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a b s t r a c t

To meet the requirement of social influence analytics in various applications, the problem of influence
maximization has been studied in recent years. The aim is to find a limited number of nodes (i.e., users)
which can activate (i.e. influence) the maximum number of nodes in social networks. However, the
community diversity of influenced users is largely ignored even though it has unique value in practice.
For example, the higher community diversity reduces the risk of marketing campaigns as you should
not put all your eggs in one basket; the diversity can also prolong the effect of a marketing campaign
in the future promotion. Motivated by this observation, this paper investigates Community-diversified
Influence Maximization (CDIM) problem to efficiently find k nodes such that, if a message is initiated
and spread by the k nodes, the number as well as the community diversity of the activated nodes
will be maximized at the end of propagation process. This work proposes a metric to measure the
community-diversified influence and addresses a series of computational challenges. Two algorithms
and an innovative CPSP-Tree index have been developed. This study also investigates the situation that
community definition is not specified. The effectiveness and efficiency of the proposed solutions have
been verified through extensive experimental studies on five real-world social network datasets.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Social media has become an essential platform for organi-
zations to broadcast their policies, for companies to advertise
their products, and for people to propagate their opinions. This
stimulates the study of influence maximization (IM) problem. The
intuition is to select k influential nodes (a node represents a social
media user) in social networks, known as seeds, convince them
to adopt a product (or a service, an idea, a political opinion, etc.),
and utilize the ‘‘word-of-mouth’’ effect to spread the information
with attempt to activate other nodes in the social networks to
adopt it as well. The IM problem is to decide which k nodes in
the social networks should be selected such that the number of
nodes activated (or influenced) in the social networks are max-
imized [1,2]. A large body of recent works have studied the IM
problem with additional considerations. Topic-aware IM problem
considers the topics of information to be spread. The possibility
that a node adopts the information is affected by the interest of
the node to the topic [3–5]. Competitor-aware IM problem models
the propagation rate of information over social networks in order
to activate more nodes before they are influenced by information
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from competitors [6–8]. Location-aware IM problem contemplates
the physical locations of nodes to be influenced [9,10].

The studies of IM problem assume the information propa-
gation initiated from seeds follows some diffusion model. The
Independent Cascade (IC) diffusion model is widely accepted and
studied [2]. Under IC diffusion model, the influence of a seed
decays continuously when the information spread from one node
to the next in social networks until the influence is too trivial
to be noticed. At the end of propagation process, the nodes are
activated if it has sufficiently high probability to be influenced.

While the focus of existing studies is on the maximum number
of nodes to be activated, the community diversity of the activated
nodes is largely ignored. The higher community diversity means
the activated nodes are from more communities which has crit-
ical value in practice. In real world marketing, the diversity of
target audience could bring many benefits [11]. As you should not
put all your eggs in one basket, the diversity could reduce the risk
of marketing campaigns. Also, the diversity can prolong the effect
of a marketing campaign. For example, a fraction of activated
nodes becomes the registered users of a product; even though
it is hard to estimate who will become the registered users and
even the number of registered users, it is reasonable to assume
this happens randomly among the activated users; the following
promotions of the same or similar products in the future will be
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able to reach these registered users directly, in other words, more
communities.

This observation motivates us to investigate Community-diver
sified Information Maximization (CDIM) problem. The aim is to
select k nodes in a social network such that the number of acti-
vated nodes and the community diversity of the activated nodes
can be maximized concurrently if the selected k nodes spread a
message following IC diffusion model. This work is the first effort
to investigate the community-diversified influence maximization
problem. The contributions are summarized:

• This work introduces the community-diversified influence
maximization problem which has unique values in market
campaigns. Due to the community-diversity, it can reduce
the risk of market campaigns. Also, it breaks through the
limit of existing studies which assume the activated nodes
are the dead-end of information propagation. In many appli-
cations in market campaigns, however, it is reasonable that
the activated nodes can be explored in the future to spread
other information.
• A deliberately designed metric has been proposed to eval-

uate CDIM by considering both the number of activated
nodes and the diversity of their influenced communities
concurrently.
• This study has developed two algorithms to solve CDIM

problem efficiently, i.e., greedy and upper bound based al-
gorithms. The greedy algorithm comes with reasonable ap-
proximation bound. To enable more efficient processing, the
upper bound of community-diversified influence has been
explored to minimize the search space of exploring seed
candidates. As a further step to accelerate the efficiency, the
Community-aware Partial Shortest Path tree (CPSP-Tree) has
been designed to estimate the influence of candidate nodes
in social networks.
• Extensive experimental evaluation have been conducted on

five real-world datasets. The test results have demonstrated
the superiority of CDIM solutions in terms of effectiveness
and the processing efficiency.

The remainder of this paper is organized as follows. The re-
lated work is presented in Section 2. Section 3 defines the CDIM
problem and the objective function. The monotonous and sub-
modular properties of the problem has been proved in Section 3.3.
In Section 4, we propose two algorithms to solve the CDIM
problem. Section 5 introduces CPSP-Tree and the associated pro-
cessing method. Then, we discuss the solution in Section 6 if the
community detection method is not available. We analyze and
discuss the experimental results in Section 7 and conclude this
paper in Section 8.

2. Related work

2.1. Influence maximization

Kempe et al. [2] has proposed two discrete influence propaga-
tion models, Independent Cascade (IC) model and Linear Thresholds
(LT) model. Based on the two models, there are lots of work
focusing on influence maximization problem, e.g., [1,5,12–15].
The aim is to select a limited number of nodes in social networks
as seeds such that, the information initiated by the seeds in the
social networks will activate the maximum number of nodes
at the end of influence propagation process following either IC
model or LT model. While considering the number, the existing
studies ignore the community diversity of activated nodes in the
social networks.

Compared to other studies, the problem defined in [11] is
more relevant to CDIM. The solution in [11] aims to enforce the

diversity on seeds. The idea behind is that if the seeds are diverse,
then the resultant activated nodes would be diverse too. In [11],
the diversity is defined on categories, which is similar to Topic-
aware IM [5]. Given a set of node, the higher diversity means
more nodes belong to more categories. Different from [11], the
diversity concerns in CDIM is the number of different communi-
ties which are featured by dense internal connectivity and loose
external connectivity in social networks. Also, in the context of
community diversity, it is unclear whether the diversity of seeds
is related to the optimal solution of CDIM or not due to the
complexity of the problem.

The personalized social influential tags exploration problem
has been studied [16]. However, it is irrelevant to CDIM prob-
lem. Given a target user, from a set of tags which characterize
the content propagated in a social network, it aims to exact k
tags that can maximize the user’s social influence. In [17], the
community-based greedy algorithm has been studied to mine a
set of top-k influential nodes in a given mobile social network
such that the number of activated nodes is maximized using an
extended IC model. The greedy algorithm is expensive for solving
the influence maximization problem on a large-scale network. So
it proposes a community based greedy algorithm which mine the
influential nodes in each community rather than the whole net-
work. Other studies related to social network influence include
the most influential community search in a social network [18]
and searching objects with high influence in terms of spatial
closeness [19,20].

