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Abstract  

 

This thesis has investigated the feasibility of using renewable energy sources at 

Churchill Abattoir in South-east Queensland. Three widely utilised renewable energy 

sources (algae for biodiesel production, solar photovoltaics and wind turbines) were 

assessed, and found to be not cost-effective at current electricity prices. However, 

the use of solar thermal energy to dry paunch (a waste product cumulated at the 

abattoir) seems a promising way to produce useful biomass to replace boiler coal for 

water heating and for pyrolysis to generate electricity.  

 
The payback periods for photovoltaics were found to be 24 – 56 years depending on 

the capital cost of the photovoltaic system and the competing electricity price 

currently makes photovoltaics uneconomic. Photovoltaic research and development 

however, suggests the use of solar panels will become viable in the future. Wind 

turbines were found to have a payback period of 67 years, and due to the low wind 

speed at Churchill Abattoir wind power is unlikely to become feasible in the future. 

Algae photobioreactors were investigated, but the technology does not appear to be a 

feasible preposition for Churchill Abattoir at the present time. On the other hand, the 

drying properties of paunch waste produced at the abattoir were investigated, and 

average drying rates of 1.2 – 6.1 % reduction per hour in moisture content was 

measured. The drying rate of this paunch demonstrates that paunch waste from the 

abattoir can be dried to a useful moisture content thus, making it a viable biofuel. 

The drying rates also demonstrate that increased air temperature can significantly 

increase drying rates. 
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Chapter 1:  Introduction 

 

Globally and locally there is a need for renewable energy to cope with rising energy 

demands and finite non-renewable resources. According to Varela (2006) for 

example, projected oil reserves should reach their peak around 2014, and humanity 

appears to be using three times the amount of oil that is discovered, and has 

consumed half of the world‟s available oil reserves. According to this source natural 

gas supply is also predicted to peak around 2030, with uranium supplies for nuclear 

power lasting roughly 60 years, and with 40% of the world‟s coal consumed by 

2050. Such resource use means that rising fossil fuel prices are inevitable, and that 

renewable energy technologies need to be integrated into energy markets. 

 

In addition to rising costs, Australia is one of the biggest per capita greenhouse gas 

(GHG) emitters in the world (Diesendorf 2003, Bradshaw, Giam & Sodhi 2010, 

Saidur et al. 2010). This is largely because coal-powered electricity generation 

provides 84% of Australian electricity, and is responsible for 170 million tonnes of 

carbon dioxide (a GHG that contributes to global warming). As well as carbon 

dioxide, coal burning also emits sulphur dioxide, nitrogen oxides, fluoride, 

hydrochloric acid, boron, and particulates containing sulphuric acid and mercury 

(Diesendorf 2003). Further environmental damage is caused by burning large 

volumes of coal with its subsequent pollution of fresh water, land degradation, and 

loss of biodiversity (Diesendorf 2003, Boyle, Everett & Ramage 2003). For example, 

the sulphur content of coal can vary from 0.5 – 5 %. This is released into the 

atmosphere as sulphur dioxide, a precursor to acid rain (Boyle, Everett & Ramage 

2003). In addition to financial cost and dwindling supply, human health problems, 

such as respiratory disease, are caused by living close to power plants, and mining is 
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the third most dangerous job in Australia (Diesendorf 2003). The hidden costs of 

coal powered electricity generation and other fossil fuels demonstrate the need to 

find clean renewable energy sources. Global climate change (rising temperatures) 

has been predicted to have catastrophic effects on mankind (e.g. Arrow 2007). These 

effects may include increases in heat-related deaths in both humans and livestock, 

the retreating of glaciers, increases in extreme weather conditions, peak river flow 

shifts, and a decline in water quality (Boyle, Everett & Ramage 2003).  Thus, there is 

a growing interest in renewable energy technologies as a means of reducing GHG 

emissions. 

 

1.1.0 Renewable energy technologies 

Renewable energy technologies have been integrated into industry in varying 

degrees. This implementation of renewables has been limited mainly by the cost of 

the renewable energy source compared to the cost of the competing fossil fuel 

derived energy.  Photovoltaics, wind turbines, and algae for use as biodiesel appear 

to be three of the most commonly accepted renewable technologies for industry. 

Large amounts of research have gone into these fields which are showing rapid 

acceptance into global markets. The following pages will briefly review these 

technologies and their applicability into industry. 
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1.1.1 Photovoltaics 

Solar photovoltaics (PV) are one of the fastest growing renewable energy 

technologies. Its production worldwide has almost doubled every two years since 

2002, with the price since the 1950s dropping by a factor of 1000 (Kropp 2009, 

Hinrichs & Kleinbach 2006). The use of PV‟s produces almost no air emissions or 

waste products, thus reducing damaging GHG emissions which are produced by 

traditional fossil fuel energy production, such as coal, crude oil and natural gas, 

which together make up 85% of the world primary energy demand (Tsoutos, 

Frantzeskaki & Gekas 2005, Quaschning 2007). The goal of solar PV technology is 

to efficiently convert the radiant energy from the sun (light quanta) into electrical 

energy using doped semi-conductor material. The Sun, in human terms, will produce 

an almost limitless supply of radiant energy to the Earth.  This radiant energy excites 

electrons in the semi-conductor material and the p-n junction, with a gradient of 

electrical potential, creates a force that drives the electrons and holes to move in 

opposite directions. When these reach the edges of the semiconductor material it is 

possible for the device to deliver electrical energy to an external circuit (Sorensen 

2004) (Appendix 3). This ability to create electrical energy from a „free‟ energy 

source (the sun) has made PV a popular choice as a renewable technology. 

