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The amount of ultraviolet irradiation and ablation experienced by a planet depends strongly
on the temperature of its host star. Of the thousands of extra-solar planets now known,
only four giant planets have been found that transit hot, A-type stars (temperatures of 7300–
10,000 K), and none are known to transit even hotter B-type stars. WASP-33 is an A-type star
with a temperature of ∼7430 K, which hosts the hottest known transiting planet1; the planet
is itself as hot as a red dwarf star of type M2. The planet displays a large heat differential
between its day-side and night-side2, and is highly inflated, traits that have been linked to
high insolation3, 4. However, even at the temperature of WASP-33b’s day-side, its atmosphere
likely resembles the molecule-dominated atmospheres of other planets, and at the level of
ultraviolet irradiation it experiences, its atmosphere is unlikely to be significantly ablated
over the lifetime of its star. Here we report observations of the bright star HD 195689, which
reveal a close-in (orbital period∼1.48 days) transiting giant planet, KELT-9b. At∼10,170 K,
the host star is at the dividing line between stars of type A and B, and we measure the KELT-
9b’s day-side temperature to be ∼4600 K. This is as hot as stars of stellar type K45. The
molecules in K stars are entirely dissociated, and thus the primary sources of opacity in the
day-side atmosphere of KELT-9b are likely atomic metals. Furthermore, KELT-9b receives
∼700 times more extreme ultraviolet radiation (wavelengths shorter than 91.2 nanometers)
than WASP-33b, leading to a predicted range of mass-loss rates that could leave the planet
largely stripped of its envelope during the main-sequence lifetime of the host star6.

The first transiting planets were discovered around cool, solar-type stars7, 8, primarily because

hot stars have few spectral lines and rotate rapidly, making Doppler confirmation of planets more

difficult. Only in the past few years have transiting planets been confirmed around hot stars of
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types early-F and A9, 10, inspired by the discovery of WASP-33b1. That discovery demonstrated

that it is possible to confirm transiting planets around rapidly rotating hot stars via a combination

of relatively low-precision radial-velocity measurements and Doppler tomography. However, even

the hottest of these few A-type transiting-planet host stars only reach temperatures of ∼7500 K.

Thus, while transit surveys, in particular Kepler11, have extended the census of planets around

low-mass stars, our understanding of planets around massive, hot stars remains poor.

Massive stars cool and spin down as they evolve, enabling precise Doppler measurements.

Thus the primary strategy to search for planets around high-mass stars has been surveys of “retired

A-stars”12, high-mass stars that have already evolved into subgiant and giant stars. These stars

have revealed a paucity of short-period giant planets relative to sun-like main-sequence stars12.

One interpretation is that the initial planet population of high-mass stars is similar to that seen in

unevolved sun-like stars, but that the short-period planets are subsequently engulfed during the

evolution of their parent stars or ablated by the intense irradiation of their host stars while they

are still hot6. Another interpretation is that these stars actually have masses similar to the Sun13,

implying that the paucity of short-period planets among the retired A-stars is indeed a signature of

planet engulfment14, as sun-like stars do not emit strong ultraviolet radiation with which to ablate

their planets6.

It is therefore critical to assay the population of short-period planets around bona fide high-

mass stars while they are still on the main sequence, and then to map the evolution of these planets

through to their later evolutionary phases. Although there have been radial-velocity surveys tar-
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geting unevolved high-mass stars15, 16, there are still no known transiting planets around unevolved

stars more massive than 2 M� that produce high levels of extreme ultraviolet irradiation.

The Kilodegree Extremely Little Telescope (KELT) is an all-sky survey for planets transiting

bright (visual magnitude 8–11) stars17, 18. HD 195689 (hereafter KELT-9), exhibited repeating

transit-like events of ∼0.6% depth with a period of P ∼1.48 d (Figure 1), and was selected as

a candidate transiting planet (see the Methods). KELT-9’s basic properties (Table 1) include a

high effective temperature and rapid rotation. Following the approach that led to the discovery of

WASP-33b, we obtained follow-up observations (see Figure 1, Figure 2, and the Methods) that

ultimately confirmed KELT-9b as a transiting planet.

KELT-9 is a hot (Teff ' 10, 170 K), massive (M∗ ' 2.5 M�) star of spectral type B9.5–A0,

with a relatively young age of 300 million years (Methods), comfortably in its 500-million-year

main-sequence phase of evolution; it has evidently not yet begun its evolution toward becoming

a “retired A star”. Indeed, from comparison with other known planet-hosting stars (Fig. 3), it is

clear that KELT-9 is a likely progenitor of at least a subset of the putative “retired A star” hosts

of planets detected by radial-velocity surveys. KELT-9, and other A-star transiting planet hosts,

thereby provides an important missing link between these samples of planets, and planets detected

in more traditional radial-velocity surveys of sun-like stars.