2.2. Community detection in social networks

A great deal of work has been devoted to find communities in
large networks, and much of this has been devoted to formalize
the intuition that a community is a set of nodes that has more
and/or better links between its members than with the remainder
of the network.

A line of work is to discover communities based on explicit
community model like k-core [21] and k-truss [22]. The k-core
of a graph is the largest subgraph within which each node has
at least k connections. In the induced subgraph (i.e., a k-core
community), since it only requires each node has k neighbors, two
nodes may have large hops (i.e., less cohesive). Given a graph G,
the k-truss of G is the largest subgraph in which every edge is
contained in at least (k − 2) triangles within the subgraph. The
k-truss is a type of cohesive subgraph defined based on triangle
which models the stable relationship among three nodes. With
edge connectivity constraints, the induced subgraph (i.e., a k-truss
community) is connected and cohesive. But the connectivity is so
strong that k-truss can only be used to discover communities of
very small size (i.e., not a society). In [23], the explicit community
model called k-r Maximal Cliques (krMC) considers the social
network influence of each community.

The other line of research focuses on implicit community
detection models which concerns the global connectivity of the
social network and the discovered communities often have small
cohesiveness. Newman and Girvan in [24] proposed a quantita-
tive measure, called modularity, to assess the quality of commu-
nity structures, and formulated community discovery as an opti-
mization problem. The key idea is similar to graph partitioning,
which iteratively removes the edge with the highest betweenness
score. Betweenness based community detection metric was also
studied by Girvan and Newman in [25]. Ruan and Zhang [26]
proposed a more efficient spectral algorithm to find high quality
communities by applying k-way partitioning and recursive 2-way
partitioning strategies [27]. Satuluri and Parthasarathy in [28]
developed efficient Markov clustering algorithms to identify com-
munities by using stochastic flow technique. The key idea in it is
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to enhance flow to well-connected nodes, i.e., rich get richer and
poor get poorer. LPA [29] has been evaluated and recommended
to be the better choice as an accurate and efficient community
detection technique in the recent studies [30] as well as [31]. It
works as follows. Each node in a social network is first given a
unique label. At every iteration, each node is updated by choosing
the label which most of its neighbors have. If a node happens to
be multiple labels, then one of these would be selected randomly.
After several iterations, the communities will be uncovered via
the labels where each label represents a community.

Moreover, other community detection methods have been
studied with edge content consideration in [32], with clique def-
inition and parallel algorithm in [33]. More details can be found
in surveys [30,34].

2.3. Diversity

The diversity of search results has attracted the attention
from researchers in different fields. For instance, the diversified
keyword search have been studied in database community [35–
37], in Web search [38,39], in information retrieval [40,41]. In
these studies, a max-sum type objective function is typically
used to concurrently consider both relevance and diversity of the
search results. The interested readers are referred to read the
survey [42]. The problem in all the above works are very different
from our CDIM problem. Given search criteria, their aim is to
find items which are most relevant and diverse. In contrast, the
objective of CDIM problem is to find seeds which can influence
maximum number of nodes from as many different communities
as possible.

3. Preliminaries and problem definition

3.1. Preliminary

A social network is modeled as a directed graph G = (V , E),
where a node in V represents one social media user, the edge
(u, v) in E represents the (follower, followee) relationship, and
each edge (u, v) is associated with a value wu,v to represent
the propagation probability along the edge. Note edge (u, v) is
directional, v is an out-neighbor of u and u is an in-neighbor
of v. There are different diffusion models which can be used to
define influence propagation process. Without loss of generality,
we adopt the Independent Cascade (IC) diffusion model [1,2].
Initially, every node is inactive. If a node u is selected as a seed,
u becomes active and attempts to activate one of its inactive out-
neighbors. The newly activated nodes will attempt to activate
their inactive out-neighbors. Regardless of success or not, the
same node will never get second chance to activate the same
inactive out-neighbor. This process terminates when no more
inactive nodes can be activated. In particular, we say a node v is
successfully activated by a set S of seeds if and only if the overall
influence from S to v is above a given threshold. In addition, the
success of node u in activating out-neighbor v is determined via
the maximum influence path [43].

In social networks, the subset of nodes S ⊆ V , which are active
initially before influence propagation process starts, are known
as seeds. Each seed spreads information to inactive nodes in the
social networks. For an inactive node v, we define the aggregated
probability that v is activated by the seeds in S:

Definition 1 (Aggregated Influence Probability).

Pr(v|S) = 1−
∏
u∈S

(1− Pr(pmax
u,v )). (1)

where pmax
u,v is the maximum influential path from u to v. Suppose

pmax
u,v is {u, vi, . . . , vj, v}. Pr(pmax

u,v ) is the probability that u can
influence v along the path pmax

u,v , i.e., Pr(pmax
u,v ) = wu,vi ×· · ·×wvj,v .

Since pmax
u,v is the maximum influential path, Pr(pmax

u,v ) is greater
than that along any other path from u to v in the social network.

Definition 2 (Activated Nodes). Given a set of seeds S, the node set
σ (S) is a subset of nodes in V and those nodes can be activated
by S:

σ (S) =
⋃

v∈V ,Pr(v|S)≥δ

{v}. (2)

where δ is the activation threshold.

Definition 3 (Influence Maximization (IM)). Given a social network
G = (V , E) and an integer k, the influence maximization is to find
a set of nodes S ⊆ V , known as seeds, such that, if only the nodes
in S are active initially, the number of nodes activated by S, at
the end of information propagation process following IC diffusion
model, is maximized, i.e.,

argmax
S⊆V ,|S|≤k

{|σ (S)|}. (3)

3.2. Community-diversified influence maximization

Given a set of seeds S, we define the community diversity of
the nodes activated by S. As we know, the nodes in social net-
works can be grouped into different communities. If the activated
users are from more communities, it implies the higher diversity.
The community diversity is evaluated as follows:

Definition 4 (Community Diversity Function). Suppose the nodes
in a social network G = (V , E) have been organized into m
communities, denoted as C = {C1, . . . , Cm}. Given a set of seeds
S, the diversity of nodes activated by S is defined as:

D(S) =
∑
Ci∈C

√ ∑
vj∈Ci∩σ (S)

r(vj) (4)

where vj is a node activated by S (i.e., vj ∈ σ (S)) and a member
in community Ci, r(vj) represents the importance of vj in social
networks.

D(S) is greater when the community diversity of activated
nodes increases. Specifically, when activating a node from a new
community (i.e., this community does not have any activated
node yet), the higher score is awarded. For the nodes from the
same community, the award for activating them decreases by
applying the square root operator. The similar idea has been used
in document summarization [44]. For node vj, the importance
in social networks r(vj) can be the degree of vj, the PageRank
score or the betweenness values of vj, or any other user-defined
score function. The different values of nodes’ importance may
help to discover the effective communities via considering the
real influence of nodes and communities. But this is out of this
research work. Therefore, in this work, r(vj) is set as 1 by default
for the generalization.

