
UNDERSTANDING AND ENLIVENING AQM
WORKINGS USING COMPUTER SIMULATION

Chong Shen

shen@usq.edu.au

Zhongwei Zhang

zhongwei@usq.edu.au

David Lai

lai@usq.edu.au

Department of Mathematics and Computing

The University of Southern Queensland, Toowoomba, QLD

Abstract: Undeniably, computer simulation is an effective tool to help understand and ana-
lyze complex processes and systems in various areas. In recent years, many educators adopt
computer simulation technology in the teaching of some topics or courses which include dy-
namic interactions between components. For years, many concepts of networking have been
taught based on textual or other static visual materials. And many researcher have shown that
illustrating dynamic scenario using static and lecture-based paradigms compromises the teach-
ing effectiveness. This problem on computer network education prompted us to use graphical
simulation. Courses related to computer communication and networking can be benefitted if
computer simulation is wisely adopted.

In this paper, we describe a study in which we count on computer simulation to illustrate
important and complicated algorithms of congestion control and queue management in the
TCP/IP protocol suites. Comparing with current queue management techniques, Active Queue
Management(AQM) is an innovative mechanism in router packet scheduling. We noticed that
AQM is a promising technique and might be implemented in new generation routers. However,
the concepts and internal workings of AQM schema are difficult for researchers and students
to understand. Thus, we designed an interactive software to dynamically visualize the AQMs’
principles and internal workings. The implementation of simulation package used Java tech-
nology due to that Java is an object-oriented programming language with extensive build-in
graphical facilities and multi-threading mechanism.

In our software package, we have implemented the traditional Drop Tail(DT) and two
representative AQM schemas: Random Early Detection(RED) and BLUE. It allows users to
conduct their own experiments by entering different parameters for each of the algorithms,
as shown in the figure below. The structure of simulation package follows the Model-View-
Controller paradigm which separates the development of network models from visualization
and control of the models. The animation visually describes the internal working process of the
algorithms with a plot diagram, which displays the variations of the router queue size. We also
compared the simulation results of the three queue management algorithms. From the animat-
ing simulation, we can easily see the difference of performance between AQM and DT. The
main strength of our AQM simulator is ease of use when compared with other professional
simulation tools such as NS2 or OMNet++, because users do not need solid programming
capability to build the simulation from scratch. By using graphical animation, learners can
directly access the internal process of the three queue management algorithms. We have re-
ceived very positive feedbacks from network professionals and University lecturers for using
this simulation software.

Key words: Educational computer simulation, Communication network, Active queue man-
agement and Java programming.

1

1 Introduction

Due to the characteristics of computer communication and networks, many concepts, algorithms
and protocols are by no means easy for students to comprehend. Neither for the University edu-
cators to elucidate on the class. A traditional way of teaching and learning is to use the methods
which are based on illustrative text, sketch or drawings. Educators like professors have complaint
that this kind of static material is only effective for purpose of illustration of theoretical and simple
principles. In most case, however, the network concepts are dynamic and complex process which
make the traditional methods hard to cope with. Because of this problems, a paradigm shift has
commerced from relatively static paradigm of teaching and learning to an interactive, dynamic
paradigm [2]. Therefor the use of graphical simulation is adopted as assistance tools in this teach-
ing area.

In this paper, we report a research is focused on providing an animation package which graphi-
cally simulate the working process of AQM in the router. The remaining of this paper is organized
into 5 sections. In section 1, we look at some related works have been done in the similar areas
for computer network. In section 2 we introduce our approach on using Java language to build
the simulation package. In section 3 on the Implementation, a developed AQM animation package
will be presented which helps students to understand how AQM works is described. In section 4,
some analysis result generated by our graphical simulator is given. The paper is concluded by a
summary and future works in section 6.

