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Abstract: The rapid advancement of technology has increased the complexity of cyber
fraud, presenting a growing challenge for the banking sector to efficiently detect fraudulent
credit card transactions. Conventional detection approaches face challenges in adapting
to the continuously evolving tactics of fraudsters. This study addresses these limitations
by proposing an innovative hybrid model that integrates Machine Learning (ML) and
Deep Learning (DL) techniques through a stacking ensemble and resampling strategies.
The hybrid model leverages ML techniques including Decision Tree (DT), Random Forest
(RF), Support Vector Machine (SVM), eXtreme Gradient Boosting (XGBoost), Categori-
cal Boosting (CatBoost), and Logistic Regression (LR) alongside DL techniques such as
Convolutional Neural Network (CNN) and Bidirectional Long Short-Term Memory Net-
work (BiLSTM) with attention mechanisms. By utilising the stacking ensemble method,
the model consolidates predictions from multiple base models, resulting in improved
predictive accuracy compared to individual models. The methodology incorporates ro-
bust data pre-processing techniques. Experimental evaluations demonstrate the superior
performance of the hybrid ML+DL model, particularly in handling class imbalances and
achieving a high F1 score, achieving an F1 score of 94.63%. This result underscores the ef-
fectiveness of the proposed model in delivering reliable cyber fraud detection, highlighting
its potential to enhance financial transaction security.

Keywords: credit card cyber fraud; fraud detection; artificial intelligence; machine learning;
deep learning; ensemble techniques; resampling techniques

1. Introduction
The technological revolution is developing rapidly owing to several key enabling

technologies, such as Artificial Intelligence (AI), the Internet of Things (IoT), and big
data. Given the widespread adoption of ever-evolving Internet technology, banks are
implementing new technology and digital platforms to increase both their client base and
revenue [1]. However, the rapid increase in technology usage has exacerbated cyber fraud
using credit cards.

The growing prevalence of credit card cyber fraud poses a significant threat globally,
with fraudulent activities ranging from the illegal appropriation of credit cards to the
replication of card information and account takeover [2]. The widespread use of credit
cards—over 2.8 billion worldwide—has increased opportunities for fraudsters to exploit
this trend. In the United States alone, credit card fraud accounts for 46% of global fraudulent
activities, and projections indicate that the total global loss due to credit card fraud could
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reach USD 43 billion by 2026. Australia experienced a substantial rise in credit card fraud,
with an estimated loss of AUD 2.2 billion in 2023, according to the Australian Bureau of
Statistics. These statistics underscore the urgent need for improved fraud detection systems
to counter the escalating threat of credit card cyber fraud, particularly as the landscape
of online transactions continues to evolve [3]. The incidence of card cyber fraud among
Australians saw a substantial increase in 2023. According to a report from the Australian
Bureau of Statistics (ABS), an estimated gross amount of $2.2 billion was lost due to card
cyber fraud. The proportion of Australians affected by card cyber fraud has increased
from 6.9 percent in 2020–2021 to 8.7 percent in 2022–2023. Figure 1 shows the change in
Australians’ affected by personal cyber fraud from 2020 to 2023 [4].
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Detecting credit card cyber fraud is crucial for maintaining financial security, requiring
continuous advancement to address evolving fraudulent tactics [5]. Traditional methods
have limitations, prompting the exploration of Machine Learning (ML) and Deep Learning
(DL) techniques [6,7] to improve accuracy, adaptability, and performance. However, ML
and DL face challenges such as class imbalance, overfitting, and scalability issues [8],
along with data-related challenges like unbalanced class distributions and evolving fraud
patterns [9]. This paper develops and evaluates a Hybrid ML+DL model to improve fraud
detection efficiency and accuracy.

The motivation for employing a hybrid ML+DL model in credit card fraud detection
stems from the limitations of traditional models and the need to combine the strengths of
both ML and DL techniques. ML models, such as Decision Tree (DT), Random Forest (RF),
Support Vector Machine (SVM), eXtreme Gradient Boosting (XGBoost), Categorical Boost-
ing (CatBoost), and Logistic Regression (LR) address challenges like imbalanced datasets
and complex fraud patterns but struggle with sequential and temporal dependencies in
transaction data. DL models like Convolutional Neural Network (CNN) and Bidirectional
Long Short-Term Memory Network (BiLSTM) address these dependencies, uncover hid-
den relationships, and adapt to varying fraud patterns [10]. The inclusion of attention
mechanisms enhances the model’s focus on critical features, improving interpretability and
accuracy [11]. By combining ML’s efficiency with DL’s depth, the hybrid model offers a
robust, scalable, and highly accurate framework for tackling evolving credit card fraud.

The novelty of this approach lies in its integration of both ML and DL techniques
into a hybrid ensemble model for cyber fraud detection in the banking sector. Unlike
traditional ensemble methods, this model combines classical ML models (e.g., RF, SVM, LR)
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and advanced DL techniques (e.g., CNN-BiLSTM-Attention). This hybridisation allows
the model to detect complex fraud strategies, overcoming challenges such as imbalanced
datasets, evolving attack patterns, and real-time detection needs. The combination of
models provides flexibility, adaptability, and the ability to learn from new fraud patterns,
while the meta-classifier enhances accuracy and minimises false positives.

The primary contribution of this research is the development of a hybrid ML+DL
model using a stacking ensemble framework that integrates ML (DT, RF, SVM, LR, XGBoost,
CatBoost) and DL (CNN-BiLSTM with attention). The model addresses challenges like
imbalanced datasets, complex fraud patterns, and the need for precise fraud detection.
Tested on a real-world dataset, it outperforms state-of-the-art models, significantly reducing
false positives and undetected fraud cases. This work enhances accuracy, robustness, and
provides insights for deploying scalable fraud prevention systems.

The remainder of this paper is organised as follows. Section 2 presents the related
works, and Section 3 presents the material and methods used in this study. The proposed
credit card fraud prediction approach is introduced in Section 4. Section 5 presents results
and discussion, and Section 6 presents the conclusions.

2. Related Works
In this section, we examine the related literature on proposed systems and techniques

for credit card fraud detection. The existing work in this field is categorised into two
sections based on the technique used, ML algorithms and DL algorithms.

2.1. Machine Learning

ML, a field that enables computers to perform tasks without explicit programming,
has the potential to achieve accurate predictions of risk and anomalous behaviour inside
datasets, including instances of credit card theft [12]. The classification challenge in the
field of ML pertains to the objective of accurately predicting the class label associated with
certain data items. The objective of this scenario is to forecast whether a transaction is
fraudulent or legitimate [13].

The SVM function discerns the optimal decision boundary that effectively distin-
guishes genuine transactions from fraudulent transactions. Ref. [14] implemented a model
for credit card cyber fraud detection. The results indicate that the novel DT classifier
achieves 94.86% accuracy, whereas the SVM predicts the same with 98.59% accuracy. In [15],
an SVM classifier was implemented using the Multilayer Perceptron (MLP) technique. The
research findings indicated that the SVM and MLP techniques achieved an accuracy of
94.59% and 91.21%, respectively.