Definition 5 (Community-diversified Influence Maximization
(CDIM)). Given a social network G = (V , E) and an integer k, CDIM
problem aims to find a set of seeds S ⊆ V satisfying:

φ(S) = argmax
S⊆V ,|S|≤k

{(1− λ)
|σ (S)|
|V |
+ λ

D(σ (S))
D(V )

}. (5)

where σ (S) represents the set of nodes activated by S, D(σ (S))
represents the community diversity of σ (S); λ ∈ [0, 1] is the
trade-off parameter to balance the two objectives, i.e., the num-
ber and the community diversity of the activated nodes; |V | and
D(V ) are the constants for normalization.
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3.3. Monotone and submodularity

The evaluation metric φ(.) in Eq. (5) is monotonous and
submodular. To prove this, we show that |σ (.)| and D(.) are
monotonous and submodular respectively. Given any trade-off
parameter λ ∈ [0, 1], the aggregation function of two monoto
nous and submodular functions is still monotonous and submod-
ular.

Lemma 1. |σ (.)| is monotonous and submodular.

The influence maximization using IC models has been proved
(Theorem 2.2 in [2], Theorem 2 in [8]). it is not obvious for the
adapted function |σ (.)| to be true. Therefore, we summarize the
proof as below.

Each social network can be treated as a random graph. Each
edge (u, v) ∈ E is associated with a random Bernoulli variable
governed by wu,v , which controls the likelihood u activates v. Let
X denote the entire probability space constituting all possible de-
termined influence propagation graphs. A determined influence
propagation graph is generated by flipping a coin of bias wu,v
for every edge (u, v) ∈ E to determine if (u, v) exists in the
determined graph. Then we have Pr(v|S) =

∑
x∈X P(x)I(S, v, x),

where P(x) is the probability of a possible determined graph x,
and I(S, v, x) is an indicator to say if v can be reached from one
of nodes in S in the determined graph x. If the indicator is true,
then I(S, v, x) equals 1. Otherwise, I(S, v, x) equals 0. As σ (S) is
a node set

⋃
v∈V ,Pr(v|S)≥δ{v} based on Eq. (2), the size of the node

set |σ (S)| is equivalent to
∑

v∈V {1|
∑

x∈X P(x)I(S, v, x) ≥ δ}.
We can safely say the function |σ (.)| is monotone if the

inequality |σ (S ∪ {u})| ≥ |σ (S)| holds. To verify the inequal-
ity, let us comparing their alternatives

∑
v∈V {1|

∑
x∈X P(x)I(S ∪

{u}, v, x) ≥ δ} and
∑

v∈V {1|
∑

x∈X P(x)I(S, v, x) ≥ δ}. Here, if
I(S, v, x) equals 1, i.e., v is reachable from S in the determined
graph x, then I(S ∪ {u}, v, x) must be 1. Conversely, it does not
hold, i.e., if I(S ∪ {u}, v, x) is 1, then I(S, v, x) may be 0 or 1.
Since P(x) ∈ (0, 1],

∑
x∈X P(x) I(., v, x) is monotonous. Thus,∑

v∈V {1|
∑

x∈X P(x) I(S ∪ {u}, v, x) ≥ δ} is always no less than∑
v∈V {1|

∑
x∈X P(x) I(S, v, x) ≥ δ}.

Let S ⊆ T ⊆ V , u ∈ V and u /∈ T . We first consider a
determined graph x ∈ X . Rx(S ∪ {u}) − Rx(S) is the set of nodes
reachable from u, but not reachable from S, in the determined
graph x. As S ⊆ T , we have Rx(S ∪ {u})− Rx(S) must have equal
or more additional reachable nodes than Rx(T ∪{u})−Rx(T ). Thus
|Rx(.)| is a submodular function. Noticing that |σ (.)| is a non-
negative linear combination of submodular functions Rx(.) over
the determined graph space X with the threshold δ. Thus, |σ (.)|
is also submodular. The proof of Lemma 1 is proved.

Lemma 2. D(.) is monotonous and submodular.

Since σ (.) is a monotone and submodular function to be
proved in Lemma 1, we have ∆(u|S) ≥ ∆(u|T ) for any S ⊆ T ⊆ V
and u ∈ V \ T where ∆(u|S) = σ (S ∪ {u})− σ (S) representing the
set of nodes that are activated by u, but not by S.

Since D(S) is defined as
∑m

i=1

√∑
vj∈Ci∩σ (S) r(vj), if we suppose

Di =
√∑

vj∈Ci∩σ (S) r(vj), then D(S) can be expressed as
∑m

i=1 Di. If
we can prove that Di(.) is a monotone and submodular function,
then D(.) must possess the general submodular property. We
can prove Di(.) being a monotone and submodular function by
proving

∑
vj∈Ci∩σ (S) r(vj) monotonous and submodular because

applying the square root to a monotone submodular function
yields a submodular function, and summing them all together
retains submodularity.

From ∆(u|S) = σ (S ∪ {u}) − σ (S), we can get
∑

vj∈Ci∩σ (S∪{u})
r(vj)−

∑
vj∈Ci∩σ (S) r(vj) =

∑
vj∈Ci∩∆(u|S) r(vj). Similarly, we can get

that
∑

vj∈Ci∩σ (T∪{u}) r(vj)−
∑

vj∈Ci∩σ (T ) r(vj) =
∑

vj∈Ci∩∆(u|T ) r(vj).
Because ∆(u|S) ≥ ∆(u|T ) holds, we have that

∑
vj∈Ci∩∆(u|S) r(vj)

≥
∑

vj∈Ci∩∆(u|T ) r(vj) for the same community Ci. Thus, for any
S ⊆ T ⊆ V and u ∈ V \ T , it can conclude that

∑
vj∈Ci∩σ (S∪{u})

r(vj)−
∑

vj∈Ci∩σ (S) r(vj) ≥
∑

vj∈Ci∩σ (T∪{u}) r(vj)−
∑

vj∈Ci∩σ (T ) r(vj).
Therefore, we can see that

∑
vj∈Ci∩σ (S) r(vj) satisfies the submod-

ular property. Obviously, it also satisfies the monotone property.
Lemma 2 is proved.

4. Solution frameworks

This section proposes two solutions of CDIM problem.

4.1. Standard greedy approach

The monotone and submodularity property of φ(.) shown
in Section 3.3 guarantees that the greedy algorithm of CDIM
problem is with (1− 1

e − ϵ)-approximation.

