6 1.3 17 17
Paratrechina 1a 39.5 9.7 6.9 1.1 12 29
Pheidole 3 44.4 25.8 6.8 1.3 12 41
Camponotus 1a 2.7 0.04 5.6 1.4 10 51
Rhytidoponera 1 6.5 4.2 4.5 1.2 8 59
Iridomyrmex 7 5.46 0.2 4.1 0.9 7 66

Table 5.6 Morphospecies percentage contribution to dissimilarity derived from SIMPER analysis 

between edges (woodland edge and linear grass strip edge combined) and the adjacent crops.

Morphosp. Edge Av. 
abundance 

Crop Av. 
abundance

Av. 
Dissim.

Dissim.
/S.D.

% 
Dissim.

Cumulative 
% Dissim.

Iridomyrmex 1 282.3 42.1 11.2 1.3 20 20
Pheidole 3 17.8 52 7 1.3 13 33
Paratrechina 1a 44 5 6.5 1 12 45
Rhytidoponera 1 5.1 5.6 4.8 1.2 9 54
Camponotus 1a 1.3 1.5 3.7 1 7 61
Iridomyrmex 7 1.2 4.5 3.6 0.8 6 67

To some extent, the functional group results mirrored the morphospecies results, 

although treatment effects were less distinct (Fig. 5.14 a–c; Table 5.4). For instance, 

whereas the morphospecies assemblage was significantly different between the 

woodland and linear grass strip sites (Fig. 5.13a; Table 5.3), the difference between 

the same treatments using the functional group data was not significant (R = 0.09; P 

= 0.051; see Fig. 5.14a), but showed a trend for a similar relationship as the 

morphospecies data. However, for functional group assemblage composition 

between the crop edge and crop interior, there was a significant difference, similar to 

that for the morphospecies data (R = 0.115, P = 0.01; Fig. 5.14b). Also, the 

morphospecies data indicated different assemblages between the wood-crop and the 

linear-edge, and between the wood-crop and the linear-crop (Fig. 5.13c; Table 5.3), 

whilst the difference in functional group data was not significant for these 

comparisons (Fig. 5.14c, Table 5.4).
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Fig. 5.13 nMDS ordination of 4th rt transformed ant morphospecies data, Bray-Curtis similarity matrix 

for a) woodland-edge and crop compared to linear-edge and crop; b) woodland and linear edge

compared to woodland and linear-crop; c) each edge and crop type compared. Stress in all cases = 

0.23. Different letter denotes statistically significant difference between treatments for ANOSIM tests 

(α = 0.05). 
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Fig. 5.14 nMDS ordination of 4th rt transformed ant functional group data, Bray-Curtis similarity 

matrix for a) woodland-edge and crop compared to linear-edge and crop; b) woodland and linear-edge

compared to woodland and linear-crop; c) each edge and crop type compared. Stress in all cases = 

0.19. Different letter denotes statistically significant difference between treatments for ANOSIM tests 

(α = 0.05). 
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The proportional abundances of Dominant Dolichoderines appeared to be more 

prevalent on average in woodland edge and woodland crop than linear treatments, 

Generalised Myrmicinae were more prevalent in cropping than edge treatments, and 

both Hot Climate Specialists and Subordinate Camponotini were more prevalent in 

woodland than linear treatments) (Fig. 5.15). 
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Fig. 5.15 Mean LN transformed abundance of ants by functional group in the four edge and cropping 

treatments. Functional group abbreviations are: SP – Specialist predator; CCS – Cold climate 

specialist; HSC – Hot climate specialist; SC – Subordinate Camponotini; DD – Dominant 

Dolichoderinae; GM – Generalised Myrmicinae; Opp – Opportunists. Error bars are standard error of 

the mean (N = 12 for each treatment). 

5.3.1.5 Influence of habitat variables on ant morphospecies assemblage composition

The measured habitat variables significantly influenced both the edge (Global R 

= 0.702, P = 0.007) and the crop interior (Global R = 0.918, P = 0.001) ant 

morphospecies assemblages. The five most influential variables shaping edge 

assemblages were local coarse woody debris cover, local rock cover, the density of 

mat-forming grasses in the adjacent habitat, coarse woody debris cover in the 

adjacent habitat, and the density of crop residue in the adjacent habitat. Ant 

morphospecies assemblages in the crop interior, meanwhile, were most influenced by

three local environmental variables—mean graminoid height, graminoid density and 

crop cover, and two variables from the adjacent habitat—coarse woody debris cover 

and bare ground cover.
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5.4 Discussion

The ecological literature provides many examples of the complex roles that edges 

play in shaping ecological assemblages, interactions and processes (Ries et al. 2004). 

The range of responses to edge type and distance from edge in this study supports 

this view. For instance, ant richness and abundance differed with both distance from 

edge and edge type, whereas spider abundance did not. Meanwhile, there were no 

arthropod richness or abundance differences of any kind observed between 

arthropods entering and arthropods leaving crop fields. Ant assemblages on the other 

hand were distinct between different edge habitat types and distance into the field 

when examined at a taxonomic level, but edge habitat type made little impression on 

functional group assemblage composition. Finally, predation rates of Heliothis eggs 

were greater at crop edges than 20 metres into the crop. There are several potential 

reasons and contributory factors for these findings.

5.4.1 No difference between ingoing and outgoing arthropod assemblages

The lack of difference between ingoing and outgoing assemblages caught in the 

directional pitfall traps may be attributable to both ecological and experimental 

design factors. For instance, some arthropods may have a tendency to move parallel 

to a visible edge (Pratt, et al. 2001) and predators may use habitat edges to navigate 

the landscape (Ferguson, 2000). Therefore, many organisms in this study, rather than 

crossing the boundary, may have travelled parallel to the field edge and therefore had 

a roughly equal chance of being caught in either the ingoing or outgoing traps. 

Optimal directional pitfall trapping would be achieved if all taxa crossed the field 

boundary in a straight, perpendicular trajectory. However, some arthropods are 

known to utilise a random walk movement and foraging pattern (Wallin and Ekbom, 

1988) that consists of straight line movements interspersed with turning angles, 

which can be influenced by the immediate environment (Challet et al. 2005). 

Consequently, individuals entering the crop from the neighbouring habitat may have

fallen into the outgoing pitfall traps due to convoluted routes, and vice versa. This 

behavioural trait may have been exacerbated by an aspect of the experimental design 

that could have biased results. For instance, the length of the partition between the 

ingoing edge-side and outgoing crop-side traps may have been insufficient to 

successfully segregate arthropods leaving or entering the crop. Another possible 
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effect of the sampling approach could have been attraction of arthropods from all 

directions to the trapping station, which may have provided desirable conditions (e.g. 

high humidity, microclimate stability) for certain taxa. Finally, sampling was only 

conducted during one stage of crop development (approx. 50 % of heads 

flowering)—it is possible that differences in immigrating and emigrating 

assemblages may have been detectable had sampling been conducted during other 

periods of crop development.

5.4.2 The influence of edge type on arthropod assemblage composition

My results indicate that edge type (i.e. type of habitat adjacent to the crop) was 

highly influential in shaping certain aspects of arthropod assemblages both at the 

crop edge immediately adjacent to the edge habitat and some distance into the crop 

itself. For instance, ant richness, abundance and morphospecies assemblage 

composition differed by edge habitat type, with both local habitat variables and 

adjacent land use habitat attributes found to influence assemblage composition. It 

appears that both edges and adjacent habitats may potentially influence arthropod 

assemblages through a variety of mechanisms.

5.4.2.1 Effect of edge habitat type—composition and structure

Numerous studies have indicated that the structure and composition of edge habitat 

may affect the arthropod assemblages inhabiting it, with habitat structural and 

compositional complexity playing important roles. The effects of adjacent habitat 

structure and composition may provide potential explanations as to the greater ant 

richness and abundance observed at the woodland-edges compared to the linear-

edges. For instance, Lagerlöf and Wallin (1993) found that a floristically diverse 

crop margin supported greater arthropod abundance and diversity than a margin 

dominated by couch grass Elytrigia repens (L.), and Meek et al. (2002) reported that 

richness and abundance of butterflies and abundance of bumblebees (Bombus spp.)

were greater in floristically diverse six-metre field margins than other, less diverse, 

field margin types. These results indicate that the diverse vegetation associated with 

complex margins and linear field edge vegetation may provide a greater diversity of 

resources for a wide range of taxa. Furthermore, the structural complexity of a 

margin can also greatly influence arthropod assemblages. For example, Baines et al. 

(1998) found greater spider abundance and richness in long-established margins than 
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newly established ones. Arthropods can also be affected by the management of 

margins and boundaries, particularly where such management alters habitat 

complexity. For instance, Bell et al. (2002) found that cutting of grass margins and 

glyphosate application decreased the abundance of the spider Lepthyphantes tenuis

(Blackwall). 

There are relatively few studies that have compared arthropod assemblages in a 

woodland habitat/crop boundary and a linear habitat/crop boundary, but Kells and 

Goulson (2003) reported bumblebee assemblage differences between margins

associated with a woodland/crop boundary and a field/crop boundary. The responses 

to habitat varied among species; for instance, Bombus lapidarius (L.) was far more 

prevalent in the field/crop boundaries than in the woodland/crop association, whereas 

B. pascuorum (Scopoli) displayed the opposite trend. The adjacent habitats 

(woodland and a crop field/paddock) that comprised the edges in this study were 

very different structurally and compositionally and appeared to exert a considerable 

influence over observed differences in biological assemblages occurring at the 

respective habitat/crop edges.

5.4.2.2 Effect of edge habitat type—Habitat extent

There are a number of factors beyond the immediate vicinity of the crop/adjacent 

habitat interfaces that could potentially influence arthropod community composition 

in these edge habitat zones, including the area of adjoining habitat. The woodland 

patches in this study were far greater in area than the linear grass strips. This is one 

possible reason why ant richness was higher in the crop edge that bordered the 

relatively large blocks of woodland and grassland compared to the linear habitat/crop 

edge—there was simply a larger pool of species in the woodland habitat that could 

then potentially occur at its interface with the crop. For instance, if a cropping field 

with sides of 500 m in length is bordered on one side by a linear grassy margin or 

strip of 1.5 m width, the area of that adjacent habitat would be 750 m². If the same 

field is bordered by a block of remnant native vegetation with a width of 400 m, then 

the area of adjacent habitat would be 200,000 m². Species-area relationships, where

larger patches of habitat harbour more species, suggest there would be more species

(and more individuals) in the block than the linear strip. 

Whilst arthropods may not necessarily require large areas of suitable habitat 

(Fischer and Lindenmayer, 2002b), it may be that for some species (e.g. 
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‘Camponotus 1a’ which was commonly found at the woodland edge but very rarely 

in the linear edge) a linear grass strip provides insufficient habitat to support viable 

populations. It is also likely that larger patches of habitat may contain a greater 

diversity of niches (Mason et al. 2008), capable of supporting a greater diversity of 

taxa. Furthermore, native remnant patches are more likely to contain critical habitat 

resources for certain ant taxa, such as abundant quantities of coarse woody debris

(Kirby, 1992; Lafleur et al. 2006). Consequently, there are likely to be 

concentrations of taxa dependent upon such resources for nesting, but which may be 

capable of foraging over large areas in less concentrated numbers. It is telling that 

some of the morphospecies restricted to the woodland treatments in this study were 

those found only in woodlands and pastures in the study in Chapter 3, and therefore 

may be able to easily move into crop edges. 

5.4.2.3 Effect of edge habitat type—adjacent habitat disturbance

It may be that the differences in ant assemblages observed at the different edge types 

abutting the cropping, may be attributable, in part, to differences in disturbance 

regimes impacting on the two adjacent habitat types. In this study, the woodland and 

linear grass strip habitat types that border the crops are subjected to different 

management regimes. For instance, both the woodland edge abutting the crop and the 

linear strip are exposed to the management activities occurring in the crop (for 

instance, pesticide and herbicide application), which can result in both direct and 

indirect mortality of both target and non-target arthropods (Freemark and Boutin, 

1995; Thorbek and Bilde, 2003). However, the majority of the woodland patch will 

be far less affected by the adjacent cropping activities than the narrow strip which is 

bordered on both sides by intensive cropping. The main disturbance process 

impacting upon the woodlands and associated grassland areas is grazing by cattle. 

This difference in management may translate into the woodland patches having a 

different (and arguably less intensive) disturbance profile than the linear strip habitat, 

and consequently able to support species other than those restricted to highly 

disturbed habitats. These organisms may, in turn, be able to repopulate the more 

highly disturbed woodland/crop interface from the woodland patch interior. 

This is particularly likely to be the case for the relatively high number of ants 

belonging to the genus Camponotus being present in the woodland edge samples. In 

particular, ‘Camponotus 1a’, a taxon found in Chapter 3 to be largely restricted to 
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woodland (see Appendix C.1), was abundant in the woodland edge samples, but 

largely absent from the linear edge samples. This appears to indicate that the 

woodland itself is a source of certain taxa that are sufficiently dispersive and/or 

tolerant of disturbed habitats to frequent the woodland/crop edge, but insufficiently 

dispersive/tolerant to occur in the linear strip areas. 

Whilst ant morphospecies richness and abundance was greater in the woodland 

edge than the linear edge, the latter still supported a total of 23 morphospecies, 

compared to 35 in the woodland edge and a total in all treatments at all sites of 43 

morphospecies. This indicates that linear strips of grassy vegetation are able to 

provide habitat for over half the morphospecies recorded in the study. Although ant 

richness did not differ between the linear edge and its adjacent crop, there was 

greater abundance in the linear edge than the crop, and the assemblage composition 

at morphospecies and functional group levels also differed between the two 

treatments. The increased abundance in the edge habitat in particular indicates that it 

is biologically less depauparate than the adjacent crop lands.

5.4.3 The influence of edge and adjacent habitat type on arthropod assemblages 
in crops

This study found that edge habitat type exerted an influence some distance into the 

crop. Both ant abundance and richness were significantly greater in the crops 

adjacent to the woodland edge than those bordered by the linear strip. Furthermore, 

both morphospecies and functional group assemblage composition differed 

significantly between the two crop treatments. Both local habitat and adjacent habitat 

were found to exert an influence on the ant assemblages in crops, with grass height 

and density and crop cover at the local scale, and dead-wood and bare ground cover 

in the adjacent habitat influencing within-crop assemblages. 

Given the influence that arthropods can have in cropping systems (as predators, 

pests, parasites, ‘ecosystem-engineers’, etc), it is perhaps surprising how few studies 

have focussed on the impact of edge habitat type and adjacent habitats on arthropod 

assemblages in the crop adjacent to that edge habitat, and how ‘spill-over’ from an 

adjacent habitat may influence within-crop arthropod assemblages. I found only four 

published studies (Varchola and Dunn, 1999; Lee et al. 2001; Varchola and Dunn, 

2001; Marshall et al. 2006) that compared arthropod richness in crops with different 

edge habitat or field margin types, with none reporting significantly greater richness 
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in the crop with the more complex edge habitat, as has been found in this study. I 

also found few studies that examined the effects of edge habitat or field margin type 

on arthropod abundance and density in adjacent crops, with results varying among 

studies. 

Of those that did examine these areas of research, Marshall et al. (2006) reported 

greater abundance of bumblebees and in particular Bombus lapidarius (L.) in crops 

with 6 m margins, and significantly more non-Lyniphiidae spiders in crops with no 

margins in fields of intermediate size. Varchola and Dunn (2001) compared the 

abundance of carabid beetles between cereal fields bordered by complex hedges and 

simple grass margins, finding that carabid densities were greater in crops bordered by 

hedges than those adjacent to grass margins early in the crop growth season. 

However, this pattern changed as corn development progressed to canopy closure, 

with density became greater in the fields bordered by grass margins. 

There are at least three possible explanations for the increased richness and 

abundance of ants adjacent to native habitat observed in my study findings. Firstly, 

ants are known to be highly responsive to a wide range of environmental variables, 

ranging from soil structure to vegetation structure and composition, disturbance, land 

management, interspecific interactions and landscape composition and configuration 

(Andersen, 1995; Andersen, 2003; Hoffmann and Andersen, 2003; Underwood and

Fisher, 2006; Debuse et al. 2007; Spiesman and Cumming, 2008). Several studies 

have concluded that ant assemblage composition is highly influenced by within-

patch habitat characteristics (e.g. Debuse et al. 2007). It may be that the habitat and 

biological assemblage characteristics of the edges and adjacent habitats also exert an 

influence on the assemblage some distance into the adjacent crop, through organism 

spill-over and movement.

Secondly, the crop sampling points were only 20 m into the crop from the edge 

of the adjacent habitat. It may be fruitful to examine how far that influence extends

into the crop by locating trapping stations at different distances into the crop. Several 

studies that have examined the influence of edge habitats at increasing distances into 

an adjacent crop have found that biological assemblages can change with increased 

distance from the edge. For instance, groups of spiders in Israel, termed field 

‘residents’, were more abundant in the field than the adjacent arid natural habitat and 

increased in abundance with distance from the field edge (Gavish-Regev et al. 2008). 

Conversely, this study found that cursorily dispersing spiders from the family 
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Gnaphosidae were more abundant closer to the natural habitat edge. Meanwhile, 

Bowie et al. (1999) reported that the number of Syrphidae (hoverfly) adults 

decreased with increasing distance from canola patches into wheat fields, whilst the 

number of adult aphids greatly increased with distance. Other studies have found that 

arthropod distributions in crops may be more complex than merely being a function 

of distance from edge. For instance, Holland et al. (1999) reported that arthropod 

distribution and abundance in crops displayed considerable temporal variation, but 

with marked intertaxon variation, with spiders of the family Linyphiidae being 

reasonably uniformly distributed throughout crop, whereas carabid beetles and 

lycosid spiders were found predominantly within 60 m of the field edge. Similarly, 

Pearce and Zalucki (2006) found considerable spatial and temporal variation of 

arthropod distribution in apparently uniform soybean fields, with lycosids again 

displaying a preference for areas close to complex adjacent habitats, in this study

lucerne Medicago sativa (L.). Considering the very depauparate ant fauna found in 

crops (> 50 m from edge) in Chapter 3, it is likely that a decline in observed ant 

richness from crop edge to more distant crop interiors would be observed.

Thirdly, the two adjacent habitat variables that exerted the greatest influence on 

within-crop ant morphospecies assemblage composition were coarse woody debris 

cover and bare ground cover. Dead wood is known to be an important component of 

some ant species’ life cycles (Shattuck, 1999) and invertebrate ecology generally 

(Kirby, 1992), and the amount of bare ground in woodland can greatly influence ant 

assemblages through processes such as insolation regulation (Bestelmeyer and 

Wiens, 1996). Consequently, it appears that the effects of adjacent habitat 

characteristics may be felt some distance into areas of crops.

5.4.4 Mixed results for other arthropod measures

There were no statistical differences among the other treatments for non-Formicidae 

arthropod abundance, order/class level richness or spider abundance. These findings 

are possibly attributable to the low taxonomic resolution used for identification. Had 

I identified other arthropod groups to genus or morphospecies level, then perhaps 

differences among treatment assemblages would have become apparent. However, 

some studies focussing on the issue of taxonomic resolution for invertebrates have 

concluded otherwise. Bowman and Bailey (1997) generated Bray-Curtis similarity 

matrices for a dataset of macroinvertebrates stratified at a range of taxonomic levels
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(e.g. genus, family, order); they concluded that the degree of similarity (or 

difference) among treatments based upon analysis at coarse taxonomic levels (e.g. 

order) were similar to that evident at finer taxonomic levels (e.g. genus). Similarly, 

Nakamura et al. (2007) discovered that differences between rainforest and pasture 

sites were evident in ants at the level of genus, species and functional groups, and 

coarse arthropod data at the level of order and class. Meanwhile, Andersen et al. 

(2002), found that by using large ant morphospecies (>4 mm body length) only, they 

were able to replicate the findings of a comprehensive ant survey in relation to 

responses to SO2 outputs from a metal smelter.

The results of the ant functional group data were also mixed. Whilst the 

functional group assemblage composition displayed broadly similar patterns among 

treatments as the morphospecies data, the differences were not as pronounced. This 

is testament to the usefulness of the approach in making some broad generalisations 

that concur with finer scale taxonomic approaches, but also indicates the limitations 

of the approach in discerning differences among subtly different treatments. For 

instance, ant morphospecies assemblage composition differed significantly between 

the woodland edge treatment and the linear strip edge treatment, whereas there was 

no significant difference between the functional group assemblage composition for 

these two treatments. Some individual functional groups appeared to respond to 

habitat as may be anticipated. For instance, the Generalised Myrmicinae group was 

generally more abundant in the crop than the edge habitats. This functional group 

was largely represented in this study by the genus Pheidole, a group that, according 

to Hoffmann and Andersen (2003), usually respond positively to disturbed 

environments. On the other hand, the Opportunist group did not appear to differ 

among treatments, despite also responding positively to highly disturbed, early 

successional environments. This may be because the responses of this group may be 

determined by disturbance at a larger spatial scale (e.g. encompassing both crop field 

and crop edge habitats) than that represented by the treatments in this study.