 

Traditionally PV have high capital cost which has limited them being integrated into 

industry. They are highly successful in remote areas as standalone systems where 

they are the only viable source of energy. In addition, they are also showing 

widespread success as large scale utility power plants, in the domestic market (due to 

extra government incentives), and for use in consumer products such as solar 
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powered calculators (Hinrichs & Kleinbach 2006). In the words of Oliver and 

Jackson: 

 

Photovoltaics present a difficult tradeoff to policy makers: on the one hand, they 

offer clear resource and environmental advantages over fossil-fuel-based electricity 

generation; on the other hand, they remain more expensive than conventional 

technology in most grid-connected applications. However, the dynamics of this 

tradeoff are changing as the technology develops (Oliver & Jackson 2000). 

 

The total global installed capacity for PV has increased from 5.4 GW in 2005 (Braun 

et al. 2011), 5.95 GW in 2008 (Dincer 2011), to 40 GW in 2010 (Braun et al. 2011, 

Cucchiella & D‟Adamo 2012). The installed growth in 2010 was 16.6 GW and was 

mainly due to the German and Italian markets in conjunction with decreases in PV 

price and well developed support schemes (Cucchiella & D‟Adamo 2012). It is 

interesting to note that Germany has a lower level of solar insolation than Australia 

but due to government policy and incentives they have the most installed PV 

capacity in the world. 

 

The full cost of PV systems still appears to be the biggest drawback to replacing 

fossil fuel derived energy. The full cost of PV systems comprises the module cost 

and all other system components, such as installation and inverters (Van der Zwaan 

& Rabl 2004). There are a number of areas where improvements will lead to lower 

costs for PV systems. These include: 

 

1. Increased plant size. 

Increased demand of PV systems will allow manufacturers to increase their 

plant size which means lower costs due to their ability to exploit economies 
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of scale (Nemet 2006). Economies of scale being that it is assumed that the 

cost per unit produced falls as the scale of production is increased. This is 

due to things such as: bulk buying materials, specialized managers, and lower 

interest rates. 

 

2. Increased efficiency/ technological advances. 

Technological advances will reduce costs due to increased module efficiency 

and increased efficiency in cell and module production (Nemet 2006). Van 

der Zwaan and Rabl (2004) predict that cell efficiencies could reach 20% by 

2020 and 30% after 2020 due to technological improvements compared to 

today‟s 15%. 

 

3. Reduced silicon cost. 

As technologies like thin film panels improve less silicon is used to produce 

the panel. This will reduce the amount of silicon needed and also reduce the 

amount of silicon wasted in cutting wafers for mono and polycrystalline 

panels. 

 

4. Incorporation of policy measures. 

Van der Zwaan and Rabl (2004) state that there are a number of policy 

measures that could help reduce the cost of PV systems. These include 

government subsidies, requirements for utility companies to install minimum 

percentage of PV in their generating mix, and internalised damage costs such 

as an energy or pollution tax. Damage costs are external costs such as 

pollution caused by the use of fossil fuels. If there was a tax placed on the use 
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of environmentally damaging energy sources this would help to equalize the 

cost difference between clean energy production and fossil fuels. 

 

PV cost has been dramatically decreasing over recent years and with help from 

incentives, rising fossil fuel costs, and possible carbon taxing they appear to be 

becoming an attractive choice for industry as a renewable energy. However, it is 

unclear whether the rate with which PVs have been decreasing in cost will continue 

or how soon they will become truly cost competitive against fossil fuel derived 

energy. 

 

1.1.2 Wind  

Wind turbines convert the kinetic energy contained in the wind into electrical energy 

by the rotation of their blades. Diesendorf (2003, p. 43) states that „a wind farm, 

when installed on agricultural land, has one of the lowest environmental impacts of 

all energy sources‟. Wind turbines are emission-free and repay their manufacture 

debt between 3-6 months (Diesendorf 2003). Wind is an indirect form of solar 

energy and the Earth‟s wind contains roughly 10 million MW of continuous energy 

(Joselin Herbert et al. 2007). Wind energy has been in use for thousands of years, 

mostly for milling grain and pumping water. Recent designs have been created to 

produce electrical energy that is pollution free. These are called wind turbines to 

distinguish them from their windmill predecessors (Boyle 2004).   