KELT-9 is only the fifth A-type star known to host a transiting giant companion, and is by

a significant margin the hottest, most massive, and most luminous known transiting giant planet

host. The host star also has the brightest V -band magnitude of any transiting hot Jupiter host, being
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Figure 1: KELT-9 discovery and confirmation data. Shown are the discovery light curve,
follow-up primary transit and secondary eclipse light curves, and reflex Doppler signal due to the
transiting companion. (a) Field 11 of the northern KELT survey was observed 6001 times from
UT 2007 May 30 to UT 2013 June 14, following the same procedures as described for the first
KELT planet29 The black points show the unbinned data folded at the period of the planet (P =
1.4810932 days), while the red points show these points binned in phase using a bin size of 0.05
in phase. (Methods). (b) Combined, binned follow-up light curves of the primary transit, where
TC is the time of the center of the transit. The transit shape is consistent with an opaque, circular
planet occulting a star with the limb darkening expected for KELT-9’s spectral type of B9.5–A0
The black points show the average of all follow-up light curves, combined in 5-minute bins. The
combined best-fit models binned the same way are shown as a solid red line. (c) Combined, binned
follow-up light curves of the secondary eclipse. The magnitude of the signal gives a temperature
for the day-side of the planet of∼4600 K. This is consistent with the range of expected equilibrium
temperatures of the planet and suggests poor heat redistribution to the night side of the planet. The
data points and red curve are binned in the same manner as in b. TS is the time of the center of
the secondary eclipse. (d) Doppler reflex curve of the primary star. Only the data that were not
used in the Doppler Tomography analysis (see Fig. 2) are shown and were used to measure the
Doppler reflex curve. The best-fit model of the Doppler reflex curve is shown as the red line. Note
the weak Rossiter-McLaughlin signal near phase zero, which is a prediction based on the Doppler
Tomographic signal exhibited in Figure 2. A periodogram of this data alone yields a significant
peak with an emphemeris that matches that of the photometric transit data to within . 10−4 days,
thereby confirming the reflex signal is due to the transiting planet and verifying the planet mass
estimate.
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Figure 2: Combined Doppler tomographic measurements from three separate transits. All
three transits (see Methods) clearly show a “Doppler shadow” at the time of transit, with the ve-
locity width as expected given the spectroscopically-measured v sin I∗ and the photometrically-
measured transit depth and impact parameter, thus confirming the reality of the Doppler tomo-
graphic signal and that the planet orbits KELT-9. The color coding shows the fractional variation
in the spectroscopic signal from the null hypothesis of no shadow due to a transiting planet. Darker
regions indicate the Doppler shadow as the planet crosses the face of the host star. The horizontal
line indicate the expected beginning (bottom) and end (top) of the transit, and the vertical lines in-
dicate the negative and positive width of the spectral lines due to broadening caused by the project
rotation speed of the star (see Methods). The projected path of the planet across the face of the
star is nearly coincident with the stellar rotation axis, with an impact parameter in units of the
stellar radius of ∼ 0.2 and a projected spin-orbit misalignment of ∼ −85 degrees, indicating that
the planet is on a nearly polar orbit. The host star’s rapid rotation and resulting oblateness implies
that the orbit of the planet is likely to exhibit precession, which should be detectable by the year
202230.
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slightly brighter in V than HD 209458b7, 8.

Given the high stellar luminosity and close orbit, the planet receives a large stellar insolation

flux (Table 1). As a result, it has an extremely high equilibrium temperature, assuming zero albedo

and perfect heat redistribution, of ∼4050 K. This is as hot as a late K-type star5, and thus we

expected a large thermal emission signal, which we easily confirmed with our z′-band detection

of the secondary eclipse with a depth of ∼ 0.1% (Figure 1). This measurement implies an even

hotter day-side temperature of ∼ 4600 ± 150 K, likely indicating poor redistribution of energy to

the night side of the planet and a temperature closer to that of a mid-K star. The planet is also

extremely inflated relative to theoretical models, with a radius of ∼ 1.9 RJ. Poor redistribution of

heat and radius inflation (both of which are also observed in WASP-33b1, 2), have been linked to

high stellar insolation3, 4, although the exact physical mechanisms remain uncertain.