It is interesting that significantly more large (>5 mm) spiders were found in the 

linear edge habitat than in the woodland edge habitat, particularly given that 

numerous studies have reported that increased arthropod body size can be related to 

reduced disturbance or other aspects of increased habitat quality (e.g. Blake et al. 

1994; Miyashita et al. 1998). One possible explanation for my finding could be that 

reduced interspecific competition and/or intraguild predation may have enabled 
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greater numbers of large spiders to forage in areas of reduced ant abundance. For 

instance, Sanders and Platner (2007) have shown that complex intraguild 

relationships between ants and spiders may greatly influence community structure, 

through competition or intraguild predation. However, several other studies that have 

investigated ant/spider co-occurrence have not reported ant presence and abundance 

having a negative impact upon spider abundance (e.g. Van Der Aart and De Wit, 

1970; Lenoir et al. 2003). 

5.4.5 Edge habitats and predation rates

A significantly greater proportion of Heliothis armigera eggs was taken from the 

edge of the crop than 20 m into the crop, but edge habitat type had no effect on the 

proportion of eggs taken at either crop edge or crop interior. This appears to indicate 

that predation pressure is greater at the interface of the crop and the neighbouring 

habitat than in the crop itself (at least at the time when sampling was conducted), but 

that the adjacent habitat or edge type itself has little bearing upon rates of egg 

predation. From this one could surmise that boundary habitats are likely to be a 

source of predators (Dennis et al. 2000 (in Ekbom et al. 2000); Landis et al. 2000) 

and that linear grass strips perform an ecosystem service (pest predation) at crop 

edges, comparable to that provided by the boundaries of more extensive and natural 

habitat types. The only potentially predatory group for which I found a higher

abundance at edges compared to crop interiors was ants, and there are many 

examples of them acting as generalist predators in agricultural systems (e.g. Way et 

al. 2002). Furthermore, there were occasional instances (although not frequent 

enough to influence egg removal results) where, upon counting the egg removal rates 

in the laboratory, I had inadvertently removed individual ants from the field, which 

were found to be feeding on the eggs. Ants belonging to two different genera were 

observed in this behaviour (Iridomyrmex and Paratrechina). Also, ants that could 

have been either of these two genera were observed on egg cards in the field during 

collection. However, if ant abundance was the main driver of the egg card predation, 

then one would expect to see greater predation at the woodland-edge treatments than 

the linear-edge treatments, as significantly greater ant richness and abundance 

(including the two genera mentioned above) was observed in the woodland 

treatments. Perhaps one reason why I did not observe any such predation trend is the 

length of time that the cards were left in situ (twelve hours). This may have been too 
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long, as in many woodland and linear strip edges, many cards were entirely depleted 

of eggs by the time I collected them, thus potentially masking any difference in egg 

removal rate. One way to overcome this would be to check cards more frequently to 

establish the relative removal rate of eggs at each edge type.

5.5 Conclusions

This study found that habitat edges formed by the juxtaposition of crops with both 

remnant native vegetation and linear grass strips are capable of supporting a wealth 

of arthropod biodiversity. Furthermore, linear strips of vegetation between cropping 

fields contained a reasonable proportion of the ant taxa encountered in field trials 

(>50 %), and predation rates of Heliothis eggs appeared to be similar at both edge

types. This indicates that linear vegetation strips may perform some of the same 

functions (biodiversity conservation, pest control potential) in regions where 

agriculture is a relatively recent source of landscape modification (‘frontier’ 

regions—see Chapter 1), as they do in regions with an ancient history of agriculture, 

and in which they represent more of a traditional landscape element (Marshall and 

Moonen, 2002). The loss of such features in intensifying Australian agricultural 

landscapes may therefore result in reduced local arthropod biodiversity and 

abundance, with concomitant impacts on ecosystem function. In terms of 

management, these findings imply that where there is an opportunity to partition 

agricultural production fields with linear vegetation features (similar to ‘beetle 

banks’, see Thomas et al. 2002; MacLeod et al. 2004) in ‘frontier’ agricultural 

landscapes, the biodiversity and predator source-habitat potential of such features 

should be a consideration. These findings further indicate that the conservation of 

such features in ‘frontier’ agricultural systems may be an important management and 

research issue. 

However, the woodland remnant edges in this study provided the greatest 

biodiversity benefit, and I would argue from these findings that their loss would lead 

to a considerable reduction in landscape-scale (gamma) diversity of ants, and 

possibly of other groups. Therefore, the maintenance and sympathetic management 

of small patches of remnant vegetation in otherwise intensively managed landscapes 

should remain a high priority.
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Furthermore, all linear grass strip edge sampling points, although considerable 

distances from the woodland patches (between 750 m and 2000 m), were spatially 

connected to the woodland patches via other grass strips and roadside verges. Such 

physical connectivity could allow colonisation of distant linear strips by species 

unable to move through the cropping areas from the more species rich remnant 

vegetation areas. The landscape in which I conducted this study consisted of 

numerous land-use types, and landscape heterogeneity and the proportion of natural 

habitat components in mosaic landscapes can greatly influence abundance and 

diversity of taxa (Benton et al. 2003; Tscharntke et al. 2005b). Consequently, the 

habitat value of a linear strip in a mosaic landscape containing habitat components of 

relatively low disturbance and high complexity may be significantly greater than the 

value of a similar strip in a monocropped landscape. Numerous studies have 

concluded that arthropod diversity is greater in intensively managed agricultural 

units embedded in complex than in simple landscapes for a wide range of taxa (e.g. 

Araneae, Schmidt et al. 2005; Syrphidae, Burgio and Sommaggio, 2007). 

Consequently, further research is required into the habitat value of semi-natural 

features such as linear grass strips in predominantly cropped systems. This could 

potentially be done by examining the biodiversity value of linear strips in ‘frontier’ 

agricultural landscapes that include both mixed land-use landscapes and landscapes 

that are largely devoid of native remnants.
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Chapter 6

Conclusions, implications and 

limitations
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6.1 Summary of Thesis

This thesis provides insights into the ways in which arthropod biodiversity responds 

to commonly-occurring agricultural land-use types, through local case studies and 

global meta-analyses. Chapter 2 used various meta-analytical techniques to identify

general global patterns of arthropod richness and abundance among different land 

uses, and whether those patterns are evident for different feeding guilds and 

taxonomic groups. A general decline in taxonomic richness with intensified land use 

was found, with the rate of decline differing between different land-use types. The 

majority of taxa are lost in the transformation from native vegetation (woodland, 

forest, native grassland) to an agricultural land use (improved/introduced pasture, 

cropping). Losses among different agricultural land uses (from pasture to cropping 

and from reduced-input/intensity cropping to conventional cropping) were consistent, 

but of a much smaller magnitude. This pattern held across two analytical techniques 

and two feeding guilds (predators and decomposers) and the majority of taxa, but 

was not evident for the herbivorous feeding guild or several herbivorous taxa. 

These results, coupled with those that found a general global difference in 

predator and decomposer abundance between native vegetation and agricultural land 

uses and between non-intensive and intensive cropping, are useful for predicting or 

modelling the likely changes in arthropod abundance, richness and feeding guild 

representation due to agricultural land-use change or management adjustment. 

However, as revealing as such broad-scale analysis is in developing generalisations, 

local environmental features will inevitably influence patterns in individual cases. 

Chapter 3 examined the field responses of ant (Formicidae) assemblages to the 

intensity of agricultural land use in a mixed farming landscape in southern 

Queensland, and compared the findings to those of the meta-analysis for that 

taxonomic group as well as an additional global meta-analysis of ant functional 

group responses to land-use change. The global meta-analysis for ants indicated that 

ant richness generally declines with intensified land use, with moderately greater 

richness in pasture than cropping. However, in the field study, pasture had far greater 

richness than cropping and an assemblage composition that differed significantly 

from that of both woodland and cropping, as well as several taxa that were unique to 

pasture. This suggests that a comparatively low-intensity agricultural land use (such 
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as pasture for livestock grazing) may have benefits for biodiversity, and potentially 

for associated ecological processes. The value of low-intensity agricultural land for 

wildlife is well recognised in parts of the world where biodiversity and agriculture 

have co-existed for millennia (e.g. Europe). However, the notion that this 

phenomenon may also be relevant to regions of the world (e.g. Australasia, Central 

America) where modern agriculture is a relatively recent introduction is consistent 

with recent insights from a range of authors (e.g. Hughes et al. 2002; Fischer et al. 

2005; Sekerkioglu, et al. 2007; Haslem and Bennett, 2008a; 2008b) who suggest that 

the agricultural matrix may be of greater biodiversity value in such regions than has 

generally been recognised. For instance, it is feasible that pastures used for 

production purposes may provide surrogate habitat for some biodiversity that was 

previously dependent upon native grassland. The pastures in this study may provide 

resources, microclimates and habitat structure sought by ants that were formerly 

associated with the native grasslands which once covered much of the Darling 

Downs region (Fensham and Fairfax, 1997). 

Chapter 3 also attested to other changes that occur among agricultural land uses 

of differing modification and management intensity. For instance, ant functional 

group assemblage composition differed among land uses, with proportionally more 

ruderal ‘opportunist’ taxa present in highly intensive land uses such as cropping. 

Such patterns of functional group response were found to be consistent for both the 

global meta-analysis and the local field study. 

Chapter 4 dealt with changes to arthropod assemblage morphological 

representation among different land-use types. Morphological patterns were evident 

for a range of taxa, with both beetle and spider communities skewed towards a high 

abundance of small-bodied taxa in more intensive land-use types, and a greater 

presence of vagile, macropterous beetles in cropping than the other land uses. The 

potential reasons for such patterns include the greater dispersive abilities of small 

and winged taxa to colonise frequently disturbed environments (Gobbi and 

Fontaneto, 2008), and the generally rapid reproductive capacity of small taxa, thus 

allowing populations to recover quickly from a disturbance event (Peters, 1983; 

Magura et al. 2006).

The field study findings discussed in Chapters 3 and 4, covering patterns in 

richness, abundance, taxonomic and functional group composition and morphology,

are all testimony to the power of agricultural land use and management to shape the 



165

communities of arthropods, with responses to fine-grained and sharply defined 

patterns of land use evident. Given the functional importance of arthropods in driving 

ecosystem processes (Tscharntke et al. 2005a), it is likely that such changes, driven 

by agriculture, may have important implications for aspects of agricultural 

production dependent upon biodiversity-driven ecosystem services (Altieri, 1999). 

Chapter 5 explored the relationship between habitat components of mosaic 

agricultural landscapes and the ecosystem service delivery of arthropods. As 

anticipated, the edges of crops abutting native habitats supported greater richness of 

ants and a different assemblage composition than the edges of crops bordered by 

linear grass strips. However, abundance of ants and other important groups (e.g. 

spiders) did not differ between crop edges bordered by different adjacent habitat 

types. Predation rates of Helicoverpa eggs did not differ at the margins of crops with 

different adjacent habitat types, but were reduced in the crop interior compared to the 

crop edge. This indicates that the boundary habitat influences the community 

composition at the edges of crops, with differences still evident some distance into 

the crop. However, the rates of predation appear to be unaffected by the assemblage 

composition and may be more dependent on absolute numbers of predators. This 

appears to support the idea of edge habitats being a focus for predators that are able 

to take advantage of prey in both adjacent habitats as well as being able to utilise 

specific structural or compositional features of the edge itself (Landis et al. 2000). 

The observations of this study indicate that relatively simple linear grass strips, 

features more commonly associated with, and valued in, European agricultural 

systems, may have some ecosystem service properties for cropping comparable to 

those of native habitat components. This further emphasises the potential biodiversity 

and ecosystem service values of non-indigenous habitat components of the 

agricultural matrix. Such utilitarian aspects of modified habitat components add to 

the arguments that these features may also have biodiversity conservation value in 

highly altered landscapes (e.g. Haslem and Bennett, 2008b), and highlights potential 

risks associated with the loss of such landscape features due to agricultural 

intensification and landscape homogenisation (Benton et al. 2003).

6.2 Limitations
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One of the inherent difficulties of studying arthropods is the limited knowledge of 

the taxonomy, life-history traits and ecological requirements of various taxa (Redak, 

2000). Consequently, it is difficult to infer the precise ecological implications of the 

compositional patterns and trends detected without considerable further study. Whilst 

such fine-scale taxonomic and autecological work was beyond the scope of this 

study, it is hoped that it will serve as a basis for further research in similar systems. 

Whilst it would have been ideal to compare responses of ants with those of other taxa 

in the field, the arthropods are a vast group and as such only ants could be subjected 

to finer-level taxonomic study given the time available. However, this potential 

limitation was, in part, offset by the use of meta-analytical techniques which allowed 

comparison of a comprehensive range of arthropod group responses to altered land 

use.

The findings also represent a snapshot of a particular time, and hence offer no 

indication of how different habitat components are utilised at different times of year 

by various taxa. Numerous studies attest to the changes in arthropod populations over 

time (e.g. Pearson and Derr, 1986; Wiwatwitaya and Takeda, 2005; Chauvat et al. 

2007), and ideally sampling would have been repeated at other times of year. 

Unfortunately, the practicalities of sampling several replicate sites, ongoing issues 

with drought (and therefore crop availability) and the large amount of arthropods to 

be processed precluded repeat sampling. Repeated sampling, whilst desirable, would 

have necessitated reduced sampling effort at each site or a reduced number of 

replicates. This is likely to be less of a problem for the land-use type sampling in 

Chapter 3, where the results were sufficiently similar to those of the meta-analysis in 

Chapter 2 to indicate that one sampling round may have been adequate to capture an 

accurate estimate of land-use impacts on ant assemblages. The directional pitfall 

trapping and predation-rate testing in Chapter 5 would probably have been enhanced 

by repeated sampling, particularly as the crop developed. This latter example 

represents a potentially useful option for future research, particularly in the area of 

temporally shifting predator/prey assemblage composition.

Another potential limitation of one-off sampling is that it is likely that absolute 

species richness (i.e. all species occurring in the patch were successfully sampled) 

for each land use was not attained. Greater sampling through time may well have 

yielded greater richness for all land-use types. However, in terms of relative richness 

(which was the aim of the study), equal sampling efforts in each different land-use 
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type yielded markedly different levels of species richness that were largely consistent 

with the meta-analytical studies.

Pitfall trapping is widely recognised as standard technique for estimating relative 

abundance, richness, assemblage composition, etc., of a range of taxa from mammals 

(Umetsu et al. 2006), reptiles (Crosswhite et al. 1999), and in particular arthropods 

(e.g. Uetz and Unzicker, 1975). However, whilst the technique is popular and widely 

practiced, it is also considered to have limitations and carry the risk of bias in results 

(Topping and Sunderland, 1992)—such limitations may have influenced the results 

of this study in some way, and therefore merit discussion. For instance, pitfall trap 

samples compared to estimations with ground photoeclectors for epigeal arthropods 

indicated that abundance of Carabidae and Lycosidae was over-estimated with pitfall 

traps, whilst the abundance of Staphylinidae and Linyphiidae was underestimated 

(Land, 2000). The trend in disparity between the two techniques was greater in the 

more complex habitat type sampled (set-aside land in the Lang study). The 

implication of this for my work is that greater habitat complexity in pasture and 

woodland areas may have underestimated Linyphiid spider (and therefore small 

spider) densities in pasture and woodland habitats to some extent. However, given 

the enormous differences in Linyphiid abundance found in my study between crops 

and pastures/woodlands, it seems unlikely that the sampling technique alone was the 

cause of the observed differences. Lang (2000) also observes that there is a tendency 

for larger organisms to be caught in pitfall traps. This does not appear to have 

influenced my results unduly, as small taxa were caught in high numbers (e.g. ants of 

the genus Pheidole, caught in all habitat types and measuring approximately 2.0–3.5 

mm in length). Another potentially confounding factor in the use of pitfall traps is 

that of predator satiation. The argument follows that hungrier individuals are likely to 

be more active (foraging), and hence more likely to be caught in pitfall traps 

(Chiverton, 1984). Therefore, pitfall trapping results may inadvertently be influenced 

by resource availability and trophic structure in a particular habitat type. In this study 

I found mixed results for predator abundance in different land use types (e.g. no 

difference in spider abundance between habitat types in Chapter 5, but ant abundance 

lower in crops than other land uses in Chapter 3), and therefore it is difficult to draw 

a conclusion as to how satiation and resource availability may have influenced 

predatory taxa activity in each land-use type.
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All the woodland sites, despite representing the least disturbed and modified 

land-use type, were grazed by stock, either during or immediately prior to sampling. 

Consequently, they were somewhat modified, through soil compaction, increased 

nutrient loads, weed invasion and suppressed regeneration of native vegetation. This 

may account for the negligible difference between ant communities in the woodland 

core compared to the woodland edge, as all the woodland remnants are effectively 

highly disturbed and potentially operating as ‘edge’ habitat. Ideally, some reference 

sites of unmodified native vegetation would have been included, as several authors 

have indicated the differences in arthropod assemblages between grazed and 

ungrazed woodland (e.g. Abensperg-Traun et al. 1996; Bromham et al. 1999). 

Unfortunately, all accessible examples of this woodland type had been heavily

grazed, and no reserved examples could be found.

Many studies have indicated the importance of habitat structure in determining 

arthropod assemblages (e.g. Rypstra, et al. 1999; Lassau and Hochuli, 2004). 

Although habitat structure was recorded at each sampling point, surveys of 

vegetation composition were not conducted. The botanical composition of sites may 

have helped explain some of the variation in arthropod assemblage structure, which 

was not explained by land-use type or landscape-scale variables. 

Finally, the directional pitfall trap design may have benefited from an additional 

length of physical barrier separating the incoming from outgoing arthropod 

populations. Whilst the design was similar in scale to that used by Duelli et al. 

(1990), an additional barrier either side of the trapping frame (see Ch. 5) may have 

helped to differentiate further between the two treatments.

6.3 Management and policy implications

Collectively, the research outlined in this thesis demonstrates that agriculture can 

cause considerable biodiversity loss not only when native systems are cleared for 

farming, but when agricultural management is intensified. As Chapter 2 

demonstrates, the greatest proportion of taxonomic richness is lost when one moves 

from native vegetation to agricultural land. However, there is also evidence that 

relatively low-intensity agricultural land uses may have some benefits for 

components of biodiversity, particularly when compared to high-intensity 

management systems. For instance, Chapter 2 indicates that compared to intensive 
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cropping, pastures and reduced-input cropping systems can be expected to support 

more arthropod taxa as well as greater numbers of predators and decomposers, thus 

having potentially beneficial impacts on agricultural production. Both the loss of 

richness from native to agricultural systems and the potential biodiversity value of 

relatively low intensity agricultural land-use types were apparent in Chapter 3. In this 

study, richness was greater in the woodland (native vegetation) remnants than the 

agricultural land-use types, but grazed pastures contributed to greater gamma 

diversity in agricultural landscapes, and exhibited significantly greater richness than 

the more modified and intensively managed cropping areas. The potential of specific 

land-use components associated with intensive land use to maintain at least some 

proportion of arthropod biodiversity and deliver some potential ecosystem service 

benefits in the form of predation were also illustrated. For instance, in Chapter 5, 

linear strips abutting fields of crops contained similar abundances of arthropods as 

the boundaries of native vegetation adjoining crops. 

These results, considered collectively, indicate that by managing components of 

the agricultural matrix sympathetically, there may be opportunities to enhance 

biodiversity and maintain ecosystem service delivery in agricultural landscapes. This 

has long been recognised in Europe, where ancient traditional agricultural landscapes 

have acquired and developed a diverse flora and fauna associated with production 

land components (Sutherland, 2004). However, in regions of the world where large-

scale agriculture is a relatively recent landscape addition (‘frontier’ regions—Chapter 

1), the traditional view has been that ‘islands’ of native indigenous vegetation are 

habitat, residing in a sea of non-habitat, the agricultural matrix (see Haila, 2002; 

Kupfer et al. 2006). Such a binary view of the landscape has been recently revised, 

with increasing recognition of the habitat and resource value of ‘countryside 

elements’ (sensu Haslem and Bennett, 2008a) and the influence of the structure and 

management intensity of the agricultural matrix for species that are considered to be 

‘forest-dependent’ (Hughes, et al. 2002; Sekercioglu et al. 2007). Conservation 

management in agricultural landscapes in ‘frontier’ regions often focuses 

predominantly on remnants of native woodland or forest (Luck and Daily, 2003). 

This represents a sound conservation investment in part, but tends to neglect the 

spatially dominant land use in the landscape—agriculture. My work suggests that 

whilst patches of native vegetation are likely to be vital in conserving biological 

diversity in agricultural landscapes, areas not presently or commonly classified as 



170

habitat (e.g. pasture) may prove to be important refugia and resource pools for a 

range of taxa, particularly in the face of intensifying agricultural land use. Such 

approaches to conservation are becoming increasingly championed in Australia; for 

instance, Prober and Smith (2009) highlight the potential supportive role of perennial 

plant-based production systems in conserving the biodiversity of the Western 

Australian wheatbelt.