2 Related works

Computer networks are an innovative approach of communication and understanding the concepts
of computer networking is essential for computer science students. Traditionally, dissemination of
computer communication and networking techniques mainly rely on two complementary methods:
one is transferring information from educators to learners via books and lectures which explain
network concepts in a static method, or secondly, learners perform exercises while being super-
vised by educators [4]. Various pedagogy of teaching network protocols, TCP algorithm, queue
management and other principles have been exclusively relying upon the text and sketches. As
a consequence, some problems occurs when trying to explain dynamic and complex concepts of
computer networking using those dull educational materials.

For years, Simulation has been proved to be a successful way of expressing and analyzing
problems and recently has been adopted in various fields. An interesting method emerging in re-
cent years is using computer simulation and animation technology. This way of disseminating has
been proved to be effective by more and more educators and be adopted by many institutes. The
advantage of teaching networking technology using simulation is that it can provide a interactive
educational environment for knowledge transfer, requirement analysis, architecture design, perfor-
mance optimization and system testing. The interaction is encouraged while user could provide
different parameters to the simulation model and to see the affect through the simulation result.
A statistical analysis conducted by Brian and Key [5] shows that students performed much more
better in their assessment as the computer network concepts graphically simulated in the real world
processes.

2.1 General network simulator

For past decades, some existing network simulator has been used widely by researchers mainly
in discovering and testing new network principles. Among them, NS2 and OMNeT++ are two

2

examples of these tools.
NS2 is a discrete event simulator which supports the sophisticated simulation of TCP algo-

rithms, packets routing and multi-cast protocol over network [3]. NS2 has been used in the area of
network research for nearly a decade. Researchers add new protocols to the simulator by writing
their protocols in Tcl/Tk script. This approach is extremely hard for students with limited pro-
gramming experience in Tcl/Tk. Also, the animation of the simulation and the simulation result
can only be presented after the completion of simulation process.

Similar to NS2, OMNeT++ [16] is a discrete-event simulator based on C++ and Tcl/Tk. Mod-
ules built in OMNeT++ communicate with each other by passing messages and the interface and
functionality of the modules are separated which supports models reuse. The advantage of OM-
NeT++ is the network simulation can be executed in graphical user interface with graphics and
animations, which makes simulation process visible to users. But again, like NS2, to using the
simulator effectively, users have to have solid programming knowledge in C++.

2.2 Educational simulation

Beside the networking simulators used for research purpose, quite a lot of simulation tools has
been developed in the context of educational purpose:

In the year of 1997, Shifroni and Ginat developed a simulation game to let the students un-
derstand the characteristics of network protocol [15]. The simulation game implemented a basic
protocol of Stop and Wait in the data-link layer. They found the simulation game method are
more effective than traditional lecture presentation. The understanding level and motivation of the
students is also dramatically improved. But the concept of the protocol is simulated as a game
rather than presenting animation to students. This is different from our simulation package since
animation plays a very import role in our project.

In the paper [9], Guido and Bernd provide a animation tool called Animal for animation gen-
eration thus gives the lecturer much more flexibility in producing animations. The strengths of the
Animal is its visual editing. User could design the animation from scratch to fit their requirement.
Example provided in the paper shows that Animal is suitable for teaching programming algorithm
with source code highlighting, but the simulation of network principle is not mentioned in their
paper.

2.3 Use of Java-based simulation in education

In the past few years, the use of Java have made it possible to incorporate a broader range of
material into computer science education, including software engineering, visualization, graphic
user interface design, concurrency, parallelism, networking, and database connection. For instance,
hundreds of Java simulations were created at the National Taiwan Normal University (NTNU)
Virtual Physics Laboratory. Many physics teachers use these Java simulations in their teaching.

Holliday from the Western Carolina University recently implemented few Java Applets that
illustrate some of important concept of network by using animation. The applets and accompany-
ing materials addresses four network concepts: packet encapsulation, packet fragmentation, error
control and media access. All these applets has been applied to the class of computer network. But
the AQM concept is not mentioned in this paper [10].

3

3 Network simulation model

Our simulation package is based on the well-known Model-View-Controller(MVC) paradigm,
which is widely used in the user interface programming field and has proved its worth. The basic
idea behind MVC is to separate internal domain logic models from the user interface. The reason
to do so is to allow the models to be reused and represented by various views without requiring
any changes to the models of the application.