Thus, although other transiting planets have been found around A-type stars, and indeed

some (such as WASP-33b) have been discovered with the temperatures of low-mass stars, the

KELT-9 planet and host star are hotter by ∼ 1000 K and ∼ 2500 K, respectively, than any other

known transiting gas-giant system. Consequently, one expects all of the opacity sources on the day-

side to be atomic, as in a K-type star. In contrast, all other known transiting planets, which have

day-side temperatures of < 3850 K5, are cool enough to contain molecular species. Furthermore,

the very high flux of extreme ultraviolet radiation (wavelengths shorter than 91.2 nanometers) from

KELT-9, ∼ 700 times higher than WASP-33, may lead to unique photochemistry in the planet

atmosphere19. This places KELT-9b in a qualitatively new regime of planetary atmospheres, and
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Figure 3: The extreme properties of the KELT-9 system in context and the prospects for
follow-up. (a) Hertzsprung-Russell (R∗ vs. Teff) diagram of hosts of known planets detected by
the radial-velocity (open circles) and transit methods (filled circles), as well as nearby stars in the
Hipparcos catalog (grey points). Only planet-hosting systems with V ≤ 10 are shown for clarity.
Cyan symbols are low-mass planet hosts with M < 1.5 M�, red symbols indicate massive planet
hosts with M∗ ≥ 1.5 M�. The yellow line shows the evolutionary trajectory for a solar analog
(M∗ = M� and solar metallicity), whereas the blue track shows the evolutionary trajectory for
an analog of KELT-9 (M∗ = 2.5 M� and solar metallicity). We also show the zero-age main se-
quence for solar-metallicity stars from the YY isochrones (black curve). KELT-9 is hotter than any
other known transiting planet host by ∼ 1500 K. (b) Atmospheric scale height versus equilibrium
temperature for known transiting planets with measured masses. Color represents the amount of
incident extreme ultraviolet (λ ≤ 91.2 nanometers) flux the planet receives from its parent star, and
the symbol size is inversely proportional to the V magnitude of the host. KELT-9b is hotter than
any other known transiting gas giant planet by ∼ 1000 K and receives ∼ 700 times more extreme
ultraviolet flux.

makes characterization of the atmosphere of KELT-9b particularly compelling.

Fortunately, the brightness of KELT-9 and the extreme properties of its transiting planet

make the prospects for detailed characterization of this system promising. Observations using

ground-based facilities, Spitzer, the Hubble Space Telescope (HST), and ultimately the James Webb

Space Telescope, will allow for the measurement of the phase-resolved spectrum of its thermal

emission from the far-optical through the infrared (∼30 µm). The low surface gravity of KELT-

9b combined with the high temperature lead to one of the largest atmospheric scale heights of
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any known transiting planet (Figure 3). The expected few-percent variations in the transmission

spectrum during the primary transit should be easily detectable.

The future evolution of the KELT-9 system is uncertain but certainly interesting. The high ul-

traviolet flux impinging on KELT-9b likely means that its atmosphere is being significantly ablated,

with an estimated mass loss rate6 of ∼ 1010–1013 g s−1. At the upper end of these rates, the planet

may be completely stripped of its outer envelope in < 600 Myr, roughly the time scale for the

host to evolve from the main-sequence to the base of the red giant branch (see Methods). These

estimates are so uncertain because the physics of planet evaporation is extraordinarily complex,

particularly due to the unknown magnitude of the host star activity, and thus very high-energy

(extreme ultraviolet and X-ray) non-thermal radiation and stellar wind. In any event, even the

lower end of mass-loss rates we estimate should be easily detectable and measurable with HST

observations.

On the other hand, as KELT-9 eventually exhausts its core hydrogen supply in ∼200 million

years, it will grow from its current radius of ∼2.4 R� to a radius of ∼ 5 R�, while simultaneously

cooling to Teff ∼ 8000 K. Soon after, it will rapidly traverse the ‘subgiant branch’ whereby it

will cool to ∼ 5000 K and expand to ∼ 8 R�. As it reaches the base of the red giant branch,

the stellar surface of KELT-9 will encroach upon the orbit of KELT-9b. Exactly what will happen

to the star and planet at this point is far from clear. If the mass loss from ablation is lower than

estimated above, the planet may remain intact as a gas giant, and it will be engulfed by its host

star, perhaps leading to a bright transient event20, and an unusually rapidly rotating red giant star

10



with enriched lithium provided by the dissolved planetary companion21. On the other hand, if the

planet possesses a rocky core and is fully ablated before this point, this could imply the existence

a population of close-in, super-Earth remnant cores orbiting subgiant stars, a prediction that could

be testable with the upcoming Transiting Exoplanet Survey Satellite (TESS) mission.

