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Abstract

A stable-frequency transmitter with relative radial acceleration to a receiver will show a change in received
frequency over time, known as a “drift rate.” For a transmission from an exoplanet, we must account for multiple
components of drift rate: the exoplanet’s orbit and rotation, the Earth’s orbit and rotation, and other contributions.
Understanding the drift rate distribution produced by exoplanets relative to Earth, can (a) help us constrain the
range of drift rates to check in a Search for Extraterrestrial Intelligence project to detect radio technosignatures, and
(b) help us decide validity of signals-of-interest, as we can compare drifting signals with expected drift rates from
the target star. In this paper, we modeled the drift rate distribution for ∼5300 confirmed exoplanets, using
parameters from the NASA Exoplanet Archive (NEA). We find that confirmed exoplanets have drift rates such that
99% of them fall within the±53 nHz range. This implies a distribution-informed maximum drift rate ∼4 times
lower than previous work. To mitigate the observational biases inherent in the NEA, we also simulated an
exoplanet population built to reduce these biases. The results suggest that, for a Kepler-like target star without
known exoplanets, ±0.44 nHz would be sufficient to account for 99% of signals. This reduction in recommended
maximum drift rate is partially due to inclination effects and bias toward short orbital periods in the NEA. These
narrowed drift rate maxima will increase the efficiency of searches and save significant computational effort in
future radio technosignature searches.

Unified Astronomy Thesaurus concepts: Search for extraterrestrial intelligence (2127); Astrobiology (74);
Technosignatures (2128); Radio astronomy (1338); Exoplanets (498)

1. Introduction

The goal of astrobiology is to characterize the origins,
evolution, and distribution of life in the universe (e.g., Des
Marais et al. 2008). One particular strategy to search for life
beyond Earth is to look for its “technosignatures,” or
astronomically observable signs of nonhuman technology in
the universe (Tarter 2001). This strategy is often known as
SETI, or the Search for Extraterrestrial Intelligence, and
originated as an astrobiological subdiscipline in the 1960s,
when it was realized that technological life in space could be
detected in many ways: via its intentional electromagnetic
communications (Cocconi & Morrison 1959; Schwartz &
Townes 1961), thermal waste from its megastructures
(Dyson 1960), or even physical artifacts that it had sent to
the solar system (Bracewell 1960).

Modern developments in astronomical instrumentation—for
example, cutting-edge instruments such as TESS (Ricker et al.
2014) and JWST (Gardner et al. 2006)—have inspired
new technosignature search strategies (e.g., Giles 2021;

Kopparapu et al. 2021; for TESS and JWST respectively).
However, despite the proliferation of new search methods
across the electromagnetic spectrum, most technosignature
searches are still performed at radio frequencies (e.g., Price
et al. 2020). This imbalance, while partially historical, is also
well motivated, as radio transmissions have many advantages
that can be formalized with the Nine Axes of Merit from
Sheikh (2020). Radio technosignatures require no extrapolation
from present-day human technology, often focus on signal
morphologies with no astronomical confounders, and could
contain large amounts of information transferred at the speed of
light. In addition, searches for radio technosignatures are cheap
to perform and can be easily executed in archival data.
“Narrowband” signals are a particularly popular morphology

in modern SETI searches, as they are efficient, used on Earth
for communication, and have no natural confounders. To
search for a narrowband signal, high spectral-resolution data
are taken with a radio telescope, e.g., 3 Hz frequency resolution
(as in Breakthrough Listen’s HSR data format and UCLA’s
searches, described by Lebofsky et al. 2019 and Margot et al.
2021, respectively). The time–frequency–intensity filterbank
data product is often visualized via dynamic spectra or
“waterfall plots.” Within those waterfall plots, a narrowband
SETI signal would appear as a bright linear feature, a few
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channels wide, which drifts across frequencies over time—this
apparent slope is the “drift rate” of the signal. Drift rates are
often, but not always,12 caused by relative acceleration between
the receiver and the transmitter, implying that a zero-drift
signal is likely radio frequency interference in the same frame
as the telescope. SETI researchers employ various algorithms
to autonomously search for linear features with nonzero drift
rates (a summary of these methods can be found in Sheikh et al.
2019); however, all of the popular algorithms require some
limit to be placed on the absolute drift rate maximum, just as
pulsar search algorithms require a maximum dispersion
measure threshold (e.g., Parent et al. 2018).

Sheikh et al. (2019) provided the first physically motivated
guideline for the choice of a maximum drift rate, based on
contemporary knowledge of the orbital parameters of the most
extreme exoplanetary systems. From this analysis, the authors
found that a reasonable upper limit on the maximum drift rate,
to account for all known exoplanets, was 200 nHz, equivalent
to a drift of 200 Hz s−1 when observing at a frequency of
1 GHz. This guideline, although comprehensive, was two
orders-of-magnitude higher than the values being used in
contemporaneous SETI searches, such as the ±4 nHz searched
by Price et al. (2020) or the ±9 nHz searched by Margot et al.
(2021). Implementing a 200 nHz maximum drift rate would
require significantly more computational investment.13

In this work, we expand on Sheikh et al. (2019) by broadening
the search to include all points in an exoplanet’s orbit (not just
those that maximize the drift rate), to understand the distribution
of expected drift rates in the galaxy below the previously
reported upper limit. We also sample a larger population of
exoplanets discovered since the publication of Sheikh et al.
(2019), and begin to account for the drift rate effects of the
biases present in the currently known population of exoplanets.
These distributions may be particularly useful to SETI searches
without designated exoplanet targets, such as general star
surveys and the galactic center. For searches focused on
exoplanets themselves, it may be optimal to calculate the
specific drift rate distributions for those exoplanets.