DTs are hierarchical data structures that are commonly employed for classification or
regression problems [16–18], employed the DT classifier to identify financial cyber fraud.
The DT algorithm demonstrated the highest accuracy among the other classifiers. DT using
the boosting technique was applied by [19]. The results show that the model achieved the
highest accuracy of 98.3%.

RF is a flexible ensemble of DTs that is commonly used in the field of credit card
cyber fraud detection. Ref. [20] applied RF for cyber fraud detection on skewed data. The
results indicated that RF had the highest accuracy (95.19%) compared to KNN, LR, and DT.
Furthermore, RF was applied with other techniques such as SVM, NB, and KNN in [21].
The results showed that the RF algorithm performed better than other techniques. A hybrid
model was proposed by [22]. The results show that RF with KNN performed better than
RF with a single classifier. In [23], LR, RF, and CatBoost were applied to detect cyber fraud.
The results show that RF with CatBoost provides a high accuracy.
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LR is a statistical strategy that models a binary dependent variable using a logistic
function. The new system uses LR to build the classifier proposed by [24]. On a comparative
analysis of the LR-based classifier with KNN and voting classifiers, the results indicate that
the LR-based method yields the most precise conclusions.

Ref. [25] introduced an ensemble model that combines KNN, SVM, RF, Bagging, and
Boosting classifiers. The performance of this ensemble was impressive and demonstrated
the effectiveness of merging multiple classifiers to improve the accuracy. A compared
different ensemble methods to predict cyber fraud in credit cards has been performed
by [26]. The experiment shows that XGBoost performs better than other ensemble methods.

2.2. Deep Learning

DL is a subset of ML that focuses on analysing data through hierarchical feature
extraction. The key advantage of DL is its ability to automatically learn features with-
out the need for manual feature selection [27]. DL algorithms such as CNN and LSTM
are associated with image processing and Natural Language Processing (NLP). Using
these methods for credit card cyber fraud detection has yielded better performance than
traditional algorithms [28].

CNNs have demonstrated their efficacy in successfully processing multi-channel
data, therefore enabling a thorough analysis of transaction information. Ref. [29] used
DL techniques such as CNN, BILSTM with an Attention Layer to classify illegitimate
transactions. The CNN-Bi-LSTM-ATTENTION model is highly effective in identifying
fraudulent classes. Analysis indicated that the model was adequate and yielded an accuracy
of 95%. Ref. [30] introduced a credit card cyber fraud detector that was optimised for large-
scale real-time datasets and utilised a CNN combined with a smart matrix algorithm.
Compared to alternative ML approaches, the performance of the three-layered CNN
model is superior. Ref. [31] suggested a hybrid CNN-SVM model for the detection of
fraudulent credit card transactions. The experimental findings indicate that the hybrid
CNN-SVM model achieved classification performances of 91.08%, 90.50%, 90.34%, and
90.41, respectively, in terms of accuracy, precision, recall, and F1-score.

LSTM is a helpful technique for predicting cyber fraud because of its historical knowl-
edge and the link between prediction outputs and historical input. Ref. [32] developed
a new model to improve both the present detection techniques and detection accuracy
considering large amounts of data. The findings demonstrated that LSTM performed per-
fectly, achieving 99.95% accuracy. Ref. [33] recommended a model to record the previous
purchasing behaviour of card holders. The results showed that the LSTM model achieved
a high level of performance. Ref. [34] proposed a new model as a means of mitigating
misclassification in cyber fraud detection systems. The application of an LSTM-RNN
was implemented. A comparison of the obtained results to previous research revealed
that this model achieved both a high rate of accurate classification and a low rate of false
alarms. Ref. [35] introduced a novel hybrid model with the objective of identifying the
occurrence of credit card cyber fraud. RNN-LSTM and an attention mechanism have been
proposed. Comparing the performance of RNN-LSTM to that of ANN, XGBoost, RF, NB,
and SVM classifiers reveals that the proposed model generates robust results with an
accuracy of 99.4%.

BiLSTM models were employed to analyse data in both forward and backward direc-
tions. These models utilise LSTM cells equipped with memory units that enable them to
record temporal patterns and relationships [36]. Ref. [37] introduced the Hybrid Sampling
(HS)-Similarity Attention Layer (SAL)-BiLSTM architecture. By hybrid sampling of the
minority class and undersampling of the majority class, the SMOTE-ENN decreases data
discrepancy. SAL is implemented to quantify the similarity of a data sequence to assign
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importance to distinctive features and mitigate the issue of overfitting in classification.
The recall value of the proposed HS-SAL-BiLSTM was 99.2%, whereas that of the existing
RF-SMOTE-SVM was 97.7%. A DL-based hybrid approach for detecting fraudulent transac-
tions was applied by [38]. A Bi-LSTM autoencoder with an isolation forest is incorporated
into the new model. This model suggests that fraudulent transactions can be detected at a
rate of 87%.

The academic literature highlights various Machine Learning (ML) and Deep Learning
(DL) methodologies applied to credit card cyber fraud detection [39]. In recent years, there
has been a notable increase in the exploration of DL techniques, which offer flexibility in
responding to complex data patterns and detecting new fraudulent behaviours. Despite
advancements in ML and DL algorithms, current models still struggle with handling large-
scale, real-world data and adapting to the evolving nature of cyber fraud. This research
presents a novel hybrid ML+DL model that integrates multiple ML algorithms—such
as Decision Trees (DT), Random Forest (RF), Support Vector Machines (SVM), XGBoost,
CatBoost, and Logistic Regression (LR)—with Deep Learning techniques like CNN-BiLSTM.
This hybrid approach optimises both precision and recall, while capturing complex fraud
patterns that previous models often overlook, offering a more robust and adaptive solution
to the challenges of credit card fraud detection.

3. Materials and Methods
This section explores the credit card dataset employed in the study and provides a

comprehensive explanation of the various algorithms and strategies utilised in formulating
the suggested credit card cyber fraud detection methodology.

3.1. Dataset

To assess the effectiveness of the suggested ML models, a widely recognised dataset
was chosen for both training and testing. This dataset is available at https://www.kaggle.
com/mlg-ulb/creditcardfraud, accessed on 3 May 2021. The dataset consisted of client
transactions at a European bank in 2013. The real-world dataset consists of 284,807 credit
card transactions.

3.2. Programming Language

Python, an easy, interpreted, object-oriented, and high-level language, is popular. The
system utilises Numpy for linear algebra and multidimensional arrays. Pandas makes data
manipulation fast and flexible. Python Scikit-learn was used for statistics and ML. The
algorithms ran on 3.3 GHz Intel Core i7 PCs with 16 GB RAM. Python 3.11.4 models learn.
Code runs in Jupyter Notebook.

3.3. Evaluation and Reflection

This study evaluates ML and DL algorithms for cyber fraud detection using 5-fold
cross-validation to address dataset imbalance, focusing on F1 score for model evaluation
and comparison. Metrics like confusion matrix, accuracy, recall, precision, and AUC-ROC
were used to balance selectivity and specificity while minimising errors. Table 1 presents the
performance indicators. Table 1 provides a thorough summary of the performance metrics.

https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/mlg-ulb/creditcardfraud
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Table 1. Performance indicators.