More detailed theoretical studies are needed to provide a clearer picture of the future evo-

lution of the KELT-9 system and its analogs, and provide testable predictions. Further follow-up

observations using ground and space-based telescopes will test models of heat redistribution, ra-

dius inflation, unusual photochemistry, and rapid ablation of planetary atmospheres. The leap

from WASP-33b to KELT-9b should invigorate further exploration of the planet population of

even higher-mass host stars, complementing efforts to discover planets orbiting ever lower-mass

host stars22. The KELT-9 system provides an important benchmark system for understanding the

nature of planetary systems around massive stars, from birth to death.
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Stellar Parameters:
M∗ . . . . . . . . . . . . . . . . . Mass (M�) . . . . . . . . . . . . . . . . . . . . 2.52+0.25

−0.20

R∗ . . . . . . . . . . . . . . . . . Radius (R�) . . . . . . . . . . . . . . . . . . . 2.362+0.075
−0.063

L∗ . . . . . . . . . . . . . . . . . . Luminosity (L�) . . . . . . . . . . . . . . . 53+13
−10

ρ∗ . . . . . . . . . . . . . . . . . . Density (cgs) . . . . . . . . . . . . . . . . . . 0.2702± 0.0029
log g∗ . . . . . . . . . . . . . . . Surface gravity (cgs) . . . . . . . . . . . 4.093± 0.014
Teff . . . . . . . . . . . . . . . . . Effective temperature (K) . . . . . . 10170± 450
[Fe/H] . . . . . . . . . . . . . . Metallicity. . . . . . . . . . . . . . . . . . . . . . −0.03± 0.20
v sin I∗ . . . . . . . . . . . . . Rotational velocity (km/s) . . . . . . 111.4± 1.3
λ . . . . . . . . . . . . . . . . . . . Spin-orbit alignment (degrees) . −84.8± 1.4

Planetary Parameters:
P . . . . . . . . . . . . . . . . . . Period (days) . . . . . . . . . . . . . . . . . . 1.4811235± 0.0000011
a . . . . . . . . . . . . . . . . . . . Semi-major axis (AU) . . . . . . . . . . 0.03462+0.00110

−0.00093

MP . . . . . . . . . . . . . . . . Mass (MJ) . . . . . . . . . . . . . . . . . . . . 2.88± 0.84
RP . . . . . . . . . . . . . . . . . Radius (RJ) . . . . . . . . . . . . . . . . . . . 1.891+0.061

−0.053

ρP . . . . . . . . . . . . . . . . . Density (cgs) . . . . . . . . . . . . . . . . . . 0.53± 0.15
log gP . . . . . . . . . . . . . . Surface gravity. . . . . . . . . . . . . . . . . 3.30+0.11

−0.15

Teq . . . . . . . . . . . . . . . . . Equilibrium temperature (K) . . . . 4050± 180
〈F 〉 . . . . . . . . . . . . . . . . . Incident flux (109 erg s−1 cm−2) 61.1+11.0

−9.8

Table 1: Median values and 68% confidence intervals for the physical properties of the KELT-9 system from a global fit to the light
curves, radial velocities, and Doppler tomography data, using a custom version of the EXOFAST transit fitting code23 (Methods). We
use the Yonsei-Yale (YY) isochrones24 as well as empirically-calibrated stellar relations25 as constraints. In addition, KELT-9 has a
measured parallax from Hipparcos26 and Gaia27, thereby allowing us to estimate the stellar radius empirically28 from its distance,
effective temperature, bolometric (wavelength-integrated) flux, and interstellar extinction (Methods). We adopt the values derived using
constraints from the YY isochrones and Hipparcos-derived radius as our fiducial system parameters.
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Methods

KELT-North Observations and Photometry

KELT-North field 11 is centered on α = 19h 27m 00s, δ = 31◦ 39′ 56.′′16 (J2000) and was ob-

served 6001 times from UT 2007 May 30 to UT 2013 June 14. Following the standard KELT

candidate selection strategy29, we reduced the data and extracted ∼ 116, 000 light curves from

the east orientation and ∼ 138, 000 light curves from the west. The combined east and west light

curves that passed the reduced proper motion cut31 were searched for transiting exoplanet candi-

dates. One bright (V ∼ 7.6) candidate, KC11C043952 (HD 195689, TYC 3157-638-1, 2MASS

J20312634+3956196) located at α = 20h 31m 26.s35401, δ = 39◦ 56′ 19.′′7744 (J2000), robustly

passed our selection criteria29 making it a top candidate. Hereafter, we refer to the candidate host

star as “KELT-9” and the candidate planet as “KELT-9b”. KELT-9 is also located in KELT-North

field 12, which is centered on α = 21h 22m 52.s8, δ = 31◦ 39′ 56.′′16 (J2000). The field was ob-

served 5,700 times from UT 2007 June 08 until UT 2013 June 14. Although not originally used

to select KELT-9 as a candidate, the signal in the light curve from field 12 bolstered KELT-9 as a

strong candidate.