In Section 2, we will describe the method by which we
calculate the drift rates and give a brief overview of the orbital
parameters needed to calculate these drift rates. In Section 3,
we will apply this method of calculating drift rates to
exoplanets in the NASA Exoplanet Archive. In Section 4, we
will apply the same methodology to a fully simulated exoplanet
population, in an attempt to mitigate some of the bias present in
the observed exoplanet population. Finally, we will confirm the
effects of the biases of the NASA Exoplanet Archive (NEA)
sample on drift rates in Section 5, and conclude in Section 6.

2. Methods

Imagine a situation where a radio receiver on Earth (at some
latitude and longitude) points at a target star. That target star
(with mass Mstar) is host to an exoplanet (with some orbital
parameters and physical properties). The exoplanet is host to a
radio transmitter at some latitude and longitude on its surface.

In this model, a signal sent from the exoplanetary transmitter
at νrest to the receiver on Earth will be received at some

νrec= f (νrest, t), where f is some function constructed from the
stellar, exoplanetary, and geometric parameters described
above. The drift rate is the time-derivative of this function, f .
Through this formulation, we can see that the total drift rate

at any given moment is constructed from a combination of
factors, including the orbit of the exoplanet around its host star,
the rotation of the exoplanet hosting the transmitter, the
movement of the exoplanet’s host star relative to Earth, and the
rotation and orbital motion of the Earth.14

Exoplanetary rotation rates are still relatively unknown and
unconstrained. Sheikh et al. (2019) found that the orbital term
is often much larger than the rotation term for exoplanets that
are close to their host star. This is especially true for exoplanets
orbiting M-dwarfs, which are typically expected to be tidally
locked. For this reason, we ignore the effects of rotation in this
study. Movement of the exoplanet’s host star relative to Earth
is also considered negligible (Sheikh et al. 2019), so these drift
rate contributions will also not be considered. In addition, the
maximum contribution of the Earth’s rotation (0.1 nHz) and
orbit (0.019 nHz) around the Sun are known. We will not be
taking these into account in this work, but they can be added
back into the distribution we provide when doing a search.
This leaves us only with orbital contributions to drift rates

from an exoplanet orbiting its host star. Drift rates are the result
of Doppler acceleration: in an exoplanetary system where the
mass of the host star is far greater than the mass of any of its
exoplanets, the only acceleration we need to consider is the
gravitational force of the host star exerted onto the exoplanet.
Then, the drift rate can be expressed as:

( ) ( )n
n

=
c

GM

r
isin 1rest star

2

where i is the inclination of the orbit relative to the sky plane
and r is the instantaneous distance between the exoplanet and
its host star. Remember that νrest is the frequency that is being
transmitted, as measured by the transmitter. Given that modern
ultrawideband receivers (such as that described by Price et al.
2021) cover enough bandwidth that the drift rate limit, defined
this way, would change by a factor of a few across the band, we
will generalize this equation so that is independent of rest
frequency:

( ) ( )n
n
n

= =  GM

cr
isin . 2norm

rest

star
2

nnorm is a normalized drift rate, with units of Hz, which we
will refer to, for simplicity, as just the “drift rate” for the rest of
this paper.

2.1. Calculating Drift Rates Given Orbital Parameters

For a full set of exoplanetary orbital parameters—semimajor
axis, period, inclination, eccentricity, argument of periastron,
and longitude of ascending node—we can calculate the drift
rate as seen from Earth at any point in the exoplanet’s orbit.
This orbit can be modeled mathematically using gravita-

tional force and conservation of angular momentum. The
following derivation is an approximation for a single-planet

12 Drift rates can also be induced electronically, either deliberately or via
uncorrected thermal or other effects in component electronics, as was the case
in the signal-of-interest blc1 (Sheikh et al. 2021).
13 Mitigated somewhat by the frequency-scrunching solution for drift rates
past the “one-to-one” point described in Sheikh et al. (2019).

14 Other contributions can be added if the transmitter is not fixed on the surface
of an exoplanet, for example, the orbit of the transmitter around its host, the
rotation of the transmitter about its own axis, and the inherent acceleration from
propulsion on the transmitter itself (Sheikh et al. 2019). We neglect these terms
here, as we assume a fixed surface transmitter.
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system. We begin with Newton’s law of universal gravitation,

( ) ( )=F r G
m m

r
31 2

2

where m1 and m2 are the masses of the star and the exoplanet,
and r is the distance between them.

To apply the conservation of angular momentum, we can use
Lagrangian mechanics,

( )
( ) ( ) ( )f=

+
+ - 

m m

m m
r r U r

2
41 2

1 2

2 2 2

and
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 d

dr

d

dt

d

dr
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Substituting for the derivatives in Equation (5),

( ) ( )
̈ ( )f

+
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Thus, solving for r from Equations (3) and (6) to obtain a
function for the distance between the exoplanet and the star as a
function of angular position (f), we obtain the general solution
that

( ) ( ) ( )f
f

=
-

+
r

a e

e

1

1 cos
7

2

where a is the semimajor axis and e is the eccentricity.
This orbit is displayed in Figure 1, where γ, the reference

direction, points toward Earth. The angle between γ and the
plane of the orbit is i, the inclination. The ascending node is the
point where the exoplanet rises above the plane of reference.
Thus, the longitude of the ascending node, Ω, is the angular
position of the ascending node on our plane of reference, where
γ points from where Ω= 0. Finally, the argument of periastron,

ω, is the angle between the ascending node and the orbit’s
periastron.
We generated the elliptical orbit of each exoplanet as

described above and sampled the gravitational acceleration GM

r2

at 200 evenly spaced times throughout one orbital period. Note
that evenly sampling in time, instead of in angular position,
results in more samples being taken near apoastron as opposed
to periastron. We then project these accelerations in the
direction of the observer to obtain the normalized drift rate.