Algorithm 1 Greedy Algorithm
Input: A social network G = (V , E), an integer k, an activation threshold
δ, communities {C1, ... Cm}
Output: A set of k nodes
1: Initialize i = 1, S0 = NIL;
2: while i ≤ k do
3: Initialize temporary variants ubest = ∅, Scorebest = 0;
4: for each node u ∈ V \ Si−1 do
5: ∆(u) = φ(Si−1 ∪ {u}) - φ(Si−1);
6: if ∆(u) ≥ Scorebest then
7: ubest = u;
8: Scorebest = ∆(u);
9: Si = Si−1 ∪ {ubest };
10: i++;
11: return Si;

Algorithm 1 briefly states the procedure of the standard greedy
algorithm. Suppose there are m communities in social networks.
Initially, the seed set S is empty. The greedy algorithm runs by
k iterations. At iteration i, if a node u leads to the maximal
community-diversified influence gain, denoted as ∆(u), u is selected
as a seed and inserted into S (denoted as Si−1 before inserting the
new seed at iteration i). The community-diversified influence gain
is defined as

∆(u|Si) = φ(Si−1 ∪ {u})− φ(Si−1). (6)

In this work, φ(.) is calculated based on the sampling technique
discussed in [1,2]. The time complexity of the greedy algorithm
is O(kn2

·
1

2ϵ2
log n

η
) where n is the number of nodes in the social

network, ϵ and η are two sampling parameters in [1,2]. The
complexity consists of two parts: the first one O(kn) means that
the algorithm needs to run k iterations and, at each iteration, it
requires to probe each node in the social network; the second
part O(n · 1

2ϵ2
log n

η
) means that the estimation of φ(S) needs to

check each node in the social network to determine whether it
can be activated in the sampled graphs of size 1

2ϵ2
log n

η
. The error

bound of the greedy algorithm is (1− 1
e −ϵ) where (1− 1

e ) comes
from the greedy approximation and ϵ comes from the sampling
approximation.

4.2. Upper bound algorithm

To improve the efficiency of the greedy algorithm, we develop
an upper bound based approach in order to reduce the unnec-
essary computations as much as possible. Next, we show the
existence of upper bound.
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Lemma 3. Given any node u, if it is selected as a seed at one of
k iterations, the community-diversified influence gain cannot exceed
the community-diversified influence gain if u is the first selected seed.

Proof. Since φ(.) has been proved to be monotonous and sub-
modular in Section 3.3, we can derive that ∆(u|Si−1) ≥ ∆(u|Si)
for any node u ∈ V \ Si where Si−1 ⊆ Si. Let ∆i(u) denote the
community-diversified influence gain of u at iteration i. If ∆i(u)
is greater than ∆i(v) for any v ∈ V \ Si, v ̸= u, u is selected as a
seed at iteration i. Thus, we have ∆i−1(u) ≥ ∆i(u). It means that
the community-diversified influence gain by selecting a node as
a new seed in the earlier iterations must be not less than that
by selecting it in the later iterations. In addition, it is easy to see
∆0(u) = φ({u}). So ∆0(u) is the upper bound of the community-
diversified influence gain by selecting u as a seed at any of the k
iterations. □

According to Lemma 3, if the community-diversified influence
gain of node u at iteration i, denoted as ∆i(u), is known, we
can safely prune any node if the upper bound of its community-
diversified influence gain is less than ∆i(u). Furthermore, the
upper bounds provide the probing priority for the nodes not
pruned. That is, the nodes with higher upper bounds should be
evaluated earlier.

Besides using the sole influence of a node as an upper bound,
we also explore the upper bound based on the intermediate
computational results, which allow us to avoid computing comm
unity-diversified influence gain of many nodes at each iteration
and thus further improve the efficiency of the whole algorithm.

Lemma 4. Suppose we have a seed candidate node u∗ with
community-diversified influence gain ∆i(u∗) at the ith iteration, and
the seed set Si−1 has been identified. For any seed candidate node u,
computing community-diversified influence gain of u can be avoided
at the ith iteration if u satisfies

φ(Si−2 ∪ {u})+ φ({xi−1})− φ(Si−1) ≤ ∆i(u∗). (7)

where xi−1 is the selected seed node at the (i− 1)th iteration.

Proof. We know
∆i(u) = φ(Si−1 ∪ {u})− φ(Si−1)

= φ(Si−2 ∪ {xi−1} ∪ {u})− φ(Si−1)
= φ({Si−2 ∪ {u}} ∪ {xi−1})− φ(Si−1)
≤ φ({Si−2 ∪ {u}})+ φ({xi−1})− φ(Si−1).

(8)

Thus, for any node u, the upper bound of its community-diversi
fied influence gain in the ith iteration can be estimated using
φ({Si−2 ∪ {u}})+ φ({xi−1})− φ(Si−1). If the upper bound is lower
than or equal to the community-diversified influence gain ∆i(u∗)
of an observed candidate u∗ in the ith iteration, then u can be
safely skipped without computing exact community-diversified
influence gain. □

Algorithm 2 demonstrates the procedure of upper bound algo-
rithm. At the beginning, we initialize the algorithm. In Line 5–Line
17, we run k iterations and select the best seed node at each iter-
ation. In Line 7–Line 15, we only check the nodes having its sole
influence φ({u}) larger than the maximal community-diversified
influence gain of the currently observed nodes (Lemma 3). And
then we check if it satisfies the condition specified in Lemma 4
at Line 8. If the node u can successfully pass the two filter
conditions, then computing the community-diversified influence
gain of u in Line 11–Line 15. Among all observed seed candidates,
the maximal community-diversified influence gain is maintained
by maxMarGain.

Algorithm 2 Upper Bound Algorithm.
Input: A social network G = (V , E), an integer k, an activation
threshold δ, communities {C1, ... Cm}.
Output: A set of k nodes
1: Initialize S0 =NIL, φ(S0) = 0, x0 =NIL;
2: for each node u ∈ V do
3: compute φ({u});
4: Record (u, φ({u})) into a queue Q0;
5: for i = 1 : k do
6: maxMarGain = −∞;
7: for each node u ∈ V \ Si−1 and φ({u}) ≥ maxMarGain do
8: if u ∈ Qi−1 and (φ(Si−2 ∪ {u}) + φ(xi−1) − φ(Si−1))<

maxMarGain then
9: Do nothing;

10: else
11: Compute φ(Si−1 ∪ {u});
12: Record (u, φ(Si−1 ∪ {u})) into a queue Qi;
13: if φ(Si−1 ∪ {u})− φ(Si−1) >maxMarGain then
14: maxMarGain = φ(Si−1 ∪ {u})− φ(Si−1);
15: xi = u;
16: Si = Si−1 ∪ {xi};
17: φ(Si) = φ(Si−1)+ maxMarGain;
18: return Si;

5. Community-aware influence estimation

Given a set of seeds S and any node vj in a community Ci, this
section proposes an innovative method to efficiently determine
whether vj can be activated by S or not.

Consider a social network G = (V , E) with propagation prob-
ability wu,v on edge (u, v) ∈ E. Let pu,c be any path from u to v

and the sequence of nodes along the path is ⟨n1, n2, .., nx⟩ where
n1 ≡ u and nx ≡ v. As introduced in Section 3, the probability
that v is influenced by u through this path equals to the product
of propagation probabilities on edges along this path, denoted
as Pr(pu,v) = wn1,n2 × wn2,n3×, . . . ,×wnx−1,nx . As each node has
only one chance to activate its neighbors, the best chance that
v is influenced by u is through the most influential path from u
to v, known as pmax

u,v , i.e., the path with the maximum influence
probability as introduced in Section 3.

Given a set of seeds S and a node v, the aggregated influ-
ence probability from S to v can be evaluated following Eq. (1),
i.e., through the most influential paths starting from all seeds in
S to v.