 

Wind turbine technology is a mature renewable energy market that produces 

emissions free „clean‟ energy. Recent turbine design use aerodynamics to increase 

the turbine efficiency. Economically, turbines are comparable to fossil fuels based on 
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their energy return on investment. This is calculated by the energy produced by the 

turbines divided by the primary energy used to find, extract and convert the energy 

into a useful form (Kubiszewski, Cleveland & Endres 2010). However, in low-wind 

areas wind turbines are not yet economically viable due to their cost compared to 

output. Before wind turbines can be economical for low wind speed areas the 

industry in Australia will need better government incentives and further research and 

development (especially into lower minimum cut-in speeds). 

 

Joselin Herbert et al. (2007) state that wind energy has an edge over other renewable 

energies due to its „technical maturity, good infrastructure and relative cost 

competitiveness‟. Turbine size (output) has increased from 100 kW in the early 

1980‟s to up to 3500 kW in 2007. It is estimated that wind power development could 

be expected to reach 1.9 x 10
9
 kW by 2030-35 (Joselin Herbert et al. 2007). 

Dismukes, Miller and Bers (2009) show that wind power is in an industrial 

technological cycle for which they have done a life cycle spanning 210 years (Figure 

1). This cycle shows the initial exploration stage, the current acceleration stage, and 

the third maturation stage. These technological stages show that through research 

and development, economies of scale, and increased political incentives energy from 

wind turbines will become cheaper and therefore, further integrated into society for 

energy generation. 
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Figure 1 - The projected 210 year industrial life cycle for wind turbines (Dismukes, Miller and 

Bers 2009). 

 

 

 

Although wind turbines are currently one of the most cost effective renewable 

energy sources available (in high wind areas) most are still not competitive 

compared to fossil fuel due to their high initial cost (especially for large scale 

turbines) and long pay back periods. Energy return on investment can be used to 

compare wind turbine power to other types of power generation. Kubiszewski, 

Cleveland and Endres (2010) state that this comes down to a simple ratio. As stated 

on page 6, where the energy return on investment is the cumulative electricity 

generated divided by the cumulative primary energy required to find, extract, and 

produce useful energy. These calculations demonstrate that wind power is on par in 
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regards to energy return on investment with current energy generation systems such 

as fossil fuels, nuclear, and solar. However, Kubiszewski, Cleveland and Endres 

(2010) state that wind power still has a number of issues, such as social, economic, 

environmental, and regulatory issues to resolve before it can be truly competitive to 

other power generation systems.  For example, community groups in Crows Nest, 

Australia tried to stop a plan for wind turbines which they believed would be a noise 

pollutant and ruin the natural beauty of the area (ABC 2006). 

 

 

1.1.3 Algae for biodiesel production 

Algae are shown to be of great promise as a renewable energy source due to their 

ability to produce lipids for biodiesel. Of particular importance is the high lipid 

content of some species (Sheehan et al. 1998). This lipid can be extracted and in turn 

processed to produce biodiesel. A key challenge, however, is the reduction of 

production costs to produce viable and sustainable algal biofuels (Christi 2007). 

Photobioreactors have been designed with this limitation in mind and offer potential 

as a new renewable energy source. 

 

A photobioreactor is a closed system designed to optimise light availability and other 

environmental factors such as nutrients and carbon dioxide that affect the growth of 

the algae. In contrast, ponds containing algae are typically large open systems which 

can be affected by external factors, such as the weather and contamination by 

unwanted algal strains. Most systems are either completely closed or open, though 

hybrid systems do exist in which a bioreactor is used to produce the starter culture 



 

 

10 

 

for a pond. Modern photobioreactors for biodiesel designs are closed systems based 

on tubular and flat plate reactors that allow for continuous culture production.  

 

 

Photobioreactors using algae to produce biodiesel offer promise as a renewable 

energy source, because: 

 Bioreactors allow the selection of those algae that are rich in the lipids used 

to make biodiesel while excluding unproductive competitor strains. 

 Algae can reproduce rapidly under the controlled conditions of a bioreactor.  

 Algae absorb significant amounts of carbon dioxide when used to make 

biodiesel and so can be utilised as part as of an overall strategy to use plant 

photosynthesis to remove excess atmospheric carbon dioxide (Huntley & 

Redalje 2007).  

 The leftover biomass from the algal production of biodiesel provides high-

protein feed for livestock. 

 The water usage involved in the algal production of biodiesel can be 

employed as a wastewater treatment process. 

 As a variant of diesel fuel, biodiesel can be readily stored, transported and 

used. 

 

Economic factors appear to have held back the implementation of photobioreactors 

for the production of biodiesel due to the traditionally higher cost of biofuel 

compared to fossil fuel. However, with global climate change and limited reserves of 

fossil fuel there are now increased economic and environmental drivers for the use of 

photobioreactors or ponds in the production of biodiesel. For example, Christchurch 
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Waste Water Treatment in New Zealand installed a waste water algae system and 

aim to produce 150 – 300 tonnes of algae per year from 5 hectares of high rate algal 

ponds, which has the potential to produce 45 000 -90 000 L of biocrude oil (NIWA 

2010).   