3. Drift Rates from the NASA Exoplanet Archive

3.1. Missing Orbital Parameters

The NEA15 (NASA Exoplanet Archive 2023) is an online
database providing information on confirmed exoplanets and
exoplanet candidates (Akeson et al. 2013). We chose to use the
NEA sample because it is the most comprehensive publicly
available archive for exoplanets across multiple missions. We
use the archive as it was in 2023 May, when it contained 5347
exoplanets. Unfortunately, the exoplanet search methods and
missions that supply much of the NEA sample do not (and
cannot) solve for all seven orbital parameters for the exoplanets
that they detect, and are particularly insensitive to the argument
of periastron and the longitude of ascending node. We describe
below how we account for missing values.

3.1.1. Period or Semimajor Axis

Kepler’s Third Law gives us a way to derive a planet’s
semimajor axis a from its period P, or vice versa, so long as we
know the host star’s stellar massMstar. We can insert values from
the NEA sample into

( )
= pP a

G M
2 4 2 3

star
assuming Mstar?Mplanet.

Out of 5347 planets in the NEA sample, 61 are removed because
only one of [P, a, Mstar] are present, leaving 5286 exoplanets in
the sample. 2192 exoplanets had no semimajor axis recorded,
236 had no period recorded, and 748 had no stellar mass
recorded.

3.1.2. Inclinations

3899 exoplanets in the remaining 5286 have missing
inclinations. However, the discovery method for all of these
exoplanets is available, so for any exoplanet discovered
through either the transit or radial velocity method, we set
i= 90°, as both of these methods are most sensitive to i∼ 90°.
Any of the few remaining exoplanets that needed to be
assigned an inclination were given a random selection
from ( ) - i1 cos 1.

3.1.3. Arguments of Periastron and Longitude of Ascending Node

4064 of the 5286 exoplanets were missing arguments of
periastron, and fewer than 10 have longitudes of ascending
node. Neither of these two parameters have preferred values, as
they are geometrical (not physical) parameters measured with
respect to Earth. Therefore, when one or both of these
parameters is missing, we use a randomly selected number
from a uniform distribution of 0°–360°.

Figure 1. This figure shows an example orbit of an exoplanet. The reference
direction, γ, is pointed toward Earth. Periapsis refers to the point of the orbit in
which the orbiting body is closest to the body it orbits. For our purposes, this is
always the periastron, as our exoplanets are orbiting stars. Figure by Lasunncty
at the English Wikipedia from Wikimedia Commons (https://commons.
wikimedia.org/wiki/File:Orbit1.svg).

15 https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
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3.1.4. Eccentricity from Rayleigh Distribution

For exoplanets that did not have a recorded eccentricity, we
randomly selected eccentricities from a Rayleigh distribution
with σ= 0.02, according to estimates for multiplanet systems
from He et al. (2019); transit surveys suggest that most
exoplanets reside in multiplanet systems (e.g., Batalha et al.
2013; Mulders et al. 2018). 3256 exoplanets had no recorded
eccentricity. The Rayleigh distribution from which the missing
eccentricities are drawn is described by:

( ) ( )= -⎜ ⎟
⎛
⎝

⎞
⎠

f e
e e

0.004
exp

0.008
. 8

2

The mean and variance of this distribution are 0.025 and
0.00017, respectively.

3.2. Drift Rate Histogram from the NEA Sample

As described in Section 2, we used the orbital parameters
acquired or generated above to produce 200 drift rates, equally
spaced in time for each orbit, for each of the 5347 planets with
known parameters in the NEA sample. We compiled these drift
rates into a histogram (Figure 2). Figure 2 illustrates that a
narrowband radio technosignature search with a maximum drift
rate of ±53 nHz would catch 99% of the drift rates produced by
known exoplanets. In contrast, the upper limit suggested by
Sheikh et al. (2019), at ±200 nHz, captures <1% more drift
rates for four times the computational cost,16 which is likely not
an effective trade-off for most applications. This factor of four
difference between our suggested range and the range of
Sheikh et al. (2019) is primarily due the distribution of
inclinations (Sheikh et al. 2019 choose 90° for all bodies) and

of semimajor axes (Sheikh et al. 2019 choose the smallest
possible semimajor axis).