There is a growing body of recent scientific evidence (mainly focussed on birds 

associated with native vegetation) from Australia and elsewhere, that the agricultural 

matrix is far more ecologically important for biodiversity than previously thought, 

and accordingly this may present opportunities for integrating biodiversity 

conservation on private-land with agricultural management and policy (Hughes et al. 

2002; Mattison and Norris, 2005; Park et al. 2007; Attwood et al. 2009; Sheahan, 

2009). Such approaches, intended to complement the dominant conservation focus 

on native vegetation systems, may help to reduce threatening processes impacting 

upon native remnants, maintain or increase inter-remnant connectivity, reduce the 

impression that conservation is adversarial to production and forge better links 

between conservation and production policy and management. There are

opportunities for conservation scenarios that improve conditions and resources for 

biodiversity, by modifying rather than excluding production, thus reducing 

conservation/production conflicts where feasible. Recent developments in the 

conservation policy climate in Australia, particularly relating to incentive schemes 

such as the Commonwealth Government’s Environmental Stewardship Program 

(Commonwealth of Australia, 2007) and the Murray Catchment Management 

Authority’s ‘NestEgg’ tender scheme (MCMA, 2008), indicate that a conservation 

approach more allied to production may be developing. Initiatives such as these may 

go some way to enabling land managers to undertake conservation actions whilst 

being compensated for the lost opportunity costs often associated with on-farm 

conservation management, particularly that focussing on the agricultural matrix

(House et al. 2008).

6.4 Further research

Perhaps it is inevitable that any body of research generates more questions than it 

answers—this appears to have been the case with my thesis. Potential research 
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questions that would follow logically from this thesis include a number relating to 

the importance of countryside elements (specific components of the agricultural 

matrix, such as pastures, linear vegetation strips, paddock trees, farm dams, etc.) for 

biodiversity conservation in Australia and other ‘frontier’ agricultural regions.

For instance, an important question relates to what roles the specific countryside 

elements of the production landscape play in maintaining biodiversity in recently 

created agricultural landscapes and how best might they be managed for the benefit 

of biodiversity and with minimal detriment to production? Whilst the countryside 

elements themselves are generally point features or patches of a particular land use or 

land cover type, the landscape in which such elements reside can also exert a 

considerable influence on ecological and conservation values. An important research 

question related to this issue is: do the biodiversity values of countryside elements 

such as pasture and paddock trees differ depending upon landscape context (e.g. 

landscapes with high percentage of native remnants remaining compared to 

predominantly agri-matrix landscapes)? Both of these questions apply at a broad 

level taxonomically, and to almost any taxonomic group. 

In terms of the influence of countryside elements on arthropods, a useful area of 

research may be to investigate how countryside elements such as grass margins 

bordering cropping areas can be managed to increase populations of beneficial 

arthropods and reduce pest incursion into adjacent crops. This is related to 

management-specific responses of important arthropod groups. Two systematic 

reviews have examined this: one by Bengtsson et al. (2005) reported the effects of 

organic agriculture on numerous arthropod groups, and one by Attwood et al. (2008) 

(see Chapter 2) that revealed how reduced-input cropping in general can impact upon 

a range of arthropods. However, more detailed study is urgently required to advise 

farmers, land managers, researchers and policy makers on the detailed impacts of 

certain cropping and pasture management techniques (such as tillage, intercropping, 

stubble retention, grazing intensity, etc.) on various functionally important groups. 

As such, a meta-analytical study that details the impacts of various management 

regimes on different taxonomic and functional groups of arthropods would be 

valuable. The urgency of the dual need to utilise components of biodiversity in 

agricultural systems for ecosystem service provision and to conserve biodiversity in 

expanding and (often) intensifying agricultural landscapes leads to many other 

applied research questions; not least, the optimal management of countryside 
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elements in order to increase the numbers of predatory and parasitic arthropods 

moving into cropping systems. Whilst such research is undertaken worldwide in 

many farming systems, the suite of land-use and crop-type specific studies has yet to 

yield strongly supported broad generalisations.

Another option for expanding on the type of ‘general global response’ meta-

analyses performed in this thesis is to examine how effect size (e.g. Hedges’ E++

effect size) might differ between different biogeographical locations (e.g. tropical 

versus temperate), land forms (e.g. upland versus lowland), or agricultural historical 

development characteristics (e.g. ‘frontier’ versus ‘traditional’ systems). Some initial 

investigative analysis (not included in Chapter 2 due to space constraints) indicated 

that there was no significant correlation between the proportional analysis technique 

‘effect size’ of arthropod richness differences between native vegetation (‘NV’) and 

agricultural land uses (‘Ag’) and the latitude where the study had taken place. 

However, this approach may have been severely hampered by the relative paucity of 

studies examining arthropod richness between native and agricultural systems at 

higher latitudes. Most of these studies (generally from Europe and North America) 

were far more focussed on the differences in arthropod richness among different 

agricultural land-use types. By contrast, those studies at lower latitudes principally 

focussed on native compared to agricultural systems. One potential means to explore 

such relationships would be to determine the agricultural history of each locality 

featured in a study. This would allow a more detailed examination of the time since 

agricultural development and the responses of arthropod taxa. However, such an 

undertaking would be no trivial exercise, and consequently is beyond the scope of 

this thesis.

Other potential research areas are more purely ecological than management-

focussed. For example, does the relative influence of landscape and patch-scale 

factors differ in determining assemblage composition of taxa depending upon their 

dispersal and movement capabilities (e.g. Collembola might be more influenced by 

land use, whereas Hymenoptera might be more influenced by landscape composition 

and spatial arrangement). Finally, this thesis reported that some closely related ant 

taxa (from the same genus) displayed markedly different responses to land use and 

habitat preferences. Given the general lack of knowledge regarding the autecology 

and habitat associations of many arthropods, there is ample opportunity for more 

detailed research to be conducted at fine-scale taxonomic levels, in order to 



173

determine more exactly how taxon ecological and morphological traits are related to 

their habitat requirements and utilisation.
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Appendix A.1 Bird richness by country (total number of species, number of 
endemic species, number of IUCN Threatened species) for biodiversity/agricultural 
development correlations.

Birds Birds

Country
total # 
spp endemics

IUCN 
Threatened Country

total # 
spp endemics

IUCN 
Threatened

Afghanistan 501 0 17 Nicaragua 703 1 9

Albania 350 0 11 Niger  526 0 3

Algeria 397 1 12 Nigeria 944 4 18

American Samoa 66 0 6 North Korea 320 0 27

Andorra 161 0 0 Norway 471 0 7

Angola 976 12 18 Oman 472 0 12

Argentina 1026 18 46 Pakistan 738 0 29

Armenia 359 0 10 Panama 964 13 21

Australia 813 313 48
Papua New 
Guinea 823 75 34

Austria 434 0 13 Paraguay 708 1 28

Azerbaijan 368 0 13 Peru 1853 129 90

Bahamas 326 4 10 Philippines 591 177 64

Bahrain 332 0 6 Poland 451 0 14

Bangladesh 744 0 36 Portugal 502 0 14

Barbados 212 3 4 Puerto Rico 350 15 20

Belarus 318 0 8 Qatar 211 0 2

Belgium 433 0 11 Romania 380 0 12

Belize 622 0 4 Russia 769 2 49

Benin 600 0 3 Rwanda 720 0 8

Bermuda 356 1 7 Saint Lucia 176 5 6

Bhutan 681 0 22 Samoa 83 9 8

Bolivia 1434 24 31
Sao Tome & 
Principe 140 21 10

Bosnia-
Herzegovina 319 0 11 Saudi Arabia 487 0 15

Botswana 585 0 8 Senegal 660 0 7

Brazil 1749 213 121
Serbia & 
Montenegro 380 0 10

Brunei 459 0 25 Seychelles 240 15 16

Bulgaria 397 0 12 Sierra-Leone 664 0 10

Burkina Faso 498 0 2 Singapore 389 0 16

Burundi 682 0 7 Slovakia 361 0 11

Cambodia 550 0 26 Slovenia 377 0 11

Cameroon 957 10 21 Somalia 704 7 14

Canada 657 6 22 South Africa 849 28 27

Cape Verde 184 4 4 South Korea 492 0 33

Cayman Islands 224 2 2 Soviet Union 849 4 51
Central African 
Republic 772 1 5 Spain 530 0 18

Chad 580 0 6 Sri Lanka 440 23 24

Chile 500 12 32 St Kitts & Nevis 139 0 2

China 1303 52 88
St Vincent & 
Grenadines 173 2 4

Colombia 1883 72 85 Sudan 994 1 9

Comoros 147 14 9 Suriname 718 0 2

Congo 714 0 9 Swaziland 510 0 11

Cook Islands 49 5 9 Sweden 476 0 9

Costa Rica 885 5 19 Switzerland 404 0 12
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Country
total # 
spp endemics

IUCN 
Threatened Country

total # 
spp endemics

IUCN 
Threatened

Cote d'Ivoire 743 0 12 Syria 388 0 12

Croatia 369 0 10 Taiwan 471 15 27

Cuba 368 22 17 Tajikistan 355 0 9

Cyprus 392 2 12 Tanzania 1097 20 34

Czech republic 413 0 14 Thailand 971 2 49

Czechoslovakia 423 0 13 The Gambia 575 0 2

Denmark 449 0 10
The 
Netherlands 462 0 12

Djibouti 393 1 8 Togo 662 0 4

Dominica 187 2 5 Tonga 73 2 8
Dominican 
Republic 289 0 14

Trinidad & 
Tobago 466 1 2

DRCongo 1161 20 29 Tunisia 373 0 9

Ecuador 1657 14 78 Turkey 490 0 14

Egypt 469 0 13 Turkmenistan 406 0 14

El Salvador 585 0 4
Turks and 
Caicos 200 0 4

Equatorial 
Guinea 844 0 8 UAE 435 0 10

Eritrea 563 0 9 Uganda 1044 2 18

Estonia 339 0 7 Ukraine 429 0 15

Ethiopia 914 20 19
United 
Kingdom 597 1 15

Faroes 273 0 1 Uruguay 479 19 5

Fiji 151 23 17 USA 885 13 38

Finland 441 0 10 Uzbekistan 365 0 15

France 567 1 16 Vanuatu 152 8 1

French Guiana 748 0 2 Venezuela 1406 45 27

French Polynesia 126 30 26 Vietnam 839 11 42

Gabon 747 0 11 Western Sahara 207 0 4

Georgia 358 0 11 Yemen 430 1 14

Germany 511 0 14 Yugoslavia 406 0 13

Ghana 737 0 10 Zambia 832 1 14

Greater Antilles 545 125 42 Zimbabwe 684 0 10

Greece 436 0 13

Greenland 237 0 2

Grenada 168 1 3

Guatemala 739 1 11

Guinea 725 0 10

Guinea-Bassau 493 0 1

Guyana 795 0 3

Haiti 261 1 14

Honduras 739 1 10

Hong Kong 493 0 21

Hungary 397 0 12

Iceland 351 0 1

India 1286 38 83

Indonesia 1602 393 122

Iran 521 1 19

Iraq 411 0 14

Ireland 473 0 11

Israel 540 0 14

Italy 534 0 16

Jamaica 325 30 13
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Country
total # 
spp endemics

IUCN 
Threatened

Japan 618 15 54

Jordan 412 0 12

Kazakhstan 504 0 21

Kenya 1119 7 21

Kyrgyzstan 377 0 10

Kuwait 362 0 8

Laos 700 0 26

Latvia 342 0 7

Lebanon 372 0 6

Lesotho 339 0 10

Lesser Antilles 401 31 21

Liberia 698 1 12

Libya 335 0 8

Liechtenstein 252 0 3

Lithuania 342 0 8

Luxembourg 299 0 4

Macau 88 0 2

Macedonia 333 0 10

Madagascar 296 105 31

Malawi 666 0 11

Malaysia 776 11 44

Maldives 124 0 2

Mali 611 1 6

Malta 388 0 10

Martinique 203 1 4

Mauritania 541 0 6

Mauritius 128 11 16

Mexico 1082 101 49

Micronesia 223 15 17

Moldova 301 0 9

Mongolia 427 0 24

Morocco 489 1 15

Mozambique 728 0 20

Myanmar 1056 5 52

Namibia 688 0 15

Nepal 898 1 33
Netherlands 
Antilles 286 0 4

New Caledonia 194 22 14

New Zealand 339 65 59
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Appendix B.1 – taxonomic and land-use/management terms used in literature 
searches. Terms were used in a paired fashion (e.g. “acari & agri*”), resulting in a 
total of 476 search combinations.

Taxonomic term Land-use term
Acari agri*

Araneae crop
arthropod farm*
Blattodea fertilizer
Byrrhidae forest
Carabidae grassland
Chilopoda herbicide

Coccinellidae intercrop
Coleoptera land use
Collembola organic
Colydiidae pasture
Cucujidae pesticide

Dermaptera tillage
Diplopoda woodland
Elateridae
Hemiptera
Histeridae
Homoptera

Isopoda
Isoptera

Mantodea
Neuroptera
Opiliones
Orthoptera
Phasmida

Pseudoscorpiones
Scarabaeidae

Scolytidae
Scorpionidae
Staphylinidae

Symphyla
Tenebrionidae
Thysanoptera

Thysanura
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Appendix B.2 – Papers included in meta-analyses. NV:Ag = native vegetation compared to agricultural land; WNV:IP = wooded native 
vegetation compared to improved/introduced pasture; NG:IP = native grassland compared to improved/introduced pasture; IP:C = 
improved/introduced pasture compared to cropping; RIC:CC = reduced-input cropping compared to conventional cropping. R = richness only 
calculated from paper, Ab = abundance only calculated from paper, R/Ab = both richness and abundance calculated from paper.

author(s) year country Land-use 
comparisons

Land-use 
details

taxa data 
source

richness / 
abundance

journal, vol., pp

Afun et al 1999 Côte d'Ivoire RIC:CC herbicide & non-
herbicide rice

various figures 5 
& 6

Ab Biological Agriculture and Horticulture, 17, 
47-58

Akbulut et al 2003 Turkey RIC:CC intercropping various table 2 R/Ab Journal of Agronomy & Crop Science, 189, 
261-269

Altieri & Schmidt 1986 USA RIC:CC organic & sprayed 
orchards

predacious 
insects & 
spiders

table 2 Ab Agriculture, Ecosystems and Environment, 
16, 29-43

Altieri et al 1985 USA RIC:CC mulched & non-
mulched tomatoes

various table 2 Ab Crop Protection, 4, 201-213

Alvarez et al 2001 England RIC:CC organic & 
conventional wheat

Collembola fig. 4 R/Ab Agriculture, Ecosystems and Environment, 
83, 95-110

Andersen 2003 Norway RIC:CC tillage & reduced 
tillage cereals

various table 2 Ab Crop Protection, 22, 147-152

Arellano & 
Halffter

2003 Mexico NV:Ag; 
RIC:CC

forest, polyculture 
coffee & monocrop 
coffee

Scarabaeidae table 3 
Arellano 
et al 2005

R  Biodiversity and Conservation, 14, 601-615

Armbrecht & 
Perfecto

2003 Mexico NV:Ag forest & coffee 
monoculture

Formicidae figure 1 R/Ab Agriculture, Ecosystems and Environment, 
97, 107-115

Armbrecht et al 2005 Colombia NV:Ag; 
RIC:CC

forest, shade coffee 
& sun coffee

Formicidae table 2 R Conservation Biology, 19, 897-907

Armbrecht et al 2006 Colombia NV:Ag; 
RIC:CC

forest, shade coffee 
& sun coffee

Formicidae table 2 R Ecological Entomology, 31, 403-410

Arroyo et al 2005 Spain NV:Ag; 
WNV:IP; IP:C

forest, pasture, crop Oribatid mites table 4 R/Ab Journal of Natural History, 39, 3453-3470

Avendaño-
Mendoza et al

2005 Guatemala NV:Ag forest & cropping Dung beetles results 
text and 
table 3

R/Ab Biodiversity and Conservation, 14, 801-822

Badejo 1990 Nigeria NV:Ag forest & cassava Acari table 2 Ab Biotropica, 22, 382-390
Badejo et al 2004 Brazil NV:Ag; 

WNV:IP; IP:C; 
forest, pasture & 
cropping

Acari tables 2 
& 3

R/Ab Experimental and Applied Acarology, 34, 
345-365
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Badji et al 2004 Brazil RIC:CC no-till/no-insecticide 
maize & tilled & 
insecticide maize 

various table 1 Ab Crop Protection, 23, 1031-1039

Badji et al 2006 Brazil RIC:CC tilled maize & no-till 
maize

Formicidae table 1 R/Ab Sociobiology, 48, 701-715

Baguette & Hance 1997 Belgium RIC:CC tilled crops & no-till 
crops

Carabids table 1 R/Ab Entomological Research in Organic 
Agriculture, 185-190

Baldi & 
Kisbenedek

1997 Hungary NV:Ag;
NG:IP

semi-natural 
meadow & grazed 
pasture

Orthoptera table 2 R/Ab Agriculture, Ecosystems and Environment, 
66, 121-129

Baldissera et al 2004 Brazil NV:Ag 
WNV:IP

forest & pasture Araneae figure 2 R/Ab Biological Conservation, 118, 403-409

Balog & Marko 2006 Hungary RIC:CC conventional & IPM 
orchards

Staphylinidae results 
text pg. 
151

R/Ab Journal of Fruit and Ornamental Plant 
Research, 14, 149-159

Banks et al 2007 Costa Rica NV:Ag forest & crops Coleoptera & 
Araneae

figures 1 
& 2; 
table 3

R/Ab The Pan-Pacific Entomologist, 83, 152-160

Barros et al 2004 Brazil NV:Ag; 
WNV:IP

forest & pasture various table 1 Ab Applied Soil Ecology, 26, 157-168

Basore et al 1987 USA RIC:CC tilled corn & no-till 
corn

various table 2 Ab Wildlife Society Bulletin, 15, 229-233

Basu et al 1996 India WNV:IP; 
NV:Ag 

forest & pasture Isoptera table 2 R/Ab European Journal of Soil Biology, 32, 113-
121

Bedano & Ruf 2007 Argentina NG:IP; IP:C; 
NV:Ag

various Gamasina 
(Acari)

table 1 R/Ab Applied Soil Ecology, 36, 22-31

Bedano et al 2006 Argentina NG:IP; IP:C; 
NV:Ag

various various figures 3 
& 4

Ab European Journal of Soil Biology, 42, 107-
119

Bedano et al 2006(b) Argentina NG:IP; IP:C; 
NV:Ag

various Acari figures 3-
6

Ab Applied Soil Ecology, 32, 293-304

Belaoussoff et al 2003 Canada RIC:CC no-tillage & high-
tillage

Carabids appendix 
1 & 
results 
text

R/Ab Biodiversity and Conservation, 12, 851-882

Belshaw & Bolton 1993 Ghana NV:Ag forest & cocoa Formicidae table 1 R Biodiversity and Conservation, 2, 656-666

Bel'skaya & 
Esyunin

2003 Russia RIC:CC wheat with and 
without insecticide

Araneae figure 2 Ab Russian Journal of Ecology, 34, 359-362

Benito et al 2004 Brazil WNV:IP; 
NV:Ag 

cerrado & pasture various table 1 Ab European Journal of Soil Biology, 40, 147-
154
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Berry et al 1996 New Zealand RIC:CC organic & 
conventional carrot 
crops

various results 
text & 
figure 1

R/Ab New Zealand Journal  of Crop and 
Horticulture Science, 24, 307-314

Blackburn & 
Wallace 

2001 UK NV:Ag woodland & field 
margin

Chilopoda table 3 R Basic and Applied Ecology, 2, 373-381

Blumberg & 
Crossley

1983 USA RIC:CC conventional tillage 
& no-tillage

soil arthropods figure 2 R/Ab Agro-Ecosystems, 8, 247-253

Bogya et al 2000 Hungary RIC:CC IPM orchard & 
conventional orchard

Araneae table 3 R/Ab International Journal of Pest Management, 
46, 241-250

Borges & Brown 2001 Azores NV:Ag;
NG:IP

sown pasture & 
semi-natural 
grassland

various    appendix 
1

R/Ab Ecography, 24, 68-82

Bouyer et al 2007 Benin NV:Ag & 
RIC:CC

wooded savannah, 
traditional and 
intensive cropping

Scarabaeidae text 
results

R Biological Conservation, 138, 73-88

Brennan et al 2006 Ireland RIC:CC eco-tillage & 
conventional tillage

Collembola figure 1 R/Ab Pedobiologia, 50, 145-155

Bromham et al 1999 Australia NV:Ag;
WNV:IP

woodland & pasture various tables 2 
& 3

R/Ab Australian Journal of Ecology, 24, 199-207

Brooks et al 2005 UK RIC:CC herbicide crop & 
non-herbicide crop

various table 1 Ab Proceedings of the Royal Society B, 272, 
1497-1502

Brown et al 2001 Brazil RIC:CC no-tillage & tillage macrofauna 
(various)

tables 5 
& 6

R/Ab http://www.unu.edu/env/plec/cbd/Montreal/
presentations/BrownGeorge.pdf

Brown et al 2004 Mexico NV:Ag;
NG:IP

native grassland & 
introduced pasture

various appendix 
b

Ab Agriculture, Ecosystems and Environment, 
103, 313-327

Buckelew et al 2000 USA RIC:CC conventional weed 
management & 
hand-weeded soy 
bean plots

various table 7 Ab Journal of Economic Entomology, 95, 1437-
1443

Butts et al 2003 Canada RIC:CC barley monoculture 
& intercrop

Carabids table 1 Ab Environmental Entomology, 32, 535-541

Callaham Jr. et al 2006 USA NV:Ag; 
WNV:IP; IP:C

hardwood, grass & 
cultivation

various table 2 & 
figure 2a

R/Ab European Journal of Soil Biology, 42, S150-
S156

Cameron et al 2004 Northern Ireland NV:Ag;
WNV:IP; 
NG:IP

woodland, species-
rich grassland & 
species-poor 
grassland

Araneae table 5 R Agriculture, Ecosystems and Environment, 
102, 29-40

Cárdenas et al 2006 Spain RIC:CC organic & 
conventional olives

Araneae results 
text & 
table 1

R/Ab Biological Control, 38, 188-195
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Castano-Meñeses 
& Palasios-Vargas 