The KELT-North field 11 phased KELT-9 discovery light curve is shown in the top panel of

Fig. 1 in the main manuscript. The field 11 light curve shows apparent out-of-transit variations

(OOTVs), while these are absent in the field 12 light curve. We find that the source of the field 11

OOTVs is due to variability, possibly caused by saturation, of a star a few arc-minutes southeast

of KELT-9 that is blended in the field 11 KELT-9 aperture. Given the magnitude of the variability,

we suspect the contaminating source is the bright object HD 195728, rather than one of the fainter
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neighbors. The variation is long-term and not periodic, so it tends to inject power at and near

aliases of our sampling rate. The variability from the neighbor does not affect the field 12 light

curve because the point spread function of KELT-9 in field 12 is smaller and is elongated in a

different direction than in field 11. As a result, KELT-9 is minimally blended with the bright

neighbor HD 195728, as well as the other faint neighbors near HD 195728.

In short, the apparent out-of-transit variations (OOTVs) seen in the field 11 light curve are

not due to intrinsic variability of KELT-9 itself, and thus do not lead us to question its reality as a

bona fide planet-host candidate.

Following the discovery of the primary transit signal, we carried out an intensive photometric

followup campaign through which we obtained a total of 17 primary and 7 secondary transit light

curves. These will be described in a forthcoming paper (Collins et al. 2017, in preparation), and

are used in the global fit of the system presented below. The combined, binned follow-up light

curve is shown in Figure 1 of the main manuscript in order to highlight the statistical power of this

follow-up dataset. We only fit to the individual data; the binned data are shown only for illustration.

Spectroscopic Follow-up

To constrain the mass and enable eventual Doppler tomographic (DT) detection of KELT-9b, we

obtained a total of 115 spectroscopic observations of the host star with the Tillinghast Reflector

Echelle Spectrograph (TRES) on the 1.5 m telescope at the Fred Lawrence Whipple Observatory,

Arizona, USA. Each spectrum delivered by TRES has a spectroscopic resolution of λ/∆λ = 41000

over the wavelength range of 3900− 9100 Å over 51 echelle orders. This includes 40 observations
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covering the entire orbital phase to constrain the mass of the planet, and 75 observations made in-

transit over three epochs to perform the tomographic line profile analysis. We measured the relative

radial velocity from 104 of the observations (see Extended Data Table ) and used a total of 43 out-

of-transit RVs (40 plus one out-of-transit RV from each of the spectroscopic transit observations)

to constrain the planet’s orbit and mass. The phased radial velocities are displayed in Figure 1 of

the main article.

Three spectroscopic transits of KELT-9 were observed with TRES on 2014-11-15, 2015-11-

06, and 2016-06-12. The line broadening kernel is derived from each spectrum via a least-squares

deconvolution1, 32, 33. The planetary shadow is seen crossing the stellar surface on all three nights,

as shown in Extended Data Figure 3. In addition, the rotational profiles allowed us to accurately

determine a rotational velocity of v sin I∗ = 111.4± 1.3 km s−1.

Host Star Properties

Extended Data Table lists various properties and measurements of KELT-9 collected from the

literature and derived in this work. The data from the literature include the four monochromatic

near-UV fluxes from the Catalog of Stellar UV Fluxes34, UBV photometry35, optical fluxes in the

BT and VT passbands from the Tycho-2 catalog36, IC from the TASS catalog37, near-infrared (IR)

fluxes in the J , H and KS passbands from the 2MASS Point Source Catalog38, 39, near- and mid-IR

fluxes in four WISE passbands40, 41, distances from Hipparcos42 and Gaia27, and proper motions

from the NOMAD catalog43, 44.
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SED Analysis

We construct an empirical, broad-band spectral energy distribution (SED) of KELT-9, shown in

Extended Data Figure 1. We use the 17 photometric measurements from the literature discussed

in Section and shown in Extended Data Table . In total, the observed SED spans the wavelength

range 0.16–22 µm. We fit this observed SED to Kurucz stellar atmosphere models45. For simplicity

we adopted a fixed log g? = 4.0, based on the light curve transit analysis. The fit parameters were

thus the effective temperature (Teff), the metallicity ([Fe/H]), the extinction (AV ), and the overall

flux normalization. The maximum permitted extinction was set to AV = 0.30 based on the total

line-of-sight extinction in the direction of KELT-9 from Galactic dust maps46.

Stellar Parameters from SED

The best fit model has a reduced χ2 of 2.56 for 13 degrees of freedom (17 flux measurements, 4

fit parameters). We find AV = 0.09 ± 0.05, [Fe/H] = 0.0 ± 0.2, and Teff = 9560 ± 550 K. We

note that the quoted statistical uncertainties on AV and Teff are likely to be slightly underestimated

because we have not accounted for the uncertainty in the value of log g? used to derive the model

SED, although this parameter generally does not strongly affect the overall shape of the SED, and

moreover log g? is strongly constrained from the light curve transit analysis.