4. Drift Rates from a Fully Simulated Exoplanet Population

4.1. The NEA Sample is not Fully Representative of the
Underlying Exoplanet Population

As of 2023 May, most exoplanets in the NEA sample have
been discovered through either the transit method (75%), in
which a planet periodically dims the host star’s light as it passes
in between the observer and its host star, or the radial velocity
(RV) method (20%), in which the slight wobble of a star due to
its planet’s gravitational pull is measured via shifting spectral
features.17 Both of these methods have detection biases which
affect their completeness across parameter space, which have
been well-documented in the literature (e.g., Christiansen et al.
2020; Teske et al. 2021).
The transit method inherently detects a biased sample of

exoplanets. For example, systems that have larger planets in
comparison to their host star display a strong luminosity
difference should a planet transit, making them easier to detect.
Duration of transit and the number of transits available in an
observation window also bias the population. In addition, the
transit method is only sensitive to inclinations near 90°, as the
planet must transit between Earth and the host star to be
detected. The RV method does not require such restrictive
inclinations, but is also more sensitive to near edge-on
configurations which maximize the RV semiamplitude. How-
ever, it involves a whole host of additional detection biases
related to target selection, data coverage, and model fitting. To
assess how much these biases affect the NEA sample, and how
that might inform the overall drift rate distribution of the
underlying exoplanet population (not just that of known

Figure 2. A histogram of all of the calculated drift rate magnitudes for the 5286 planet sample from the NASA Exoplanet Archive, with drift rates calculated for each
planet at 200 evenly spaced times in the orbit. This histogram therefore contains 1,057,200 drift rates (200 for each of the 5286 exoplanets). The dotted line at 53 nHz
designates the 99% boundary: 99% of calculated drift rates fall between 0 and this absolute value. The solid line demonstrates the suggested drift rate upper limits from
Sheikh et al. (2019). Note that for 99% of the known exoplanet sample, the Sheikh et al. drift rate is at least four times larger than necessary.

16 Assuming a naive linear scaling, see Sheikh et al. (2019) for a more detailed
treatment of the issue.

17 https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
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exoplanets), we constructed a simulated exoplanet population
which corrects for some of these biases.

4.2. Distributions for Simulated Parameters

To simulate an exoplanet population, we need to construct
unbiased distributions for the orbital parameters described in
Section 2 as well as stellar mass, and then sample from those
distributions. Below, we describe the chosen distributions for
each parameter.

4.2.1. Inclination

Perhaps the most notable difference between the NEA
sample and the underlying exoplanet population is that their
inclinations should be uniformly distributed such that cos(i) is
between −1 and 1, as described in Section 3.1.3. We used this
distribution in the simulation.

4.2.2. Longitude of Ascending Node and Argument of Periastron

These parameters were drawn from a uniform distribution
over 0°–360°—this is the same treatment we applied in
Section 3.1.3 when these parameters were missing in the NEA
database.

4.2.3. Stellar Mass

We drew stellar masses randomly from the exoplanetary
hosts in the Gaia-Kepler Stellar Properties Catalog (Berger
et al. 2020), which includes 186,301 Kepler stars. Kepler
searched F-, G-, K-, and M-type stars with an emphasis on F
and G types (Berger et al. 2020).

4.2.4. Period and Semimajor Axis

We drew periods from a broken power law of P−1.5 from
5 hr to 10 days and P−0.3 from 10 days to 300 days, as informed
by models from He et al. (2019), Winn et al. (2018), and
Mulders et al. (2018). We then calculated semimajor axes from
each individual planet’s host star mass and period using
Kepler’s Third Law. The model described by He et al. (2019)
was trained on F-, G-, and K-type stars, which is congruent to
our stellar mass distribution from Berger et al. (2020).

4.2.5. Eccentricity

It is currently understood that the underlying eccentricity
distribution of exoplanets is dependent on whether they reside
in a single-planet system or a multiplanet system, with single-
planet systems having larger eccentricities on average (He et al.
2019). While we used these two eccentricity distributions, our
simulations did not account for planet-to-planet interaction. We
will refer to the populations drawn from these two distributions
as the low-eccentricity population and the high-eccentricity
population. We drew the low-eccentricity population from a
Rayleigh distribution with σ= 0.02 (as described in
Section 3.1.3). The high-eccentricity population can also be
described with a Rayleigh distribution, but with σ= 0.32 (He
et al. 2019). We ran two sets of simulations, calculating drift
rates for both of these eccentricity models, to evaluate the effect
of the eccentricity distribution on the drift rate results.

4.3. Drift Rate Histograms from the Fully Simulated
Population

Using the distributions described in Section 4.2, we created
twenty simulated populations of 5286 exoplanets each: ten with
low eccentricities and ten with high eccentricities. For each of
the ten simulations of each population, there was nominal
variance. As an illustration, in Figure 3, we show the parameter
distributions from a single simulation with each eccentricity
distribution compared to the NEA sample.
Each of the parameters was drawn randomly from its

associated distribution, and the draws were performed
independently. There is some dependence between planetary
parameters, especially for planets in multiplanet systems (due
to, e.g., orbital stability, the so-called “peas-in-a-pod” patterns
describing the correlated sizes and spacings of planets in the
same system; He et al. 2020; Weiss et al. 2022). However,
because the interplay between these parameters is an active and
complex area of study (see, e.g., He et al. 2020), a detailed
treatment is outside of the scope of this work.
We computed drift rates at 200 points in time in each

planet’s orbit for each of the 5286 simulated planets and once
again visualized the drift rate distributions via histograms. The
histograms of drift rates for high-eccentricity populations and
low-eccentricity populations are shown in Figure 4. Overall,
calculating drift rates for the simulated, “debiased” exoplanet
distributions results in maximum drift rate thresholds (at the
99th percentile) which are over two orders of magnitude lower
than the results from the NEA sample, illustrating the
overwhelming effect of observational bias.