The MVC frame work was originally developed for use in Smalltalk-80 programming sys-
tems [12]. Indeed, since that time, the MVC design idiom has been adopted to many language
and system including PHP, ASP, and Java. Particularly in Java programs, the MVC framework has
been extensively used in the Swing toolkit for building interactive applications [13]. As the name
indicate, there are three major components in the MVC paradigm, as shown in Figure2.

In the Model-View-Controller architecture, the views do not have to know the existence of
models. The views are read only represtation of the models state at certain given time. The views
have free access to the model only via the query methods provided by the models. Methods calling
from controller may change the state of the model. Consequently, this state change is reflected
in associated views via notification from the models or periodical check on models. The view
and controller are not always separated. For example, in Java Swing architecture, the view and
controller are combined, which are called ’delegate’. But no matter how the view and controller
are related, they are always separated with the models.

Based on the MVC architecture, each component or model in our simulated computer network
is an autonomous entity, which could be an end-host, a router/switch, a traveling packets, or a link
between two hosts. And each model contains a set of parameters which represents the component’s
status. Messages derived from the view are passed by the controller to the model through the
methods within that model. The view of the model is generated based on model objects derived
from the general classes, but the models have no knowledge on how the view going to represent
themselves to the user. Same as the simulation controls applied to the models, no matter how the
control panel interpret the user response, it only make change on the parameters of the models
rather than the structure in the models.

The justification for doing this is to make the models reusable in the future. Because the
development for each model in network simulation takes time, by applying MVC architecture to
our simulation design, we actually separate models from their representation and behaviors. This
can make our job easier by combining models together without considering the internal structure
of a particular model.

4 Active queue management

Internet congestion control is one of popular and important topic in computer network and Ac-
tive Queue Management is one of internet congestion control techniques. AQM stands for Active
Queue Management, which is pro-active approach to detect data flow congestion on router or
switch before the buffer overflow occurs [11]. Currently several AQM algorithms has been pro-
posed and many continuous researches are still undergoing on this topics. The proposed technique
will be applied on three algorithm: Drop Tail, Random Early Detection and BLUE.

4.1 Drop from tail - DT

Drop Tail algorithm is not a pro-active approach in detecting congestion, but it has been widely
used in the existing networks. As shown in Figure1,, when overflow happens, the routers imple-

4

mented with DT algorithm simply drops the incoming packet and inform the sender to reduce the
sending rate.

4.2 Random early detection AQM - RED

The RED algorithm(shown in Figure3) regards the congestion in a different way. The packets are
dropped according to a probability if a predefined maximum level of capability is exceed, even the
buffer is not overflowed. The goal of RED gateway is the ability to control the average queue size
which acts as a indicator compared with the minimum and maximum threshold.

As shown in the RED algorithm of Figure3, for each packet arrival at the RED gateway, the
RED gateway calculates the average queue size(avg), using a low-pass filter with an exponential
weighted moving average(EWMA). Two thresholds(minth andmamth) is defined before setting up
the RED gateway and compared with the current average queue size. When the average queue size
is less than the minimum threshold, no packet is dropped. The dropping probability of the arriving
packets is zero.

On the other extreme, when the average queue size exceeds the maximum threshold, which
infers persistent and severe congestion, all arriving packets will be dropped even though the buffer
may be not totally full. The dropping probability of the arriving packets is one in this situation.

When the average queue size is between minimum and maximum thresholds, the arriving
packet is dropped randomly. The dropping probability is calculate as a function of three param-
eters: the maximum probability(maxp) that two consecutive packets will be dropped, the current
average queue size and thecount. The count tracks how many packets have been enqueued in
buffer since the last packet was dropped.

The research conducted by Floyd [7] shows that RED do perform better than the normal DT
algorithm. Although RED has some potential problem addressed by other AQM algorithms, most
of them are base on RED. Therefore it’s important for computer science student to have a clear
understanding of RED algorithm.