Path transformation

Given a path from u to v in a social network G, the influence
probability is Pr(pu,v) = wn1,n2 × wn2,n3×, . . . , wnx−1,nx . Instead
of computing Pr(pu,v), we compute log(Pr(pu,v)) = log(wn1,n2 ) +
log(wn2,n3 ), . . . ,+ log(wnx−1,nx ). If wni,nj for every edge (ni, nj) in
E is transformed to − log(wni,nj ),

1 the problem searching for pmax
u,v

is transformed to search for the shortest path from u to v. Once
the shortest path pmax

u,v is obtained, Pr(pmax
u,v ) = e(p

max
u,v .dist) where

pmax
u,v .dist is the shortest path distance.

1 Since wni,nj is in (0,1], log(wni,nj ) is negative. The most influential path
is the path with the maximum value. By changing the sign from log(wni,nj )
to − log(wni,nj ), the most influential path is equivalent to the path with the
minimum distance.
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Fig. 1. Community-aware Partial Shortest Path Tree.

Community-aware Partial Shortest Path Tree (CPSP-Tree)

Suppose the path transformation has been done. To estimate
the influence probability of a seed set S to any node v, a shortest
path tree can be constructed for every node u in the social
network Gwhere the root is v. For any node u in the tree, the path
to root corresponds to the shortest path from u to v, i.e., pmax

u,v . So,
the influence probability from u to v (i.e., Pr(pmax

u,v )) can be directly
calculated. The shortest path tree is the compressed version of
the shortest paths from all other nodes in G to v by merging the
same node appearing in different paths. Given a set of seeds S
and a node v, the aggregated influence probability of S to v can
be computed by finding all seed nodes in S in the tree; for each
seed node, the influence probability to v is calculated, then we
compute the aggregated influence following Eq. (1).

Building and maintaining complete shortest path trees is time
and space consuming. To handle this issue, we propose Commu
nity-aware Partial Shortest Path Tree. For each community Ci, a
node is selected as the community representative vCi . Note, for
community Ci, we only build and maintain one shortest path
tree, i.e., the shortest path tree of the representative node vCi .
Given any node u in G, the shortest path distance from u to
vCi can be retrieved in the shortest path tree; the shortest path
distance from u to any other node in Ci cannot be obtained from
the shortest path tree but the upper and lower bound can be
estimated using triangle inequality. Fig. 1 shows an example.
pmax
u,v1 can be obtained from the shortest path tree of v1 directly;

the distance of pmax
u,v2 is bounded by pmax

u,v1 .dist + pmax
v1,v2

.dist and
pmax
u,v1 .dist + pmax

v2,v1
.dist where pv1,v2 goes through v1, v3, v4, v2 and

pv2,v1 goes through v2, v5, v1.
Based on the general community metrics, the intra-comm

unity members often have close relationships/less number of
hops than the inter-community members, e.g., for clique-
like communities, the intra-community members has 1 hop. Of
course, for the other types of communities, there may be different
between the distance of intra-community members and that of
inter-community members. Motivated by this, if v1 and v2 are
in the same community, in general the shortest distance from v1
to v2 is typically much smaller that of u and v2 where u and v2
are from different communities. So the shortest distance could
be the path from v2 to v1, not u. Thus, pmax

u,v1 .dist + pmax
v1,v2

.dist
and pmax

u,v1 .dist + pmax
v2,v1

.dist are reasonably tight upper and lower
bound of pmax

u,v2 .dist . That is, a reasonably tight upper bound and
lower bound of Pr(pmax

u,v2 ) are known, denoted as Pr(pmax
u,v2 ).UB and

Pr(pmax
u,v2 ).LB.

Given a set of seeds S and any node vj in any community Ci,
the upper bound and lower bound of Pr(vi|S) are

Pr(vj|S).UB = 1−
∏
u∈S

(1− Pr(pmax
u,vj .UB)).

Pr(vj|S).LB = 1−
∏
u∈S

(1− Pr(pmax
u,vj .LB)).

(9)

where Pr(pmax
u,vj .UB) and Pr(pmax

u,vj .LB) are obtained by exploring the
shortest path tree of vCj as discussed.

Compared with the activation threshold δ, if Pr(vj|S).UB < δ, vj
is pruned since it cannot be activated; if Pr(vj|S).LB > δ, vj must
be activated. Only in the situation Pr(vj|S).UB ≥ δ ≥ Pr(vj|S).LB,
the exact Pr(vj|S) is computed by searching the shortest paths
from all seeds in S to vj.

The data structure for maintaining shortest paths in large
graphs is a well studied field (e.g., [45]) where one approach is the
shortest path tree. While the variants of shortest path tree have
been developed for different purposes (e.g., [46]), the proposed
CPSP-tree links each shortest path tree with the community in-
formation of the root so as to reduce the number of shortest path
trees maintained. Note the algorithm to build shortest path trees
is orthogonal to this study.

For each community Ci, one shortest path tree is built. There
are m communities. The storage of all shortest path trees is m|V |.
In community Ci, the shortest distances from (to) each member
node to (from) the representative node vCi are precomputed
and maintained; the storage is 2|VCi | where VCi is set of nodes
in community Ci. The storage of all communities is

∑m
i=1 |VCi |.

The overall storage of CPSP-Tree is m|V | +
∑m

i=1 |VCi | and the
complexity is m|V |.

The time complexity of constructing the CPSP-tree is analyzed
as follows. Constructing the CPSP-tree is same to compute the
single-source shortest path for each node in the graph. As we
know, the single-source shortest path computation takes O(m+
n · log log n), which has been reported in [47]. In the worst case,
we need to invoke the single-source shortest path computation
for every node in the graph, i.e., O(n) times. Then, the time
complexity becomes O(n·(m+n·log log n)). However, in practice,
the CPSP-tree construction only work on the boundary nodes in
the communities. The number n′ of boundary nodes is much less
than the total number n of nodes in the graph. As such, the time
complexity is O(n′ ·m+ n′ · n · log log n).

6. Unknown community based diversified influence spread

In the above sections, we developed novel index and solu-
tions for addressing the community-aware influence maximiza-
tion with diversification, i.e., we assume that the communities
in the social network are known in advance. However, some-
times the community information may not be available. In this
case, the most challenging part in this proposed problem is that
we do not have clear guidance for selecting seeds, i.e., given
a seed candidate, how diverse its influence spread to make it
being selected as a real seed? To address this challenge, in this
section we propose a heuristic approach to resolve the problem
of diversifying influence spread without community information.

6.1. Diversity diminished model

Before the first seed to be selected, any node in the social
network is treated equally in diversity. So we can select the first
seed with the maximum influence spread without considering the
factor of diversity. Assume the first seed u has been determined.
Let S = {u} be the current seed set and σ (u) be the influenced
nodes of u in the social network.
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Definition 6 (Possible Hits of a Node). Given a seed node u and
its influenced node set σ (u), the possible hits of u consists of the
nodes v ∈ V \σ (u) satisfying that v has an edge to a node in σ (u).
The possible hits of u is denoted as PH(u).