5. Discussion

5.1. Assessing Differences between NEA Sample and Simulated
Samples

In Section 4 we discovered that a fully simulated exoplanet
population, with observational biases accounted for, produces a
drift maximum at the 99th percentile which is more than two
orders-of-magnitude smaller than that of the NEA sample.
These biases are visualized in Figure 3. Histograms of how
each bias affects the distribution of drift rates are available in
the Appendix.
The bias in inclination is due to discovery method as

described in Section 4. Debiasing the inclination alone, while
keeping the rest of the NEA sample parameters the same as in
Section 3, reduced our 53 nHz for 99% threshold to 42 nHz. It is
believed that most exoplanets are in multiplanet systems, which
accounts for the NEA sample’s low eccentricities (e.g., Batalha
et al. 2013; Mulders et al. 2018). Changing the NEA eccentricity
distribution to the simulated low-eccentricity population resulted
in a negligible change in drift rate threshold.
The difference in period and semimajor axis is two-fold: our

period model has an upper limit of 300 days, while the NEA
has no such restriction, and the NEA sample is biased toward
planets with short periods (as exoplanets with shorter periods
are easier to detect with both transits and RVs). Both effects
can be attributed to the requirement that more than one orbital
period of observation is necessary to confirm the existence of
an exoplanet. This difference, particularly the bias toward
short-period planets in the NEA sample, appears to have had
the strongest effect on our results.
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5.2. Outliers and Maximum Drift Rates

One of the simulations with a single-planet eccentricity
distribution produced a drift rate of 104 nHz, the largest value
that appeared in any of our calculations. This is a good
reminder that a transmitter on a planet with a large eccentricity,
close to its host star, and seen at exactly the wrong angle and
time with respect to an observer on Earth could produce a drift
rate large enough to exceed any maximum drift rate guideline
that is not a physical upper limit (as discussed by Sheikh et al.
2019). However, when a balance must be struck between
parameter space covered and logistical considerations, using a
drift rate maximum for which an algorithm could find a direct
drift rate match in 99% of scenarios is entirely sufficient.

5.3. Drift Rate Equivalents in the Optical

Technosignature searches in the optical and infrared are not
limited by the availability of compute power to the same degree
as radio SETI searches. Where radio searches comb through time-
resolved data products, optical SETI searches utilize either time-
compressed data, such as high-resolution spectra (Zuckerman
et al. 2023) or nanopulses that do not have resolved energies
(Wright et al. 2019; Foote & VERITAS Collaboration 2021).
Both types of search allow for complete examination of parameter
space without being computation limited.
When identifying the position of a candidate laser emission

line in high-resolution spectra, the radial velocity between the
emitter and detector will determine the blueshift or redshift of the

Figure 3. Histograms comparing the inputs for each of the seven parameters used to calculate drift rates, with low-eccentricity and high-eccentricity options being
shown in separate subplots. The simulated parameters are in red, and the NEA sample’s parameters are in blue. The x axes for period and semimajor axes are only
shown up to 300 days and 6 au, respectively, for visualization purposes, as mathematical models currently only predict this far. However, the NEA sample has entries
past these limits.
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observed laser. Considering the Earth alone, the largest
contribution to the radial velocity is the revolution of the Earth
around the Sun, at 30 km s−1. If a laser emission line was
detected while the Earth is at opposite sides of its orbit, and in
the ecliptic, the resulting difference would be 60 km s−1. For an
optical spectrometer with a resolving power of 50,000–100,000,
each pixel represents 1–2 km s−1. The candidate laser line would
move many tens of pixels due to the Earthʼs motion, independent
of the motions of the emitter. Since we understand the
barycentric motions of the Earth, we can subtract off the Earthʼs
contribution to determine the emitterʼs radial motion relative
to us.

6. Conclusion

In Section 1, we discussed the motivations and background
behind quantifying drift rates. Then, in Section 2, we described
the theory and methodology behind quantifying drift rates. In
Section 3, we calculated drift rates for known exoplanets in the
NASA Exoplanet Archive. To address some of the biases in the
NEA, we then simulated a population of exoplanets and
calculated their drift rates in Section 4. Section 5 discusses
some of the implications of this work and reconciles the
differences between the drift rates of the NEA sample and those
of the simulation.

Sheikh et al. (2019) suggested limits of ±200 nHz for radio
technosignature searches. Exoplanet parameters from the
NASA Exoplanet Archive yield 99% of drift rates in the range
±53 nHz. A simulated population of exoplanets motivated by
population models (Mulders et al. 2018; He et al. 2019) yields
99% of drift rates between ±0.44 (0.27) nHz assuming high
(low) eccentricities. These simulations indicate that a more
complete survey of exoplanets that encompasses a wider
distribution of inclinations would significantly lower the drift
rate distribution of known exoplanets to the ±0.5 nHz range.

The implications of these findings may greatly increase the
efficiency of SETI searches. Sheikh et al. (2019) describe a
linear relationship between the time taken to conduct a SETI
search and the maximum drift rate of the search. Our new
thresholds built to encompass most of the drift rates produced
by stable-frequency transmitters on exoplanets can improve the
computing costs and times of future searches, such as the one

Breakthrough Listen intends to conduct on MeerKAT, as
outlined by Czech et al. (2021), by nearly three orders of
magnitude.
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Appendix

To visualize how observational biases in inclination, period,
semimajor axis, and eccentricity affect the distribution of drift
rates of a population of exoplanets, we simulated populations
of exoplanets with combinations of observed and simulated
parameters. As mentioned in Section 5.1, SETI target selection
is also sometimes biased toward known, often transiting,
exoplanets. Figure 5 shows the distribution of drift rates for the
5286 NEA exoplanets where every inclination is set to 90° to
mimic a transiting exoplanet population.
Figure 3 shows a stark difference between the periods of