2003 Mexico NV:Ag forest & crop Formicidae table 1 R/Ab Biodiversity and Conservation, 12, 1913-
1919

Chauvat et al 2007 Germany IP:C grassland & crop Collembola figure 2  R/Ab Ecography, 30, 183-192
Chen & Tso 2004 Taiwan NV:Ag; 

WNV:IP
primary forest & 
grassland

Araneae table 1 R/Ab Zoological Studies, 40, 598-611

Clark 1999 USA RIC:CC organic & 
conventionally 
managed tomatoes

Carabids text pg. 
202

R Applied Soil Ecology, 11, 199-206

Clement et al 2004 USA RIC:CC no-till & tilled cereal 
crops

Homoptera table 2 Ab Journal of the Kansas Entomological
Society, 77, 165-173

Clough et al 2007 Germany RIC:CC organic & 
conventional fields

various figure 3 R Journal of Applied Ecology, 44, 804-812

Coll & Bottrell 1995 USA RIC:CC monoculture & 
diculture

various tables 2 
& 3

Ab Agriculture, Ecosystems and Environment, 
54, 115-125

Cortet et al 2002 France RIC:CC conventional & 
integrated cropping
(tillage and 
insecticide)

various table 2 Ab European Journal of Soil Biology, 38, 239-
244

Culik et al 2002 Brazil RIC:CC fertiliser, tillage and 
mulch crop 
treatments

Collembola table 3 & 
figure 1

R/Ab Applied Soil Ecology, 21, 49-58

Cunningham et al 2005 Australia NV:Ag;
WNV:IP

native woodland & 
annual pasture

Coleoptera & 
Formicidae

figure 4 
& figure 
9

R Austral Ecology, 30, 103-117

Curry 1986 Sweden RIC:CC; IP:C barley with no 
fertiliser, barley with 
nitrate fertiliser & 
pasture

various tables 1, 
2 & 3

Ab Journal of Applied Ecology, 23, 853-870

Dauber & Wolters 2004 Germany IP:C meadow & arable 
land

Formicidae figures 2 
& 3

R/Ab Biodiversity and Conservation, 13, 901-915

Dauber & Wolters 2005 Germany IP:C >46 yr old pasture & 
arable

Formicidae figures 1 
& 2   

R/Ab Basic and Applied Ecology, 6, 83-91

Dauber et al 2005 Germany IP:C grassland & arable various table 2 R Global Ecology and Biogeography, 14, 213-
221

David et al 1999 France NV:Ag wooded sites & 
fields

microarthropods table 2 R/Ab Biodiversity and Conservation, 8, 753-767

Decaëns et al 2004 Brazil NV:Ag; 
WNV:IP; NG:IP

forest, native 
savannah & 
introduced pasture

soil macrofauna figures 2 
& 4

R Agriculture, Ecosystems and 
Environment,103, 301-312

Decaëns et al 1998 France NV:Ag; 
WNV:IP

woodland & pasture various table 1 R/Ab Applied Soil Ecology, 9, 361-367
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Dias Loyola 2006 Brazil NV:Ag; 
WNV:IP

forest & introduced 
pasture

various table 2 R/Ab Biodiversity and Conservation, 15, 25-42

Dittmer and 
Schrader

2000 Germany RIC:CC conservation tillage 
& conventional 
tillage

Collembola table 1 R/Ab Pedobiologia, 44, 527-538

Doles et al 2001 USA NV:Ag; 
RIC:CC

scrub, organic apple 
orchard & 
conventionally 
managed apple 
orchard

various micro-
arthropods

table 3, 
figures 4, 
5 & 7

R/Ab Applied Soil Ecology, 18, 83-96

Draney 1997 USA NV:Ag; 
RIC:CC

forest, no-till 
cropping & 
conventional 
cropping

Araneae table 4 Ab The Journal of Arachnology, 25, 333-351

Drinkwater et al 1995 USA RIC:CC organic & 
conventional 
tomatoes

predators table 5 R/Ab Ecological Applications, 5, 1098-1112

Driscoll & Weir 2005 Australia NV:Ag remnant woodland & 
paddock

Coleoptera results 
text

R/Ab Conservation Biology, 19, 182-194

Dritschilo & Erwin 1982 USA RIC:CC organic & 
conventional crops

Carabids table 1 R/Ab Ecology, 63, 900-904

Dritschilo & 
Wanner 

1980 USA RIC:CC organic & 
conventional fields

Carabids table 2 R/Ab Environmental Entomology, 9, 629-631

Duan et al 2004 USA RIC:CC potatoes with no 
pest-control & 
potatoes with 
permethrin

various table 2 Ab Environmental Entomology, 33, 275-281

Duelli & Obrist 1998 Switzerland NV:Ag; NG:IP; 
IP:C

native & semi-
natural grassland, 
improved pasture & 
wheat/maize crops

various table 1 R/Ab Biodiversity and Conservation, 7, 297-309

Easterbrook 1997 UK RIC:CC no-pesticide crop & 
insecticide-treated 
crop

various table 3 Ab Crop Protection, 16, 147-152

Eggleton et al 2002 Cameroon/Congo NV:Ag primary forest & 
mixed cropping

termites figure 1 R Agriculture, Ecosystems and Environment, 
90, 189-202

Ellsbury et al 1998 USA RIC:CC high-input & low-
input cropping

Carabids table 3 R/Ab Annals of the Entomological Society of 
America, 91, 619-625

Epstein et al 2000 USA RIC:CC pesticide use in apple 
orchards

various figures 3, 
4, 5 & 7

Ab Environmental Entomology, 29, 340-348
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Epstein et al 2001 USA RIC:CC apple orchards with 
and without 
insecticides

Carabids figure 1 Ab Biological Control, 21, 97-104

Escobar 2004 Colombia NV:Ag; 
WNV:IP; IP:C

primary forest, 
pasture & cropping

Scarabaeidae table 1 R/Ab Tropical Zoology, 17, 123-136

Escobar et al 2007 Mexico & 
Colombia

NV:Ag; 
WNV:IP

forest & pasture Scarabaeidae table 1 R/Ab Ecography, 30, 193-208

Estrada et al 1998 Mexico NV:Ag; 
WNV:IP; IP:C 

forest, pasture & 
cropping

dung & carrion 
beetles

table 1 R/Ab Journal of Tropical Ecology, 14, 577-593

Ewuim et al 1997 Nigeria NV:Ag forest & crop fallow Formicidae table 3 Ab Biotropica, 29, 93-99
Fan et al 1993 USA RIC:CC low-input &

conventional bean 
production

various table 2 Ab Agriculture, Ecosystems and Environment, 
43, 127-139

Favret & Voegtlin 2001 USA NV:Ag woodland, prairie & 
soy bean crop

Homoptera table 1 Ab Environmental Entomology, 30, 371-379

Feber et al 1998 UK RIC:CC organic & 
conventional 
cropping

Araneae figures 1 
& 2

R/Ab The Journal of Arachnology, 26, 190-202

Fisher and 
Robertson

2002 Madagascar WNV:IP; 
NV:Ag

forest & exotic 
grassland

Formicidae table 1 R/Ab Biotropica, 34, 155-167

Fournier & 
Loureau

2001 France NV:Ag woodland & barley Collembola table 3 R/Ab Landscape Ecology, 16, 17-32

Frampton & 
Wratten

2000 England RIC:CC wheat with and 
without various 
fungicides

Collembola figures 4-
6

Ab Ecotoxicology and Environmental Safety, 
46, 64-72

Frampton et al 2007 England RIC:CC wheat with and 
without various 
insecticides

various tables 1-3 R/Ab Environmental Pollution, 147, 14-25

Fratello et al 1989 Italy RIC:CC organic fertilised & 
inorganic fertilised 
crops

Collembola & 
Acari

table 2(a) Ab Agriculture, Ecosystems and Environment, 
27, 227-239

Furlong et al 2004 Australia RIC:CC brassicas with 
conventional and 
reduced insecticides

various table 8 Ab Journal of Economic Entomology, 97, 1814-
1827

Gallo & Pekar 2001 Czech Republic RIC:CC conventional & 
reduced tillage

herbivores tables 1 
& 2

Ab Journal of Pest Science, 74, 60-65

Gardi et al 2002 Italy IP:C pasture & cropping Collembola table 3 R European Journal of Soil Biology, 38, 103-
110

Goehring et al 2002 Costa Rica NV:Ag forest & coffee various tables 1-3 R/Ab Journal of Insect Conservation, 6, 83-91
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Gomez et al 2003 Spain NV/Ag; 
WNV:IP; IP:C

forest, pasture & 
cropping

Formicidae table 1 R/Ab Biodiversity and Conservation, 12, 2135-
2146

Good & Giller 1991 Ireland IP:C; RIC:CC pasture/hay meadow; 
cropping/silage; 
wheat with & 
without insecticide; 
crop with & without 
fungicide

Staphylinidae tables 1, 
3 & 4

R Journal of Applied Ecology, 28, 810-826

Gormley et al 2007 Costa Rica NV:Ag; 
WNV:IP

primary forest & 
pasture

Coleoptera figure 2 R/Ab Journal of Insect Conservation, 7, 131-139

Gove et al 2005 Mexico NV:Ag; 
WNV:IP

forest & pasture Formicidae figure 
1(b)

R Biological Conservation, 126, 328-338

Green & Catterall 1998 Australia NV:Ag; 
WNV:IP

native woodland & 
cleared grassland

various figure 6 R/Ab Wildlife Research, 25, 677-690

Greenwood et al 1991 UK NV:Ag; 
WNV:IP; IP:C

woodland, pasture & 
arable

Staphylinidae & 
Carabidae

table 1 R/Ab Regulated Rivers: Research and 
Management, 6, 321-332

Gudleifsson 2005 Iceland NV:Ag; NG/IP unimproved 
grassland & 
improved hayfield

Coleoptera text 
results

R Agriculture, Ecosystems and Environment, 
109, 181-186

Hadjicharalampous 
et al 

2002 Greece RIC:CC organic & 
conventional olives, 
vineyards and maize

various table 3 R/Ab Environmental Management, 29, 683-690

Harris & Burns 2000 New Zealand NV:Ag; 
WNV:IP 

forest & pasture Coleoptera figure 2 R/Ab New Zealand Journal of Ecology, 24, 57-67 

Harvey et al 2006 Nicaragua NV:Ag; 
WNV:IP 

riparian forest & 
pasture

Scarabaeidae table 2 R/Ab Ecological Applications, 16, 1986-1999

Hassall et al 2006 Malaysia NV:Ag primary forest & 
orchard

Isopoda figure 1 R/Ab European Journal of Soil Biology, 42, S197-
S207

Hatten et al 2007 USA RIC:CC no-till & 
conventional tillage 
crops

Carabids table 1 R/Ab Environmental Entomology, 36, 356-368

Heithaus & Humes 2003 USA NV:Ag forest/woodland & 
crop/pasture

Formicidae table 3 R Ohio Journal of Science, 103, 89-97

Hidaka 1998 Japan RIC:CC traditional organic 
rice & 
conventionally 
intensive rice

various table 2 Ab Biological Agriculture and Horticulture, 15, 
35-49 
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Hokkanen & 
Holopainen

1986 Germany RIC:CC biologically & 
conventionally 
managed fields

Carabids table 2 R/Ab Journal of Applied Entomology, 102, 353-
363

Holland & 
Reynolds

2003 UK RIC:CC ploughed & un-
ploughed crops

various table 2 Ab Pedobiologia, 47, 181-191

Holt & Coventry 1988 Australia NV:Ag; 
WNV:IP 

native woodland & 
introduced pasture

Isoptera table 1 R/Ab Australian Journal of Ecology, 13, 321-325 

Horgan 2005 Peru NV:Ag forest & mixed 
cropping/plantations

Coleoptera results 
text

R/Ab Forest Ecology and Management, 216, 117-
133

Horgan et al 2007 El Salvador NV:Ag; 
WNV:IP; IP:C

forest, pasture & 
crop  

Scarabaeidae table 3 R Biodiversity and Conservation, 16, 2149-
2165

Horne & Edward 1998 Australia RIC:CC tillage & no-tillage 
crops

Carabids figure 2 Ab Australian Journal of Entomology, 37, 60-
63

House 1989 USA RIC:CC no-till & tillage 
crops

various figure 4 Ab Agriculture, Ecosystems and Environment, 
25, 233-244

House & Stinner 1983 USA RIC:CC tillage fields & no-
tillage fields

various table 1; 
figures 
2A & 2B

R/Ab Environmental Management, 7, 23-28

Hülsmann & 
Wolters

1998 Germany RIC:CC tillage & no-till 
crops

Acari table 2 R/Ab Applied Soil Ecology, 9, 327-332

Hulugalle 1997 Australia RIC:CC tilled, continuous 
cotton & minimum-
till rotational cotton

various table 6 Ab Applied Soil Ecology, 7, 11-30

Hummel et al 2002(a) USA RIC:CC chemical/biological 
& intercropping crop 
treatments

various tables 4 
& 5

Ab Agriculture, Ecosystems and Environment, 
93, 177-188

Hummel et al 2002(b) USA RIC:CC biological & 
chemical treatment 
tomatoes

various table 2 Ab Agriculture, Ecosystems and Environment, 
93, 165-176

Huusela-Veistola 1996 Finland RIC:CC reduced-pesticide 
and pesticide-treated 
crops

Carabids figure 2 Ab Annales Zoologici Fennici, 33, 197-205

Ishijima et al 2004 Japan RIC:CC tillage & no-tillage 
rice

Araneae & 
Homoptera

tables 1 
& 3

Ab Applied Entomology and Zoology, 39, 155-
162

Janzen et al 1983 Costa Rica NV:Ag; 
WNV:IP

forest & pasture Scarabaeidae table 2 Ab Oikos, 41, 274-283

Jones et al 2003 Sumatra NV:Ag; 
WNV:IP; IP:C

forest, pasture, 
cassava monoculture

Isoptera table 2 R/Ab Journal of Applied Ecology, 40, 380-391
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Kajak & 
Łukasiewicz

1994 Poland NV:Ag; 
WNV:IP; IP:C

forest, pasture & 
cropping

various table 2 Ab Agriculture, Ecosystems and Environment, 
49, 149-161 

Kannan et al 2004 India RIC:CC insecticide & non-
insecticide plots

various figure 1 Ab Current Science, 86, 726-729

Keals & Majer 1991 Australia NV:Ag woodland & 
cropping

Formicidae figure 2 R Nature Conservation 2: The role of 
corridors; Eds Saunders and Hobbs

King et al 1998 Australia NV/Ag; 
WNV/IP

rainforest & pasture Formicidae table 3 R/Ab Biodiversity and Conservation, 7, 1627-
1638

Kishimoto 2002 Japan RIC:CC orchards with and 
without pesticides

Acari table 2 Ab Applied Entomology and Zoology, 37, 603-
615

Klein 1989 Brazil NV:Ag;
WNV:IP

forest & clearcut 
pastures

saprophagous 
and 
coprophagous 
Coleoptera

table 3 R/Ab Ecology, 70, 1715-1725

Koivula et al 2004 Finland NV:Ag forest & farmland Carabids appendix 
1

R Journal of Insect Conservation, 8, 297-309

Koss et al 2004 USA RIC:CC conventional 
insecticide crops & 
organic crops

various 
predators

figure 2b Ab Environmental Entomology, 34, 87-95

Krogh 1994 
(in 

Hansen 
et al 

2001)

Denmark RIC:CC Integrated & 
conventional arable

Collembola & 
Acari

table 5 Ab Agriculture, Ecosystems and Environment, 
83, 11-26

Kromp 1989 Austria RIC:CC biological & 
conventional winter 
wheat

Carabids figures 1 
& 2

R/Ab Agriculture, Ecosystems and Environment, 
27, 241-251

Kromp 1990 
(in 

Kromp 
1999)

Austria RIC:CC biologically and 
conventionally 
managed potatoes

Carabids figures 
1(a) & 
1(b)

R/Ab Agriculture, Ecosystems and Environment, 
74, 187-228

Kromp 1985 
(in 

Kromp 
1999)

Austria RIC:CC biologically and 
conventionally 
managed potatoes

Carabids figures 
1(a) & 
1(b)

R/Ab Agriculture, Ecosystems and Environment, 
74, 187-228

Kromp & Hartl 1991 
(in 

Kromp 
1999)

Austria RIC:CC biological & 
conventional winter 
wheat

Carabids figure 
1(b)

R/Ab Agriculture, Ecosystems and Environment, 
74, 187-228
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Kroos & Schaefer 1998 Germany RIC:CC conventional/reduced 
input farming; tilled 
wheat compared to 
no-till wheat

Staphylinidae tables 3
& 4

R/Ab Agriculture, Ecosystems and Environment, 
69, 121-123

Larsen et al 2003 USA NV:Ag woodland & 
cropping

Carabids table 1 R/Ab Pedobiologia, 47, 288-299

Lavelle & 
Pashanasi

1989 Peru NV:Ag; 
WNV:IP; IP:C; 
RIC:CC

primary forest, 
pasture, low-input & 
high-input maize

various tables 2 
& 3

R/Ab Pedobiologia, 33, 283-291

Leather et al 1999 UK NV:Ag; 
WNV:IP

woodland & pasture Coccinellidae figure 1 Ab European Journal of Entomology, 96, 23-27

Liang et al 2007 Australia RIC:CC orchards with & 
without synthetic 
pesticides

soil arthropods figure 2 R/Ab Australian Journal of Entomology, 46, 79-
85

Lobry de Bruyn 1993 Australia NV:Ag woodland, heathland 
& farmland

Formicidae table 3 R/Ab Soil Biology and Biochemistry, 25, 1043-
1056

Loranger et al 1998 Martinique NV:Ag; 
WNV:IP; IP:C

forest, old pasture & 
market gardening

various figure 2 R/Ab European Journal of Soil Biology, 34, 157-
165

Luff & Rushton 1989 UK NV:Ag; NG:IP unimproved 
grassland & 
improved grassland

Carabids & 
Araneae

tables 2 
& 3

R/Ab Agriculture, Ecosystems and Environment, 
25, 195-205

Lundgren et al 2006 USA IP:C vegetable cropping 
& pasture

various figures 1 
& 2; 
results 
text

Ab Renewable Agriculture and Food Systems, 
21, 227-237

Magagula 2006 Swaziland NV:Ag wooded savannah & 
orchard

various figure 1; 
tables 2 
& 3

R/Ab Biodiversity and Conservation, 15, 453-463

Majer 1978 Australia NV:Ag; 
WNV:IP

unburnt jarrah & 
pasture

various tables 1 
& 3

R/Ab Forest Ecology and Management, 1, 321-
334

Marasas et al 2001 Argentina RIC:CC no-tillage & 
conventional tillage

various table 2 Ab Applied Soil Ecology, 18, 61-68

Marquini et al 2002 Brazil RIC:CC beans with and 
without insecticide 
application

Araneae tables 1 
& 2

Ab Journal of Applied Entomology, 126, 550-
556

Mathieu et al 2005 Brazil NV:Ag;
WNV:IP; IP:C

primary forest, 
pasture & rice 
cropping

various figure 3 R/Ab Conservation Biology, 19, 1598-1605

Meissle & Lang 2005 Germany RIC:CC crops with & without 
insecticide

Araneae table 3 R Agriculture, Ecosystems and Environment, 
107, 359-370
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Melnychuck et al 2003 Canada RIC:CC annual grain rotation 
& diversified grain 
rotation

