Four weeks of sprint interval training improves $5 \mathbf{k m}$ run performance

Short title: SIT improves 5 km run performance

Authors: Joshua Denham, Simon A. Feros and Brendan J. O’Brien

Faculty of Health Sciences, Federation University Australia, Mt Helen, 3350, Australia

Corresponding author: Joshua Denham, Faculty of Health Sciences, Federation University Australia, University Drive, Mt Helen, 3350. Email: j.denham@federation.edu.au, Ph: +61 3 53276660.

Abstract

Sprint interval training (SIT) rapidly improves cardio-respiratory fitness but demands less training time and volume than traditional endurance training. While the health and fitness benefits caused by SIT have received considerable research focus, the effect of short-term SIT on 5 km run performance is unknown. Thirty healthy untrained participants (aged 18-25 years) were allocated to a control $(\mathrm{n}=10)$ or a SIT $(\mathrm{n}=20)$ group. SIT involved three to eight sprints at maximal intensity, three times a week for four weeks. Sprints were progressed to eight by the $12^{\text {th }}$ session. All participants completed a 5 km time-trial on a public running track and an incremental treadmill test in an exercise physiology laboratory to determine 5 km run performance and maximum oxygen uptake, respectively, before and after the four week intervention. Relative to the controls, sprint interval trained participants improved 5 km run performance by 4.5\% ($p<0.001$) and this was accompanied by improvements in absolute and relative maximum oxygen uptake ($4.9 \%, p=0.04$ and $4.5 \%, p=0.045$, respectively). Therefore, Short-term SIT significantly improves 5 km run performance in untrained young men. We believe SIT is a time-efficient means of improving cardio-respiratory fitness and 5 km endurance performance.

KEYWORDS: Time-trial, training load, SIT, $\mathrm{VO}_{2 \text { max }}$

SIT improves 5 km run performance

INTRODUCTION

Endurance run performance is important for individuals of average cardio-respiratory fitness who aspire to improve their fitness and performance quickly and efficiently. Moreover, considering the importance of cardio-respiratory fitness and endurance performance in ball sports such as soccer, Australian Rules Football and cricket $(5,15,18)$ there is immense coaching emphasis on reducing training load to minimise injury risk, but maximise training time to focus on other skills important to the sport. SIT is an alternative mode of training to traditional constant-rate training as SIT improves cardio-respiratory fitness to a similar degree as constant-rate training but requires 90% less weekly energy expenditure and 66% less total training time (7).

Typically SIT consists of short, maximal efforts of $15-30 \mathrm{~s}$, repeated several times interspersed with 3-5 mins of recovery. Indeed, SIT may be more effective at improving endurance performance than both continuous running and other high-intensity interval training (HIT) programmes. For example, 20 individuals who completed seven to twelve efforts of 30 s sprints thrice weekly for six weeks, improved 3 km run performance greater than individuals who completed constant rate running or four to six four minute efforts at 3 km average running velocity, over six weeks (4). Others have, however, demonstrated recreationally active participants similarly improve 2 km run performance after either six weeks of SIT (4.6\%) or constant rate running (5.9\%) (13). Therefore, SIT seems to enhance run performance over 2-3 km after six weeks of training, but whether these endurance benefits improve run performance in untrained participants in shorter time-frames and over distances exceeding 3 km (a distance requiring greater reliance on aerobic metabolism) is unknown. Furthermore, the lack of inclusion of experimental controls in previous studies (4, 6,13) obfuscates the genuine impact of SIT on endurance run performance.

SIT improves 5 km run performance

Therefore, the purpose of our study was to determine whether a novel and relatively shortterm (four week), thrice weekly SIT programme improves cardio-respiratory fitness and 5 km run performance. To that end, we assessed 5 km run performance and $\dot{\mathrm{V}} \mathrm{O}_{2 \max }$ before and after either a novel four week SIT (four to eight 30-s maximal sprints, thrice weekly) programme for cases ($\mathrm{n}=20$), or no training for controls $(\mathrm{n}=10)$. We hypothesised that relative to the controls, the sprint-interval trained individuals would significantly improve 5 km run performance and $\mathrm{V}_{2 \text { max }}$.

METHODS

Experimental approach to the problem

This study is a controlled trial, where healthy participants performed either four weeks of SIT or no training, to evaluate the effect of SIT on 5 km run performance and $\dot{\mathrm{V}} \mathrm{O}_{2 \text { max. }} . \dot{\mathrm{V}} \mathrm{O}_{2 \max }$ was measured during a maximal treadmill test conducted in the university exercise physiology laboratory and the 5 km time-trial was assessed at a public running track. These tests were performed on separate days within one week of commencing the initial SIT session and within one week after the final SIT session.