NEA exoplanets and the simulated population. To see more
clearly how our simulated periods affected the distribution of

Figure 4. Histograms for the entirely simulated populations of exoplanets (high eccentricities on the left, low eccentricities on the right). Each population has 5286
planets with 200 drift rates drawn for each planet, giving a total of 1,057,200 drift rates, to mirror Figure 2. The dotted lines on each histogram give the 99%
containment boundary. For high eccentricity, 99% of the drift rates fall in ±0.44 nHz. For low eccentricity, 99% of the drift rates fall in ±0.27 nHz.
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drift rates, we simulated a population using the simulated
period distribution from Section 4 and solved for corresponding
semimajor axes for any NEA exoplanet with a recorded stellar
mass, where the rest of the NEA parameters were kept the
same. This left a population of 4538 exoplanets, whose drift
rates are shown in Figure 6. This figure demonstrates that
distributions for semimajor axis and period are the most

responsible for our simulated results in Section 4 moving our
99% threshold by an order of magnitude.
Figure 3 shows a slight difference between eccentricities

recorded in the NEA and the low-eccentricity model. To see
how this difference affected the drift rate distribution, we
simulated a population of exoplanets using the simulated low-
eccentricity population model for the NEA population where

Figure 5. A histogram of all of the calculated drift rate magnitudes for the 5286 planet sample from the NEA with all inclinations set to 90°. 200 drift rates are
calculated for each of the 5286 exoplanets for a total of 1,057,200 drift rates. The dotted line at 53 nHz designate the 99% boundary: 99% of calculated drift rates fall
between these values. The solid line demonstrates the suggested drift rate upper limits from Sheikh et al. (2019).

Figure 6. A histogram of all of the calculated drift rate magnitudes for the 4538 planet sample from the NEA with simulated periods and semimajor axes. 200 drift
rates are calculated for each of the 4538 exoplanets for a total of 907,600 drift rates. The dotted line at 0.59 nHz designate the 99% boundary: 99% of calculated drift
rates fall between these values.
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the rest of the NEA parameters were kept the same. The drift
rate distribution for these exoplanets is shown in Figure 7.

As mentioned in Section 4.2, observable inclinations are
heavily affected by methods of discovery and also differ
significantly from our simulated population of inclinations.
Thus, we simulated a population of exoplanets with inclina-
tions drawn from a uniform distribution of ( ) - i1 cos 1
with the rest of the parameters kept the same from the NEA.

The effect this difference has on the distribution of drift rates is
visualized in Figure 8.
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Figure 7. A histogram of all of the calculated drift rate magnitudes for the 5286 planet sample from the NEA with eccentricities sampled from the low-eccentricity
model. 200 drift rates are calculated for each of the 4286 exoplanets for a total of 1,057,200 drift rates. The dotted line at 53 nHz designate the 99% boundary: 99% of
calculated drift rates fall between these values. The solid line demonstrates the suggested drift rate upper limits from Sheikh et al. (2019).

Figure 8. A histogram of all of the calculated drift rate magnitudes for the 5286 planet sample from the NEA with inclinations sampled uniformly in cosine. 200 drift
rates are calculated for each of the 4286 exoplanets for a total of 1,057,200 drift rates. The dotted line at 42 nHz designate the 99% boundary: 99% of calculated drift
rates fall between these values.

9

The Astronomical Journal, 166:182 (10pp), 2023 November Li et al.

https://orcid.org/0000-0002-3012-4261
https://orcid.org/0000-0002-3012-4261
https://orcid.org/0000-0002-3012-4261
https://orcid.org/0000-0002-3012-4261
https://orcid.org/0000-0002-3012-4261
https://orcid.org/0000-0002-3012-4261
https://orcid.org/0000-0002-3012-4261
https://orcid.org/0000-0002-3012-4261
https://orcid.org/0000-0001-7057-4999
https://orcid.org/0000-0001-7057-4999
https://orcid.org/0000-0001-7057-4999
https://orcid.org/0000-0001-7057-4999
https://orcid.org/0000-0001-7057-4999
https://orcid.org/0000-0001-7057-4999
https://orcid.org/0000-0001-7057-4999
https://orcid.org/0000-0001-7057-4999
https://orcid.org/0000-0002-1743-3684
https://orcid.org/0000-0002-1743-3684
https://orcid.org/0000-0002-1743-3684
https://orcid.org/0000-0002-1743-3684
https://orcid.org/0000-0002-1743-3684
https://orcid.org/0000-0002-1743-3684
https://orcid.org/0000-0002-1743-3684
https://orcid.org/0000-0002-1743-3684
https://orcid.org/0000-0002-1743-3684


Matthias Y. He https://orcid.org/0000-0002-5223-7945
Howard Isaacson https://orcid.org/0000-0002-0531-1073
Steve Croft https://orcid.org/0000-0003-4823-129X
Evan L. Sneed https://orcid.org/0000-0001-5290-1001

References

Akeson, R. L., Chen, X., Ciardi, D., et al. 2013, PASP, 125, 989
Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A,