Carabids results 
text

R/Ab Agriculture, Ecosystems and Environment, 
95, 69-72

Menalled et al 2007 USA RIC:CC no-till & 
conventional corn 

Carabids table 1 R/Ab Agriculture, Ecosystems and Environment, 
118, 49-54

Michereff-Filho et 
al

2004 Brazil RIC:CC cornfields with and 
without insecticide

various table 1; 
figures 3 
& 5

R/Ab International Journal of Pest Management, 
50, 91-99

Minarro & Dapena 2003 Spain RIC:CC herbicide treatment 
& natural soil control 
treatment

Carabids tables 2 
& 3

R/Ab Applied Soil Ecology, 23, 111-117

Minor & Cianciolo 2007 USA NV:Ag forest & cornfield Acari table 2 R/Ab Applied Soil Ecology, 35, 140-153

Miyazawa et al 2002 Japan RIC:CC conventional tillage 
compared to reduced 
tillage

Collembola & 
Acari

table 3 Ab Plant Production Science, 5, 257-265

Moreby & 
Sotherton

1997 UK RIC:CC organic and 
conventional wheat

various table 3 Ab Biological Agriculture and Horticulture, 15, 
51-60

Moreby et al 1994 UK RIC:CC organic and 
conventional wheat

various table 4 Ab Annals of Applied Biology, 125, 13-27

Moron/Moron & 
Lopez-Mendez

1987 & 
1985

Mexico NV:Ag rainforest & shade 
coffee plantation

Scarabaeidae table 3 
Nestel et 
al 1993

R Biodiversity and Conservation, 2, 70-78

Mukhopadhyay et 
al 

2003 India RIC:CC organic & 
chemically intensive 
tea 

various tables 1 
& 2

R/Ab Journal of Environmental Biology, 24, 471-
476

Munyuli et al 2007 Uganda RIC:CC insecticide/non-
insecticide; cowpea 
monoculture & 
intercrop

various tables 2, 
4, 6 & 7

R/Ab Crop Protection, 26, 114-126

Mussury et al 2002 Brazil IP:C pasture & cropping Collembola and 
Acari

figure 1 Ab Brazilian Archives of Biology and 
Technology, 45, 257-264

Nakamoto & 
Tsukamoto

2006 Japan RIC:CC inorganic & non-
inorganic fertilised 
crops

Collembola and 
Acari

figure 3 Ab Agriculture, Ecosystems and Environment, 
115, 34-42

Nakamoto et al 2006 Japan RIC:CC tillage & non-tillage 
fields

various figure 1 Ab Soil and Tillage Research, 85, 94-106

Nakamura et al 2003 Australia NV:Ag; 
WNV:IP

forest remnants & 
pasture

various table 2 R/Ab Ecological Management and Restoration, 4 
(supp.), S20-S28
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Neave & Fox 1998 Canada RIC:CC no-till & tillage various tables 1 
& 2

R/Ab Applied Soil Ecology, 9, 423-428

Nestel et al 1993 Mexico RIC:CC shaded & unshaded 
coffee

various table 1 R/Ab Biodiversity and Conservation, 2, 70-78

Nicholls et al 2000 USA RIC:CC cover crop & no-
cover crop

various table 2 Ab Agricultural and Forest Entomology, 2, 107-
113

Nkem et al 2002 Australia RIC:CC N-fertilised wheat & 
non-fertilised wheat

various table 3 Ab Applied Soil Ecology, 20, 69-74

Okwakol 2001 Uganda NV:Ag forest & cultivation various table 1 & 
figure 1

R/Ab African Journal of Ecology, 32, 273-282

O'Neal et al 2005 USA RIC:CC blueberry crop with 
clover & bare ground 
cover

Carabids figure 5 Ab BioControl, 50, 205-222

Osler & Murphy 2005 Australia NV:Ag woodland & 
cropping

Acari table 1 R/Ab Applied Soil Ecology, 29, 93-98

Paoletti et al 1999 China IP:C meadow & vegetable
lot

various tables 1 
& 2

Ab Critical Reviews in Plant Sciences, 18, 457-
465

Parajulee et al 2006 USA RIC:CC tillage & 
conservation-tillage 
crops 

Thysanoptera & 
Homoptera

table 3 Ab International Journal of Pest Management, 
52, 249-260

Pardo-Locarno et 
al 

2007 Colombia NV:Ag; 
WNV:IP; IP:C

woodland, pasture & 
coffee

Scarabaeidae table 2 R/Ab Florida Entomologist, 88, 355-363

Parisi et al 2005 Italy NV:Ag woodland & 
cropping

various table 5 R Agriculture, Ecosystems and Environment, 
105, 323-333

Pavuk et al 1997 USA RIC:CC corn without weeds 
and corn with mixed 
weeds

Carabids tables 3 
& 4

R/Ab American Midland Naturalist, 138, 14-28

Peachey et al 2002 USA RIC:CC tillage & direct drill 
(no-tillage) crops

various table 2 & 
figure 3

Ab Applied Soil Ecology, 21, 59-70

Peck et al 1998 USA IP:C; RIC:CC hay fields, corn 
fields, conventional 
till/conservation-till 
fields

Formicidae tables 2 
& 4

R/Ab Environmental Entomology, 27, 1102-1110

Pekár 1999 Czech Republic RIC:CC orchards with IPM & 
conventional 
spraying

Araneae tables 2 
& 3

R/Ab Agriculture, Ecosystems and Environment, 
73, 155-166

Pekár & Kocourek 2004 Czech Republic RIC:CC orchards with & 
without insecticide

Araneae figure 2 
& table 1

R/Ab Journal of Applied Entomology, 128, 561-
566

Penagos et al 2003 Mexico RIC:CC maize with and 
without mechanical 
weed control

various table 2 Ab International Journal of Pest Management, 
49, 155-161
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Pereira et al 2005 Brazil RIC:CC herbicide and 
insecticide crop & 
untreated control

various figures 2-
7

Ab Journal of Environmental Science and 
Health, B, 40, 45-54

Perfecto et al 1997 Costa Rica RIC:CC traditional & 
unshaded coffee

Coleoptera & 
Formicidae

table 3 R/Ab Biodiversity and Conservation, 6, 935-945

Perner & Malt 2003 Germany IP:C grassland & arable Araneae & 
Coleoptera

figure 1 R/Ab Agriculture, Ecosystems and Environment, 
98, 169-181

Petersen 2002 Denmark RIC:CC non-inversion & 
conventional tillage

Collembola figure 1 
and 
author's 
data

Ab European Journal of Soil Biology, 38, 177-
180

Peveling et al 1999 Niger RIC:CC insecticide & control 
treatments

Formicidae & 
Carabids

figures 3 
& 5

Ab Crop Protection, 18, 323-339

Pfiffner & Niggli 1996 Switzerland RIC:CC organic & 
conventional wheat

various tables 1 
& 3

R/Ab Biological Agriculture and Horticulture, 12, 
353-364

Philpott et al 2006 Mexico RIC:CC extensive & 
intensive coffee

Formicidae table 2 R Biodiversity and Conservation, 15, 139-155

Pik et al 1999 Australia NV/Ag; 
WNV/IP

woodland regrowth 
and pasture

Formicidae figure 1 R Australian Journal of Ecology, 24, 555-562

Pineda et al 2005 Mexico NV:Ag forest & shade coffee Scarabaeidae table 1 R/Ab Conservation Biology, 19, 400-410

Pinkus-Rendón et 
al

2006 Mexico NV:Ag; 
RIC:CC

forest, organic coffee 
& conventional 
coffee

Araneae table 1 & 
results 
text

R/Ab The Journal of Arachnology, 34, 104-112

Pinkus-Rendón et 
al (b)

2006 Mexico NV:Ag; 
WNV:IP; IP:C; 
RIC:CC

forest, pasture & 
crop

Araneae table 3 R Diversity and Distributions, 12, 61-69

Piqué et al 1998 Spain RIC:CC crop with & without 
carbofuran 
insecticide

corn borers table 2 Ab Crop Protection, 17, 557-561

Pokarzhevskii & 
Krivolutskii

1997 Russia NV:Ag; NG:IP; 
IP:C

steppe, pasture & 
barley

various table 1 R/Ab Agriculture, Ecosystems and Environment, 
62, 127-133

Ponge et al 2003 France NV:Ag forest & agriculture Collembola table 3 R/Ab Soil Biology and Biochemistry, 35, 813-826

Prasse et al 1985 Germany RIC:CC cropping with 
differing herbicide 
rates

Collembola & 
Acari

figure 1 R Agriculture, Ecosystems and Environment, 
13, 205-215

Purtauf et al 2005 Germany RIC:CC organic & 
conventional wheat

Carabids results 
text & 
appendix

R/Ab Oecologia, 142, 458-464

Purtauf et al 2004 Germany IP:C pasture & arable Carabids table 2; 
appendix 
A

R/Ab Landscape and Urban Planning, 67, 185-193
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Purvis et al 2001 Ireland IP:C pasture & cropping Carabids appendix 
1

R/Ab Annals of Applied Biology, 139, 351-360

Quirozrobledo & 
Valenzuela-
González

1995 Mexico NV:Ag; 
WNV:IP

rainforest & pasture Formicidae table 1 R/Ab Southwestern Entomologist, 20, 203-213

Rand & Louda 2006 USA NV:Ag remnant grassland & 
crop

Coccinellidae results 
text

Ab Conservation Biology, 20, 1720-1729

Ratschker & Roth 2000 Germany IP:C grassland & cereal 
fields

Araneae table 2 R/Ab Ekológia Bratislava, 19, 213-225

Rebek et al 2002 USA RIC:CC; IP:C pasture, chemical 
fertilised corn & 
manure fertilised 
corn

Collembola  tables 3 
& 4

R/Ab Environmental Entomology, 31, 37-46

Reeleder et al 2006 Canada RIC:CC rye cover crop & no 
cover crop

Acari figure 2 Ab Applied Soil Ecology, 33, 243-257

Rinaldi & Forte 1997 Brazil NV:Ag; 
WNV:IP; IP:C

forest, pasture, crop Araneae table 1 R/Ab Studies on Neotropical Fauna and 
Environment, 32, 244-255

Risch 1979 Costa Rica RIC:CC monoculture 
cropping & diculture 
cropping

various table 1 R/Ab Oecologia, 42, 195-211

Rodríguez et al 2006 Spain RIC:CC no-tillage & 
conventional tillage 
barley

various table 1 Ab Soil and Tillage Research, 85, 229-233

Rojas et al 2001 Costa Rica RIC:CC unshaded coffee 
monoculture & 
shaded coffee 
polycultures

Homoptera table 2 R Agroforestry Systems, 53, 171-177

Rossi & Blanchart 2005 India NV:Ag; 
WNV:IP

primary forest & 
pasture

various table 1 Ab Soil Biology and Biochemistry, 37, 1093-
1104

Roth et al 1994 Costa Rica NV:Ag forest & banana crop Formicidae table 5 R Ecological Applications, 4, 423-436

Ruano et al 2004 Spain RIC:CC conventional & 
organic olives

various tables 3 
& 4

Ab Agricultural and Forest Entomology, 6, 111-
120

Samways 1983 South Africa IP:C grassland & orchard Formicidae table 3 R Journal of Applied Ecology, 20, 833-847

Sánchez-Bayo et al 2007 Japan IP:C; RIC:CC pasture & crop; 
insecticide crop & 
control

vegetation 
arthropods

figures 
2a & 2b

R Journal of Environmental Science and 
Health Part B, 42, 279-286
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Santos et al 2007 Portugal RIC:CC organic & integrated 
olive groves

various table 2 Ab Chemosphere, 67, 131-139

Scheffler 2005 Brazil NV:Ag; 
WNV:IP 

forest & pasture Scarabaeidae table 3 R/Ab Journal of Tropical Ecology, 21, 9-19

Schmidt & 
Tscharntke

2005 Germany IP:C grassland & crop Araneae figures 
2a & 2b

R/Ab Agriculture, Ecosystems and Environment, 
105, 235-242

Schmidt et al 2004 Germany RIC:CC mulched & 
unmulched crop

various table 1 & 
figure 1

Ab Entomologia Experimentalis et Applicata, 
113, 87-93

Schmidt et al 2005 Germany RIC:CC organic & 
conventional crop

Araneae figure 2 Ab Journal of Applied Ecology, 42, 281-287

Schnell et al 2003 Australia NV/Ag; 
WNV/IP

native woodland & 
pasture

Formicidae figure 2 R Austral Ecology, 28, 553-565

Schonberg et al 2004 Costa Rica NV/Ag; 
WNV/IP

primary forest & 
pasture

Formicidae text p. 
404

R Biotropica, 36, 403-409

Schulze et al 2004 Sulawesi NV:Ag forest & agricultural 
fields

Scarabaeidae figure 1 R Ecological Applications, 14, 1321-1333

Shah et al 2003 UK RIC:CC organic & 
conventional 
cropping

various tables 1-3 R/Ab Agricultural and Forest Entomology, 5, 51-
60

Shahabuddin et al 2005 Indonesia NV:Ag forest compared to 
maize

Scarabaeidae figure 1b R/Ab Biodiversity and Conservation, 14, 863-877

Showler & 
Greenberg 

2003 USA RIC:CC weedy & weed-free 
cropping

various figures 1 
& 2

Ab Environmental Entomology, 32, 39-50

Siepel 1996 Holland NV:Ag; 
WNV:IP

old-growth forest & 
high input grassland

microarthropods table 1 R/Ab Biodiversity and Conservation, 5, 251-260

Sileshi & 
Mafongoya 

2006 Zambia NV:Ag Miombo woodland 
& maize

various    table 3 R/Ab Applied Soil Ecology, 33, 49-60

Skelton & Barrett 2005 USA RIC:CC wheat monocrop & 
intercrop

Homoptera & 
Araneae

figures 
2a, 2b & 
2c

Ab Renewable Agriculture and Food Systems, 
20, 38-47

Smith et al 2000 Guatemala RIC:CC insecticide-treated 
crops & non-
insecticide crops; 
monocrop & 
intercrop

various table 2 Ab Florida Entomologist, 83, 358-362

Sousa et al 2004 Portugal NV:Ag; 
WNV:IP; IP:C

woodland, pasture & 
agricultural

Collembola table 4 R/Ab Pedobiologia, 48, 609-622

Souty-Grosset et al 2005 France NV:Ag; NG:IP; 
IP:C

pasture (>3years), 
pasture (<3 years) & 
alfalfa crop

Isopoda tables 2 
& 3 

R/Ab European Journal of Soil Biology, 41, 109-
116
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Squitier & 
Capinera 

2002 USA WNV:IP scrub, pasture & 
crops

Orthoptera results 
text 

R Florida Entomologist, 85, 235-244

Stamps et al 2002 USA RIC:CC walnut monocrop & 
intercrop

various tables 3, 
4, 5 & 7

R/Ab Agroforestry Systems, 56, 167-175

Stinner et al 1986 USA RIC:CC till & no-till crops various figures 1 
& 2

Ab Agriculture, Ecosystems and Environment, 
15, 11-21

Suckling et al 1999 New Zealand RIC:CC orchards with 
biological & 
conventional pest 
control

various figures 2 
& 3

R Agriculture, Ecosystems and Environment, 
73, 129-140

Tabu et al 2003 Kenya NV:Ag native forest & 
cropping

various figure 
34.4

R/Ab In: Bationo, A.(ed.). Managing nutrient 
cycles to sustain soil fertility in sub-Saharan 
Africa, 487-500.

Tajovský 1993 Czech Republic NV:Ag; 
WNV:IP; IP:C

forest, pasture & 
field

Diplopoda table 2 R/Ab Ekologia-Bratislava, 12, 277-283

Taylor et al 2006 USA RIC:CC herbicide 
applications

beneficial 
insects

table 4 Ab Agriculture, Ecosystems and Environment, 
116, 157-164

Teodorescu & 
Cogălniceanu

2005 Romania RIC:CC crops with & without 
pesticides

various table 2 R Applied Ecology and Environmental 
Research, 4, 55-62

Thomson & 
Hoffmann

2007 Australia RIC:CC vines with bare earth 
& compost mulch

various table 1 Ab Agricultural and Forest Entomology, 9, 173-
179

Tillman et al 2004 USA RIC:CC monocropped & 
intercropped cotton 

various tables 2 
& 6

Ab Journal of Economic Entomology, 97, 1217-
1232

Topping & Lovei 1997 New Zealand IP:C; RIC:CC pasture, conventional 
wheat & organic 
wheat

Araneae table 1 R/Ab New Zealand Journal of Ecology, 21, 121-
128

Torres 1984 Puerto Rico NV:Ag;
WNV:IP; IP:C

forest, pasture & 
agricultural land

Formicidae table 1 R Biotropica, 16, 284-295

Tsai et al 2006 China NV:Ag; 
WNV:IP

natural forest & 
grassland

Araneae table 1 R/Ab Ecography, 29, 84-94

Van den Berg et al 1998 Indonesia RIC:CC pesticide application various figures 2 
& 5

Ab Biocontrol Science and Technology, 8, 125-
137

Vanbergen et al 2005 Scotland NV:Ag Caledonian forest & 
agricultural 
landscape

Carabids figures
2a & 2b

R/Ab Ecography, 28, 3-16

Vink 2004 New Zealand IP:C pasture & cropping Araneae table 1 R/Ab New Zealand Journal of Zoology, 31, 149-
159

Weibull & Ostman 2003 Finland IP:C pastures and cereal 
fields

Carabids appendix R Basic and Applied Ecology, 4, 349-361
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Weibull et al 2003 Sweden IP:C; RIC:CC pasture, organic 
cropping, 
conventional 
cropping

Carabids appendix 
1

R/Ab Biodiversity and Conservation, 12, 1335-
1355

Wells et al 2001 USA RIC:CC non-insecticide 
cotton & insecticide-
treated cotton

Coccinellidae table 2 Ab Environmental Entomology, 30, 785-793

Wickramasinghe et 
al 

2004 UK NV:Ag; 
WNV:IP; IP:C; 
RIC:CC

woodland, pasture, 
organic cropping, 
conventional 
cropping

various table 3 Ab Conservation Biology, 14, 1283-1292

Wilson et al 1999 Australia RIC:CC treated & untreated 
cotton

Coccinellidae & 
Homoptera

table 1 Ab Australian Journal of Entomology, 38, 242-
243

Wisniewska & 
Prokopy

1997 USA RIC:CC apple orchard with & 
without pesticides

Araneae figure 
1(b)

Ab Environmental Entomology, 26, 763-776

Witmer et al 2003 USA RIC:CC intensive & 
extensive cropping 
(various)

Carabids & 
Araneae

table 4 Ab Environmental Entomology, 32, 366-376

Witt & Samways 2004 South Africa NV:Ag; 
RIC:CC

Fynbos, non-
pesticide apple 
orchards & pesticide-
treated orchards

various table 2 R/Ab African Entomology, 12, 89-95

Yardim & 
Edwards

2002 USA RIC:CC herbicide & non-
herbicide crop

various figures 2-
4

Ab Phytoparasitica, 30, 1-8
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Appendix C.1 All morphospecies collected and land-use occurrence. 

Morphospecies numbering system is authors own, and reflects order in which each 

taxon was identified from pitfall samples.