Subjects

Thirty, apparently healthy young men (18-25 years) were recruited for this study. Participants were initially screened to ensure they were not currently engaging in any structured high-intensity aerobic exercise training. All participants had not completed any

SIT improves 5 km run performance

 structured aerobic exercise training in the past year. Twenty participants were allocated to the SIT (cases) group and 10 participants were allocated to the control group.Participants gave written informed consent and this study was approved by the University's Human Research Ethics Committee.

Procedures

Participant $\dot{V}_{2 \text { max }}$ was assessed during a maximal treadmill test, by pulmonary analysis conducted in an exercise physiology laboratory at the university. Before the $\dot{\mathrm{V}}_{2 \text { max }}$ test participants were fitted with a two-way breathing valve (Hans Rudolph) and expired air was collected into an online metabolic system (Moxus) for gas $\left(\mathrm{O}_{2}\right.$ and $\left.\mathrm{CO}_{2}\right)$ analysis. The metabolic system was calibrated before each test using ambient air and gas of known composition. Participants were given a standardised 3-min warm-up at $10 \mathrm{~km}^{-1} \mathrm{~h}^{-1}$. The $\mathrm{V}_{\mathrm{O}_{2 \max }}$ test commenced at $10 \mathrm{~km} \cdot \mathrm{~h}^{-1}$, and treadmill speed was progressively increased by $1 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ every second minute until volitional exhaustion. $\dot{\mathrm{V}}_{2 \text { max }}$ was determined as the highest O_{2} value averaged over 60-s. All laboratory testing was performed preprandially at the same time of day (8-10 AM). Participants were encouraged to hydrate the night before and morning of testing. Within a week of the $\dot{\mathrm{V}} \mathrm{O}_{2 \max }$ assessment each participant completed a supervised 5 km run time-trial on a flat running track in a local park. Participants were familiar with 5 km circuit and were advised to hydrate before running. All testing was conducted in the afternoon (4-6 PM). Briefly, participants completed a short 10-min warmup including some light aerobic exercise and dynamic stretches. Participants were supervised and instructed to run maximally at their own pace.

SIT improves 5 km run performance

Cases completed a standardised SIT programme performed three times a week over four weeks (total of 12 sessions). The sprint duration and recovery period was controlled at $30-\mathrm{s}$ and 4-mins (passive), respectively. Participants were requested to run maximally without pacing for each 30-s sprint. All training was conducted on the University's sports oval and an Accredited Exercise Physiologist (with Exercise and Sport Science Australia) provided participants with verbal encouragement, and supervised each training session. The SIT volume increased from four to eight sprints over the four week intervention (Table 1). Before each training session, participants completed a standardised warm-up entailing a 5-min aerobic warm-up, dynamic stretches and some short (20 m) runs at approximately 70, 80, 90 and 100% effort.
<<Table 1 about here>>

All participants were instructed not to deviate from their current physical activity, exercise (if any) and dietary habits during the four week intervention period.

Statistical analyses

All statistical analyses were performed using IBM SPSS Statistics for Windows (Version 20, IBM Corp, Armonk, NY). Data were tested for normality using the Kolmogorov-Smirnov and Shapiro-Wilk tests, and non-parametric data was log-transformed before further analysis. Paired samples t-tests were used to examine fitness and performance changes after SIT, relative to the control group. To ascertain the test-retest reliability of $\mathrm{VO}_{2 \max }$ and 5 km timetrial performance, the intraclass correlation coefficient (2, k), coefficient of variation (logtransformed), standard error of measurement, and systematic bias (determined by paired samples t-test) were calculated. Significance was set at $p<0.05$.