Metrics Description Equation Range

Accuracy Assess the number of TPs A = TN+TP
TN+FN+TP+FP [0–1]

Recall The ratio of TP to a TP and
FN R = TP

TP+FN [0–1]

Precision The ratio of TP to a TP and FP P = TP
TP+FP [0–1]

F1-Score Combines precision and
recall F1 = 2 P∗R

P+R [0–1]

AUC
The area between two points
bounded by the function and

the x axis.
AUC =

∫ b
a f (x)dx [0–1]

4. Method
This section describes the successful development of a hybrid ML+DL approach

that integrates the ML techniques: DT, RF, SVM, XGBoost, CatBoost, and LR with the
DL techniques CNN and BiLSTM. Figure 2 illustrates a block diagram of the proposed
modelling framework that was developed in this study.
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The heart of the model lies in its architecture, which includes both ML classifiers and
a DL model. The classical classifiers include RF, SVM, LR, DT, XGBoost, and CatBoost.
These classifiers are trained individually on the training data and evaluated using stan-
dard metrics. Additionally, we introduce a CNN-BiLSTM with an attention mechanism.
The CNN architecture consists of convolutional layers followed by batch normalisation,
max-pooling layers, Bidirectional LSTM layers, Dropout layers for regularisation, and a
custom AttentionLayer. This AttentionLayer helps the model focus on important features.
The CNN is trained alongside the classical classifiers and is evaluated similarly. Moreover,
we employ various callbacks during training, such as F1ScoreCallback, ModelCheckpoint,
ReduceLROnPlateau, and EarlyStopping, to monitor the model’s performance and pre-
vent overfitting. Finally, we build a StackingClassifier that combines the predictions of all
classifiers ML and DL, using an RF classifier as the final estimator. This StackingClassifier
is trained on the training data and evaluated on the test set. The performance metrics,
including accuracy, precision, recall, F1-score, ROC AUC score, and confusion matrix,
are computed and visualised for comprehensive analysis. In summary, the novel hybrid
stacking ML+DL model is a hybrid approach that combines the strengths of classical ML al-
gorithms with the representation learning capabilities of a CNN-BiLSTM with an attention
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mechanism, resulting in a robust and effective framework for detecting fraudulent transac-
tions.

4.1. Machine Learning Techniques

Various ML techniques that have been applied including DT, RF, SVM, XGBoost,
CatBoost, and LR, each tailored to address specific challenges in credit card cyber fraud
detection. For instance, the DT model utilises recursive partitioning to create a tree-
like structure, ensuring accurate classification by analysing features and decision points.
On the other hand, RF constructs multiple DTs to improve predictive accuracy while
preventing overfitting. SVM optimises the separation between distinct classes in the feature
space, hence improving their effectiveness in binary classification problems. XGBoost
employs gradient boosting to iteratively refine predictions, while CatBoost efficiently
handles categorical features without pre-processing difficulties. Lastly, LR provides a
fundamental yet powerful approach to binary classification, offering insights into the
relationships between features and the target variable.

4.1.1. Decision Tree (DT)

DT is a supervised ML algorithm that recursively partitions the dataset into branches rep-
resenting decisions based on input features. It uses hyperparameters such as max_depth (lim-
its tree complexity), min_samples_split (minimum samples to split a node), min_samples_leaf
(minimum samples in a leaf), and criterion (entropy to measure split quality). This configura-
tion balances complexity and generalisation, enabling accurate classification.

4.1.2. Random Forest (RF)

RF is an ensemble method that creates multiple DTs and combines their predictions.
Key hyperparameters include n_estimators (number of trees), max_depth (limits tree depth),
min_samples_split and min_samples_leaf (control node splitting), and random_state (en-
sures reproducibility). These parameters help reduce overfitting while capturing complex
patterns effectively.

4.1.3. Support Vector Machine (SVM)

SVM separates classes by maximising the margin between them using a kernel function.
It uses an RBF kernel for non-linear separability, with hyperparameters like C (controls
trade-off between margin size and classification error) and gamma (influences data point
impact). SVM excels in binary classification by leveraging support vectors and optimising
the decision boundary.

4.1.4. XGBoost

XGBoost is a gradient boosting algorithm that builds trees sequentially, correcting
prior errors. Key hyperparameters include eta (learning rate), max_depth (tree depth),
subsample and colsample_bytree (control training and feature subsampling), and ran-
dom_state (ensures reproducibility). These configurations improve predictive performance
while mitigating overfitting.

4.1.5. CatBoost

CatBoost efficiently handles categorical data without pre-processing. It uses hyperpa-
rameters like iterations (number of boosting rounds), learning_rate (step size for weight
updates), depth (tree depth), and l2_leaf_reg (regularisation to prevent overfitting). This
model simplifies workflows while delivering robust performance on mixed datasets.
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4.1.6. Logistic Regression (LR)

LR is a linear classifier suited for binary tasks. It uses liblinear as the solver, allowing
L1 (feature selection) and L2 (mitigates outliers) regularisation. With a fixed random_state,
results are reproducible. Performance is evaluated through metrics like AUC-ROC, con-
fusion matrix, and F1-score, ensuring reliable predictions. LR is a statistical strategy that
models a binary dependent variable using a logistic function. LR determines the proba-
bility of a binary response using a functional approach and various features. It employs
a nonlinear sigmoid function to determine the parameters that provide the best fit. The
sigmoid function (sigma) and its corresponding input (x) are as follows:

σ(x) =
1

(1 + l−x)

x = w0z0 + w1z1 + · · ·+ wnzn

The optimal coefficients w and vector z, representing the input data, were obtained by
multiplying each element individually. The result of adding these values is a numerical
value that ultimately determines the classification score of the target class. If the sigmoid
value is less than 0.5, it is considered to be zero; otherwise, it is 1.

4.2. Deep Learning Techniques

The model architecture consists of 18 layers, each contributing uniquely to the feature
extraction and classification process:

1-Conv1D Layer: The architecture begins with a one-dimensional convolutional layer
equipped with 32 filters and a kernel size of 3. This layer utilises the ReLU activation func-
tion to introduce non-linearity and efficiently capture local patterns in the input sequence.
The input shape for this layer is defined as (X_train.shape [1], 1), where X_train.shape [1]
represents the number of features in each input sample.

2-Batch Normalisation Layer: Immediately following the first Conv1D layer, Batch
Normalisation is applied. This technique normalises the activations of the previous layer;
by minimising internal covariate shift, the training process is substantially improved in
terms of stability and efficiency. It helps in maintaining a consistent distribution of inputs
across layers.

3-MaxPooling1D Layer: The MaxPooling layer is implemented to downscale the
feature maps, with a pool size of 2. This layer reduces the spatial dimensions and retains
the most significant features while mitigating the computational load and helping to
prevent overfitting.