Sub-family Genera Morpho sp. Total WC WE PC CE CC
Formicinae Paratrechina 1(a) 571 0 0 4 567 0

Paratrechina 1(b) 66 29 28 2 2 4
Paratrechina 2 2 0 1 1 0 0
Camponotus 1(a) 24 9 6 4 5 0
Camponotus 1(b) 14 14 0 0 0 0
Camponotus 2 20 7 0 3 10 0
Camponotus 3(a) 2 0 0 2 0 0
Camponotus 3(b) 1 1 0 0 0 0
Camponotus 4 7 6 1 0 0 0
Camponotus 8 4 2 2 0 0 0
Camponotus 9 2 2 0 0 0 0
Camponotus N 2 2 0 0 0 0
Melophorus 1 36 12 13 10 1 0
Melophorus 2(a) 85 37 46 2 0 0
Melophorus 2(b) 24 0 4 8 8 4
Melophorus 3 2 0 0 2 0 0
Melophorus 4 36 2 5 18 11 0
Melophorus 9 29 3 15 13 0 0
Melophorus 10 3 3 0 0 0 0
Melophorus 11 2 0 0 2 0 0
Melophorus 13 3 0 0 1 1 1
Melophorus 14 2 0 1 0 1 0
Notoncus 1 74 28 46 0 0 0
Notoncus 2 270 0 16 212 42 0
Polyrhachis 1 1 1 0 0 0 0
Polyrhachis 2 1 0 0 1 0 0
Polyrhachis 3 1 0 1 0 0 0
Stigmacros 1 2 2 0 0 0 0
Opisthopsis 1 5 0 5 0 0 0

Dolichoderinae Iridomyrmex 1 7804 1791 1851 1666 2144 352
Iridomyrmex 3 520 50 428 38 3 1
Iridomyrmex 2 2 0 2 0 0 0
Iridomyrmex 4 4 1 1 1 0 1
Iridomyrmex 7 51 1 11 0 4 35
Iridomyrmex 9 32 5 0 26 1 0
Tapinoma 2 48 2 38 8 0 0
Tapinoma 3 2 1 1 0 0 0
Dolichoderus 2 2 2 0 0 0 0
Doleromyrma 1 2 0 0 2 0 0
Ochetellus 1 7 3 4 0 0 0
Ochetellus 2 2 2 0 0 0 0
Anonychomyrma 1 2 2 0 0 0 0
Anonychomyrma 2 2 0 2 0 0 0

Ponerinae Rhytidoponera 1 744 54 132 144 211 203
Rhytidoponera 3 58 15 26 8 6 3
Rhytidoponera 4 26 1 1 6 18 0
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Sub-family Genera Morpho sp. Total WC WE PC CE CC
Rhytidoponera 5 64 2 3 36 22 1
Rhytidoponera 6 63 10 19 26 8 0
Pachycondyla 1 39 13 17 8 1 0
Pachycondyla 2 1 1 0 0 0 0
Pachycondyla 3 1 0 0 0 1 0
Heteroponera 1 1 0 1 0 0 0
Leptogenys 1 1 0 1 0 0 0

Myrmeciinae Myrmecia 1 2 1 1 0 0 0
Myrmecia 2 2 0 2 0 0 0

Myrmicinae Meranoplus 1 32 7 10 15 0 0
Meranoplus 2 52 1 22 21 8 0
Meranoplus 3 10 0 4 2 4 0
Solenopsis 1 13 3 2 2 5 1
Monomorium 1 83 43 24 14 2 0
Monomorium 2 376 8 2 312 54 0
Monomorium 3 22 7 10 5 0 0
Monomorium 5(a) 11 1 9 1 0 0
Monomorium 5(b) 39 2 34 1 2 0
Monomorium 7 6 6 0 0 0 0
Monomorium 8 24 15 9 0 0 0
Cardiocondyla 1 1 0 1 0 0 0
Pheidole 2 272 75 174 22 1 0
Pheidole 3 787 32 152 412 145 46
Pheidole 5(a) 91 0 0 3 52 36
Pheidole 5(b) 130 49 29 23 29 0
Pheidole 7 81 35 30 16 0 0
Pheidole 8 1 1 0 0 0 0
Pheidole 10 1 0 0 0 0 1
Pheidole 13 6 6 0 0 0 0
Crematogaster 1 5 5 0 0 0 0
Crematogaster 2 16 4 3 5 4 0
Crematogaster 3 119 4 15 65 35 0
Crematogaster 4 1 1 0 0 0 0
Crematogaster 5 1 1 0 0 0 0
Crematogaster 6 8 0 8 0 0 0
Oligomyrmex 1 1 0 0 0 0 1
Colobostruma 1 1 1 0 0 0 0

Cerapachyinae Cerapachys 1 1 0 0 0 0 1
Cerapachys 2 2 0 1 0 1 0

Totals 2425 3270 3173 3409 691
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Appendix C.2 Papers used for data extraction for the functional group literature analysis, list of taxa (mostly at level of genera), functional 

group attributions and list of authorities used to determine functional group categorisation (at foot of table). 

Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Armbrecht & 
Perfecto 

2003 Agriculture, Ecosystems & 
Environment, 97, 107-115

Mexico Crematogaster Generalised 
Myrmicinae

5 0

Pheidole 1 Generalised 
Myrmicinae

53 21

Pheidole 3 Generalised 
Myrmicinae

3 0

Pheidole 4 Generalised 
Myrmicinae

16 4

Pheidole 5 Generalised 
Myrmicinae

4 0

Pheidole 6 Generalised 
Myrmicinae

3 0

Pheidole 7 Generalised 
Myrmicinae

1 0

Solenopsis 1 Hot Climate 
Specialist

7 4

Solenopsis 2 Hot Climate 
Specialist

2 0

Solenopsis 3 Hot Climate 
Specialist

5 1

Solenopsis geminata Hot-climate 
Specialist

3 29

Solenopsis 4 Hot Climate 
Specialist

14 0

Gnamptogenys 
sulcata

Opportunist 6 11

Hypoponera 1 Cryptic 27 0
Hypoponera 2 Cryptic 10 0
Odontomachus 1 Opportunist 3 2
Pachycondyla 1 Specialist Predator 7 0

Brachymyrmex 1 Cryptic 1 11
Brachymyrmex 2 Cryptic 0 21
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Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Brachymyrmex 3 Cryptic 9 1

Bos et al. 2007 Biodiversity & Conservation, 
16, 2429-2444

Indonesia Dolichoderus Cold Climate 
Specialist

3 78

Tapinoma Opportunist 0 22
Gnamptogenys Opportunist 102 0
Anoplolepis Opportunist 1 287
Camponotus Subordinate 

Camponotini
2 9

Echinopla Subordinate 
Camponotini

13 7

Oecophylla Tropical Climate 
Specialist

8 0

Paratrechina Opportunist 1 78
Polyrhachis Subordinate 

Camponotini
289 297

Cataulacus Specialist Predator 0 4
Crematogaster Generalised 

Myrmicinae
276 61

Paratopula Unknown
Pheidole Generalised 

Myrmicinae
2 0

Secostruma Unknown
Tetramorium Opportunist 0 15
Tetraponera Specialist Predator 0 7

Bromham et al. 1999 Australian Journal of 
Ecology, 24, 199-207

Australia Camponotus Subordinate 
Camponotini

0.36 0.15

Iridomyrmex Dominant 
Dolichoderinae

0.13 0.26

Rhytidoponera Opportunist 3.89 16.26

Castaño-Meneses & 
Palacios-Vargas

2003 Biodiversity & Conservation, 
12, 1913-1919

Mexico Brachymyrmex Cryptic 1 0

Crematogaster Generalised 
Myrmicinae

0 1

Solenopsis Hot Climate 
Specialist

6 1

Solenopsis Hot Climate 
Specialist

7 6

Leptothorax Opportunist 1 5
Leptothorax Opportunist 0 1
Paratrechina Opportunist 0 1
Rogeria Trop. Clim. Spec. 2 0
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Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Fisher & Robertson 2002 Biotropica, 34, 155-167 Madagascar Hypoponera Cryptic 35 1
Hypoponera Cryptic 13 1
Hypoponera Cryptic 14 0
Hypoponera Cryptic 27 0
Hypoponera Cryptic 0 2
Oligomyrmex Cryptic 0 15
Plagiolepis Cryptic 4 0
Plagiolepis Cryptic 0 43
Prionopelta Cryptic 0 1
Pyramica Cryptic 0 1
Pyramica Cryptic 0 4
Strumigenys Cryptic 6 0
Strumigenys Cryptic 0 1
Strumigenys Cryptic 1 0
Strumigenys Cryptic 2 0
Strumigenys Cryptic 32 0
Strumigenys Cryptic 9 0
Strumigenys Cryptic 1 0
Strumigenys Cryptic 0 1
Crematogaster Generalised 

Myrmicinae
3 0

Crematogaster Generalised 
Myrmicinae

2 0

Monomorium Generalised 
Myrmicinae

4 0

Monomorium Generalised 
Myrmicinae

0 90

Monomorium Generalised 
Myrmicinae

0 29

Monomorium Generalised 
Myrmicinae

17 0

Pheidole Generalised 
Myrmicinae

22 0

Pheidole Generalised 
Myrmicinae

42 1

Pheidole Generalised 
Myrmicinae

0 168

Pheidole Generalised 
Myrmicinae

0 76

Anoplolepis Opportunist 3 0
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Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Aphaenogaster Opportunist 0 65
Cardiocondyla Opportunist 0 11
Cardiocondyla Opportunist 0 11
Leptothorax Opportunist 6 0
Leptothorax Opportunist 1 0
Leptothorax Opportunist 2 0
Paratrechina Opportunist 0 58
Technomyrmex Opportunist 0 23
Tetramorium Opportunist 1 0
Tetramorium Opportunist 45 0
Tetramorium Opportunist 36 0
Tetramorium Opportunist 0 60
Tetramorium Opportunist 0 68
Tetramorium Opportunist 0 4
Tetramorium Opportunist 0 6
Cerapachys Specialist Predator 11 0
Cerapachys Specialist Predator 0 1
Cerapachys Specialist Predator 0 4
Pachycondyla Specialist Predator 0 8
Camponotus Subordinate

Camponotini
0 16

Camponotus Subordinate 
Camponotini

0 9

Gómez et al. 2003 Biodiversity & Conservation, 
12, 2135-2146

Spain Hypononera Cryptic 2 0

Aphaenogaster Opportunist 12 0
Aphaenogaster Opportunist 14 1
Crematogaster Generalised 

Myrmicinae
57 9

Crematogaster Generalised 
Myrmicinae

6 0

Leptothorax Cold Climate 
Specialist

3 0

Leptothorax Cold Climate 
Specialist

90 0

Leptothorax Cold Climate 
Specialist

14 0

Messor barbarus Hot Climate 
Specialist

4 0
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Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Myrmica scabrinodis Opportunist 0 239
Myrmica sabuletti Opportunist 7 0
Pheidole Generalised 

Myrmicinae
218 0

Solenopsis Cryptic 9 1
Tetramorium Opportunist 1 0
Tetramorium Opportunist 0 7
Tapinoma Opportunist 2 17
Camponutus Subordinate 

Camponotini
4 0

Camponutus Subordinate 
Camponotini

11 0

Camponutus Subordinate 
Camponotini

12 0

Camponutus Subordinate 
Camponotini

7 0

Camponutus Subordinate 
Camponotini

2 0

Cataglyphis Hot Climate 
Specialist

1 0

Formica Opportunist 0 43
Formica Opportunist 93 7
Formica Opportunist 0 36
Lasius Cold Climate 

Specialist
2 0

Lasius Cold Climate 
Specialist

0 40

Lasius Cold Climate 
Specialist

1 0

Plagiolepis Cryptic 36 0

Gove et al. 2005 Biological Conservation, 126, 
238-338

Mexico Dolichoderus Cold Climate 
Specialist

4 0

Solenopsis 
(diplorhoptrum)

Cryptic 2 7

Solenopsis 
(diplorhoptrum)

Cryptic 4 4

Wasmannia 
auropunctata

Cryptic 3 0

Brachymyrmex Cryptic 0 5
Brachymyrmex Cryptic 0 4
Azteca Dominant 

Dolichoderinae
0 1
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Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Azteca Dominant 
Dolichoderinae

4 0

Forelius pruinosus Dominant 
Dolichoderinae

0 5

Crematogaster Generalised 
Myrmicinae

2 1

Cephalotes Generalised 
Myrmicinae

1 0

Crematogaster Generalised 
Myrmicinae

1 0

Crematogaster Generalised 
Myrmicinae

4 1

Monomorium Generalised 
Myrmicinae

1 11

Pheidole Generalised 
Myrmicinae

4 0

Pheidole Generalised 
Myrmicinae

0 1

Pheidole Generalised 
Myrmicinae

6 0

Pheidole Generalised 
Myrmicinae

0 2

Pheidole Generalised 
Myrmicinae

2 9

Pheidole Generalised 
Myrmicinae

1 3

Pheidole Generalised 
Myrmicinae

1 2

Pheidole Generalised 
Myrmicinae

2 2

Pheidole Generalised 
Myrmicinae

2 0

Pogonomyrmex Hot Climate 
Specialist

0 2

Forelius sp. Hot Climate 
Specialist

0 3

Solenopsis geminata Hot-Climate 
Specialist

5 5

Solenopsis Hot-Climate 
Specialist

3 0

Leptothorax Opportunist 0 1
Leptothorax Opportunist 2 0
Tetramorium Opportunist 1 4
Dorymyrmex Opportunist 0 11
Paratrechina Opportunist 1 3
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Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Ectatomma Opportunist 0 7
Odontomachus Opportunist 1 2
Leptogenys Specialist predator 1 0
Pachycondyla Specialist Predator 3 1
Camponotus Subordinate 

Camponotini
1 2

Camponotus Subordinate 
Camponotini

1 0

Camponotus Subordinate 
Camponotini

2 0

Camponotus Subordinate 
Camponotini

7 1

Camponotus Subordinate 
Camponotini

0 1

Camponotus Subordinate 
Camponotini

2 0

Camponotus Subordinate 
Camponotini

3 0

Camponotus Subordinate 
Camponotini

2 0

Cyphomyrmex Tropical Climate 
Specialist

2 0

Cyphomyrmex Tropical Climate 
Specialist

3 2

Mycocepurus Tropical Climate 
Specialist

6 0

Trachymyrmex Tropical Climate 
Specialist

7 5

Neivamyrmex 
adnepos

Tropical Climate 
Specialist

0 1

Neivamyrmex 
opacithorax

Tropical Climate 
Specialist

0 1

Pseudomyrmex Tropical Climate 
Specialist

0 1

Pseudomyrmex Tropical Climate 
Specialist

1 0

Pseudomyrmex Tropical Climate 
Specialist

0 1

Keals & Majer 1991 In: (eds. D. A. Saunders & R. 
J. Hobbs) Nature 
Conservation 2: The Role of 
Corridors. Surrey Beatty and 
Sons, Sydney. 387-393

Australia Dominant 
Dolichoderinae

Dominant 
Dolichoderinae

14 25.5

Subordinate 
Camponotini

Subordinate 
Camponotini

8 0



231

Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Cryptic Cryptic 3.5 0
Opportunists Opportunist 11 8.25
Generalised 
Myrmicinae

Generalised 
Myrmicinae

27 58.25

Specialist Predator Specialist Predator 3 0

King et al. 1998 Biodiversity & Conservation, 
7, 1627-1638

Australia Cryptopone Cryptic 1 0

Heteroponera Cryptic 1 0
Hypoponera Cryptic 1 0
Hypoponera Cryptic 1 0
Oligomyrmex Cryptic 1 0
Solenopsis Cryptic 0 3
Strumigenys Cryptic 1 0
Iridomyrmex Dominant 

Dolichoderinae
0 1

Crematogaster Generalised 
Myrmicinae

1 0

Pheidole Generalised 
Myrmicinae

14 0

Pheidole Generalised 
Myrmicinae

1 0

Pheidole Generalised 
Myrmicinae

1 0

Pheidole Generalised 
Myrmicinae

1 0

Pheidole Generalised 
Myrmicinae

5 0

Rhytidoponera Opportunist 2 0
Rhytidoponera Opportunist 2 0
Rhytidoponera Opportunist 13 22
Aphaenogaster Opportunist 0 32
Cardiocondyla Opportunist 0 1
Tetramorium Opportunist 1 0
Ochetellus Opportunist 0 2
Technomyrmex Opportunist 1 0
Paratrechina Opportunist 2 20
Paratrechina Opportunist 1 0
Myrmecia Specialist Predator 1 0
Onychomyrmex Specialist Predator 1 0
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Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Polyrhachis Subordinate 
Camponotini

1 0

Lobry de Bruyn 
(Yellow sand site)

1993 Soil Biology & Biochemistry, 
25, 1043-1056

Australia Iridomyrmex Dominant 
Dolichoderinae

2 317

Iridomyrmex Dominant 
Dolichoderinae

263 148

Iridomyrmex Dominant 
Dolichoderinae

32057 26

Iridomyrmex Dominant 
Dolichoderinae

103 3

Iridomyrmex Dominant 
Dolichoderinae

35 15

Iridomyrmex Dominant 
Dolichoderinae

189 4

Iridomyrmex Dominant 
Dolichoderinae

23 67

Tapinoma Opportunist 7 0
Tapinoma Opportunist 52 0
Camponotus Subordinate 

Camponotini
1 0

Camponotus Subordinate 
Camponotini

5 0

Camponotus Subordinate 
Camponotini

20 0

Camponotus Subordinate 
Camponotini

162 3

Camponotus Subordinate 
Camponotini

16 1

Camponotus Subordinate 
Camponotini

3 0

Camponotus Subordinate 
Camponotini

1557 8

Camponotus Subordinate 
Camponotini

0 4

Camponotus Subordinate 
Camponotini

27 0

Camponotus Subordinate 
Camponotini

3 0

Camponotus Subordinate 
Camponotini

31 0

Camponotus Subordinate 
Camponotini

32 0

Camponotus Subordinate 
Camponotini

6 0

Camponotus Subord. Camponotini 9 0
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Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Camponotus Subordinate 
Camponotini

12 0

Camponotus Subordinate 
Camponotini

1 0

Aphaenogaster Opportunist 89 3
Cerapachys Specialist Predator 3 1
Cerapachys Specialist Predator 1 2
Melophorus Hot Climate 

Specialist
37 0

Melophorus Hot Climate 
Specialist

16 72

Melophorus Hot Climate 
Specialist

14 0

Melophorus Hot Climate 
Specialist

71 181

Melophorus Hot Climate 
Specialist

2 7

Melophorus Hot Climate 
Specialist

67 0

Melophorus Hot Climate 
Specialist

32 28

Melophorus Hot Climate 
Specialist

1 0

Melophorus Hot Climate 
Specialist

15 0

Melophorus Hot Climate 
Specialist

15 0

Meranoplus Hot Climate 
Specialist

3 0

Meranoplus Hot Climate 
Specialist

1 0

Meranoplus Hot Climate 
Specialist

2 0

Notoncus Cold Climate 
Specialist

2 0

Notoncus Cold Climate 
Specialist

1 0

Stigmacros Cold Climate 
Specialist

2 0

Stigmacros Cold Climate 
Specialist

1 1

Stigmacros Cold Climate 
Specialist

1 0

Paratrechina Opportunist 3 0
Tetramorium Opportunist 7 10
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Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Tetramorium Opportunist 2 25
Tetramorium Opportunist 0 10
Tetramorium Opportunist 0 9
Rhytidoponera Opportunist 93 237
Rhytidoponera Opportunist 25 0
Crematogaster Generalised 

Myrmicinae
5 0

Crematogaster Generalised 
Myrmicinae

120 0

Crematogaster Generalised 
Myrmicinae

79 0

Monomorium Generalised 
Myrmicinae

645 3014

Monomorium Generalised 
Myrmicinae

9 1

Monomorium Generalised 
Myrmicinae

20 608

Monomorium Generalised 
Myrmicinae

22 0

Pheidole Generalised 
Myrmicinae

37 0

Pheidole Generalised 
Myrmicinae

24 1833

Pheidole Generalised 
Myrmicinae

18 3873

Pheidole Generalised 
Myrmicinae

35 79

Pheidole Generalised 
Myrmicinae

2 67

Pheidole Generalised 
Myrmicinae

0 9

Anochetus Specialist Predator 2 0
Bothroponera Specialist Predator 2 0

Lobry de Bruyn 
(Grey sandy loam 
site)

1993 Soil Biology & Biochemistry, 
25, 1043-1056

Australia Iridomyrmex Dominant 
Dolichoderinae

140 87

Iridomyrmex Dominant 
Dolichoderinae

88 1

Iridomyrmex Dominant 
Dolichoderinae

79645 72

Iridomyrmex Dominant 
Dolichoderinae

13 18

Iridomyrmex Dom. Dolichoderinae 13 3
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Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Iridomyrmex Dominant 
Dolichoderinae

0 9

Iridomyrmex Dominant 
Dolichoderinae

15 23

Iridomyrmex Dominant 
Dolichoderinae

12 1

Iridomyrmex Dominant 
Dolichoderinae

3 0

Ochetellus Opportunist 1 0
Tapinoma Opportunist 129 0
Tapinoma Opportunist 1 0
Camponotus Subordinate 

Camponotini
32 0

Camponotus Subordinate 
Camponotini

2 0

Camponotus Subordinate 
Camponotini

37 0

Camponotus Subordinate 
Camponotini

11 0

Camponotus Subordinate 
Camponotini

17 0

Camponotus Subordinate 
Camponotini

11 0

Camponotus Subordinate 
Camponotini

1 0

Camponotus Subordinate 
Camponotini

44 0

Camponotus Subordinate 
Camponotini

2 0

Camponotus Subordinate 
Camponotini

15 0

Camponotus Subordinate 
Camponotini

29 0

Camponotus Subordinate 
Camponotini

6 0

Camponotus Subordinate 
Camponotini

42 0

Polyrhachis Subordinate 
Camponotini

3 0

Polyrhachis Subordinate 
Camponotini

2 0

Aphaenogaster Opportunist 16 1
Cerapachys Specialist Predator 3 0
Cerapachys Specialist Predator 1 0



236

Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Cerapachys Specialist Predator 0 36
Dolichoderus Cold Climate 