RESULTS

Test-retest reliability data is outlined in Table 2. The 5 km time-trial test had excellent reliability with an intraclass correlation coefficient of 0.99 and a 3.4% coefficient of variation.
<<Table 2 about here>>

Figure 1 outlines the fitness and performance changes after four weeks of SIT. Relative to the control group who showed a marginal increase in 5 km time-trial performance (mean \pm SD: 1478 ± 350 to $1447 \pm 347,-2 \%, p=0.20$, Table 2 and Figure 1), cases had a significant improvement in 5 km time-trial performance by an average of 65 s (mean \pm SD: 1464 ± 298 to $1368 \pm 270,-4.4 \%, p<0.001$) following four weeks of SIT (Figure 1). While absolute and relative $\dot{\mathrm{V}}_{2 \text { max }}$ increased after SIT in cases (mean \pm SD: 3.8 ± 0.6 to $4.0 \pm 0.6,4.9 \%, p=0.04$ and 49.6 ± 4.6 to $51.4 \pm 3.8,4.5 \%, p=0.045$, respectively), absolute and relative $\dot{V} \mathrm{O}_{2 \text { max }}$ were unchanged in controls (mean \pm SD: 3.7 ± 0.6 to $3.7 \pm 0.6,0.6 \%, p=0.73$ and 49.6 ± 6.7 to $49.3 \pm 6.7-0.6 \%, p=0.72$, respectively, Table 2 and Figure 1).
<<Figure 1 about here>>

DISCUSSION

The purpose of our study was to determine whether a novel and short-term (four week), thrice weekly SIT programme improves cardio-respiratory fitness and 5 km run performance in untrained males. To our knowledge, we are the first to demonstrate that 5 km run performance is significantly improved following short-term (four weeks), low-volume SIT. Considering the marginal but not statistically significant improvement in the controls (31 s , 2%), the marked ($96 \mathrm{~s}, 6.5 \%$) improvement after four weeks of SIT translated to a mean 65 s
(4.4\%) faster 5 km run performance in cases. Notably, 5 km run performance was improved in conjunction with increased $\mathrm{V}_{2 \text { max }}(4.5 \%)$.

Our data showing SIT enhances 5 km run performance corroborates others' showing SIT enhances $2 \mathrm{~km}(13)$ and $3 \mathrm{~km}(4,6)$ run performance in recreationally trained individuals. We are the first to demonstrate four weeks of three times per week SIT, in the form of running, significantly improves 5 km run performance - a prestigious and Olympic running distance. Interestingly, the impact of SIT on 5 km endurance performance is established in other exercise modalities. A short-term (two-week) cycle SIT intervention improved 5 km cycle performance to a similar magnitude to our protocol (5.2\%) (10). Whether SIT improves run performance over longer distances warrants attention. Additionally, whether SIT benefits already well-trained runners is yet to be fully understood, as data has, to date, been equivocal $(1,11)$. Nevertheless, we verify SIT as an effective means of improving running endurance performance in untrained young men.

The increased 5 km run performance in our study is similar to previously observed improvements after traditional constant-rate endurance training. It was reported, an intervention of three running sessions per week at 75% of $\dot{\mathrm{V}} \mathrm{O}_{2 \max }$ for six weeks improved 5 km run time by approximately 80 s ($\sim 5 \%$) in 39 untrained individuals (20). Additionally, others have shown 5 km time-trial improved by 78 s (5\%) in a group that ran for 20 mins three times per week for six weeks, initially starting at $0.8 \mathrm{~km}_{\mathrm{hr}}{ }^{-1}$ below their individual lactate threshold speed with progression to $0.8 \mathrm{~km}_{\mathrm{hr}}{ }^{-1}$ above their individual pre-training lactate threshold speed (14). Importantly, a control group was not included in these studies to establish the error of the 5 km time-trial test, which we established was 31 s . Collectively, it

SIT improves 5 km run performance

appears SIT improves 5 km run performance to a similar extent as constant-rate training, but in a quicker time frame (four vs. six weeks) and a smaller training duration (249 mins vs. 360 mins) (14).

The improvement in run performance was accompanied by a corresponding improvement in $\dot{\mathrm{V}} \mathrm{O}_{2 \text { max }}$. Although previous constant-rate training studies have demonstrated participants increased their $\dot{\mathrm{V}} \mathrm{O}_{2 \max }$ to a similar magnitude observed in the our study (3.8-7.7\%), they also showed marked improvements in their participants lactate threshold, which could have contributed to the improvements in run performance $(14,20)$, particularly because not all cases had improvements to $\dot{\mathrm{V}}_{2 \text { max }}$. Alternatively, an improvement in cardiac output may have facilitated the improvement in 5 km run speed, as opposed to improvements in muscle oxidative capability, based on the concepts V_{2} max is chiefly governed by the maximal cardiac output and the lactate threshold by muscle oxidative capability (12). Other mechanisms by which SIT may enhance 5 km run performance include improved run economy, running mechanics and potassium regulation. It was previously reported that moderately-trained runners' run economy was improved by 7% after four weeks of SIT, but these subject did not improve their 10 km time-trial performance (11). Moreover, increases in knee flexor endurance, coupled with decreases in knee flexion torque and knee flexion/extension ratios are also adaptations associated with sprint training that could have contributed to the improvement in 5 km run performance observed in our study (19). Others have shown in well-trained runners, SIT enhanced key components of the $\mathrm{Na}^{+} / \mathrm{K}^{+}$pump that would aid to minimise disturbances in nerve membrane potential and maintain sprint performance, and this was associated with an approximate 3% improvement in 3 km and 10 km run performance (1). The increase in muscle oxidative and anaerobic enzyme activity