4.3 Events based AQM - BLUE

Another approach called BLUE [6], which assigns packet dropping probability based on packet
dropping events and the usage of the network links. The algorithm of BLUE is shown in Figure4.

BLUE maintains a single probabilitypm to drop packets when they are enqueued. Thepm is
calculated every time an event occurs. When a packet loss event occurs due to buffer overflow,
if the time interval between now and last update ofpm is greater than the predefined parameter
f reezetime, thepm is increased. Therefor, if the queue is continually dropping packets due to buffer
overflow, thepm keeps increasing. Conversely, if the buffer becomes empty, BLUE decrease the
pm, which means less arriving packets will be dropped in the buffer.

The advantage of using BLUE is the buffer size can be somehow self-adjusted base on the vary
of dropping probabilities.

Network congestion control and queue management are relatively complicate and dynamic
concepts in computer network. Without any animated tools, it’s hard to throughly understand the
idea of AQM. The computer simulation a wonderful tool to deal with this problem, but disscussed
in Section 2, the current tools are either hard to use or not properly to applied in the simulation of
AQM.

5

5 Structure of AQM simulator

In this section, we explain how our simulation system is structured by using the MVC architecture
and Java Technology to visualize the internal workings of three AQM algorithms. We also propose
a technique helpful in understanding these complex networking protocols or principles. We start
with a relatively simple animation of active queue management.

All the three algorithms of interests has been implemented in our simulator. The objective is
that user could test the different algorithms while watching the animations. The simulation package
is designed based on the Model-View-Controller paradigm. Thus, the structure of the simulator is
consisted of three main components that representing the Model, View and Controller respectively.
The structure of the simulation system is shown in Figure8.

The internal structure of the simulation package mainly consisted of four components: User In-
terface, Simulation Model, Animation Generator and Simulation Conroller. Visualization of AQM
working includes two general aspects. First is the animation of process on the network which
graphically simulate the whole picture of network concept. Second is the graphically representa-
tion of simulation result. The animation generator and result presentation of our system structure
serves the role of visualization. Each components are explained as below:

• User Interface: The main inter-media between the user and the system. User manipulate the
simulation model and input simulation parameters through the system interface. Animation
and result representation are also displayed to the user by the interface.

• Simulation model: simulation entities and algorithm are build as simulation models which
participate any given simulation scenarios.

• Animation generator: The simulation processes derived from interaction of simulation model
is graphically displayed on the animation panel. The animation is fully controllable by the
user via system interface. Simulation result is display in comparable diagrams, for example,
a plot digram shows the number of packets dropped in a router based on different buffer size
during certain period.

• Simulation Controller: Any input or user interaction to the system is received by the con-
troller and direct to corresponding models. The controller and animation generator are com-
bine together to perform simulation tasks.

6 Implementation techniques

Java technology is getting more attention from academics and commercial community. Java lan-
guage is not only good in teaching object-oriented technique but also in Internet programming [1].
Java programming language is chosen to build the simulation package because its platform in-
dependence, graphical capability, class re-usability and Internet capabilities. In the future, the
simulation package may be implemented in Java applet which could be accessed through the web-
site.

6.1 Object-oriented design

The develop process of the simulation system is highly dynamic, different requirements keep
adding to the system during the development. For modeling the software process, especially an

6

object-oriented development approach, we choose to use Unified Modeling Language(UML) [8],
the object-oriented modeling language for software modeling. The benefits are:

• ease the communication among number of people because UML is a widely recognized
modeling language.

• UML provide a rice model notations such as class diagram, activity diagram which facilitate
both structure and dynamic modelling process.

Because of the limit of page space, it’s impossible to show all the attributes and methods
implemented in each class. Figure5 shows the association of the classes defined in our simulation
package without any specified attributes and methods.

• The visualization of the simulation is mainly handled by the MainFrame class. As men-
tioned earlier, the router simulates Drop Tail, RED and BLUE algorithm in its buffer. So in
our system, we implement three AQM algorithms by creating three inherited classes in the
AnimationBox class.