Specialist
5 0

Melophorus Hot Climate 
Specialist

6 0

Melophorus Hot Climate 
Specialist

56 5

Melophorus Hot Climate 
Specialist

187 0

Melophorus Hot Climate 
Specialist

57 86

Melophorus Hot Climate 
Specialist

1 0

Melophorus Hot Climate 
Specialist

66 0

Melophorus Hot Climate 
Specialist

7 29

Melophorus Hot Climate 
Specialist

27 0

Melophorus Hot Climate 
Specialist

2 1

Melophorus Hot Climate 
Specialist

7 0

Melophorus Hot Climate 
Specialist

0 1

Melophorus Hot Climate 
Specialist

1 0

Meranoplus Hot Climate 
Specialist

32 0

Meranoplus Hot Climate 
Specialist

43 0

Meranoplus Hot Climate 
Specialist

58 0

Meranoplus Hot Climate 
Specialist

50 0

Meranoplus Hot Climate 
Specialist

65 0

Notoncus Cold Climate 
Specialist

2 0

Podomyrma Cold Climate 
Specialist

12 0

Stigmacros Cold Climate 
Specialist

1 0

Stigmacros Cold Climate 
Specialist

14 0

Stigmacros Cold Clim. Specialist 3 0
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Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Stigmacros Cold Climate 
Specialist

6 0

Stigmacros Cold Climate 
Specialist

1 0

Strumigenys Cryptic 2 0
Tetramorium Opportunist 5 45
Tetramorium Opportunist 0 13
Tetramorium Opportunist 5 0
Tetramorium Opportunist 5 0
Tetramorium Opportunist 1 0
Tetramorium Opportunist 2 0
Rhytidoponera Opportunist 147 983
Rhytidoponera Opportunist 239 0
Rhytidoponera Opportunist 10 0
Crematogaster Generalised 

Myrmicinae
12 36

Crematogaster Generalised 
Myrmicinae

36 0

Crematogaster Generalised 
Myrmicinae

2 0

Crematogaster Generalised 
Myrmicinae

1470 2116

Monomorium Generalised 
Myrmicinae

223 0

Monomorium Generalised 
Myrmicinae

166 863

Monomorium Generalised 
Myrmicinae

3 0

Monomorium Generalised 
Myrmicinae

1 0

Monomorium Generalised 
Myrmicinae

1 0

Monomorium Generalised 
Myrmicinae

3 0

Monomorium Generalised 
Myrmicinae

6 0

Pheidole Generalised 
Myrmicinae

26 0

Pheidole Generalised 
Myrmicinae

6 3468

Pheidole Generalised 
Myrmicinae

1 1958

Pheidole Gen. Myrmicinae 34 1598
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Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Pheidole Generalised 
Myrmicinae

203 17

Pheidole Generalised 
Myrmicinae

1 44

Anochetus Specialist Predator 1 0
Anochetus Specialist Predator 27 2
Bothroponera Specialist Predator 2 0
Odontomachus Opportunist 1 0

Majer 1978 Forest Ecology & 
Management, 1, 321-334

Australia Rhytidoponera Opportunist 9 2

Heteroponera Cryptic 1 0
Pheidole Generalised 

Myrmicinae
1 10

Xiphomyrmex Opportunist 1 0
Monomorium Generalised 

Myrmicinae
3 0

Monomorium Generalised 
Myrmicinae

10 0

Meranoplus Hot Climate 
Specialist

9 0

Crematogaster Generalised 
Myrmicinae

21 0

Iridomyrmex Dominant 
Dolichoderinae

26 0

Iridomyrmex Dominant 
Dolichoderinae

15 0

Iridomyrmex Dominant 
Dolichoderinae

0 3

Iridomyrmex Dominant 
Dolichoderinae

101 0

Iridomyrmex Dominant 
Dolichoderinae

3 0

Iridomyrmex Dominant 
Dolichoderinae

6 0

Iridomyrmex Dominant 
Dolichoderinae

1 0

Prolasius Cold Climate 
Specialist

2 0

Melophorus Hot Climate 
Specialist

0 15

Melophorus Hot Climate 
Specialist

1 0

Melophorus Hot Climate 
Specialist

2 0
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Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Camponotus Subordinate 
camponotini

2 0

Camponotus Subordinate 
Camponotini

1 0

Nakamura et al. 2003 Ecological Management & 
Restoration, 4, S20-S28

Australia Anillomyrma Cryptic 0 1.8

Anisopheidole Hot Climate 
Specialist

0.8 0

Anonychomyrma Dominant 
Dolichoderinae

0 1.6

Cardiocondyla Opportunist 0.2 0
Colobostruma Specialist Predator 2.8 0
Discothyrea Cryptic 0.2 0
Eurhopalothrix Cryptic 0.2 0
Heteroponera Cryptic 2.8 0.4
Hypoponera Cryptic 11.4 0
Lordomyrma Climate Specialist 0.6 0
Mayriella Tropical Climate 

Specialist
1.2 0

Meranoplus Hot Climate 
Specialist

0.4 0

Monomorium Generalised 
Myrmicinae

2 16.4

Myrmecina Cryptic 0.2 0
Notoncus Cold Climate 

Specialist
0 0.2

Oligomyrmex Cryptic 7.4 17
Pachycondyla Specialist Predator 0 1.6
Paratrechina Opportunist 0.4 0.8
Pheidole Generalised 

Myrmicinae
0.6 2.6

Plagiolepis Cryptic 0 1
Prionopelta Cryptic 0.4 0
Rhytidoponera Opportunist 4 0
Solenopsis Cryptic 8.4 10.8
Strumigenys Cryptic 2.2 0
Tapinoma Opportunist 0 0.6
Tetramorium Opportunist 0 0.8

Room 1975 Australian Journal of 
Zoology, 23, 71-89

PNG Anoplolepis longipes Opportunist 3 4
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Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Pseudolasius Unknown 2 0
Lordomyrma Cold Climate 

Specialist
1 0

Monoceratoclinea Cold Climate 
Specialist

2 0

Brachyponera Cryptic 7 17
Cryptopone Cryptic 1 0
Mesoponera Cryptic 2 0
Hypoponera Cryptic 2 5
Strumigenys Cryptic 1 0
Strumigenys Cryptic 1 0
Strumigenys Cryptic 1 0
Eurhopalothrix Cryptic 0 1
Myrmecina Cryptic 0 1
Myrmecina Cryptic 1 1
Pheidologeton Cryptic 9 6
Acropyga Cryptic 1 0
Leptomyrmex Dominant 

Dolichoderinae
2 3

Iridomyrmex Dominant 
Dolichoderinae

3 0

Iridomyrmex Dominant 
Dolichoderinae

2 0

Crematogaster Generalised 
Myrmicinae

1 0

Rhoptromyrmex Generalised 
Myrmicinae

1 5

Pheidole Generalised 
Myrmicinae

7 1

Pheidole Generalised 
Myrmicinae

2 2

Pheidole Generalised 
Myrmicinae

2 0

Pheidole Generalised 
Myrmicinae

1 0

Pheidole Generalised 
Myrmicinae

2 0

Pheidole Generalised 
Myrmicinae

1 1

Pheidole Generalised 
Myrmicinae

1 1

Pheidole Gen. Myrmicinae 3 2
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Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Meranoplus Hot Climate 
Specialist

1 0

Rhytidoponera Opportunist 0 4
Gnamptogenys 
sulcata

Opportunist 1 0

Odontomachus Opportunist 4 0
Odontomachus Opportunist 1 6
Odontomachus Opportunist 7 2
Aphaenogaster Opportunist 25 3
Aphaenogaster Opportunist 3 0
Tetramorium Opportunist 1 1
Cardiocondyla Opportunist 0 1
Technomyrmex Opportunist 3 6
Technomyrmex Opportunist 2 1
Paratrechina Opportunist 0 1
Paratrechina Opportunist 0 1
Paratrechina Opportunist 7 1
Paratrechina Opportunist 1 0
Paratrechina Opportunist 1 0
Paratrechina Opportunist 1 0
Anochetus Specialist Predator 0 1
Myopias Specialist Predator 2 0
Myopias Specialist Predator 1 0
Leptogenys Specialist Predator 1 0
Ectomomyrmex Specialist Predator 6 1
Ectomomyrmex Specialist Predator 1 0
Orectognathus Specialist Predator 1 0
Camponotus Subordinate 

Camponotini
0 1

Polyrhachis Subordinate 
Camponotini

5 0

Polyrhachis Subordinate 
Camponotini

1 0

Pristomyrmex Tropical Climate 
Specialist

0 2

Oecophylla Tropical Climate 
Specialist

2 2

Roth et al. 1994 Ecological Interactions, 4, 
423-436

Costa Rica Aphaenogaster Opportunist 0.171 0
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Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Cardiocondyla Opportunist 0 0.011
Crematogaster Generalised 

Myrmicinae
0.046 0

Cyphomyrmex Tropical Climate 
Specialist

0 0.011

Pheidole Generalised 
Myrmicinae

0.026 0

Pheidole Generalised 
Myrmicinae

0.062 0

Pheidole Generalised 
Myrmicinae

0.058 0

Pheidole Generalised 
Myrmicinae

0.079 0

Pheidole Generalised 
Myrmicinae

0 0.116

Pheidole Generalised 
Myrmicinae

0.05 0

Pheidole Generalised 
Myrmicinae

0.005 0

Pheidole Generalised 
Myrmicinae

0.033 0

Pheidole Generalised 
Myrmicinae

0 0.033

Pheidole Generalised 
Myrmicinae

0.241 0

Pheidole Generalised 
Myrmicinae

0.039 0

Pheidole Generalised 
Myrmicinae

0.009 0

Pheidole Generalised 
Myrmicinae

0.01 0

Pheidole Generalised 
Myrmicinae

0.025 0

Pheidole Generalised 
Myrmicinae

0.067 0

Pheidole Generalised 
Myrmicinae

0.004 0

Pheidole Generalised 
Myrmicinae

0.017 0.011

Pheidole Generalised 
Myrmicinae

0.005 0

Pheidole Generalised 
Myrmicinae

0 0.005

Pheidole Generalised 
Myrmicinae

0.005 0

Pheidole Gen. Myrmicinae 0.005 0
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Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Pheidole Generalised 
Myrmicinae

0.13 0

Pheidole Generalised 
Myrmicinae

0.118 0.005

Pheidole Generalised 
Myrmicinae

0.005 0

Pheidole Generalised 
Myrmicinae

0.065 0

Pheidole Generalised 
Myrmicinae

0 0.045

Pheidole Generalised 
Myrmicinae

0 0.258

Pheidole Generalised 
Myrmicinae

0 0.049

Pheidole Generalised 
Myrmicinae

0.085 0

Pheidole Generalised 
Myrmicinae

0.005 0

Solenopsis Hot Climate 
Specialist

0.004 0

Solenopsis Hot Climate 
Specialist

0 0.007

Solenopsis Hot Climate 
Specialist

0.004 0.013

Solenopsis Hot Climate 
Specialist

0.046 0

Solenopsis Hot Climate 
Specialist

0.004 0

Solenopsis Hot Climate 
Specialist

0.004 0

Solenopsis Hot Climate 
Specialist

0.005 0

Solenopsis Hot Climate 
Specialist

0 0.013

Tetramorium Opportunist 0 0.005
Trachymyrmex Tropical Climate 

Specialist
0.004 0

Wasmannia Cryptic 0 0.011
Wasmannia Cryptic 0.044 0
Gnamptogenys Opportunist 0 0.007
Hypononera Cryptic 0.019 0
Hypononera Cryptic 0.005 0
Hypononera Cryptic 0 0.005
Hypononera Cryptic 0 0.011
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Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Odontomachus Opportunist 0 0.04
Odontomachus Opportunist 0.004 0
Odontomachus Opportunist 0.08 0
Odontomachus Opportunist 0.017 0.043
Odontomachus Opportunist 0.062 0
Odontomachus Opportunist 0.005 0
Pachycondyla Specialist Predator 0.042 0
Pachycondyla Specialist Predator 0.0325 0.046
Pachycondyla Specialist Predator 0.005 0
Paratrechina Opportunist 0.092 0.013

Schnell et al. 2003 Austral Ecology, 28, 553-565 Australia Dominant 
Dolichoderinae

Dominant 
Dolichoderinae

9 24

Subordinate 
Camponotini

Subordinate 
Camponotini

3 0.5

Opportunists Opportunist 66 42
Generalised 
Myrmicinae

Generalised 
Myrmicinae

17 21

Hot Climate 
Specialist

Hot Climate 
Specialist

0.5 2

Schonberg et al. 2004 Biotropica, 36, 402-409 Costa Rica Solenopsis Hot Climate 
Specialist

5 5

Camponotus Subordinate 
Camponotini

5 5

Camponotus Subordinate 
Camponotini

4 5

Stenamma Cold Climate 
Specialist

5 1

Pheidole diana Generalised 
Myrmicinae

3 4

Brachymyrmex Cryptic 3 2
Myrmelachista Tropical Climate 

Specialist
2 3

Leptothorax Opportunist 2 4
Solenopsis Hot Climate 

Specialist
3 1

Pheidole innupta Generalised 
Myrmicinae

3 1

Myrmelachista Tropical Climate 
Specialist

3 1

Pheidole exarata Generalised 
Myrmicinae

0 4

Brachymyrmex Cryptic 1 0
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Author Year Journal, Vol, pp Country Genus Functional 
Group

Abundance 
in NV

Abundance in 
Ag

Hypoponera Cryptic 1 1
Brachymyrmex Cryptic 0 2
Myrmelachista Tropical Climate 

Specialist
1 1

Brachymyrmex Cryptic 1 0
Pheidole 
monteverdensis

Generalised 
Myrmicinae

1 0

Paratrechina Opportunist 0 1
Wasmannia 
auropunctata

Cryptic 0 1

Adelomyrmex Cryptic 0 1
Hypoponera Cryptic 1 0
Pachycondyla 
aenescens

Specialist Predator 1 0

Pheidole hizempos Generalised 
Myrmicinae

1 0

Pheidole specularis Generalised 
Myrmicinae

0 1

References used to attribute functional groups to taxa.

Andersen, A.N. (1997) Functional Groups and patterns of organization in North American ant communities: a comparison with Australia. 
Journal of Biogeography, 24, 433–460.

Andersen, A.N. & Reichel, H. (1994) The ant (Hymenoptera: Formicidae) fauna of Holmes Jungle, a rainforest patch in the seasonal tropics of 
Australia’s Northern Territory. Journal of the Australian Entomological Society, 33, 153–158.

Andersen, A.N. & Clay, R.E. (1996) The ant fauna of Danggali Conservation park in semi-arid South Australia: a comparison with Wyperfield 
(Vic.) and Cape Arid (W.A.) National Parks. Australian Journal of Entomology, 35, 289–295.

Bestelmeyer, B.T. (2000) The trade-off between thermal tolerance and behavioural dominance in a subtropical South American ant community. 
Journal of Animal Ecology, 69, 998–1009.

Feilder, K. (2001) Ants that associate with Lycaeninae butterfly larvae: diversity, ecology and biogeography. Diversity and Distributions, 7, 45–
60
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Gill, A.M., Woinarski, J.C.Z. & York, A. (1999) Australia’s Biodiversity—Responses to Fire: Plants, birds and invertebrates. Biodiversity 
Technical Paper, No.1. Environment Australia.

Hoffmann B.D. & Andersen A.N. (2003) Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral 
Ecology, 28, 444–464.

McGlynn, T.P. (1999) The worldwide transfer of ants: geographical distribution and ecological invasions. Journal of Biogeography, 26, 535–
548.

Riechel, H. & Andersen, A.N. (1996) The rainforest ant fauna of Australia’s Northern Territory. Australian Journal of Zoology, 44, 81–95.

York, A. (2000) Long-term effects of frequent low-intensity burning on ant communities in coastal blackbutt forests of southeastern Australia. 
Austral Ecology, 25, 83–98.
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Appendix C.3 Bray Curtis Similarity Matrix for 4th Rt transformed ant morphospecies data at each location and treatment for intensification 
gradient (WC = woodland core, WE = woodland/pasture edge, PC = pasture core, CE = pasture/cropping edge, CC = cropping core). 