SIT improves 5 km run performance

 are adaptations gained from SIT and is another possible mechanism for the facilitated endurance performance observed in participants from our study $(2,3,8,16)$.A limitation of our study is that we did not include females. Some of the benefits gained from SIT seem to be dependent of gender. For example, males had greater muscle protein synthesis of proteins important for mitochondrial biogenesis after nine sessions of SIT compared to their female counterparts (17). Given these muscle adaptations are vital for endurance performance $(2,8,9)$, whether short-term SIT improves 5 km run performance in females is left for future investigations.

Future research could focus on optimising training variables, such as the recovery time between sprints, number of sprint repetitions, time required of each sprint, number of sessions required per week and the optimal length of SIT to improve fitness and performance. In fact, the efficiency of HIT in evoking positive adaptations may even be more potent than originally envisaged. It was recently revealed one maximal 4-min effort at 90% of heart rate maximum on a cycle ergometer, performed three times a week for 10 weeks improves $\dot{\mathrm{V}}_{2 \text { max }}$ by an average of $10 \%(21)$.

In conclusion our data reveals SIT is a highly effective strategy to improve endurance running quickly in previously untrained young men.

SIT improves 5 km run performance

PRACTICAL APPLICATIONS

Physical conditioning professionals must be aware of efficient means of exercise training that augment cardio-respiratory fitness and endurance performance. The results from our study support the use of short-term, low-volume SIT as an effective means for rapidly improving cardio-respiratory fitness and endurance performance. Therefore, team sport coaches should consider incorporating short-term SIT within periodised programmes to improve athlete endurance performance quickly and also to prevent musculoskeletal overuse injuries - a risk associated with traditional forms of exercise that rely on large training volumes to improve endurance performance. What is more, SIT has an added advantage of simultaneously enhancing anaerobic qualities required in team sports. Finally, SIT should be encouraged to individuals who perceive time as an obstacle to exercising, as four weeks of thrice weekly SIT consisting of four to eight $30-\mathrm{s}$ sprints (just over 4 hrs of total exercise, including rest periods) quickly enhances cardio-respiratory fitness and endurance performance.

REFERENCES

1. Bangsbo J, Gunnarsson TP, Wendell J, Nybo L, and Thomassen M. Reduced volume and increased training intensity elevate muscle $\mathrm{Na}+-\mathrm{K}+$ pump alpha2-subunit expression as well as short- and long-term work capacity in humans. J Appl Physiol 107: 1771-1780, 2009.
2. Burgomaster KA, Heigenhauser GJ, and Gibala MJ. Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J Appl Physiol (1985) 100: 2041-2047, 2006.
3. Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, and Gibala MJ. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586: 151-160, 2008.
4. Cicioni-Kolsky D, Lorenzen C, Williams MD, and Kemp JG. Endurance and sprint benefits of high-intensity and supramaximal interval training. Eur J Sport Sci 13: 304-311, 2013.
5. Dawson B, Hopkinson R, Appleby B, Stewart G, and Roberts C. Player movement patterns and game activities in the Australian Football League. J Sci Med Sport 7: 278-291, 2004.
6. Esfarjani F and Laursen PB. Manipulating high-intensity interval training: effects on VO2max, the lactate threshold and 3000 m running performance in moderately trained males. J Sci Med Sport 10: 27-35, 2007.
7. Gibala MJ, Little JP, Macdonald MJ, and Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol 590: 1077-1084, 2012.
8. Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, Raha S, and Tarnopolsky MA. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 575: 901-911, 2006.
9. Gibala MJ and McGee SL. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc Sport Sci Rev 36: 58-63, 2008.
10. Hazell TJ, Macpherson RE, Gravelle BM, and Lemon PW. 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. Eur J Appl Physiol 110: 153-160, 2010.
11. Iaia FM, Hellsten Y, Nielsen JJ, Fernstrom M, Sahlin K, and Bangsbo J. Four weeks of speed endurance training reduces energy expenditure during exercise and maintains