• The AnimationBox class provide a workspace for all the instance from other classes(like
Host, Packets, Router and Connector) to work together by using Threads, which will be
explained in detail later. As shown in Figure8, the AnimationBox panel contains several
sending and receiving host with a inter-connected router, packets are send from hosts in one
side to hosts in another side. The number of the hosts is adjustable.

• The router buffer shows the instance queue size of the router. In a RED simulation, the
animation also contains rectangle bar which indicate the current average queue size for the
buffer.

• The PlotFrame class contains the plotPanel that generate the plot diagram which shows the
variation of the queue size at run-time. We implement the plot diagram from scratch rather
than using read-to-use plot generator, as most of them are hard to use due to the complexity
or not suitable to our system.

6.2 GUI and animation features

The interface of the system is built on the Java Swing package. User provides simulation parame-
ters through the interface. The parameters include topology of the network and other settings for
different AQM algorithms. Alternatively, the parameters setting can also load from a predefined
script. The simulation model carries on the simulation based on the parameters. The basic class
used in the simulation model are host, connector and packet. The animation of the simulation is
presented through animation generator which displayed on user interface. The plot generator take
care of interpreting the statistic simulation result into plot diagrams and present to user through
the interface. The animation and result presentation is developed on Java2D API and AWT pack-
age [17].

6.3 Parallel processing and concurrency

The computer networking are consist of dynamic and stochastic processes, and the factors that
influence the the system keep changing during the system running. When our simulation system is
operated in real-time, factors influence the processes are dynamic and random, and the concurrent

7

proceeding processes influence each other as time progresses. Thus, concurrency and parallel
processing must be considered in our simulation system implementation. Figure9 shows the
threads created during the system running.

The main thread during the run time is the AnimationBox thread which paint the whole struc-
ture of the animation panel. The packets sent from each host operate as a individual thread. The
router thread receiving the packets from different connector and put them into buffer for process-
ing. The DT or RED buffer thread handles the packets based on its algorithm. At the same time,
the plot digram calls the plot panel thread to paint the plot diagram.

7 Experiment results

The main frame of the simulation package has been developed with the queue management al-
gorithms: Drop Tail, RED, and BLUE. The main structure for these three algorithms extends the
same network frame which could be modified at high level , and the only differences of these simu-
lations is in the simulated buffer. For each arriving packet from the network links, the buffers work
differently base on current algorithm applied in the buffer, but the change of the algorithm in the
buffer does not affect the working of other components. For now, the simulated buffer simply drop
the packets if the criteria for dropping packets is satisfied. We now look at more detailed working
results of the three algorithms.

7.1 DT AQM algorithm

Drop Tail is first implemented algorithm in our simulation package because it’s simplicity. We
marked color of the packets into red as the packets is dropped when the buffer is full(in Figure10).
The instant buffer size is recorded displayed in the plot diagram which is shown in Figure11. For
the time being, we have not consider the sending rate of the hosts, so when the router buffer is
full, the sending host of that dropped packets is not notified and keep sending packets as normal.
Therefor, in the plot diagram, the instance buffer size keep as maximum all the time after the initial
period.

7.2 RED AQM algorithm

To illustrate the RED algorithm more clearly, beside the buffer used in DT simulation, we add one
more indicator to display the average queue size, as shown in Figure12. During the simulation,
the forced dropped packets(when average buffer size exceed maximum threshold) are marked as
red, and the random dropped packets(when average buffer size between minimum and maximum
threshold) are marked as yellow.

Mentioned in paper [14], the wq is a very sensitive parameter which greatly influences the
perform of RED algorithm. In the plot diagram of Figure12, we tested the simulation withwq
set to 0.2 and 0.8. With thewq= 0.2, when the instance buffer increase and decrease, the average
queue size is responded relatively slowly, which makes the instance buffer size reaches higher.
In another hand, with thewq= 0.8, the average queue size becomes much more sensitive to the
variation of instance queue size. That’s why both of them remains steady around the maximum
threshold after a very short time running.

Compare with DT, with proper parameter settings, the RED buffer will never overflowed and
the instance buffer size is maintain properly with high utilization.