4-Conv1D Layer: The model then incorporates a second Conv1D layer with 64 filters
and a kernel size of 3. This layer continues to capture more complex patterns, building on
the representations learned by the first convolutional layer.

5-Batch Normalisation Layer: Like the first set of layers, Batch Normalisation is applied
to further stabilise the learning process and reduce the dimensionality of the feature maps.

6-MaxPooling1D Layer: Another MaxPooling layer is applied to downsample the fea-
ture maps, retaining the most important features while reducing computational complexity
and preventing overfitting.

7-Conv1D Layer: The filter size is increased to 128 in the third Conv1D layer, which
also maintains a kernel size of 3. This layer allows the model to learn even more abstract and
higher-level features from the input sequence, which are crucial for accurate classification.

8-Batch Normalisation Layer: Batch Normalisation is applied again to ensure stable
and efficient learning by normalising the activations.

9-MaxPooling1D Layer: A third MaxPooling layer is applied to further reduce the
spatial dimensions of the feature maps, retaining the most critical features.
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10-Bidirectional LSTM Layer: Following the convolutional layers, the model employs a
Bidirectional LSTM (BiLSTM) layer with 128 units. Unlike traditional LSTMs, The BiLSTM
algorithm processes the input sequence in both the forward and backward orientations,
allowing the model to incorporate dependencies from both past and future contexts. This
bidirectional processing is particularly beneficial for understanding the sequential nature
of the data and for improving the context-awareness of the model.

11-Dropout Layer: To prevent overfitting, a Dropout layer with a dropout rate of 0.5 is
added after the first BiLSTM layer. Randomly, 50% of the neurons are removed during each
training iteration using this technique.

12-Bidirectional LSTM Layer: Another Bidirectional LSTM layer with 64 units is
then included, providing a more compact representation of the sequential data while still
benefiting from bidirectional context.

13-Dropout Layer: An additional Dropout layer with the same dropout rate of
0.5 is applied after the second BiLSTM layer to further reduce overfitting and improve
model robustness.

14-Attention Layer: The Attention Layer computes a context vector by focusing on
the most relevant parts of the sequence. This layer works by assigning higher weights to
the time steps that contribute more significantly to the output prediction. This mechanism
enhances the model’s interpretability and efficiency by allowing it to focus on the most
informative segments.

15-First Dense Layer: An attention-driven fully linked layer with 64 neurons and
ReLU activation. This layer incorporates features from preceding levels to teach the model
complicated feature interactions.

16-Dropout Layer: Another Dropout layer with a rate of 0.5 is applied to prevent
overfitting.

17-Second Dense Layer: A second Dense layer with 32 neurons with ReLU activation
reduces dimensionality and prioritises classification criteria.

18-Output Layer: In the final Dense layer, a single neuron is equipped with a sig-
moid activation function. This layer generates a probability score ranging from 0 to 1,
which denotes the probability of the positive class. Table 2 shows the Deep Learning
model structure.

The sequence of layers in this model is meticulously designed to maximise the
strengths of different neural network components and to ensure efficient and effective
learning. Starting with Conv1D layers is crucial for extracting local patterns. These layers
can discover short-term relationships and important local features, which provide the basis
for later processing. Introducing Batch Normalisation early stabilises the learning process.
The computational intricacy is reduced by MaxPooling, which reduces the dimensionality
of the feature maps while retaining essential features. Using deeper Conv1D layers, by
progressively increasing the number of filters in subsequent Conv1D layers, the model can
capture more complex and abstract patterns. This hierarchical feature extraction is essential
for understanding the underlying structure of the data. Following the convolutional layers
with BiLSTM layers allows the model to capture long-term dependencies and contextual
information from both past and future states. The bidirectional nature of these layers
enhances the model’s ability to understand the sequential context of the data. Placing the
Attention Layer after the BiLSTM layers allows the model to dynamically focus on the most
relevant parts of the sequence, improving interpretability and performance. The attention
mechanism ensures that the model gives more weight to important time steps, enhanc-
ing its predictive capabilities. Dense layers following the attention mechanism integrate
and transform the features extracted by the previous layers. These layers, combined with
Dropout, reduce the dimensionality and focus on the most relevant aspects for classification,
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ensuring robust and accurate predictions. Finally, the sigmoid activation function in the
output layer is well-suited for binary classification, as it effectively maps the input to a
probability score between 0 and 1.

The model’s exhaustive comprehension of the data is guaranteed by the combination of
Conv1D and BiLSTM layers, which capture both local patterns and long-term dependencies.
Batch Normalisation and MaxPooling layers enhance the stability and efficiency of the
model, ensuring faster and more reliable training. The attention mechanism enhances the
model’s interpretability and efficiency by allowing it to focus on the most informative parts
of the sequence, improving overall performance. The inclusion of Dropout layers mitigates
overfitting, promoting better generalisation to unseen data. In summary, this hybrid model
combines the strengths of CNN and BiLSTM architectures with an attention mechanism to
effectively capture and prioritise important features in sequential data. This design leads to
improved performance in binary classification tasks by leveraging local pattern recognition,
long-term dependency modelling, and dynamic attention-based feature weighting. The
careful selection and ordering of layers, along with robust algorithmic components, make
this model a powerful tool for tackling complex binary classification challenges. The Adam
optimiser is selected due to its efficient management of sparse gradients and adaptive
learning rate capabilities. The binary cross-entropy loss function measures the difference
between predicted probabilities and class labels, making it suited for binary classification
applications. This loss function is particularly effective for models outputting probabilities,
ensuring that the model’s predictions are calibrated accurately. The ReLU activation
function is employed in the hidden layers due to its ability to introduce non-linearity.
ReLU is computationally efficient and helps in mitigating the vanishing gradient problem,
allowing the model to learn more effectively.

Table 2. The Deep Learning structure.

Layer (Type)Layer (Type)Layer (Type) Output ShapeOutput ShapeOutput Shape Param #Param #Param #

conv1d (Conv1D)conv1d (Conv1D)conv1d (Conv1D) (None, 15, 32)(None, 15, 32)(None, 15, 32) 128128128

batch_normalization (BatchNormalization)batch_normalization (BatchNormalization)batch_normalization (BatchNormalization) (None, 15, 32)(None, 15, 32)(None, 15, 32) 128128128

max_pooling1d (MaxPooling1D)max_pooling1d (MaxPooling1D)max_pooling1d (MaxPooling1D) (None, 7, 32)(None, 7, 32)(None, 7, 32) 000

conv1d_1 (Conv1D)conv1d_1 (Conv1D)conv1d_1 (Conv1D) (None, 5, 64)(None, 5, 64)(None, 5, 64) 620862086208

batch_normalization_1 (BatchNormalization)batch_normalization_1 (BatchNormalization)batch_normalization_1 (BatchNormalization) (None, 5, 64)(None, 5, 64)(None, 5, 64) 256256256

max_pooling1d_1 (MaxPooling1D)max_pooling1d_1 (MaxPooling1D)max_pooling1d_1 (MaxPooling1D) (None, 2, 64)(None, 2, 64)(None, 2, 64) 000

conv1d_2 (Conv1D)conv1d_2 (Conv1D)conv1d_2 (Conv1D) (None, 2, 128)(None, 2, 128)(None, 2, 128) 24,70424,70424,704

batch_normalization_2 (BatchNormalization)batch_normalization_2 (BatchNormalization)batch_normalization_2 (BatchNormalization) (None, 2, 128)(None, 2, 128)(None, 2, 128) 512512512

max_pooling1d_2 (MaxPooling1D)max_pooling1d_2 (MaxPooling1D)max_pooling1d_2 (MaxPooling1D) (None, 1, 128)(None, 1, 128)(None, 1, 128) 000