Rice 1 CC Rice 1 CE Rice 1 PC Rice 1 WE Rice 1 WC Rice 2 CC Rice 2 CE Rice 2 PC Rice 2 WE Rice 2 WC Kowitz CC Kowitz CE Kowitz PC Kowitz WE Kowitz WC Radke CC Radke CE Radke PC Radke WE Radke WC
Rice 1 CC
Rice 1 CE 35.4
Rice 1 PC 31.7 47.0
Rice 1 WE 20.9 58.1 48.7
Rice 1 WC 23.0 43.4 32.8 57.2
Rice 2 CC 60.1 41.0 29.8 26.6 29.2
Rice 2 CE 62.4 33.5 30.9 27.4 31.7 50.1
Rice 2 PC 39.5 59.1 37.5 54.0 38.6 47.8 43.4
Rice 2 WE 27.9 54.8 43.7 53.4 51.8 33.9 34.4 53.6
Rice 2 WC 27.9 51.3 30.1 53.1 42.1 34.2 29.4 63.7 62.7
Kowitz CC 54.7 24.3 27.8 20.8 22.7 35.4 51.4 25.7 24.7 17.7
Kowitz CE 38.4 40.9 30.1 32.4 31.3 32.3 42.5 37.4 32.3 31.1 40.1
Kowitz PC 24.1 34.5 38.3 40.5 29.8 23.8 25.7 38.9 39.3 34.2 32.1 51.6
Kowitz WE 14.5 25.9 18.6 43.3 37.9 15.9 22.9 24.8 29.7 26.9 22.6 32.5 49.8
Kowitz WC 7.8 18.2 17.2 34.5 31.7 11.9 7.0 21.0 26.1 30.0 11.6 25.3 29.2 56.8
Radke CC 56.0 30.0 20.6 22.9 26.1 55.6 36.0 44.8 24.1 36.0 28.0 21.7 10.1 6.9 6.6
Radke CE 27.3 52.9 31.5 39.8 36.9 32.2 40.6 47.0 55.9 40.9 30.1 55.8 43.3 20.8 11.7 22.8
Radke PC 38.5 51.7 54.2 43.2 48.8 38.7 29.6 38.4 55.9 50.4 27.2 29.7 38.2 22.3 19.5 32.5 45.5
Radke WE 38.4 39.1 42.3 45.3 48.1 38.2 32.9 43.0 51.4 39.9 33.4 31.7 33.5 31.7 26.6 28.6 37.4 52.3
Radke WC 26.8 40.6 34.6 52.0 42.6 30.9 21.3 35.9 49.3 57.1 24.3 22.2 30.6 37.8 40.8 31.4 30.0 51.1 48.9
Halford 1 CC 88.4 42.1 38.3 26.0 26.6 68.1 68.4 46.2 34.3 30.0 50.1 42.9 28.8 18.2 7.6 57.4 33.4 39.9 43.6 28.7
Halford 1 CE 37.9 38.4 43.4 26.4 27.4 38.4 29.6 27.4 35.5 25.3 32.9 30.3 28.3 19.5 24.4 13.0 20.2 41.2 33.2 23.4
Halford 1 PC 15.1 32.5 9.6 35.4 36.9 23.6 18.2 33.4 31.5 40.6 14.4 47.4 40.4 34.9 20.5 26.0 41.1 24.8 24.8 30.1
Halford 1 WE 8.8 22.7 14.3 37.5 37.3 7.4 7.4 19.9 30.1 40.3 14.2 18.5 36.8 62.2 55.9 8.8 8.3 24.5 35.2 53.5
Halford 1 WC 33.4 37.9 21.0 38.9 33.3 28.0 24.5 38.9 41.4 60.6 19.6 26.7 31.5 35.4 34.0 34.5 23.8 32.0 38.7 59.5
Halford 2 CC 58.9 39.1 34.1 25.0 27.3 56.1 43.0 42.9 38.0 35.0 56.4 47.6 33.6 16.5 6.8 51.3 47.3 41.8 42.1 33.4
Halford 2 CE 42.5 42.5 36.8 33.9 31.1 36.1 50.7 39.4 40.4 37.3 37.5 54.9 42.8 29.1 19.1 28.8 62.3 39.1 45.0 36.5
Halford 2 PC 34.1 25.1 23.7 24.6 26.6 43.9 36.8 38.0 39.4 44.5 29.8 38.5 30.7 26.3 25.9 37.1 43.2 39.1 35.8 43.0
Halford 2 WE 26.7 21.5 23.6 44.4 34.4 18.7 26.2 27.5 36.1 40.2 32.4 42.7 44.2 58.1 40.3 19.1 27.2 29.3 34.9 53.1
Halford 2 WC 23.9 21.0 16.9 27.0 33.5 20.3 26.9 22.3 27.8 31.1 23.0 27.0 21.4 29.5 29.2 22.2 16.4 22.9 26.8 33.9
Postle CC 45.8 20.3 18.9 16.6 13.4 47.2 33.3 28.4 16.3 27.5 42.3 28.2 11.6 6.7 11.7 32.9 28.1 23.1 22.0 20.2
Postle CE 32.0 34.4 16.1 26.7 28.5 48.8 32.6 38.4 33.7 42.7 28.8 22.4 6.7 14.7 14.1 46.7 40.5 28.0 21.9 35.3
Postle PC 28.5 53.4 43.8 48.4 40.4 41.4 38.3 44.7 47.8 46.3 31.4 33.3 28.3 25.2 15.0 24.9 46.2 51.0 44.0 41.2
Postle WE 20.9 36.5 13.9 33.7 33.9 23.5 16.9 24.6 30.6 39.7 19.6 24.8 18.2 44.2 47.2 24.5 22.5 22.5 30.9 46.4
Postle WC 21.5 23.2 20.8 30.0 34.0 18.4 31.0 21.4 32.8 42.4 22.5 19.8 17.2 31.5 31.4 21.6 24.4 30.1 29.4 41.8
Thallon CC 81.3 36.4 32.7 22.0 22.6 57.9 65.3 39.5 29.0 23.3 49.7 38.8 28.7 18.1 7.6 43.3 28.4 33.8 37.7 22.9
Thallon CE 41.1 44.1 40.1 37.3 32.1 54.0 40.8 49.0 44.0 37.2 27.1 41.8 39.9 29.3 25.1 34.2 37.5 41.9 36.7 23.4
Thallon PC 32.8 31.3 46.9 45.4 33.0 35.2 39.8 33.7 39.8 40.7 28.3 39.6 22.2 26.2 21.5 25.5 31.1 29.9 41.2 34.7
Thallon WE 28.4 35.5 35.2 52.6 38.2 50.6 24.3 40.2 40.3 38.0 19.6 25.2 29.7 30.6 28.9 25.8 35.1 38.5 44.0 46.6
Thallon WC 18.9 26.0 18.7 36.6 36.4 26.8 28.3 24.2 29.6 38.6 23.2 24.8 32.1 53.1 39.0 13.7 20.9 30.8 32.2 45.8
McCreath PC 26.3 44.4 51.0 43.3 27.4 21.6 27.4 45.6 44.3 36.6 28.5 34.8 46.3 47.1 45.4 9.0 24.8 35.6 44.5 31.1
McCreath WE 13.8 25.4 27.1 42.4 21.0 17.0 18.6 24.5 24.5 28.4 25.6 14.6 28.0 50.3 41.4 8.1 14.7 26.4 29.0 38.2
McCreath WC 22.6 34.2 26.7 53.0 54.2 30.2 29.9 37.7 57.2 41.7 22.3 23.4 30.0 51.1 43.0 22.1 39.1 42.6 47.9 54.6
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Halford 1 CC Halford 1 CE Halford 1 PC Halford 1 WE Halford 1 WC Halford 2 CC Halford 2 CE Halford 2 PC Halford 2 WE Halford 2 WC Postle CC Postle CE Postle PC Postle WE Postle WC Thallon CC Thallon CE Thallon PC Thallon WE Thallon WC McCreath PC McCreath WE McCreath WC
Rice 1 CC
Rice 1 CE
Rice 1 PC
Rice 1 WE
Rice 1 WC
Rice 2 CC
Rice 2 CE
Rice 2 PC
Rice 2 WE
Rice 2 WC
Kowitz CC
Kowitz CE
Kowitz PC
Kowitz WE
Kowitz WC
Radke CC
Radke CE
Radke PC
Radke WE
Radke WC
Halford 1 CC
Halford 1 CE 37.3
Halford 1 PC 17.9 9.3
Halford 1 WE 8.3 21.5 30.6
Halford 1 WC 32.7 20.8 29.8 46.2
Halford 2 CC 59.6 25.2 32.0 7.0 26.5
Halford 2 CE 44.5 32.7 33.7 10.9 32.2 51.0
Halford 2 PC 36.0 20.5 34.1 28.8 27.8 50.3 47.2
Halford 2 WE 25.3 26.8 38.8 51.9 44.6 26.5 34.9 48.2
Halford 2 WC 22.8 23.6 22.6 31.2 32.7 26.1 21.4 29.3 48.5
Postle CC 42.3 30.8 9.6 7.2 22.8 41.5 23.9 25.2 20.7 18.7
Postle CE 34.6 8.1 47.3 13.7 31.9 48.9 34.5 34.7 20.1 16.3 37.7
Postle PC 32.9 25.5 24.3 19.5 25.6 37.7 40.3 32.5 34.5 23.4 16.6 37.9
Postle WE 22.8 20.3 32.6 48.1 42.4 22.7 27.5 25.0 40.4 31.7 16.0 29.9 38.5
Postle WC 20.5 12.6 19.0 28.1 43.0 17.7 28.9 20.1 32.6 30.4 15.8 28.3 37.4 43.0
Thallon CC 84.9 37.0 11.1 8.3 27.2 50.2 38.0 29.1 23.4 21.3 42.2 25.6 28.2 17.8 17.9
Thallon CE 49.8 37.1 28.8 13.1 29.3 45.8 42.1 40.6 27.5 28.4 22.6 39.0 38.3 31.2 19.7 42.0
Thallon PC 40.3 30.8 27.8 22.3 26.3 36.2 49.1 26.6 25.4 20.1 24.5 37.0 43.9 36.2 26.4 33.9 44.1
Thallon WE 30.7 32.9 33.4 21.5 22.6 32.7 44.0 38.0 36.0 19.6 26.0 40.4 37.9 24.8 17.4 25.8 38.3 47.9
Thallon WC 18.2 22.2 27.8 39.7 48.4 16.1 32.4 29.8 49.4 35.8 21.8 31.2 34.1 37.5 50.1 18.2 35.7 31.8 35.8
McCreath PC 31.1 42.1 18.2 45.7 30.4 18.8 31.0 30.7 35.4 18.4 13.9 12.2 28.0 27.1 21.0 30.0 47.0 40.5 35.6 31.5
McCreath WE 13.3 16.2 15.4 52.1 19.5 11.6 20.5 36.4 46.8 23.0 11.8 22.4 42.7 35.7 25.2 13.2 26.9 29.6 44.2 41.3 51.0
McCreath WC 28.7 16.5 38.9 41.7 41.8 27.2 27.2 30.6 40.9 38.8 12.5 31.3 34.2 34.8 43.6 23.8 25.3 35.3 43.9 43.7 30.5 31.9
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Appendix D.1 Bray Curtis Similarity Matrix for 4th rt transformed ant morphospecies data at each location and treatment for directional pitfall 
trapping (Wedge = wood-edge, Wcrop = wood-crop, Hedge = linear-edge, Hcrop = linear-crop). 

LWedge1 LWedge2 LWedge3 LWcrop1 LWcrop2 LWcrop3 LHedge1 LHedge2 LHedge3 LHcrop1 LHcrop2 LHcrop3
LWedge1
LWedge2 70.62
LWedge3 65.98 63.09
LWcrop1 64.80 78.10 68.90
LWcrop2 53.79 73.58 53.17 75.03
LWcrop3 50.09 53.14 48.73 61.88 47.48
LHedge1 35.14 59.48 45.06 40.08 42.68 23.58
LHedge2 55.29 58.46 63.36 49.60 40.91 39.63 52.49
LHedge3 27.05 48.39 40.05 35.79 37.64 19.81 75.83 56.35
LHcrop1 44.36 56.52 33.17 49.40 40.36 60.60 48.34 30.57 39.96
LHcrop2 34.40 25.91 32.04 34.91 17.46 48.14 0.00 34.36 13.24 37.19
LHcrop3 29.26 43.71 35.87 34.12 21.58 54.54 55.22 32.63 45.33 69.35 21.59
MWedge1 68.45 52.28 47.15 38.13 41.89 26.76 37.47 50.23 51.86 19.29 10.45 18.84
MWedge2 50.45 34.59 51.05 41.82 37.93 42.28 11.14 42.51 19.93 22.57 54.57 27.41
MWedge3 54.65 44.15 62.31 51.12 38.84 42.87 22.04 33.23 19.85 29.56 30.67 31.19
MWcrop1 62.45 65.82 51.19 54.47 45.63 48.28 44.42 46.82 33.31 49.08 26.78 41.04
MWcrop2 47.11 38.14 45.91 43.77 27.42 68.85 0.00 37.44 0.00 36.79 58.14 28.06
MWcrop3 47.45 41.98 39.81 64.26 32.74 70.30 0.00 22.88 0.00 42.99 48.14 23.94
MHedge1 49.22 58.29 63.10 47.29 40.16 28.84 46.23 48.28 36.93 30.14 13.11 31.93
MHedge2 63.82 65.61 51.44 53.13 56.46 44.48 37.75 41.92 28.85 48.17 38.77 34.11
MHedge3 67.29 59.13 40.14 44.65 49.10 31.64 38.95 34.13 29.66 37.47 16.20 19.68
MHcrop1 43.69 46.63 29.63 47.41 39.28 77.91 24.95 28.98 20.41 67.10 46.10 57.93
MHcrop2 29.89 44.29 32.03 50.25 36.74 58.76 20.35 25.97 16.74 48.85 52.33 30.29
MHcrop3 44.96 43.35 31.78 55.98 35.99 76.81 19.12 24.95 15.90 65.02 50.90 51.61
QWedge1 68.35 65.59 59.17 65.23 59.05 50.24 39.42 41.51 29.98 51.40 32.76 35.82
QWedge2 55.58 52.50 56.70 62.01 45.26 46.78 28.30 30.02 25.45 46.33 33.49 31.58
QWedge3 64.14 60.93 56.18 71.17 58.32 69.34 20.74 34.50 18.19 53.65 35.52 40.94
QWcrop1 38.74 34.81 32.26 49.89 40.12 47.92 9.35 22.25 8.51 33.89 31.34 22.55
QWcrop2 52.60 51.27 45.53 61.41 57.07 73.28 21.27 35.13 18.59 54.87 38.23 42.13
QWcrop3 49.84 46.08 50.55 59.59 42.01 54.13 14.86 20.29 13.12 46.53 37.32 33.91
QHedge1 51.19 51.96 45.87 60.26 47.40 58.09 38.99 38.17 49.30 55.56 42.28 40.03
QHedge2 47.65 55.55 49.81 69.31 47.82 55.77 44.49 42.27 39.29 65.68 39.24 38.26
QHedge3 46.38 64.65 43.03 61.16 50.39 55.82 58.89 40.40 51.25 88.31 34.60 63.23
QHcrop1 22.46 34.60 45.06 46.22 41.46 49.39 39.11 38.10 33.31 34.95 28.75 46.70
QHcrop2 55.34 73.63 52.02 67.78 51.12 56.29 75.72 55.03 59.64 71.59 36.56 57.50
QHcrop3 47.29 56.22 47.18 67.39 63.08 64.25 43.32 41.13 37.39 63.81 40.76 47.06
CWedge1 64.95 64.67 51.18 67.51 64.32 69.05 39.04 48.38 33.89 59.00 32.74 41.67
CWedge2 57.51 61.01 46.37 55.56 52.62 58.53 35.78 48.47 27.49 46.99 33.59 32.12
CWedge3 46.06 47.31 38.13 49.34 69.78 58.07 33.12 33.97 28.35 43.40 17.11 28.13
CWcrop1 63.40 60.57 54.59 72.00 66.89 56.88 28.05 46.92 35.05 48.83 39.65 33.64
CWcrop2 59.12 56.16 52.26 56.42 59.42 39.91 32.88 41.79 37.02 45.01 34.90 29.77
CWcrop3 56.98 56.29 44.53 63.69 68.96 55.61 27.57 29.90 24.00 60.18 34.48 43.64
CHedge1 42.23 44.06 27.96 44.50 46.86 45.31 40.03 27.44 34.08 52.10 22.24 29.39
CHedge2 39.69 37.94 21.63 47.46 42.86 44.69 30.84 21.23 26.31 51.49 21.98 28.93
CHedge3 60.09 59.49 44.17 65.41 62.06 45.93 43.65 29.80 37.09 52.70 22.50 29.84
CHcrop1 37.84 35.66 16.11 46.85 41.24 29.29 0.00 0.00 0.00 30.66 27.66 0.00
CHcrop2 61.69 60.03 49.65 55.28 51.65 39.28 33.45 38.19 25.88 44.14 36.40 29.80
CHcrop3 60.29 59.79 38.12 55.87 40.34 50.98 45.23 45.86 33.85 55.97 31.04 38.96



250

MWedge1 MWedge2 MWedge3 MWcrop1 MWcrop2 MWcrop3 MHedge1 MHedge2 MHedge3 MHcrop1 MHcrop2 MHcrop3
LWedge1
LWedge2
LWedge3
LWcrop1
LWcrop2
LWcrop3
LHedge1
LHedge2
LHedge3
LHcrop1
LHcrop2
LHcrop3
MWedge1
MWedge2 44.64
MWedge3 46.82 59.89
MWcrop1 47.33 31.71 39.86
MWcrop2 12.05 40.87 29.02 31.70
MWcrop3 11.08 29.53 30.91 28.68 67.59
MHedge1 52.06 27.99 54.06 56.05 15.00 13.85
MHedge2 54.40 44.88 49.22 68.40 26.58 30.73 66.93
MHedge3 65.88 40.59 42.92 58.63 12.56 18.72 58.77 72.97
MHcrop1 15.17 25.34 25.72 49.48 48.26 51.22 26.34 47.39 35.78
MHcrop2 0.00 17.59 16.33 33.20 56.26 59.36 27.38 34.76 20.46 65.12
MHcrop3 12.04 29.86 27.81 46.16 52.41 67.67 26.39 45.57 32.97 84.28 69.37
QWedge1 45.90 40.35 47.99 69.44 30.71 48.22 60.29 81.20 62.27 49.79 39.47 58.63
QWedge2 34.32 32.40 50.52 54.29 27.23 42.32 51.20 58.71 49.02 43.83 34.83 51.97
QWedge3 39.47 43.14 50.59 53.59 49.32 62.15 41.59 57.34 47.40 57.01 45.07 65.40
QWcrop1 14.52 35.69 30.30 33.85 35.77 54.55 16.26 34.69 19.55 36.35 30.52 45.74
QWcrop2 24.58 43.53 40.04 41.53 53.49 64.30 26.42 51.30 31.61 58.69 46.37 64.04
QWcrop3 25.42 35.23 46.14 47.18 32.72 52.14 43.33 53.06 41.88 53.25 42.16 62.44
QHedge1 41.84 39.28 46.74 44.69 34.14 42.42 38.40 44.42 47.39 55.73 58.88 58.27
QHedge2 23.12 26.04 34.16 49.06 32.71 53.37 42.23 48.26 38.99 53.24 56.30 62.43
QHedge3 19.63 21.38 29.37 47.64 33.73 44.18 39.30 46.97 36.82 61.09 60.76 64.51
QHcrop1 12.99 42.73 31.79 30.65 25.91 27.19 36.41 37.17 13.49 43.80 46.91 45.69
QHcrop2 31.21 23.64 32.08 59.12 34.00 44.69 50.45 57.06 47.77 55.47 58.61 62.35
QHcrop3 19.44 35.60 32.52 48.83 39.78 53.49 41.17 58.27 37.39 65.68 69.12 75.92
CWedge1 37.05 39.59 40.15 54.57 50.20 61.84 35.39 62.98 44.79 62.52 42.46 64.74
CWedge2 47.22 38.97 38.01 54.59 39.14 46.17 51.57 72.59 57.60 44.58 35.42 47.87
CWedge3 32.93 31.81 33.87 38.68 38.53 39.09 21.20 45.93 36.25 45.55 22.15 38.51
CWcrop1 45.80 52.23 45.21 53.58 42.01 60.15 38.61 60.70 43.93 46.73 35.87 53.08
CWcrop2 45.87 41.53 42.69 56.75 22.87 36.23 50.82 69.03 52.78 44.47 30.42 47.03
CWcrop3 30.91 42.65 39.93 60.63 33.60 45.61 40.68 68.11 48.44 60.83 44.39 66.02
CHedge1 26.58 10.87 21.53 70.04 18.34 27.21 25.28 44.00 46.06 53.76 30.44 49.15
CHedge2 20.57 10.77 19.18 49.75 18.07 42.25 19.57 37.79 39.64 52.90 29.97 56.25
CHedge3 41.97 23.99 33.91 62.62 18.60 38.34 39.89 59.65 62.21 54.61 30.91 57.91
CHcrop1 15.18 15.08 13.98 33.99 24.17 51.03 14.32 35.45 37.56 40.65 40.91 51.07
CHcrop2 42.59 42.43 47.76 61.74 23.36 37.97 54.55 81.46 56.93 41.34 30.40 45.90
CHcrop3 35.05 19.01 27.97 73.50 29.54 48.63 42.67 59.93 52.27 58.39 39.72 60.75
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QWedge1 QWedge2 QWedge3 QWcrop1 QWcrop2 QWcrop3 QHedge1 QHedge2 QHedge3 QHcrop1 QHcrop2 QHcrop3
LWedge1
LWedge2
LWedge3
LWcrop1
LWcrop2
LWcrop3
LHedge1
LHedge2
LHedge3
LHcrop1
LHcrop2
LHcrop3
MWedge1
MWedge2
MWedge3
MWcrop1
MWcrop2
MWcrop3
MHedge1
MHedge2
MHedge3
MHcrop1
MHcrop2
MHcrop3
QWedge1
QWedge2 72.73
QWedge3 69.28 63.04
QWcrop1 46.36 43.78 56.03
QWcrop2 58.85 54.10 64.05 65.45
QWcrop3 70.41 75.57 68.84 50.33 48.10
QHedge1 49.59 48.75 49.05 37.13 51.68 46.19
QHedge2 63.38 58.73 54.85 43.55 52.04 53.83 66.26
QHedge3 53.24 48.25 53.97 35.02 53.05 47.25 64.92 77.57
QHcrop1 42.28 31.76 33.48 36.00 49.45 35.48 52.03 61.78 45.99
QHcrop2 65.65 54.42 52.16 35.79 53.61 47.47 64.70 71.47 81.35 49.56
QHcrop3 70.07 53.57 61.04 48.84 71.70 54.55 70.53 73.87 76.52 67.66 73.87
CWedge1 71.94 55.34 66.37 53.95 77.48 47.97 52.45 62.99 60.68 44.25 63.92 77.25
CWedge2 65.57 47.96 51.27 55.81 64.48 50.37 49.04 53.07 45.90 42.29 58.97 59.63
CWedge3 47.85 32.95 46.93 44.84 67.30 28.12 39.14 38.74 42.14 33.50 40.06 57.20
CWcrop1 73.41 57.18 67.73 61.53 69.73 54.42 45.72 58.71 50.72 38.11 53.17 64.79
CWcrop2 81.41 65.70 59.99 41.70 51.25 61.66 41.26 52.01 47.02 33.22 53.49 59.15
CWcrop3 76.34 59.94 68.57 48.38 66.64 61.15 53.25 56.73 61.37 45.83 56.48 77.71
CHedge1 47.23 42.34 41.78 33.70 42.79 34.89 45.79 49.99 50.15 18.85 51.74 51.75
CHedge2 52.15 43.66 49.73 39.77 44.16 44.95 44.06 55.31 52.53 18.61 47.72 57.71
CHedge3 71.22 63.78 66.21 30.80 45.09 57.89 46.24 60.12 55.07 19.09 57.82 59.05
CHcrop1 49.66 42.47 54.67 25.84 29.04 53.11 24.63 35.91 33.19 0.00 29.15 38.20
CHcrop2 85.60 69.75 58.39 44.23 48.45 67.35 40.67 53.07 46.08 33.03 54.70 57.47
CHcrop3 73.34 54.96 53.98 43.03 49.27 49.60 50.09 65.56 57.76 28.71 68.03 61.20
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CWedge1 CWedge2 CWedge3 CWcrop1 CWcrop2 CWcrop3 CHedge1 CHedge2 CHedge3 CHcrop1 CHcrop2 CHcrop3
LWedge1
LWedge2
LWedge3
LWcrop1
LWcrop2
LWcrop3
LHedge1
LHedge2
LHedge3
LHcrop1
LHcrop2
LHcrop3
MWedge1
MWedge2
MWedge3
MWcrop1
MWcrop2
MWcrop3
MHedge1
MHedge2
MHedge3
MHcrop1
MHcrop2
MHcrop3
QWedge1
QWedge2
QWedge3
QWcrop1
QWcrop2
QWcrop3
QHedge1
QHedge2
QHedge3
QHcrop1
QHcrop2
QHcrop3
CWedge1
CWedge2 70.71
CWedge3 73.56 55.77
CWcrop1 78.21 61.79 65.36
CWcrop2 65.87 54.03 55.41 76.18
CWcrop3 73.59 56.68 67.49 76.41 77.31
CHedge1 57.12 42.97 50.18 44.75 42.88 49.55
CHedge2 56.14 37.09 46.71 54.90 44.76 53.90 74.72
CHedge3 67.48 45.28 50.78 64.23 64.59 72.33 66.08 67.22
CHcrop1 37.20 20.37 22.80 44.21 43.74 54.61 33.72 48.99 71.89
CHcrop2 62.16 57.89 40.93 67.85 72.29 66.11 40.24 51.20 60.60 41.23
CHcrop3 69.41 58.31 41.76 63.83 59.68 58.54 67.12 80.08 65.75 39.39 68.77