Similarly, the definition of the possible hits for a node can be
applied to the seed set S, which is denoted as PH(S) in this work.
The intuition of our defined possible hits for seed nodes mainly
comes from the fact that such nodes of possible hits have high
probability of being activated when we add a new seed and the
new seed is selected in the nearby regions of the existing seeds
in S. This fact also matches with the IC diffusion model because
a node can be jointly activated by different paths from multiple
other nodes.

Now, let us introduce the objective function to push the se-
lection of next seed far from the current possible hits as much as
possible. By doing this, we guarantee that the selection of next
seed is favorable to the node that has the maximum marginal
gain regarding the currently selected seeds and the maximum
marginal gain would be further discounted or diminished by the
possible hits it can reach.

Definition 7 (Possible Hits Biased Diminish). Given the possible
hits PH(S) of a seed set S, a seed candidate u′ and its influ-
enced node set σ (u′), the possible hits biased diminish giving the
marginal gain ∆(u′) is estimated by

Dim(u′|S) =

{
1

log(|PH(S)∩σ (u′)|) , if |PH(S) ∩ σ (u′)| > 1
1, otherwise

(10)

Definition 8 (Diminished Objective Function). The diminished mar
ginal gain of a seed candidate can be estimated by Dim(u′|Si−1) ∗
∆(u′) where ∆(u′) = σ (Si−1 ∪ {u′})− σ (Si−1).

When the community information is not available, we ap-
proximate the diversified influence spread of the candidate nodes
by computing the maximum benefit of those nodes via the di-
minished objective function. Obviously, the diminished objective
function is not monotonic because PH(S) may become larger or
smaller with the increase of S, which leads that Dim(.) is not
a monotonic function, too. Therefore, the above frameworks are
not directly applicable to the problem of diversified influence
maximization without community information.

6.2. Local-optimality based approach

In this section, we propose the local optimality based ap-
proach to address the diversified influence spread problem when
the community information is unknown in advance. The local
optimality based approach is developed by adjusting the upper-
bound based approach in Section 4.2.

Now let us analyze the upper bound and lower bound of nodes
in the context of the diminished objective function, i.e., when a
node can be determined to be a seed node based on the local
information.

From Definition 8 and Eq. (10), we can easily get that given
a new seed candidate u′ and the current seed set S, its expected
maximum marginal gain is in the range of [ ∆(u′)

log(|PH(S)∩σ (u′)|) , ∆(u′)]
where ∆(u′)

log(|PH(S)∩σ (u′)|) is the lower bound of the maximum margi
nal gain of u′ and ∆(u′) is its upper bound. As log(|PH(S) ∩ σ (u′)|)
≤ min{log|PH(S)|, log|σ (u′)|} always holds, we can relax the
lower bound to ∆(u′)

min{log|PH(S)|,log|σ (u′)|} , which can be rewritten as
max{ ∆(u′)

log|PH(S)| ,
∆(u′)

log|σ (u′)| }. Note that here ∆(u′), PH(S), and σ (u′) are
the intermediate results in the process of running upper bound
based approach. So we can quickly obtain the lower bound and
upper bound of nodes and filter the insignificant nodes, by which
we can reduce the computational cost.

Property 1 (Local Lower Bound). The local lower bound of u′ at
the ith iteration is measured by max{ ∆(u′)

log|PH(Si−1)|
,

∆(u′)
log|σ (u′)| }. Since it

always has σ (u′) ≥ ∆(u′), the local lower bound of u′ can be further
improved as max{ ∆(u′)

log|PH(Si−1)|
,

∆(u′)
log|∆(u′)| }.

Property 2 (Local Upper Bound). The local upper bound of u′ at
the ith iteration is σ (u′), i.e., assuming there is no overlap between
PH(Si−1) and σ (u′). If ∆(u′) has been computed, then ∆(u′) will
replace σ (u′) to be the tight local upper bound of u′ because ∆(u′) ≤
σ (u′) is true in all iterations.

The key idea of the local-optimality based approach is to
find the terminating node using the above local lower bound
and upper bound properties. In other words, for those nodes
afterwards the terminating node, they must not generate the seed
node for the current iteration. By doing this, we can safely and
quickly locate the best seed node at an iteration without probing
all possible nodes.

Algorithm 3 Local-Optimality based Algorithm
Input: A graph G = (V , E) and an integer k
Output: S - the k-vertex set
1: {Initialize the upper bound value for each node};
2: for each node u ∈ V do
3: Write u : σ (u) into an ordered queue Q ;
4: S1 ←Q .pop(), i.e., ubest : σ (ubest );
5: Set i = 2;
6: while i ≤ k do
7: Initialize an iteration: found = false, a seed candidate s and s.value

= 0;
8: change Q ′ to an element s;
9: ufirst : ∆(ufirst )← Q .pop();
10: ∆(ufirst ) = σ (Si−1 ∪ {ufirst }) - σ (Si−1);
11: while !found && Q .getFirstUnvisited()̸= null do
12: unext :∆(unext )← Q .getFirstUnvisited();
13: if max{ ∆(ufirst )

log|PH(Si−1)|
,

∆(ufirst )
log|∆(ufirst )|

} ≥ ∆(unext ) or
∆(ufirst )

log|PH(Si−1)∩∆(ufirst )|
≥

∆(unext ) then
14: Si = Si−1 ∪ Q ′.pop();
15: found = true;
16: else
17: Q ′.add(ufirst :

∆(ufirst )
log|PH(Si−1)∩∆(ufirst )|

);
18: Q .add(ufirst :∆(ufirst ));
19: if !found then
20: Si = Si−1 ∪ Q ′.pop();
21: return Si;

Algorithm 3 presents the detailed procedure of this approach.
Here, we calculate the general influence spread of nodes as their
loose upper bounds, as shown in Line 2–3. Those nodes and
their influence spreads are maintained in an ordered queue Q .
Obviously, the first seed is the node with the maximum value
in Q . The challenging part is how to select the other k − 1 best
seed nodes satisfying our diminished objective function w.r.t. our
problem of the diversified influence maximization. To address
this, we first pop a node ufirst and its value ∆(ufirst ) from Q and
compute its incremental gain regarding the selection Si−1. Note
now we did not consider the factor of diversification. And then,
the second While-Loop is used to identify the terminating node in
Q . We use the new queue Q ′ to maintain the nodes to be visited
and the nodes’ diminished value. In the second While-loop shown
in Line 11–18, we check the unvisited nodes (e.g., say unext ) in Q
and compare its upper bound value (e.g., ∆(unext )) with the lower
bound value (e.g., max{ ∆(ufirst )

log|PH(Si−1)|
,

∆(ufirst )
log|∆(ufirst )|

}) or its exact value

(e.g., ∆(ufirst )
log|PH(Si−1)∩∆(ufirst )|

) of ufirst . If the lower bound or the exact
value of ufirst is not less than the upper bound of an unvisited
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node unext , then we can safely say unext is the terminating node
and take the node with the maximum value as the new seed
from Q ′. Otherwise, we add the intermediate results of ufirst and
its diminished value ∆(ufirst )

log|PH(Si−1)∩∆(ufirst )|
into the temporary queue

Q ′, while write ufirst and its updated value ∆(ufirst ) back to Q . In
Line 13, if the first condition is true, then we do not calculate
the exact value, i.e., avoiding the operation of set merge. In the
worst case, if no terminating node exists, i.e., all the nodes in Q
have been probed, then the best seed should be the node with the
maximum value in Q ′ because all their diminished values are the
exact value in Q ′, shown in Line 19–20. Finally, the k best seeds
will be returned.