Bidirectional (Bidirectional)Bidirectional (Bidirectional)Bidirectional (Bidirectional) (None, 1, 256)(None, 1, 256)(None, 1, 256) 263,168263,168263,168

Dropout (Dropout)Dropout (Dropout)Dropout (Dropout) (None, 1, 256)(None, 1, 256)(None, 1, 256) 000

bidirectional_1 (Bidirectional)bidirectional_1 (Bidirectional)bidirectional_1 (Bidirectional) (None, 1, 128)(None, 1, 128)(None, 1, 128) 164,352164,352164,352

dropout_1 (Dropout)dropout_1 (Dropout)dropout_1 (Dropout) (None, 1, 128)(None, 1, 128)(None, 1, 128) 000

attention_layer (AttentionLayer)attention_layer (AttentionLayer)attention_layer (AttentionLayer) (None, 128)(None, 128)(None, 128) 129129129

dense (Dense)dense (Dense)dense (Dense) (None, 64)(None, 64)(None, 64) 825682568256

dropout_2 (Dropout)dropout_2 (Dropout)dropout_2 (Dropout) (None, 64)(None, 64)(None, 64) 000

dense_1 (Dense)dense_1 (Dense)dense_1 (Dense) (None, 32)(None, 32)(None, 32) 208020802080

dense_2 (Dense)dense_2 (Dense)dense_2 (Dense) (None, 1)(None, 1)(None, 1) 333333

Total params: 469,954Total params: 469,954Total params: 469,954
Trainable params: 469,506Trainable params: 469,506Trainable params: 469,506
Non-trainable params: 448Non-trainable params: 448Non-trainable params: 448
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The Algorithm 1 describes a novel hybrid stacking model that combines ML and
DL techniques for classification. The process begins by pre-processing the dataset, which
involves cleaning, encoding, and normalising the features. Afterward, the data are split
into training and testing sets, with the features and target values separated. The training
and testing sets are then normalised to ensure that all features contribute equally to the
model. The core of the algorithm is the creation of a stacking classifier, where multiple
base learners are employed. These learners include RF, SVM, LR, DT, XGBoost, CatBoost,
and a hybrid CNN-BiLSTM-Attention DL model. The stacking model uses these base
learners to make predictions, which are then combined by a meta-classifier, typically an
RF. To evaluate the model, the algorithm applies cross-validation using StratifiedKFold to
preserve class distribution in each fold. The model is trained and evaluated over multiple
iterations, with performance metrics being recorded and printed after each iteration. The
procedure repeats this process n times, ensuring robust evaluation of the stacking model’s
performance on the test data. This hybrid approach is designed to leverage the strengths of
both ML and DL models for improved classification accuracy and generalisation.

Algorithm 1: Novel hybrid stacking ML+DL model

1. Procedure Stacking Hybrid ML+DL _modelProcedure Stacking Hybrid ML+DL _modelProcedure Stacking Hybrid ML+DL _model (X, y, n, cv_folds, test_size)
2. Pre-processPre-processPre-process (X, y)
3. SplitSplitSplit data into (X, y)
4. NormalizeNormalizeNormalize (X_train, X_test)
5. ModelModelModel ← Create stacking classifier with RandomForestClassifier
6. as meta-classifier()
7. (‘Random Forest’, rf_classifier)
8. (‘SVM’, svm_classifier)
9. (‘Logistic Regression’, lr_classifier)
10. (‘Decision Tree’, dt_classifier)
11. (‘XGBoost’, xgb_classifier)
12. (‘CatBoost’, catboost_classifier)
13. (‘CNN-BiLSTM-Attention’, CNN-BiLSTM-Attention _classifier)
14.
15. Cross-validation: StratifiedKFold with cv_folds
16.forforfor k ← 0 to n-1 do
17. TrainTrainTrain StackingClassifier (X_train, y_train)
18. PredictPredictPredict y_pred on (X_test)
19. EvaluateEvaluateEvaluate Model(X_test, y_test)
20. PrintPrintPrint Evaluation Metrics
21.
22.end forend forend for
23.End ProcedureEnd ProcedureEnd Procedure

4.3. Data Processing

To facilitate the development of the cyber fraud detection model, a dataset containing
credit card transaction information was obtained and loaded into the analysis environment.
This step is essential for understanding the nature of the data. Credit card transactions
totalling 284,807 were conducted in the real world over the course of 24 h. The dataset is
highly imbalanced. Out of 284,315 records, only 492 are labelled as fraudulent transactions.
There are 31 columns in this dataset, 30 columns representing attributes and one column
representing the target class, which shows whether a transaction is fraudulent or genuine.
The dataset comprises 28 variables, which have been converted from the original set of
variables using Principal Component Analysis (PCA). The dataset file is formatted in the
Comma-Separated Values (CSV) format. The CSV file can be read using the pandas module
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in Python. Cyber fraud detection systems often encounter an amount of highly imbalanced
data, where most credit card transactions are genuine but just a small fraction is fraudulent.
Figure 3 shows the percentage of fraudulent vs non-fraudulent transactions.
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Because of the dataset’s extreme imbalance, with real transactions accounting for
99.827% and cyber fraud transactions for just 0.173%, training the model using raw data is
unlikely to yield the desired outcomes, despite potentially high evaluation metrics. Figure 4
shows the plot of the credit card dataset.
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It is imperative to pre-process the data before executing an ML algorithm. This is
because the predictors are generated with unique requirements by various models, and
the prediction output may be influenced by the data training. The dataset is composed of
numerical values that are acquired through the PCA process. Nevertheless, the original
characteristics have not been released because of the confidentiality concerns. A total of
30 features were created, with 28 of them being derived by PCA. PCA is a widely used
method for reducing the dimensionality of data. ’Amount’ and ’Time’ are the only attributes
that have not been converted into principal components. The pre-processing tasks have
been accomplished by utilising the Python data manipulation package pandas and the ML
module sci-kit learn. The sequential process is visually depicted in Figure 5.
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4.3.1. Data Cleaning

In the course of data cleansing, two primary activities are frequently implemented.
The initial task entails the elimination of null values and absent values from the dataset. The
second responsibility is the management of outliers, which are data points that deviate con-
siderably from the majority of the dataset. In total, the dataset contains 284,807 transactions.
No null values were present in the dataset.