 

The cost of biodiesel from algae is still comparatively high compared to crude oil 

and palm oil. Christi (2007) suggests that for biodiesel produced from algae to 

replace petroleum the cost of production needs to be related to the price of crude oil 

as shown in the equation: 

 

Calgal oil = 6.9 x 10
-3

Cpetroleum; 

 

Where Calgal oil is the price of algal oil in dollars per litre ($L
-1

) and Cpetroleum is the 

price of crude oil in dollars per barrel. In 2006 the price of petrodiesel (without tax) 

was $0.49 per litre, biodiesel from palm oil was approximately $0.66 per litre, and 

biodiesel from algae estimates the cost at $1.40 per litre assuming biomass 

production of 10 000 t per year and 30% oil content (Christi 2007). The economic 

viability of biodiesel production from algae will increase with molecular 

engineering, increased photobioreactor efficiency, rising crude oil prices, and 

emerging environmental policy. 

 

Christi (2007) identifies seven potential benefits of molecular level engineering: 

1. increased biomass yield due to increased photosynthetic efficiency 

2. enhanced biomass growth rates 

3. higher oil content 
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4. better temperature tolerance 

5. removal of the light saturation phenomenon 

6. reduced photoinhibition 

7. reduced susceptibility to photooxidation 

 

Further research and genetic modification of algae will add to the productivity of 

photobioreactors and thus, increase the economic viability of these reactors. 

 

 

1.1.4 Organic waste 

Organic waste material can be used as a renewable energy source. The British meat 

industry have had success with co-combustion units using meat and bone meal as a 

secondary fuel in coal-fired stations or as standalone units/fluidised beds (PDM 

Group 2010, Ravelli, Perdichizzi & Barigozzi 2008, Gulyurtlu et. al n.d). Fluidised 

beds burn particles by suspending the particles in the air in conjunction with high 

temperatures (Bell 1980). These systems work well as a renewable energy source 

using biomass comprised of meat and bone meal in countries containing the Bovine 

Spongiform Encephalopathy (BSE) pathogen (mad cow disease). It benefits doubly, 

by providing energy generation as well as a way of disposing of a pathogen that 

cannot be dumped in landfill. However, in Australia where there is no pathogen the 

market for meat and bone meal is worth more to the meat industry as a resalable by-

product than as a secondary fuel. 

 

Beef tallow is a possible renewable energy source for use as biodiesel (Nelson & 

Schrock 2006). Beef tallow is a by-product of the meat industry. However, as with 
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meat and bone meal it is of greater resale value to the Australian meat industry than 

as a fuel source, retailing at between $600 - $1000 per tonne (Spence, M 2010, pers. 

comm., 19 April). Other organic waste in the form of waste water is being used and 

tested in anaerobic digestion ponds (MLA 2010). Anaerobic digestion takes place 

through specialized bacteria operating in the absence of oxygen (Johns 1995). They 

are a widespread secondary treatment process for abattoir waste water before 

releasing into aerobic ponds. They have low operating costs and high BOD and COD 

removal rates however, they produce large amounts of methane (a GHG) (MLA 

2010) and therefore new studies on pond covers to capture this gas are a current area 

of research and are not included in the scope of this project. 

 

Paunch appears to be the only other organic waste energy source worth investigation 

for Australian abattoirs. Paunch is the partially digested feed from the first stomach 

of ruminant animals such as, sheep, pigs, and cows and may be a viable fuel source 

for use in co-combustion units, as a coal substitute, or pyrolysis (eds Witherow & 

Scaief 1976, Bridle 2011).  

 

Paunch has a substantial energy content. Early energy measurements done with a 

Parr Oxygen Bomb Calorimeter showed that paunch has an average energy content 

of 4 000 cal/g (Ricci 1977) or 16.7 GJ/Mg. This energy content is comparable to 

switch grass (a renewable biomass crop) which has an energy content of 18.4 GJ/Mg 

(Table 1) (McLaughlin et al. 1999). However, the energy content for paunch is 

variable due to the different feed rations fed to the livestock. Some of the 

characteristics of paunch both dried and wet have been tabulated below (Table 2). 

Table 2 shows that there are slight discrepancies between values for dehydrated 
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paunch. However, the biggest problem regarding paunch for use as a biomass is its 

moisture content. The high moisture content (around 80 -85% when dewatered of 

surface water (Ricci 1977, eds Witherow & Scaief 1976)) of undried paunch makes 

it a non-viable biomass, instead the paunch needs to be dried to below 70% moisture 

content to become useful. A study funded by Meat and Livestock Australia found 

that for use in pyrolysis the paunch needs to be further reduced to 20% moisture 

content (Bridle 2011). The report also identified a beneficial outcome for using 

paunch as a biomass for gasification or pyrolysis; each tonne of paunch used as a 

feedstock would generate GHG credits of up to 1 tonne CO2e and gain energy credits 

up to 3.2 GJ (Bridle 2011). These energy credit benefits combined with its high 

energy content make paunch a suitable biomass candidate. 

 

 
 

Table 1 - Energy contents for paunch, switch grass, coal, and wood. Paunch (17 GJ/Mg) energy content is 

comparable to that of switch grass (18 GJ/Mg). 