We can integrate the best-fit SED to obtain the (unextincted) bolometric flux at Earth, Fbol =

3.18(±0.09)× 10−8 erg s−1 cm−2. Together with the best-fit Teff and the distance newly provided

by the Gaia parallax, we obtain a direct constraint on the stellar radius of R? = 2.37 ± 0.35 R�.

From the distance provided by the Hipparcos parallax, we obtain a direct constraint28 on the stellar
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Figure 1: KELT-9 spectral energy distribution (SED). Crosses represent the measured fluxes, with
vertical bars representing the measurement uncertainties and the horizontal bars representing the
width of the bandpass. The blue dots are the predicted passband-integrated fluxes of the best-fit
theoretical SED corresponding to our observed photometric bands. The black curve represents the
best-fit Kurucz stellar atmosphere45.
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radius of R? = 2.17 ± 0.33 R�. As noted in the footnote of Extended Data Table , we generally

believe the Hipparcos-derived distance and stellar radius to currently be more reliable, and use this

for most of the analysis in this paper.

Stellar Models and Age

With Teff and log g?, and an estimated stellar mass from the global analysis (see below), we can

place the KELT-9 system in the Hertzsprung-Russell diagram for comparison with theoretical stel-

lar evolutionary models (Extended Data Figure 2). From the values obtained with the initial SED

fit, we infer a system age of ≈0.4 Gyr; the final age estimate using the final global fit parameters

is ≈0.3 Gyr. Thus, it is clear that the KELT-9 system is nearly unevolved from the zero-age main-

sequence, and in any event is at an early stage of evolution well before the “blue hook” transition

to the subgiant and eventual red giant evolutionary phases.

Global System Fit

We determined the physical and orbital parameters of the KELT-9 system by jointly fitting 17

primary and 7 secondary light curves, 43 TRES out-of-transit RVs, and 3 Doppler tomographic

data sets (see the section Doppler tomographic model below). To perform the global fit, we used

MULTI-EXOFAST (MULTIFAST hereafter), which is a custom version of the public software

package EXOFAST23. MULTIFAST first performs an AMOEBA47 best fit to each of the RV and

light curve data sets individually to determine uncertainty scaling factors. The uncertainties are

scaled such that the probability that the χ 2 for a data set is larger than the value we achieved,

P (> χ 2), is 0.5, to ensure the resulting parameter uncertainties are roughly accurate. The re-
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Figure 2: Evolution of the KELT-9 system in the Hertzsprung-Russell diagram. The red cross
represents the system parameters from the initial SED fit, the blue cross represents the final system
parameters from the global fit. The black curve represents the theoretical evolutionary track for
a star with the mass and metallicity of KELT-9, and the grey swath represents the uncertainty on
that track based on the uncertainties in mass and metallicity. Nominal ages in Gyr are shown
as blue dots. When KELT-9 evolves to the base of the giant branch in 200-300 million years, it
will encroach upon the orbit of KELT-9b. The fate of the system at that point is highly uncertain
20, 21, 56–58.
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sulting RV uncertainty scaling factor is 1.23. The DT uncertainties were scaled based on the χ 2

of the out-of-transit data relative to the median value. The uncertainties of the UT 2014-11-15,

UT 2015-11-06, and UT 2016-06-12 DT observations were scaled by 0.79, 0.78, and 0.79, re-

spectively. Finally, MULTIFAST performs a joint AMOEBA model fit to all of the datasets and

executes Markov Chain Monte Carlo (MCMC), starting at the global best fit values, to determine

the median and 68% confidence intervals for each of the physical and orbital parameters. Siverd et

al.29 provide a more detailed description of MULTIFAST, except the Doppler tomographic model

implementation, which was newly implemented as part of this work.

Doppler Tomographic Model

To model the Doppler tomographic signal, we construct and integrate our own models into the

MULTIFAST fitting process48. We treat the Doppler shadow of the planet as a combination of three

different broadening mechanisms which we account for consecutively. Our shadow model begins

as a Gaussian profile, with a standard deviation equal to the mean inherent spectral line width (in

velocity space) of an equivalent non-rotating star. Second, we convolve this base Gaussian profile

with a second Gaussian of width σ = c/R to account for the finite spectral resolution of the TRES

spectrograph (R ≈ 44, 000). Third, and finally, we convolve the resulting shadow model with a

normalized rotational broadening kernel.

For our rotational broadening kernel we use the kernel given by Equation 18.14 in Gray49.

For simplicity we assume that the linear limb-darkening coefficient (ε) for the kernel is equal to

zero. We set the velocity width of the kernel equal to (Rp/R∗) v sin I∗, to represent the fraction of
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the stellar rotational surface actually obscured by the planet.