SIT improves 5 km run performance

 muscle oxidative capacity despite a reduction in training volume. J Appl Physiol 106: 73-80, 2009.12. Joyner MJ and Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol 586: 35-44, 2008.
13. Macpherson RE, Hazell TJ, Olver TD, Paterson DH, and Lemon PW. Run sprint interval training improves aerobic performance but not maximal cardiac output. Med Sci Sports Exerc 43: 115-122, 2011.
14. McNicol AJ, O'Brien BJ, Paton CD, and Knez WL. The effects of increased absolute training intensity on adaptations to endurance exercise training. J Sci Med Sport 12: 485-489, 2009.
15. Petersen CJ, Pyne DB, Portus MR, and Dawson BT. Comparison of player movement patterns between 1-day and test cricket. J Strength Cond Res 25: 1368-1373, 2011.
16. Rodas G, Ventura JL, Cadefau JA, Cusso R, and Parra J. A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. Eur J Appl Physiol 82: 480-486, 2000.
17. Scalzo RL, Peltonen GL, Binns SE, Shankaran M, Giordano GR, Hartley DA, Klochak AL, Lonac MC, Paris HL, Szallar SE, Wood LM, Peelor FF, 3rd, Holmes WE, Hellerstein MK, Bell C, Hamilton KL, and Miller BF. Greater muscle protein synthesis and mitochondrial biogenesis in males compared with females during sprint interval training. FASEB J 28: 2705-2714, 2014.
18. Scanlan AT, Dascombe BJ, Reaburn P, and Dalbo VJ. The physiological and activity demands experienced by Australian female basketball players during competition. J Sci Med Sport 15: 341-347, 2012.

SIT improves 5 km run performance

19. Shealy MJ, Callister R, Dudley GA, and Fleck SJ. Human torque velocity adaptations to sprint, endurance, or combined modes of training. Am J Sports Med 20: 581-586, 1992.
20. Stratton EM, O'Brien BJ, Harvey JT, Blitvich J, McNicol AJ, Janissen D, Paton CD, and Knez WL. Final treadmill velocity best predicts 5 km run performance. Int J Sports Med 30: 40-45, 2009.
21. Tjonna AE, Leinan IM, Bartnes AT, Jenssen BM, Gibala MJ, Winett RA, and Wisloff U. Low- and high-volume of intensive endurance training significantly improves maximal oxygen uptake after 10-weeks of training in healthy men. PLoS One 8: e65382, 2013.

ACKNOWLEDGEMENTS

J.D and S.A.F are both supported by Australian Post-Graduate Award (APA) Scholarships.

5 km run time-trial (s)

FIGURE LEGENDS

Figure 1.5 km time-trial performance and relative $\dot{\mathrm{V}} \mathrm{O}_{2 \text { max }}$ before and after SIT.

Relative to the controls ($-2.1, p=0.20$), the cases had a significant improvement to 5 km run performance (-4.4\%, $p<0.001$) and relative $\dot{V}_{2 \text { max }}(4.5 \%, p<0.05)$ after SIT. Data are expressed as mean values before and after either four weeks of SIT (cases) or no exercise training (controls).

Legend: *p<0.05; *** $p<0.001$.

SIT improves 5 km run performance

TABLES

349 Table 1. Description of the four-week SIT programme.

Week	Session \#	Training load (sprints)	Training sprint time (min)	Total session time (min)
1	1	3	1.5	9.5
	2	4	2	14
	3	5	2.5	18.5
2	4	4	2	14
	5	5	2.5	18.5
	6	6	3	23
3	7	5	2.5	18.5
	8	6	3	23
	9	7	3.5	27.5
4	10	6	3	23
	11	7	3.5	27.5
	12	8	4	32
	Total time	66	33	249

Legend: \# number.

Table 2. Test-retest reliability data for the 5 km time-trial test.

Variable	Mean trial 1	Mean trial 2	Mean	p-value	SEM	ICC	
			difference				

352 Results of the 5 km time-trial test in the control group ($\mathrm{n}=10$), reliability as measured by mean difference of two trials, intraclass correlation
(ICC), p-value (two-tailed paired t-test), standard error of measurement (SEM) and typical error as a coefficient of variation (CV) percentage
(\%). Upper and lower confidence intervals are expressed in parentheses; confidence intervals are set at 95\%. SDs are represented after the mean of trials 1 and 2.

SIT improves 5km run performance

357