*Values for switch grass, coal, and wood obtained from (McLaughlin et al. 1999). 

 

  

Type Energy Content GJ/Mg 

Paunch 16.7 

Switch grass 18.4 

Coal 27.4 

Wood 19.6 
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Table 2 –Some of the characteristics of dry and wet paunch. 

Composition of dehydrated paunch   

Reference   

 

Witherow & Scaief 

(eds) 1976, 

Baumann 1971 Ricci 1977 Bridle 2010 Bridle 2011 

 % average % average %TS wet %TS dry 

Moisture 6.8 15.3   

Protein 12.7 10.3 8.1  

Fat 3.1 4.4   

Crude fibre 26.2 21.2   

Calcium 0.6 0.5   

Ash 7.2 6.7 13.5 7.02 

P2O5 1.5 1.4   

Carbohydrate 40.8 42 72.9  

 

 

 

1.2 Project objectives 

The meat industry in Australia faces the likelihood of rising energy costs and now 

has a carbon tax. To safeguard its future, the Australia meat industry should thus 

look towards renewable energy sources to combat these rising costs. Australia 

currently is well behind other developed nations in the implementation of renewable 

energy technologies into industry in general, and specifically the meat processing 

industry. For example, anaerobic waste water ponds capturing methane (CH4) are 

gaining momentum in the United States, yet the uptake of this technology has been 
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much smaller in Australia, due to various problems including solids build up under 

covers and inappropriate cover materials (Spence, M 2010, pers. comm., 8 May). A 

question thus arises as to what other renewable energy technologies are most feasible 

for the Australian meat processing industry to adopt in the near future? To address 

this question, a renewable energy feasibility study was done on the implementation 

of renewable energy into a meat processing plant – specifically Churchill Abattoir 

(CA), Ipswich, Australia. CA is a medium sized, energy intensive facility and 

representative of the larger Australian meat industry.  The main energy 

consumptions at the abattoir are in the form of electricity for refrigeration as well as 

coal to produce hot water.  

 

In the first part of what became a two-part study, three of the most widely available 

renewable technologies available commercially (solar photovoltaics, wind turbines 

and algae for biodiesel production) were investigated for possible adoption by CA to 

replace current sources of energy. However, the results of this investigation showed 

that none are currently viable in an economic sense. This study thus moved into a 

second part in which organic waste streams produced at CA were investigated in a 

search for a viable source of biofuel. Of the various abattoir waste streams paunch is 

an industry specific absolute waste product left over from the slaughter process, and 

is currently the only unusable part of the animal. If paunch is dried however it has 

the potential to be a viable fuel source for co-combustion, both as a coal replacement 

for water heating, and for pyrolysis to generate electricity. 

 

This study focuses on characterising the properties of paunch produced through the 

production of beef as a step towards the use of paunch as a biofuel at CA and other 
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abattoirs. Paunch is generally made up of partially digested grass and grain with a 

pH ranging from 5.6 to 7.0 and 85% moisture content when dewatered (eds 

Witherow & Scaief 1976). As indicated above it is a waste product with little value 

at present, and its minimal value has led to its use in just producing compost or as 

worm food. In addition, it is a problematic waste stream for abattoirs as it has a 

number of unusual characteristics that prevent it from being treated using 

conventional methods such as sewage treatment plants (Ricci 1977, Train et al. 1974, 

eds Witherow & Scaief 1976). These include its high biochemical oxygen demand 

(BOD) and its tendency to clog bar screens, hopper bottoms, pits, and suction 

pumps. In conventional septic type tanks paunch settles out and hardens into a low-

density rock-like substance. This concrete-like behaviour clogs pipelines which then 

require augering, and paunch does not decompose in digesters and will eventually 

clog them. Paunch also cannot be dewatered by vacuum filters, nor dried in a flash 

drier or burned in suspension, and has a highly objectionable odour (Ricci 1977). 

Current best practice for paunch handling includes dry dumping instead of wet 

dumping (Doyle & Lant 2001, MIRINZ 1996), the separation of the solids from the 

liquid followed by land disposal of the solids for uses such as composting or worm 

feed. In contrast, given its intrinsic energy content, successfully drying paunch can 

enable a problematic waste to instead become a useful energy source for abattoirs. 

 

The second part of this thesis aims to determine some of the drying properties of 

paunch to enable conclusions to be drawn as to the potential of solar dried paunch to 

become a viable biofuel source for CA.  
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Chapter 2: Part 1 – Renewable Energy in the Australian Red Meat 

Processing Industry 

 

2.1.0 Part 1: Renewable Energy Methods  

The feasibility study was broken into two parts. The first study was done on the 

viability of the top three renewable technologies PV, wind turbines, and algae for 

biodiesel for implementation at CA. A number of quotes for PV systems were 

obtained and payback calculations were produced. A wind speed, power output 

profile, and payback period for wind turbines was done using wind data for 

Amberley Air base which is located within sight of CA. The current state of algae 

production for biodiesel was assessed to see if it has reached an economically viable 

stage for use at the abattoir however no payback period was calculated due to the 

underdevelopment of this industry.  If a technology did not meet a reasonable 

payback period of less than or equal to 5 years (as stipulated by CA), then that 

technology was considered not viable for CA.  