6.3. Optimizing precision of local-optimality

Since the above local-optimality based approach selects the
seed nodes based on the diminished objective function, the final
solution will depend on the first seed node selection. Therefore,
it can only produce the local optimum solution to our problem.
For instance, there is a large community and a set of medium-
sized communities around the large community. In this case,
if we select the first seed node activating a large number of
users in the large community, then it will make us to ignore the
consideration of the groups of medium-sized communities even
if their combination can contribute more than the only selection
of the large community.

In general, this challenging issue often occurs in the problems
of local search optimization. To do this, one way is to do iterate
local search multiple times. Each time starts from a different
initial configuration. This is called as repeated local search. How-
ever, how to select the different initial configurations is a tough
question. To address this challenge, in this work we develop a
heuristic approach to optimize the benefit of the extra search by
utilizing the knowledge obtained during the previous local search
phases. The key idea is to identify the first two seed nodes as
the main line of local search using Algorithm 3. And then, we
select the nodes as the initial seed candidates for other lines
of local search where each node should have high possibility
to drive a local search by checking if its independent influence
spread value is larger than a certain ratio (i.e., λ = 0.3) of that
of the first two seeds. As such, besides the main local search,
we can also initialize different local search with the potential
candidates at the beginning. In order to balance the optimized
global precision and the efficiency of the heuristic approach,
we have an assumption that we do not allow overlapped seed
candidates appearing across any two lines of local search. When
the algorithm continues to run, lots of lines of local search would
be removed, by which the search space can be reduced soon.

The core procedure of the heuristic approach is similar to
Algorithm 3. Therefore, we do not provide the pseudo codes in
this paper.

7. Experimental study

We have conducted extensive experimental study to evaluate
the effectiveness and efficiency of the proposed solution of CDIM
problem. All these experiments are tested on a Red Hat Enterprise
Linux Server (7.2), with 792GB RAM and Intel(R) Xeon(R) CPU E5-
2690 v2 @ 3.00GH shared by staff in the School of Science, RMIT
University. The algorithms are implemented using Python 2.7.

Five real-world social network datasets are used in test. They
are downloaded from Stanford Large Network Dataset Collection.2
The statistics of the datasets are shown in Table 1.

2 http://snap.stanford.edu/data/index.html

Table 1
Statistics of datasets.
Data sets #nodes #Edges Avg degree

Facebook 4,039 88,234 21.8
Citation (DBLP) 4,558 217,984 47.8
Gowalla 69,097 351,452 5.1
Youtube 52,675 636,864 12.1
Amazon 317,194 1,745,870 5.5

7.1. Evaluation of effectiveness

The objective of CDIM problem is to find k nodes in a social
network which are capable to activate the maximum number of
nodes communities from as diverse as possible. The effectiveness
tests check whether the proposed solutions show advantage to-
wards the objective. For this purpose, we have implemented the
following four algorithms.

• IM is the solution of influence maximization problem [1,2].
As a baseline, it is used to solve CDIM problem. Given a seed
u, the set of activated nodes by u is denoted as Inf(u). For
another node u′, if it is selected as a seed, the new nodes
activated by u′ is Inf(u’)/Inf(u). For the node selected as the
next seed, it must be able to activate the maximum number
of new nodes in social networks.
• DIV(LPA) represents our proposed CDIM solution where the

widely-accepted community detection method LPA [29] is
applied to identify all communities in social networks.
• DIV(Louvain) represents our CDIM solution where another

widely-accepted community detection method Louvain [48]
is applied to identify all communities in social networks.
• Heuristic represents our CDIM solution where the commu-

nity definition is not specified and thus the influence-based
communities in social networks are considered as discussed
in Section 6.

The performances are reported when k changes. By default, λ
in Eq. (5) is 0.5 and activation threshold δ in Eq. (2) is 0.2.

Precision
The precision is measured by comparing the seeds and the ac-

tivated nodes returned by IM and Heuristic against those returned
by DIV(LPA) and DIV(Louvain) respectively. Let the seed set (or the
set of activated nodes) returned by IM be im and the seed set (or
the set of activated nodes) returned by DIV(.) be div. The precision
of IM vs. DIV(LPA) is |im∩div|

|im| . If the precision is smaller, only a
smaller fraction of IM problem solution overlaps CDIM solution;
it implies IM problem is less similar to CDIM problem. Let the
seed set (or the set of activated nodes) returned by Heuristic
be heu. The precision of Heuristic vs. DIV(LPA) is |heu∩div|

|heu| . The
higher precision means influence-based communities can better
approximate the specified communities.

For each data set, the seed sets returned by IM, Heuristic,
DIV(LPA) and DIV(Louvain) are compared, and the test results are
presented in Fig. 3 where k varies from 50 to 200. In Facebook,
IM can identify 30%–50% of seeds returned by DIV(.) when k is
50 or 100. When k is 150 or 200, IM can identify about 20% of
seeds returned by DIV(.). In all settings of k, Heuristic can identify
about 10% of seeds returned by DIV(.). The similar trend can be
observed for other three datasets.

Similar to seed sets, the activated node sets using IM
and Heuristic are compared with those using DIV(LPA) and
DIV(Louvain) respectively. The test results are presented in Fig. 4.
When k is 50 or 100, the precision of IM and Heuristic for
Facebook, Citation and Youtube reaches 50%; the precision is
about 20%–40% for Gowalla and about 30% for Amazon. When k

http://snap.stanford.edu/data/index.html
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Fig. 2. Recall of seeds.

Fig. 3. Precision of seeds.

Fig. 4. Precision of nodes activated.

is 150 or 200, the precisions are becoming much smaller for all
data sets.

The test results clearly indicate that CDIM problem is signifi-
cantly different from IM problem. Also, it indicates the influence-
based communities are reasonable approximation of the commu-
nities applied in DIV(LPA) and DIV(Louvain).

Recall
The recall is measured by comparing the seeds and the acti-

vated nodes returned by IM and Heuristic against those returned
by DIV(LPA) and DIV(Louvain) respectively. The recall of IM vs.
DIV(.) is defined as |im∩div|

|div| . If the recall is smaller, the solution of
IM problem is a smaller fraction of the solution of CDIM problem;
it implies IM solution is less effective to CDIM problem. The
recall of Heuristic vs. DIV(.) is defined as |heu∩div|

|div| . The smaller
recall means the influence-based communities are less effective
to approximate the specified communities in DIV(.).