8

7.3 BLUE AQM algorithm

The animation of BLUE simulation is similar with DT(Figure13), except the packet is assigned a
dropping probability base on the utilization of the buffer rather than average queue size as in RED.

Same as DT, the plot diagram of BLUE show the variation of the instance buffer size against
the simulation time, as shown in Figure14. Compare this figure with Figure12, quite different
from RED, the pattern of the instant queue size in BLUE are more unpredictable. It also shows
a fluctuate pattern but the amplitude is much more wider than RED. This indicate a better buffer
utilization because the buffer size is not increased and decreased dramatically, the variation of
BLUE buffer is relatively flatter than RED.

The simulation package shows what we expected from the results presented. The main strengths
of our AQM simulator is the ease of use, to manipulate with the simulator, user without solid net-
work knowledge can easily understand basic principles of AQM. We received very positive feed-
back from lecturers during the system testing. The simulation package also shown the expected
effect on improving the students motivations. Students like to explorer more about background
AQM algorithms by modify settings to compare different scenarios. This makes students becomes
active learner in the topic of AQM.

8 Conclusion

In this paper, we describe an approach of simulating computer networks concepts and animating
many algorithms and protocols. The MVC control-view model was adopted which separate the
display and control. Based on the MVC model, network simulation has modelled the networks as
a group of autonomous entities which can pass the message and execute its own assigned tasks.

The resultant animation system which mainly visualize three AQM algorithms has been de-
veloped using the proposed model and Java technology. In addition to the lively display of the
internal workings of DT, RED, BLUE, a set of tools are developed and implemented. Particularly,
an animation of the router where packets queue up and dispatch and their dropping probability
changing based on the buffers length has significantly reduced the difficulty and complexity of
understanding these algorithms and protocols.

The research can be extended to visualize the TCP algorithm and new network model such as
DiffServ. Future works include the further exploration into wireless networks and the correspond
TCP, AQM and other algorithms.

9

References

[1] Joseph Bergin, Thomas L. Naps, Constance G. Bland, Stephen J. Hartley, Mark A. Holliday, Pamela B.
Lawhead, John Lewis, Myles F. McNally, Christopher H. Nevison, Cheng Ng, and George J. Pothering,
Java resources for computer science instruction, SIGCUE Outlook26 (1998), no. 4, 14–34.

[2] Christopher M. Boroni, Frances W. Goosey, Michael T. Grinder, and Rockford J. Ross,A paradigm
shift! the internet, the web, browsers, java and the future of computer science education, SIGCSE ’98:
Proceedings of the twenty-ninth SIGCSE technical symposium on Computer science education (New
York, NY, USA), ACM Press, 1998, pp. 145–152.

[3] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed Helmy, Polly Huang,
Steven McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu,Advances in network simulation, IEEE
Computer33 (2000), no. 5, 59–67, Expanded version available as USC TR 99-702b athttp://www.
isi.edu/˜johnh/PAPERS/Bajaj99a.html.

[4] Cora Burger, Kurt Rothermel, and Rolf Mecklenburg,Interactive protocol simulation applets for dis-
tance education, Lecture Notes in Computer Science1483(1998).

[5] Brian H. Cameron and Kay Wijekumar,The effectiveness of simulation in a hybrid and on-line net-
working course, SIGCSE ’03: Proceedings of the 34th SIGCSE technical symposium on Computer
science education (New York, NY, USA), ACM Press, 2003, pp. 117–119.

[6] Wu-Chang Feng, Dilip Kandlur, Debanjan Saha, and Kang G. Shin,Blue: an alternative approach
to active queue management, NOSSDAV ’01: Proceedings of the 11th international workshop on
Network and operating systems support for digital audio and video (New York, NY, USA), ACM
Press, 2001, pp. 41–50.

[7] Sally Floyd and Van Jacobson,Random early detection gateways for congestion avoidance,
IEEE/ACM Trans. Netw.1 (1993), no. 4, 397–413.

[8] I. Jacobson G. Booth, J. Rumbaugh,Unified modeling language user guide, Addison Wesley, 1998.