 

2.1.1 CA energy consumption 

The energy consumption at CA needed to be determined before appropriate 

renewable energy technologies could be assessed. CA uses an 8 MW coal fired 

Thompson boiler that produces steam at 160°C that is fed into the cooker at around 

135°C with a total plant steaming rate usage of 11-12 000 kg/hr. Figure 2 shows a 

schematic of the water circulation through the boiler. The boiler runs for 

approximately 16 hours from start up to shut down five days per week. The steam 
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from the boiler is fed into a jacketed cooker and return steam condensate is returned 

to the boiler. The gases extracted from inside the cooker pass through a heat 

exchanger then pass to the biofilter. The heat exchanger produces clean hot water to 

70°C, which passes to two more tanks. One tank has cold water added to create the 

42°C hot water, the other tank uses another heat exchanger to create the 84°C hot 

water needed by the abattoir. Steam from the boiler also passes to this heat 

exchanger and flows back to the boiler.  

 

 

Figure 2 - Schematic of the water circulation from the boiler at CA to the cooker, heat exchangers, and 

bio-filter. 
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CA uses approximately 200 ML of water per year, max. 1.2 MWh of electricity per 

day (although this is seasonal due to the use of cold rooms), and 3000 tonne per year 

of coal, as well as ammonia to cool the refrigeration units. CA produces 

approximately 60 - 90 cubic metres of paunch per week with a moisture content of 

approximately 75%. Wastewater containing the remainder of the paunch, cattle yard 

waste (dirt, manure), fat, and blood is primary treated then sent to anaerobic/aerobic 

lagoons and then irrigated to crops/pasture. 

 

National Greenhouse and Energy Reporting (NGER) was carried out for CA to help 

determine energy usage. NGER is a government initiative that requires companies to 

report their energy consumption, production, and emissions. The acquired NGER 

will also be useful as a baseline of energy use, will allow easy comparisons to be 

made after the (possible) implementation of renewables, and for use with further 

studies. Table 3 demonstrates the information gathered for NGER at CA: energy 

consumption, emission, and production. Values have been rounded to retain a level 

of commercial confidentiality for CA. However, precise values are available by 

request from the author. 
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Table 3- Energy consumption, emission, and production reportable under NGER. The amount values have 

been rounded to retain some confidentiality for CA. 

Type Period Units Amount Criterion Criterions 

Electricity 
July 2009-
June 2010 kWh 5 900 000 A A = data from invoices 

Coal 
July 2009-
June 2010 Tonnes 3 000 A 

AA = data from 
invoices and adjusted 
for changes in 
stockpile 

Ammonia 
(refrigerant) 

June 2009 - 
July 2010 kg 500 A 

AAA = data measured 
at point of 
consumption via 
equipment calibrated 
to Aus standards 

LPG 
July 2009-
June 2010 Tonnes 60 A 

BBB = data derived 
from simplified 
consumption 
measurements 

Paunch 
July 2009-
June 2010 

Paunch is sent off site. According to page 55 worked example 
in NGER reporting guidelines for meat and livestock industry 
the paunch will be excluded from the NGER report. 

steam 
July 2009-
June 2011 GJ 

700 000 
000 BBB  

Diesel (off 
road) 

July 2009-
June 2012 L 20 000 A  

petrol (off 
road) 

July 2009-
June 2013 L 1 000 A  

Diesel  (on 
road) 

July 2009-
June 2014 L 25 000 A  

petrol on 
road 

July 2009-
June 2015 L 3000 A  

Acetylene 
July 2009-
June 2016 GJ 

not 
reportable   

Compressed 
air 

July 2009-
June 2017 GJ 

not 
reportable   

Wastewater 
July 2009-
June 2018 

CH4 in 
tonnes of 
CO2 
equivalent 5 000 method 1 

with actual plant water 
usage 

 

 

The electricity, coal, and wastewater components are the most relevant information 

to this project. However, all the information contained in the NGER allows a 

complete picture of CA as a whole to be formed. CA energy use can be treated as a 

whole system or broken into component parts such as electrical energy consumption 

for the refrigeration system and coal consumption for the boiler. 
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2.1.2 Expected electricity increases 2011 to 2014 

The cost of electricity is expected to rise and so it is important to try to predict future 

electricity prices for CA. EnergyAustralia‟s (2010) expected price trends till 2014, 

(Figure 3), show an annual increase of between 15% - 20% in the cost of electricity 

for each period until 2013/14. The price is then expected to only rise by less than 

5%. CA has advised that it was paying between $0.05 - $0.11 per kWh for electricity 

in 2010 (Spence, M 2010, pers. comm., 19 April). This range would be expected due 

to the large variation between peak and off-peak electricity prices. The expected rise 

in electricity price for CA for each period starting in 2010 is then: 

 2010/11 is $0.06 - $0.13. 