558, A33
Batalha, N. M., Rowe, J. F., Bryson, S. T., et al. 2013, ApJS, 204, 24
Berger, T. A., Huber, D., Van Saders, J. L., et al. 2020, AJ, 159, 280
Bracewell, R. N. 1960, Natur, 186, 670
Christiansen, J. L., Clarke, B. D., Burke, C. J., et al. 2020, AJ, 160, 159
Cocconi, G., & Morrison, P. 1959, Natur, 184, 844
Czech, D., Isaacson, H., Pearce, L., et al. 2021, PASP, 133, 064502
Czesla, S., Schröter, S., Schneider, C. P., et al. 2019, PyA: Python astronomy-

related packages, ascl:1906.010
Des Marais, D. J., Nuth, J. A., Allamandola, L. J., et al. 2008, AsBio, 8, 715
Dyson, F. J. 1960, Sci, 131, 1667
Foote, G. & VERITAS Collaboration 2021, BAAS, 53, 2021n6i207p01
Gardner, J. P., Mather, J. C., Clampin, M., et al. 2006, SSRv, 123, 485
Giles, D. 2021, in The 2021 Assembly of the Order of the Octopus (State

College, PA: The Pennsylvania State University), 25
He, M. Y., Ford, E. B., & Ragozzine, D. 2019, MNRAS, 490, 4575
He, M. Y., Ford, E. B., Ragozzine, D., & Carrera, D. 2020, AJ, 160, 276

Kopparapu, R., Arney, G., Haqq-Misra, J., Lustig-Yaeger, J., & Villanueva, G.
2021, ApJ, 908, 164

Lebofsky, M., Croft, S., Siemion, A. P., et al. 2019, PASP, 131, 1
Margot, J.-L., Pinchuk, P., Geil, R., et al. 2021, AJ, 161, 55
McKinney, W. 2010, in Proc. 9th Python in Science Conf., ed.

S. van der Walt & J. Millman (Austin, TX: SciPy), 56
Mulders, G. D., Pascucci, I., Apai, D., & Ciesla, F. J. 2018, AJ, 156, 24
NASA Exoplanet Archive 2023, Planetary Systems, Version: 2023-05-05

15:07, NExScI-Caltech/IPA, doi:10.26133/NEA12
pandas development team, T 2020, pandas-dev/pandas: Pandas, v.1.2.4,

Zenodo, doi:10.5281/zenodo.3509134
Parent, E., Kaspi, V., Ransom, S., et al. 2018, ApJ, 861, 44
Price, D. C., Enriquez, J. E., Brzycki, B., et al. 2020, AJ, 159, 86
Price, D. C., MacMahon, D. H., Lebofsky, M., et al. 2021, RNAAS, 5, 114
Price-Whelan, A. M., Sipőcz, B. M., Günther, H. M., et al. 2018, AJ,

156, 123
Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2014, JATIS, 1, 014003
Schwartz, R. N., & Townes, C. H. 1961, Natur, 190, 205
Sheikh, S. Z. 2020, IJAsB, 19, 237
Sheikh, S. Z., Smith, S., Price, D. C., et al. 2021, NatAs, 5, 1153
Sheikh, S. Z., Wright, J. T., Siemion, A., & Enriquez, J. E. 2019, ApJ,

884, 14
Tarter, J. 2001, ARA&A, 39, 511
Teske, J., Wang, S. X., Wolfgang, A., et al. 2021, ApJS, 256, 33
Weiss, L. M., Millholland, S. C., Petigura, E. A., et al. 2022, arXiv:2203.10076
Winn, J. N., Sanchis-Ojeda, R., & Rappaport, S. 2018, NewAR, 83, 37
Wright, S., Antonio, F. P., Aronson, M. L., et al. 2019, BAAS, 51, 264
Zuckerman, A., Ko, Z., Isaacson, H., et al. 2023, AJ, 165, 114

10

The Astronomical Journal, 166:182 (10pp), 2023 November Li et al.