4.3.2. Feature Scaling

Data pre-processing includes this step to normalise a dataset’s independent variables.
It is centred around 0 or between 0 and 1, depending on the scaling mechanism. Feature
scaling improves the performance of models by ensuring feature scales are similar. We
developed feature scaling using RobustScaler. This procedure scales features in X_train
and X_test using RobustScaler. The RobustScaler fitted to the training data (X_train) will
scale its features.

4.3.3. Feature Correlation and Selection

Feature selection is a critical component of ML and data analysis, with the primary
objective of identifying the most pertinent features to improve interpretability and improve
model performance. Since RF, XGBoost, and permutation methods are often performed
well for cyber fraud detection tasks, utilising four distinct feature importance techniques,
including the correlation matrix, RF, XGBoost, and permutation analysis, we evaluate the
significance of features. Following the analysis with each method, we compare the results
and aggregate the top 17 important features. The features are V17, V14, V12, V10, V16,
V3, V7, V11, V4, V18, V1, V9, V5, V2, V6, V21, and V19. These selected features are then
designated for utilisation in subsequent stages of the process.

4.3.4. Feature Extraction

A technique like PCA is used for dimensionality reduction. Feature extraction helps
reduce noise, prevent overfitting, and lower computational costs by selecting and trans-
forming the most relevant data. Ultimately, this step enhances model accuracy and gen-
eralisation by simplifying the input data. We applied PCA as a dimensionality reduction
algorithm on our dataset to produce robust and discriminative features for detecting
fraudulent transactions.

4.3.5. Data Splitting

This method serves two crucial purposes: mitigating the risk of overfitting and ver-
ifying the performance of the model in real-world situations. The complete dataset is
partitioned into a training set comprising 80% of the data and a test set including the
remaining 20%.
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5. Results and Discussion
Initially, we assess the performance of ML algorithms individually and in the absence

of employing ensemble techniques. In datasets with class imbalances, such as fraud detec-
tion, the F1 score provides a balanced evaluation by harmonising precision (minimising
false positives) and recall (minimising false negatives). Unlike accuracy, which can be
misleading in such cases, the F1 score focuses on the minority class while addressing both
critical error types. This makes it a nuanced metric for assessing model effectiveness, espe-
cially when both detecting fraud and avoiding legitimate transaction misclassification are
crucial. The outcomes derived from this evaluation are comprehensively depicted in Table 3,
illustrating a comparative analysis of the algorithms. Figure 6 shows the performance of
ML algorithms without ensemble techniques.
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Table 3. Algorithms’ performance.

ML Accuracy Precision Recall F1 Score AUC

DT 99.93% 89.89% 81.63% 85.56% 90.80%

RF 99.96% 97.40% 76.53% 85.71% 97.25%

SVM 99.94% 97.02% 66.33% 78.79% 95.13%

XGBoost 99.95% 95.00% 77.55% 85.39% 97.83%

CatBoost 99.96% 97.44% 77.55% 86.36% 98.37%

LR 99.92% 88.06% 60.20% 71.52% 97.01%

The DT model achieves high accuracy (99.93%) and precision (89.89%) but has a
lower recall (81.63%), resulting in an F1 score of 85.56%. RF delivers exceptional accuracy
(99.96%) and precision (97.40%) but falls short on recall (76.53%), with an F1 score of
85.71%. Similarly, SVM shows strong accuracy (99.94%) and precision (97.02%) but lower
recall (66.33%), yielding an F1 score of 78.79%. XGBoost balances performance with
99.95% accuracy, 95.00% precision, and an F1 score of 85.39%. CatBoost excels with 99.96%
accuracy, 97.46% precision, and the highest F1 score of 87.01%, indicating an excellent
balance between precision and recall. In contrast, LR achieves 99.92% accuracy but lower
precision (88.06%) and recall (60.20%), resulting in a lower F1 score of 71.52%. Overall,
CatBoost emerges as the top performer, followed by RF and XGBoost, while LR and SVM
lag in capturing positive instances effectively.
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Subsequently, we evaluate the performance of DL algorithms independently, without
incorporating ensemble techniques. This evaluation focuses on understanding the effec-
tiveness of standalone DL methods in detecting credit card cyber fraud, particularly in
handling sequential data and uncovering intricate patterns. The results of this assessment
are summarised in Table 4 for CNN and Table 5 for BiLSTM. Figures 7 and 8 visually
represent the confusion matrix for CNN and BiLSTM.

The comparison between CNN and BiLSTM models highlights key differences in
performance, with the F1 score as the primary focus. For the CNN model, an F1 score of
82.80% was achieved with an epoch size of 20 and a batch size of 64, improving slightly to
83.98% with larger epoch and batch sizes (50 and 128). The improvement was driven by
increased precision (91.57%), though recall slightly decreased (77.55%), indicating strong
identification of fraud but limited coverage of all cases. In contrast, the BiLSTM model
excelled, particularly at larger configurations. Its F1 score increased from 82.16% (epoch size
20, batch size 64) to 85.86% (epoch size 50, batch size 128), with higher recall (83.67%) and
solid precision (88.17%). This demonstrates BiLSTM’s superior balance and effectiveness in
detecting fraudulent transactions compared to CNN, particularly for imbalanced datasets.

Table 4. Results of CNN model using several epochs.

Matrix Epoch Size 20, Batch Size 64 Epoch Size 50, Batch Size 128

Loss 0.002668 0.001816

TP 77 76

FP 11 7

TN 56,853 56,857

FN 21 22

Accuracy 99.94% 99.95%

Precision 87.50% 91.57%

Recall 78.57% 77.55%

Cross-Validation/Mean
Accuracy 99.93% 99.94%

F1 score 82.80% 83.98%

AUC 89.28% 88.77%

PRC 68.79% 71.05%

Total fraudulent transaction 98 98
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Table 5. Results of BiLSTM model using several epochs.

Matrix Epoch Size 20, Batch Size 64 Epoch Size 50, Batch Size 128

Loss 0.00295 0.002386

TP 76 82

FP 11 11

TN 56853 56853

FN 22 16

Accuracy 99.94% 99.95%

Precision 87.36% 88.17%

Recall 77.55% 83.67%

Cross-Validation/Mean
Accuracy 99.94% 99.94%

F1 score 82.16% 85.86%

AUC 88.77% 91.83%

PRC 67.78% 73.80%

Total fraudulent transaction 98 98

5.1. The Hybrid ML+DL

Initially, we evaluate the performance of the novel hybrid stacking ML+DL model
without utilising any sampling techniques. The results from this evaluation are thoroughly
detailed in Table 6. Additionally, Figure 9 presents the confusion matrix.

Table 6. Hybrid ML+DL model performance.

Model Accuracy Precision Recall F1 Score AUC

Hybrid stacking ML+DL 99.97% 97.62% 83.67% 90.11% 91.83%
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The novel hybrid ML+DL model exhibits outstanding performance across several
assessment measures. With an accuracy of 99.97%, the model showcases its ability to
accurately classify instances, which is crucial in credit card cyber fraud detection where
even minor errors can have significant consequences. Additionally, the model achieves
a high precision of 97.62%, indicating a low rate of false positives. This is particularly
advantageous in cyber fraud detection, where correctly identifying fraudulent transactions
is paramount to minimising financial losses for both customers and financial institutions.