 2011/12 is $0.07 - $0.15. 

 2012/13 is $0.08 - $0.18. 

 2013/14 is $0.08 - $0.19. 

Figure 4 gives a graphical representation of these increases. This chart does not 

allow predictions to be made beyond 2014 as no further information was provided 

regarding predictions beyond this period. The information shows that by 2014 CA is 

expected to be paying between $0.08 - $0.19 per kWh. These predictions appear to 

be accurate as CA quoted paying between $0.07 - $0.12 per kWh for electricity pre 

1
st
 of July, 2012 and expect this to rise to a maximum of $0.14 per kWh from 1

st
 

July, 2012 (Spence, M 2012, pers. comm., 9 July). These increases since 2010 fall 

within the predicted range given by EnergyAustralia (2010). 
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Figure 3 - EnergyAustralia's (2010) graph of expected yearly average electricity price increases for the 

period 2010 to 2014. 

 

 

 

Figure 4 – The predicted electricity price increases from 2010 to 2014 (EnergyAustralia 2010). The non-

linearity of the graph does not allow for price predictions beyond 2014. The starting point is CA‟s current 

(2010) electricity price of between $0.05 and $0.11 per kWh (Spence, M 2010, pers. Comm., 6 January). 
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2.1.3 Australian incentives for renewable energy use 

Feed in tariffs, rebates, and funding opportunities can increase the viability of some 

renewable energy technologies by either increasing the value of electricity 

generation or reducing the capital cost. The Queensland feed in tariff for PV‟s is 

capped at 30 kW on a 3 phase system basically; three separate 10 kW systems, one 

on each phase. The return is $0.44 per kWh for excess power returned to the grid. 

However, this is only valid for residential and small businesses that consume less 

than 100 MWh per year of electricity (QLD Government 2011). For businesses such 

as CA, due to their large energy consumption, they are not eligible for this scheme. 

 

The Renewable Remote Power Generation Program (RRPGP) was set up to increase 

renewable energy use in remote parts of Australia by providing financial support. A 

number of photovoltaic systems were installed under this scheme however, the 

RRPGP closed on 22 June 2009 (Queensland Government 2011).  Other government 

funding opportunities for CA may include programs such as the Regional Food 

Producers Innovation and Productivity Program and can be found on the Queensland 

government business website. However, these programs are competitive, 

intermittent, and frequently aimed at innovative projects as opposed to installing 

existing technology. The benefits of these types of funding is that they can reduce 

the capital cost of installing a renewable technology that can, as in the case of PV, 

make a non-viable technology become economically viable. However, some of the 

emerging renewable technologies can have high operational costs that make them 

unfeasible, even with a reduction in capital cost. 
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The Renewable Energy Target (RET) was broken into two parts as of January 2011. 

These two sections are the Large-scale Renewable Energy target (LRET) and the 

Small-scale Renewable Energy Scheme (SRES) (Australian Government 2011). 

LRETs are aimed at, but not limited to, power stations to encourage additional 

electricity produced from renewable sources and is based on the amount of 

renewable energy produced above their baseline (Australian Government 2011). The 

baseline for CA would be zero due to the electricity being generated for the first time 

after January 1997 (as per regulations). However, although LRET‟s are aimed at 

power stations anything that generates more than the SRES unit capacity and annual 

electricity output limit is then classified as a power station.  

 

The SRES is relevant to CA as it provides financial incentives to small-scale 

renewable energy producers (Australian government 2011) which is a more likely 

starting scenario for CA. Table 4 shows the requirements set by the Australian 

government for small generation units. The most relevant for CA being the unit 

capacity and annual electricity output for solar PV units installed after 14 November 

2005. This limit is a unit capacity of not more than 100 kW with a total annual 

output of less than 250MWh (Australian government 2011). 
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Table 4 – Information provided by the Australian government (2011) on the requirements of small 

generation units. The relevant information for CA is the requirements for solar PV units installed after 

November 2005. 

Unit type Unit capacity and annual electricity 
output  

Installation periods  

Solar PV units No more than 100 kW and a total annual 
electricity output less than 250 MWh  

On or after 14 November 2005  

Solar PV units No more than 10 kW and a total annual 
electricity output less than 25 MWh  

Between 1 April 2001 and 13 
November 2005  

Small wind turbines No more than 10 kW and a total annual 
electricity output less than 25 MWh  

On or after 1 April 2001  

Hydroelectric units No more than 6.4 kW and a total annual 
electricity output less than 25 MWh  

On or after 1 April 2001  

 

A small-scale technology certificate (STC) is created for 1MWh of renewable 

electricity created by the small generation unit. The online STC calculator shows that 

for the Ipswich postcode, a 100kW PV system, over 5 years would create 732 STC 

(inclusive of solar credits) or 691 STC (without solar credits). Assuming that these 

STC are sold through the clearing house at a set price of $40 then that would equate 

to $29 280 worth of STC (Australian government 2011). However, with all 

incentives it is important to check the current guidelines before making a decision to 

install a renewable technology as these incentives appear to change regularly.  