[9] Guido and Bernd Freisleben,Experiences in using animations in introductory computer science lec-
tures, SIGCSE ’00: Proceedings of the thirty-first SIGCSE technical symposium on Computer science
education (New York, NY, USA), ACM Press, 2000, pp. 134–138.

[10] Mark A. Holliday, Animation of computer networking concepts, J. Educ. Resour. Comput.3 (2003),
no. 2, 1–26.

[11] Gianluca Iannaccone, Martin May, and Christophe Diot,Aggregate traffic performance with active
queue management and drop from tail, SIGCOMM Comput. Commun. Rev.31 (2001), no. 3, 4–13.

[12] G. Krasner and S. Pope,A description of the model-view-controller user interface paradigm in the
smalltalk-80 system, Journal of Object Oriented Programming1 (1988), no. 3, 26–49.

[13] Scot F. Morse and Charles L. Anderson,Introducing application design and software engineering
principles in introductory cs courses: model-view-controller java application framework, J. Comput.
Small Coll.20 (2004), no. 2, 190–201.

[14] Kevin Fall Sally Floyd,Ns simulator test for random early detection queue management, IEEE/ACM
Transactions on Networking (1997).

[15] Eyal Shifroni and David Ginat,Simulation game for teaching communications protocols, SIGCSE ’97:
Proceedings of the twenty-eighth SIGCSE technical symposium on Computer science education (New
York, NY, USA), ACM Press, 1997, pp. 184–188.

10

http://www.isi.edu/~johnh/PAPERS/Bajaj99a.html
http://www.isi.edu/~johnh/PAPERS/Bajaj99a.html

[16] A. Varga, Using the omnet++ discrete event simulation system in education, IEEE Computer42
(1999), no. 4.

[17] Linda Wilkens,A multi-api course in computer graphics, CCSC ’01: Proceedings of the sixth annual
CCSC northeastern conference on The journal of computing in small colleges (, USA), Consortium
for Computing Sciences in Colleges, 2001, pp. 66–73.

11

Figure 1: Drop from tail

Figure 2: Model-View-Controller and message flows

12

Initialization
avg = 0
count = 1

end
for each packet arrival

calculate the new average queue size ‘avg’
if the queue is nonempty

avg=1−wq∗avgwq∗q
else

 m= f time−q
time

avg=1−wqm∗avg
end

if min
th
avgmax

th
increment count

calculate probability p
a

 p
b
=max

p
∗avg−min

th
/max

th
−min

th

p
a
= p

b
/1−count∗p

b

end

with probability p
a

mark the arriving packet
count = 0

end
end

else if max
th
avg

mark the arriving packet
count = 0

end
else

count = 1
end

end
end

when queue becomes empty

q
time

=time
end

Figure 3: RED algorithm

Upon packet loss(or Q
len
L) event:

if (now−last
update

 freeze
time

) then

p
m
=p

m
d

1

last
update

=now
Upon link idle event:

if (now−last
update

 freeze
time

) then

p
m
=p

m
−d2

last
update

=now

Figure 4: BLUE algorithm

13

Figure 5: Class diagram of the simulation system

14

Figure 6: The animation panel Figure 7: Splash screen

Figure 8: Basic structure of the simulator

Figure 9: Different running threads in the simulation

15

Figure 10: DT simulation

Figure 11: The plot diagram of the in-
stant buffer size in DT Simulation

Figure 12: RED simulation

16

Figure 13: BLUE simulation

Figure 14: The plot diagram of the in-
stant buffer size in DT Simulation

17

	Introduction
	Related works
	General network simulator
	Educational simulation
	Use of Java-based simulation in education

	Network simulation model
	Active queue management
	Drop from tail - DT
	Random early detection AQM - RED
	Events based AQM - BLUE

	Structure of AQM simulator
	Implementation techniques
	Object-oriented design
	GUI and animation features
	Parallel processing and concurrency

	Experiment results
	DT AQM algorithm
	RED AQM algorithm
	BLUE AQM algorithm

	Conclusion