Moreover, the model exhibits a commendable recall of 83.67%, highlighting its capabil-
ity to capture a high proportion of actual positive cases. In cyber fraud detection scenarios,
where the number of fraudulent transactions is typically much lower than legitimate ones,
a high recall ensures that the model effectively identifies fraudulent activities, thereby
enhancing cyber fraud detection efficiency. The F1 score of 90.11% further emphasises the
model’s balanced performance between precision and recall, demonstrating its ability to
manage false positives and false negatives. The AUC value of 91.83% underscores the
model’s ability to distinguish between fraudulent and legitimate transactions effectively. A
high AUC suggests that the model performs well across various threshold values, further
reinforcing its reliability in making accurate predictions.

The novel hybrid ML+DL model excels in its intricate design, which effectively in-
tegrates the advantages of both classic ML and DL techniques. The ML techniques in-
corporated, such as DT, RF, SVM, XGBoost, CatBoost, and LR, offer a diverse set of tools
tailored to address specific challenges in credit card cyber fraud detection. These tech-
niques leverage various algorithms and strategies to effectively capture patterns and make
accurate predictions. Furthermore, the DL techniques utilised, including CNN and BiLSTM
networks, are well-suited for handling sequential data such as transaction sequences. The
integration of attention mechanisms further enhances the model’s ability to focus on rele-
vant segments of the input sequence, improving interpretability and performance. Overall,
the novel hybrid ML+DL model benefits from comprehensive feature extraction, stability,
efficiency, dynamic attention mechanisms, robustness, and generalisation capabilities. It
is an effective tool for addressing intricate binary classification challenges, particularly in
credit card cyber fraud detection scenarios, due to its high-level architecture, meticulous
layer sequencing, and robust algorithmic components.
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5.2. Comparison Between Hybrid ML+DL and Individual Techniques:

The comparison of performance across ML techniques, DL techniques, and the hybrid
ML+DL model highlights significant advancements in detecting credit card fraud, partic-
ularly when focusing on the F1 score as a key measure of effectiveness. Each approach
demonstrates unique strengths, but the hybrid model clearly outperforms standalone
methods by leveraging their complementary capabilities.

Among the evaluated ML algorithms, CatBoost demonstrated the best performance,
achieving an F1 score of 86.36%, closely followed by RF with 85.71%. These models also
excelled in precision, with CatBoost and RF achieving 97.44% and 97.40%, respectively.
However, both struggled with lower recall rates (77.55% and 76.53%), indicating limitations
in identifying all fraudulent transactions. Other ML algorithms, such as DT and LR,
performed less effectively, with F1 scores of 85.56% and 71.52%, respectively. These results
show that, while ML models are highly precise, they may fail to capture a significant
portion of fraudulent cases, which is critical in cyber fraud detection.

DL techniques offered a competitive edge, particularly in handling sequential data
and capturing intricate patterns. Among the DL methods, BiLSTM outperformed CNN,
achieving an F1 score of 85.86% at larger epoch and batch sizes (50 and 128), compared
to CNN’s 83.98%. BiLSTM’s superior recall of 83.67% highlights its strength in detecting
a broader range of fraudulent transactions, making it more reliable in minimising false
negatives. On the other hand, CNN demonstrated slightly higher precision (91.57% vs.
BiLSTM’s 88.17%), indicating better accuracy in correctly identifying fraud but with a slight
compromise in recall. Overall, while DL methods show promise, they are most effective
when optimised for the characteristics of fraud detection datasets.

The hybrid ML+DL model achieved the highest overall performance, combining the
strengths of both ML and DL techniques. With an F1 score of 90.11%, it surpassed all
standalone models, balancing precision (97.62%) and recall (83.67%) more effectively. By
integrating ML algorithms, such as RF and CatBoost, with DL architectures like CNN
and BiLSTM using a stacking ensemble framework, the hybrid model leveraged their
complementary strengths. Its superior accuracy (99.97%) and robust handling of imbal-
anced datasets demonstrate its ability to detect fraudulent transactions more reliably than
individual methods. The hybrid approach’s success highlights its ability to mitigate the
weaknesses of standalone models while capitalising on their unique advantages.

The analysis demonstrates that, while ML and DL techniques independently offer
strong capabilities, they are limited in their ability to address all aspects of credit card
fraud detection. The hybrid ML+DL model, by combining the precision of ML with the
sequential data processing capabilities of DL, delivers the most balanced and effective
solution. This underscores the potential of hybrid approaches to set a new benchmark in
fraud detection, ensuring higher accuracy, better generalisation, and improved robustness
in real-world applications.

The novel hybrid stacking ML+DL model demonstrates superior performance com-
pared to the most advanced models in terms of accuracy and F1 score on the European
dataset. While some models achieve high accuracy individually, the novel hybrid approach,
which combines ML and DL through stacking, achieves the highest accuracy of 99.97%
and a competitive F1 score of 90.11%. This suggests that the integration of both ML and
DL techniques in a stacking framework enhances the model’s predictive capabilities, of-
fering promising results for card cyber fraud detection. Table 7 shows a comparison of
performance with existing models.
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Table 7. Comparison of performance with existing models.

Study Ref. Model Accuracy F1 Score Dataset

[32] LSTM 99.95% --- European cards

[40] BiLSTM 91.37% --- European cards

[34] LSTM-RNN 99.58% 88.76% European cards

[29] CNN-BiLSTM 95% --- European cards

[28] CNN 99.72% --- European cards

[41] CNN-ELM 98.7% --- European cards

[42] CNN 99.81 83.72% European cards

[35] RNN-LSTM-
Attention 99.4% --- European cards

[43] Hybrid
ML+BCBSMOTE --- 85.20% European cards

NovelHybrid
ML+DL model Stacking ML+DL 99.97% 90.11% European cards

5.3. The Hybrid ML+DL with Sampling:

The novel hybrid stacking ML+DL model employs a variety of resampling techniques
to address the issue of class imbalance in our dataset. Class imbalance is a common
issue in real-world applications such as cyber fraud detection [44], where the minority
class (e.g., fraudulent transactions) is significantly underrepresented compared to the
majority class [45]. To address this, we employ Borderline-SMOTE (Borderline Synthetic
Minority Oversampling Technique), ROS (RandomOverSampler), Tomek Link, ENN, and
SMOTEENN (SMOTE + ENN) as strategies to rebalance our dataset and enhance the
performance of our hybrid stacking ML+DL model.

A. Borderline-SMOTE
In the novel hybrid stacking ML+DL model, Borderline-SMOTE addresses class imbal-

ance by generating synthetic samples near the decision boundary, where misclassifications
often occur. It focuses on difficult-to-classify minority class instances, enhancing the classi-
fier’s ability to learn clear and accurate decision boundaries [46]. This method is applied to
the training data to balance classes before model training.