We normalize the resulting shadow model using the depth of a V -band transit light curve for

the system at each observation time, so that the integrated light obscured by the shadow matches

the actual depth of the transit. To calculate the trajectory of the shadow in time-velocity space, we

follow the method given by Equations 7, 8, and 10 in Collier Cameron et al.50

Besides the physical parameters already included in the transit model, our Doppler tomogra-

phy model therefore has three free parameters: the rotation velocity of the host star ( v sin I∗), the

inherent line width of the non-rotating stellar spectrum (σ0), and the spin-orbit angle (λ). Since

KELT-9 has v sin I∗ = 111.4 ± 1.3 km s−1, σ0 is essentially negligible, so we use a prior on

σ0 = 10.0 ± 1.0 m s−1 (i.e. a value near zero that avoids significant numbers of negative σ0

MCMC trials) to improve convergence of the MCMC chains. To evaluate the goodness-of-fit for a

particular set of model parameters, we use the ∆χ2 between the predicted shadow model and the

observed Doppler tomographic observations. Since the observations themselves are super-sampled

below the instrumental resolution of the spectrograph during the data reduction process, we divide

the resulting ∆χ2 value by a factor of (c/R)/∆v, where c is the speed of light, R is the instru-

mental spectral resolution, and ∆v is the velocity interval between the individual points in the

super-sampled spectra. This reduction of the ∆χ2 accounts for the fact that due to the instrumental

spectral resolution, adjacent points in the super-sampled spectra were not truly independent.
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Figure 3: Doppler tomographic line profile plots. The data, models, and residuals from all three
nights where KELT-9 was observed during transit are shown in three columns. In each case, the
top plot shows the spectroscopic date, the middle panels show the derived model, and the bottom
panels show the residuals. In each panel, the vertical blue lines denote the width of the convolution
kernel (i.e., v sin I∗), and the horizontal blue lines show the duration of the transit. Time increases
vertically for each panel. The apparent extension of the Doppler shadow before ingress on UT
20014-10-05 is an artifact of uneven and widely-spaced sampling in time. The greyscale shows
the fractional variation in the spectroscopic signal from the null hypothesis of no shadow due to
a transiting planet. Darker regions indicate the Doppler shadow as the planet crosses the face of
the host star. Note the transit is nearly coincident with the projected stellar spin axis, implying a
nearly polar orbit for the planet.
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Global Model Results

We adopt a fiducial model (Model 1) with YY constraints, a fixed circular orbit, a fixed RV slope

γ̇ = 0, and a Hipparcos-based R? prior, and compare the results to those from ten other global

models that systematically explore the results of differing constraints. The posterior median pa-

rameter values and 68% confidence intervals are shown in Extended Data Table for the initial TTV

and final ten global model fits. The KELT-9 fiducial model indicates the system has a host star with

mass M? = 2.52M�, radius R? = 2.362R�, and effective temperature Teff = 10, 170 K, and an

extremely hot planet with Teq = 4050 K, mass MP = 2.88M J, and radius RP = 1.891MJ.

The initial TTV model (Model 0) parameter median values are well within 1σ of the fiducial

model, and the uncertainties are essentially identical to those of the fiducial model results, except

the ephemeris parameter uncertainties (TC and P ) are ∼ 25% larger due to the additional seven

secondary transits in the fiducial model and the linear ephemeris constraint.

We also explored several other models involving different choices of observational con-

straints and free-fit parameters, which will be described in a forthcoming paper (Collins et al.

2017, in preparation) but are summarized in Extended Data Table .

In summary, we find that all combinations of stellar constraints result in system parameter

values that are within 1σ, and in almost all cases, well within 1σ of the fiducial model.
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False Positive Analysis

KELT-9 was a sufficiently unusual system that we were especially vigilant about ruling out false

positive scenarios. We have many lines of evidence that rule out essentially all viable false pos-

itive scenarios. First, false positives around rapidly rotating stars can be ruled out via relatively

imprecise RV measurements, high precision light curves, and a positive Rossiter-McLaughlin51, 52

(RM) or DT detection1, 53. An upper limit on the Doppler signal with relatively imprecise RV pre-

cisions of a few hundred m s−1 can rule out low-mass stars and brown dwarfs as the occulter of

the primary star. Precise follow-up light curves, along with the v sin I∗ measured from the spectra,

can be used to predict the magnitude, impact parameter, and duration of the DT signal (although

not the direction λ). Thus a measurement of the DT signal that is consistent with the light curve

effectively confirms the planet interpretation.