https://orcid.org/0000-0002-5223-7945
https://orcid.org/0000-0002-5223-7945
https://orcid.org/0000-0002-5223-7945
https://orcid.org/0000-0002-5223-7945
https://orcid.org/0000-0002-5223-7945
https://orcid.org/0000-0002-5223-7945
https://orcid.org/0000-0002-5223-7945
https://orcid.org/0000-0002-5223-7945
https://orcid.org/0000-0002-0531-1073
https://orcid.org/0000-0002-0531-1073
https://orcid.org/0000-0002-0531-1073
https://orcid.org/0000-0002-0531-1073
https://orcid.org/0000-0002-0531-1073
https://orcid.org/0000-0002-0531-1073
https://orcid.org/0000-0002-0531-1073
https://orcid.org/0000-0002-0531-1073
https://orcid.org/0000-0003-4823-129X
https://orcid.org/0000-0003-4823-129X
https://orcid.org/0000-0003-4823-129X
https://orcid.org/0000-0003-4823-129X
https://orcid.org/0000-0003-4823-129X
https://orcid.org/0000-0003-4823-129X
https://orcid.org/0000-0003-4823-129X
https://orcid.org/0000-0003-4823-129X
https://orcid.org/0000-0001-5290-1001
https://orcid.org/0000-0001-5290-1001
https://orcid.org/0000-0001-5290-1001
https://orcid.org/0000-0001-5290-1001
https://orcid.org/0000-0001-5290-1001
https://orcid.org/0000-0001-5290-1001
https://orcid.org/0000-0001-5290-1001
https://orcid.org/0000-0001-5290-1001
https://doi.org/10.1086/672273
https://ui.adsabs.harvard.edu/abs/2013PASP..125..989A/abstract
https://doi.org/10.1051/0004-6361/201322068
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A/abstract
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A/abstract
https://doi.org/10.1088/0067-0049/204/2/24
https://ui.adsabs.harvard.edu/abs/2013ApJS..204...24B/abstract
https://doi.org/10.3847/1538-3881/159/6/280
https://ui.adsabs.harvard.edu/abs/2020AJ....159..280B/abstract
https://doi.org/10.1038/186670a0
https://ui.adsabs.harvard.edu/abs/1960Natur.186..670B/abstract
https://doi.org/10.3847/1538-3881/abab0b
https://ui.adsabs.harvard.edu/abs/2020AJ....160..159C/abstract
https://doi.org/10.1038/184844a0
https://ui.adsabs.harvard.edu/abs/1959Natur.184..844C/abstract
https://doi.org/10.1088/1538-3873/abf329
https://ui.adsabs.harvard.edu/abs/2021PASP..133f4502C/abstract
http://www.ascl.net/1906.010
https://doi.org/10.1089/ast.2008.0819
https://ui.adsabs.harvard.edu/abs/2008AsBio...8..715D/abstract
https://doi.org/10.1126/science.131.3414.1667
https://ui.adsabs.harvard.edu/abs/1960Sci...131.1667D/abstract
https://ui.adsabs.harvard.edu/abs/2021AAS...23820701F/abstract
https://doi.org/10.1007/s11214-006-8315-7
https://ui.adsabs.harvard.edu/abs/2006SSRv..123..485G/abstract
https://ui.adsabs.harvard.edu/abs/2021aoo..confE..25G/abstract
https://doi.org/10.1093/mnras/stz2869
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.4575H/abstract
https://doi.org/10.3847/1538-3881/abba18
https://ui.adsabs.harvard.edu/abs/2020AJ....160..276H/abstract
https://doi.org/10.3847/1538-4357/abd7f7
https://ui.adsabs.harvard.edu/abs/2021ApJ...908..164K/abstract
https://doi.org/10.1088/1538-3873/ab3e82
https://doi.org/10.3847/1538-3881/abcc77
https://ui.adsabs.harvard.edu/abs/2021AJ....161...55M/abstract
https://doi.org/10.3847/1538-3881/aac5ea
https://ui.adsabs.harvard.edu/abs/2018AJ....156...24M/abstract
https://doi.org/10.26133/NEA12
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.3847/1538-4357/aac5f0
https://ui.adsabs.harvard.edu/abs/2018ApJ...861...44P/abstract
https://doi.org/10.3847/1538-3881/ab65f1
https://ui.adsabs.harvard.edu/abs/2020AJ....159...86P/abstract
https://doi.org/10.3847/2515-5172/ac00c1
https://ui.adsabs.harvard.edu/abs/2021RNAAS...5..114P/abstract
https://doi.org/10.3847/1538-3881/aabc4f
https://ui.adsabs.harvard.edu/abs/2018AJ....156..123A/abstract
https://ui.adsabs.harvard.edu/abs/2018AJ....156..123A/abstract
https://doi.org/10.1117/1.JATIS.1.1.014003
https://ui.adsabs.harvard.edu/abs/2015JATIS...1a4003R/abstract
https://doi.org/10.1038/190205a0
https://ui.adsabs.harvard.edu/abs/1961Natur.190..205S/abstract
https://doi.org/10.1017/S1473550419000284
https://ui.adsabs.harvard.edu/abs/2020IJAsB..19..237S/abstract
https://doi.org/10.1038/s41550-021-01508-8
https://ui.adsabs.harvard.edu/abs/2021NatAs...5.1153S/abstract
https://doi.org/10.3847/1538-4357/ab3fa8
https://ui.adsabs.harvard.edu/abs/2019ApJ...884...14S/abstract
https://ui.adsabs.harvard.edu/abs/2019ApJ...884...14S/abstract
https://doi.org/10.1146/annurev.astro.39.1.511
https://ui.adsabs.harvard.edu/abs/2001ARA&A..39..511T/abstract
https://doi.org/10.3847/1538-4365/ac0f0a
https://ui.adsabs.harvard.edu/abs/2021ApJS..256...33T/abstract
http://arxiv.org/abs/2203.10076
https://doi.org/10.1016/j.newar.2019.03.006
https://ui.adsabs.harvard.edu/abs/2018NewAR..83...37W/abstract
https://doi.org/10.3847/1538-3881/acb342
https://ui.adsabs.harvard.edu/abs/2023AJ....165..114Z/abstract

	1. Introduction
	2. Methods
	2.1. Calculating Drift Rates Given Orbital Parameters

	3. Drift Rates from the NASA Exoplanet Archive
	3.1. Missing Orbital Parameters
	3.1.1. Period or Semimajor Axis
	3.1.2. Inclinations
	3.1.3. Arguments of Periastron and Longitude of Ascending Node
	3.1.4. Eccentricity from Rayleigh Distribution

	3.2. Drift Rate Histogram from the NEA Sample

	4. Drift Rates from a Fully Simulated Exoplanet Population
	4.1. The NEA Sample is not Fully Representative of the Underlying Exoplanet Population
	4.2. Distributions for Simulated Parameters
	4.2.1. Inclination
	4.2.2. Longitude of Ascending Node and Argument of Periastron
	4.2.3. Stellar Mass
	4.2.4. Period and Semimajor Axis
	4.2.5. Eccentricity

	4.3. Drift Rate Histograms from the Fully Simulated Population

	5. Discussion
	5.1. Assessing Differences between NEA Sample and Simulated Samples
	5.2. Outliers and Maximum Drift Rates
	5.3. Drift Rate Equivalents in the Optical

	6. Conclusion
	Appendix
	References