B. RandomOverSampler (ROS)
RandomOverSampler (ROS) balances the dataset by randomly duplicating minority

class instances until both classes are equally represented. By providing a balanced training
dataset, ROS helps the ML and DL components of the hybrid model learn more effectively.

C. Tomek Links
Tomek Links improves class separability by removing ambiguous instances near the

decision boundary. Identifying and eliminating pairs of nearest neighbours from different
classes reduces noise, helping the classifier focus on more distinct class patterns.

D. Edited Nearest Neighbours (ENN)
ENN cleans the dataset by removing noisy or ambiguous instances, especially near

decision boundaries. It iteratively eliminates misclassified instances based on their k nearest
neighbours, ensuring the dataset emphasises clear class boundaries. This refinement
enhances the model’s ability to detect minority class instances accurately.

E. SMOTEENN
SMOTEENN combines SMOTE and ENN to handle class imbalance. SMOTE generates

synthetic minority class samples to balance the dataset, while ENN removes noisy or bor-
derline instances, improving class distinction. This two-step process ensures the model is
trained on a refined and balanced dataset, enhancing its robustness and predictive accuracy.
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We employed several resampling techniques, oversampling, undersampling, and a
combination of oversampling and undersampling, to address the significant class imbalance
present in the dataset. Results from our hybrid stacking ML+DL model integrated with the
several resampling techniques are shown in Table 8. Figure 10 shows the f1 score for the
sampling techniques with the novel hybrid stacking ML+DL model. Figure 11 shows the
performance of the sampling techniques with the novel hybrid stacking ML+DL model.

Table 8. Performance of resampling techniques.

Model Accuracy Precision Recall F1 Score

With
sampling

Hybrid
ML+DL+Bordersmote 94.90% 99.95% 89.85% 94.63%

Hybrid ML+DL+ROS 93.36% 99.96% 86.75% 92.89%

Hybrid ML+DL+Tomek 99.95% 1.0 71.43% 83.33%

Hybrid ML+DL+ENN 99.96% 98.70% 77.55% 86.86%

Hybrid
ML+DL+SMOTEEEN 94.24% 99.92% 88.56% 93.90%

Without
sampling Hybrid ML+DL 99.97% 97.62% 83.67% 90.11%
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The hybrid stacking ML+DL models integrated with resampling techniques show
significant advancements in cyber fraud detection by addressing class imbalance and false
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positives while achieving strong accuracy and F1 scores. Each model balances strengths and
trade-offs to suit different scenarios. The Borderline-SMOTE model achieved an F1 score
of 94.63% with high precision (99.95%) and recall (89.85%), balancing fraud detection and
minimising false positives. ROS yielded an F1 score of 92.89%, precision of 99.96%, and
recall of 86.75%, providing robust performance with slightly lower recall than Borderline-
SMOTE. Tomek Links ensured no false positives with 100% precision and 99.95% accuracy
but had a lower recall (71.43%), leading to an F1 score of 83.33%. ENN delivered an F1 score
of 86.86% with 98.70% precision and 77.55% recall, reflecting reliable performance but with
room to improve recall. SMOTEENN achieved an F1 score of 93.90% with precision of
99.93% and recall of 88.56%, offering a strong balance between precision and recall. Overall,
Borderline-SMOTE and SMOTEENN excel, highlighting the effectiveness of advanced
resampling techniques in enhancing detection accuracy and robustness.

5.4. Comparison of Performance Based on F1 Score with and Without Sampling

In our evaluation, the F1 score served as a critical measure of our hybrid stacking
ML+DL model ’s performance with and without various sampling techniques. The re-
sults indicate a notable variation in the model’s performance depending on the sampling
method applied.

The comparison between the hybrid ML+DL model with and without sampling
highlights the significant impact of sampling techniques on performance metrics. Without
sampling, the hybrid model achieves an F1 score of 90.11%, with high accuracy (99.97%)
and precision (97.62%) but a lower recall (83.67%) compared to models with sampling. In
contrast, applying sampling techniques like Borderline-SMOTE and SMOTEENN enhances
the F1 score to 94.63% and 93.90%, respectively, by improving recall to 89.85% and 88.56%,
while maintaining exceptional precision (over 99.90%). Other sampling methods, such as
ROS, also improve the F1 score (92.89%) and recall (86.75%), though techniques like Tomek
Links and ENN prioritise precision, achieving 100% and 98.70%, respectively, but at the cost
of lower recall (71.43% and 77.55%). Overall, sampling techniques significantly enhance
the model’s ability to detect fraudulent transactions (recall), with Borderline-SMOTE and
SMOTEENN offering the best balance between precision and recall, resulting in superior
F1 scores. While the novel hybrid stacking ML+DL model performs well on its own, the
inclusion of appropriate sampling methods, such as Bordersmote and SMOTEENN, can
further optimise its performance, making it more adept at identifying fraudulent activities
while minimising false positives.

In summary, the strength of the novel hybrid stacking ML+DL model lies in its so-
phisticated architecture that leverages both traditional ML techniques and advanced DL
approaches. Incorporating a variety of ML techniques such as DT, RF, SVM, XGBoost,
CatBoost, and LR, the model effectively captures patterns and makes accurate predictions.
Additionally, the integration of CNNs and BiLSTM networks, equipped with attention
mechanisms, enables the model manage transaction sequences. This comprehensive ap-
proach ensures dynamic feature extraction, stability, efficiency, and interpretability, making
the novel hybrid stacking ML+DL model a potent instrument for addressing intricate
binary classification challenges in the detection of credit card cyber fraud.

6. Conclusions
Detecting credit card cyber fraud is vital for financial security as fraud tactics grow

more sophisticated. This research tackles challenges like class imbalance and evolving
fraud patterns by developing a hybrid stacking ML+DL model that integrates ML, DL, and
advanced sampling techniques. Evaluated primarily on the F1 score, the model achieves an
impressive 91.11 without sampling and 94.63% with sampling, demonstrating an excellent
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balance between precision and recall, making it highly effective in detecting true cases while
minimising false positives and negatives. The model’s robust performance and scalability
provide financial institutions with a powerful tool to automate fraud detection, enhance
security, and reduce costs. It not only outperforms baseline models but also addresses the
critical challenge of imbalanced datasets, making it suitable for real-world applications.
Additionally, its ability to adapt to evolving fraud patterns ensures long-term relevance in
dynamic environments.

While limited by a single dataset, future research should prioritise validating models
on multiple datasets to ensure consistent performance across various data sources, enhanc-
ing the generalisability of the proposed methodologies to different conditions and types of
fraudulent activities. Additionally, advanced DL techniques like GANs and autoencoders,
along with real-time implementation, should be explored to improve adaptability and
scalability. The model’s performance is also sensitive to pre-processing methods and hyper-
parameter tuning, and performance varies with decision threshold adjustments, requiring
a balance between precision and recall. This study highlights the hybrid ML+DL model
as a transformative solution for cyber fraud detection, paving the way for stronger, more
secure financial systems to protect businesses and consumers from evolving threats.
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