The recall in terms of seeds is presented in Fig. 2. For all five
data sets, the recall of IM is lower than 55% and the recall of
Heuristic is lower than 30% except Citation dataset. The recall
in terms of activated nodes is presented in Fig. 5. In the dense
datasets Facebook and Citation, IM can activate about 50% nodes
among all nodes activated by DIV(.). Heuristic can activate about
40% except k=50. For the other three datasets, IM and Heuristic
have less recall values. The test results in recall lead to the similar
conclusion as the test results in precision.

Community diversity
A community is influenced if at least one node of the com-

munity is activated. The real world community information of
datasets Amazon and Youtube are known. Using DIV(LPA) to solve
CDIM over the two datasets. The tests results are reported in
Table 2 and Table 3 respectively. Obviously, the trade-off be-
tween the number of communities influenced and the number
of nodes activated can be adjusted by setting λ different values

Table 2
Activated nodes and influenced communities on Amazon dataset (k = 200,
δ = 0.9).

λ = 0 λ = 0.25 λ = 0.5 λ = 0.75

Communities influenced (#) 1704 1843 1938 2031
Communities influenced (%) 2.27 2.45 2.57 2.69
Influence (#nodes) 2197 2188 2132 1966
Influence (%) 0.69 0.69 0.67 0.62
Diversity score 3037.16 3190.20 3218.91 3242.26
Diversity score (normalized) 0.013 0.014 0.014 0.014

Table 3
Activated nodes and influenced communities on Youtube dataset (k = 200,
δ = 0.5).

λ = 0 λ = 0.25 λ = 0.5 λ = 0.75

Communities influenced (#) 1072 2382 2561 2741
Communities influenced (%) 6.54 14.54 15.63 16.73
Influence (#nodes) 40,501 40,447 40,427 40,365
Influence (%) 76.89 76.79 76.75 76.63
Diversity score 6246.62 9009.97 9180.49 9340.65
Diversity score (normalized) 0.18 0.25 0.26 0.26

(see Eq. (5)). When λ = 0, CDIM is degraded to influence
maximization problem. As a result, the number of nodes activated
is the highest while the number of communities influenced is the
lowest. When λ increases, the number of nodes activated keeps
decreasing while the number of communities influenced keeps
increasing; the CDIM score (i.e., φ(S) for the returned seed set S)
keeps increases.

7.2. Evaluation of efficiency

The efficiency of GR (Algorithm 1), UB (Algorithm 2), IDX
(i.e., UB with support of CPSP-Tree) at different settings of k
are tested. Figs. 6–10 reports the time consumed using different
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Fig. 5. Recall of nodes activated.

Fig. 6. Efficiency of proposed algorithms in Facebook dataset.

Fig. 7. Efficiency of proposed algorithms in DBLP dataset.

Fig. 8. Efficiency of proposed algorithms in Gowalla dataset.

Fig. 9. Efficiency of proposed algorithms in Youtube dataset.

algorithms for solving CDIM problem in different datasets. The
communities are detected using LPA and Louvain. Note the re-
ported time does not include the time consumed for community
detection since it is orthogonal to CDIM problem. That is, com-
munity detection is performed offline. Once the communities are
known, CPSP-Tree is built offline as well.

As shown in Figs. 6–10, IDX outperforms the other two algo-
rithms by 8–40 times on all datasets (except Citation). In Fig. 6, GR
performance is the worst in all situations. In Fig. 7, UB is better
than IDX when k is 50, 100, and 150. But when k increases up
to 160, IDX performs much better than UB. When k is 200, IDX

Fig. 10. Efficiency of proposed algorithms in Amazon dataset.

is about 2.5 times faster than UB. This is because Citation is a
dense social network. The dense social network tends to have
more computation for intra-community nodes. Additionally, we
observe that each algorithm performs similarly over the same
data set with LPA and Louvain.

7.3. Other evaluations

This section presents the test results when changing the val-
ues of trade-off parameter λ, activation threshold δ, and size of
dataset.

Varying λ
The accuracy of the activated nodes using DIV(LPA) and IM is

evaluated respectively. The accuracy is measured by F-measure
where F = 2 ∗ precision∗recall

precision+recall . The higher F-measure means the
activated nodes are from more different communities. The test
results are shown in Fig. 11(a) when λ varies from 0.25 to 1.
In the situation λ = 1, it means the number of communities
influenced is the sole factor considered. When λ = 0.25, it means
the number of communities influenced is considered less while
the number of nodes activated is considered more. By default,
k = 100 and δ = 0.2. F-score decreases with the increase of λ
for all five data sets. And the decreasing trend goes slowly before
λ = 0.5 and goes sharply after λ = 0.5.

IM aims to activate the maximum number of nodes in so-
cial networks and DIV(LPA) aims to activate maximum number
of nodes which are from more communities. Compared to IM,
DIV(LPA) has to sacrifice a certain number of activated nodes
to ensure more communities are influenced. The ratios between
the number of nodes activated using DIV(LPA) and that using
IM at different settings of λ are reported in Fig. 11(b). When λ
is between 0.25 and 0.75, the number of nodes activated using
DIV(LPA) is 75% of that using IM for all datasets. When λ is 1, the
ratio is 75% in four datasets and 40% in Youtube.

Varying δ
In the tests, k = 100 and λ = 0.5. As shown in Fig. 11(c), F-

score increases when δ varies from 0.2 to 0.5. The results depict
that it is easy for IM to activate more nodes when the higher
value is set to δ. We also evaluate the time consumed by different
algorithms over Amazon when δ changes. The test results are
shown in Fig. 11(d). The performance of UB is accelerated for the
higher δ value, but the performance of IDX is affected slightly by
δ. Clearly, IDX always outperforms UB.
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Fig. 11. Impact of λ, δ and data size.

Varying size of dataset
We generate three synthetic datasets based on Amazon in

order to evaluate the scalability of the proposed algorithms for
datasets of different sizes. The three datasets have 2 times, 5
times and 25 times of nodes in the original Amazon dataset
shown in Table 1. Fig. 11(e) illustrates UB consumes 600 s when
data size is 2 times and it consumes 1800 s when the data size
is 25 times. Obviously, while the data size increases by about 12
times, the consumed time increases by 3 times only. IDX performs
much better and the trending slope is very gentle.

8. Conclusion

This paper has studied community-diversified influence maxi-
mization (CDIM) problem. CDIM provides an innovative perspec-
tive to evaluate the influence propagation over social networks.
The objective is to find k influential nodes in social networks
as seeds such that, if a message is initiated by the seeds, the
number of activated nodes as well as the number of communities
to which the activated nodes belong can be maximized at the
end of propagation process. The community diversity can reduce
the risk of market campaigns and make more future impact.
The goodnesses of CDIM solution are evaluated with a metric
which have been proven monotonous and submodular. It allows
greedy algorithm to be applied with reasonable approximation
bound. To enable more efficient processing, the upper bound of
community-diversified influence has been explored to minimize
the seed candidates. In particular, an innovative CPSP-Tree index
has been developed to quickly identify seed candidates. The in-
trinsic communities of CDIM are explored in the case that the
communities cannot be provided by users. The extensive tests on
five real-world datasets have verified the superiority of proposed
solutions.
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