In the case of KELT-9, our first spectroscopic measurement during transit yielded a very

weak RM signal, which was sufficiently noisy that we considered it could simply be due to the

relatively large uncertainties of the RVs. This lack of a RM signal would be surprising for a

transiting planet given the transit depth and large v sin I∗ of the star. We thus originally concluded

that the system was likely a false positive. However, we decided to proceed with a full DT analysis,

which showed tentative evidence for a planet shadow that was nearly coincident with the projected

stellar rotation axis, thus possibly explaining the small RM signal. Improved reduction methods

and two additional DT measurements definitively showed that the planet does indeed transit nearly

along the projected stellar rotation axis, as shown in Extended Data Figure 3.
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Second, we were also concerned about the lack of a definitive measurement of the Doppler

reflex signal. Our initial fits to a subset of the data presented here provided only upper limits to

K, and thus we were originally not able to measure the planet mass. However, after acquiring

additional data, we were ultimately able to measure K to roughly ∼ 30% precision. Indeed,

a Lomb-Scargle54, 55 periodogram of the out-of-transit RV data yielded several significant signals.

The two signals with the highest power are at long periods of∼ 100 and∼ 200 days (depending on

the exact choice of datasets that are used), which are likely aliases of each other, and may be due to

another planet, intrinsic long-term stellar activity, or may simply be due to systematic errors in the

RVs. However, the signal with the next highest power has a ephemeris of T0 = 2456969.7901 and

P = 1.4811228. This period is consistent with the final period we derive from our follow-up light

curves to within ∼ 10−5 d, and projecting the ephemeris from our follow-up light curves forward

yields a value of T0 that is consistent with that from the RV periodogram to within ∼ 10−4 d. We

are therefore confident that the reflex RV signal is real and due to the transiting planet.

Finally, there are several other pieces of evidence that support the planet hypothesis. (1) The

stellar density we infer from the global fit to the light curve (which is essentially a direct observ-

able) is consistent with what one would expect for an unevolved A0 star with the spectroscopically-

measured temperature. (2) The limb darkening in the redder bandpasses are noticeably smaller by

eye than planet transits of a cooler star, as one would expect for a hot star and bandpasses near the

Rayleigh-Jeans part of the SED. Although we do not fit for the limb darkening, the fact that the

light curves spanning from U to z are well-fit by the smaller limb darkening coefficients that are

predicted for a star of this temperature and surface gravity (as compared to, e.g., those expected
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for a solar-type star) provides quantitative support for this qualitative conclusion. (3) Adaptive

optics observations (Collins et al. 2017, in preparation) do not reveal a blended stellar companion

that could cause a false positive, down to the mass of ∼ 0.14 M� with a projected separation of

& 200 AU. (4) We detect a secondary eclipse in the z band with a depth that is consistent with

what one would expect given the amount of stellar irradiation that the planet receives. (5) The

basic consistency between the model fits using various constraints (YY, Torres, and Hipparcos and

Gaia-inferred radii) also provides support for our interpretation.

We therefore conclude that, despite the very unusual and extreme nature of the system, all

available data are consistent with the interpretation that KELT-9 is being transited by an extremely

irradiated, highly inflated planet on a near-polar orbit of only ∼ 1.5 d.
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Extended Data Table 1: Radial Velocity Measurements of KELT-9
∗relative RVs (m s−1)
†unrescaled relative RV errors (m s−1)
‡Y indicates that the RV was included in the RV orbit analysis
§Y indicates that the spectrum was included in the Doppler tomography analysis
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Extended Data Table 2: Stellar Properties of KELT-9 Obtained from the Literature and This Work
∗Ultraviolet Sky Survey Telescope
†We generally use the Hipparcos parallax as the default value for most the analysis in this paper,
because the Hipparcos and Gaia parallaxes have similar fractional precisions, they agree to within
their uncertainties, and the Gaia parallaxes are known to have a small systematic error, although
this error is small compared to the absolute value of the parallax of KELT-9. Nevertheless, when
warranted, we compare results obtained using both parallax determinations.
‡U is positive in the direction of the Galactic Center.
§See text for references.
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Extended Data Table 3: Median Values and 68% Confidence Intervals for Selected Physical and
Orbital Parameters of the KELT-9 System
The values within parentheses represent the uncertainty in the same number of least significant
digits. For readability, we report asymmetric uncertainties with a difference of less than 5% in
the absolute value of the positive and negative component as a symmetric uncertainty with a value
equal to the maximum of the absolute values of the asymmetric components. Green text highlights
the adopted fiducial model values. Yellow text highlights nominal parameter values that differ
slightly (but are well within 1σ) from the fiducial model values. Red text highlights parameter
nominal values and uncertainties that differ significantly (on the order of 1σ) from the fiducial
model values. Red text in the Global Fit Configuration section highlights configuration settings
that differ from the fiducial model settings.
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Extended Data Table 3: Continued.
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