 

To determine the applicability of a renewable technology for CA, incentives to 

increase economic viability are only one part of a feasibility study. Information 

regarding the different types available for each renewable technology is needed, 

including an understanding of manufacturers information to allow reasonable 

assessment of the renewable technology under consideration to be made. 
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2.1.4 PV user information 

Before any renewable energy source can be tested for viability it is important to 

understand the manufacturers information available for that particular renewable 

technology. An important concept in understanding PV‟s is the I-V curve and given 

characteristics. Voltage (V, measured in Volts), current (I, measured in amps), and 

power (P, measured in Watts) can be graphically represented to show characteristics 

of a PV (Figure 6). Resistance, R, can be given by: 

;
I

V
R   

 

Power can be given by: 

;IVP   

Current is also directly proportional to the amount of radiation falling on the PV, so 

the more radiation, the more current that can flow. Figure 5 demonstrates the 

different characteristics that can be gained by graphing an I-V and P-V plot for a PV. 

 

Figure 5 - I-V and P-V characteristic of a PV. The graph gives the maximum power point (MPP) which is 

the ideal operating point for maximum power delivery from the PV (Quaschning 2007). 
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The point ISC is the short circuit current. This is the point where the graph cuts the y-

axis, so there is no voltage at this point and therefore the cell can deliver no power. 

The point VOC is the open-circuit voltage. This is the point where the graph cuts the 

x-axis, so there is no current and again the cell can deliver no power. IMPP and VMPP 

are the maximum power point (MPP) current and voltage respectively. The P-V 

graph is obtained for P by multiplying each point from the I-V graph. This also has 

an MPP point for power, (PMPP). The MPP point is where PV‟s should aim to run at 

for maximum output. The fill factor (FF) is a quality rating for PVs which is the PMPP 

divided by the product of the ISC and the VOC. The FF is a ratio of the maximum 

obtainable power to the theoretical power. Commercial-grade crystalline panels 

should have an FF >0.7 with grade B (inferior) crystalline panels having an FF of 0.4 

to 0.65. Thin film panels have a FF of 0.4 to 0.7. Another characteristic generally 

given on information sheets for PVs is the temperature coefficient of PMPP. This is a 

negative number (in % per ºC) which shows how much the power output will go 

down per degree that the cell temperature rises (usually starting from 25ºC) (Wright 

2000).  

 

PV efficiency is affected by natural and human factors which reduce the amount of 

radiation reaching the Earth‟s surface. It is then further influenced by the PV‟s 

ability to capture this radiation and to process it. Efficiency (η) is given by 

η = 
input

output
 = 

                 

                 
; 
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The efficiency of a PV cell is related to the irradiance and is given by:  

;
IA

PMPP   

Where PMPP is the maximum power point, I is irradiance and A is area. 

 

The efficiency of the PV to capture and process the incoming solar radiation is then 

reduced further by: 

1. The tilt angle of the panel. 

2.  Heat and shading losses. 

3. Conversion of energy. 

 

Spreading light of the same intensity over a larger area (eg. Incident light radiation 

hitting the surface of a PV on an angle) reduces the energy per unit area (Parisi, 

Sabburg & Kimlin 2004). What this means is that light that hits a tilted PV that is 

positioned perpendicular to the incoming radiation will receive more irradiance than 

a horizontal PV. The irradiance that is spread over a greater angle is reduced to ID 

cos(θ) where ID is the direct irradiance, and θ is the incidence angle between the 

incoming radiation and the vertical to the surface (Parisi, Sabburg & Kimlin 2004). 

The ideal position for a fixed PV panel in the southern hemisphere is approximately 

30º facing north. Panels can be set to a tilt equal to the latitude of where they are 

installed however, a better scenario would be using the solar zenith angle as this 

includes latitude and declination which depends on the time of year. 

 

As previously shown current is directly proportional to the amount of radiation 

falling on the PV. Therefore, direct and diffuse shading of the panel will result in 
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less current being produced. Heat is also a problem for PVs as shown by the 

temperature coefficient. In Australia this is a problem as most panels are rated to 

perform at 25ºC however, during an Australian summer operating temperatures can 

be greater than 60 ºC (Turner 2007). This can result in quite significant losses of 

output. 

 

Inherent efficiency losses in PVs are due to the amount of photon energy that can be 

converted into current. Photons with energy smaller than the band gap cannot jump 

an electron from the valence band to the conduction band (refer to appendix 3). For 

photons near the band gap not all the energy is converted to electricity due to the PV 

surface reflecting part of the incoming light and some being transmitted through the 

cell. For photon energies higher than the band gap only the band gap energy is used 

and the rest is passed on to the cell as heat (Quaschning 2007). 
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2.1.4.1 Types of PV 

As well as understanding the manufacturers information it is also essential to have an 

understanding of the different types of PV available. There are three types of PVs: 

monocrystalline, polycrystalline, and amorphous (thin film). Silicon is one of the 

most common elements on Earth with the majority of panels being made of this and 

therefore, the focus here will be on silicon panels. Silicon is not found in a pure form 

and is mainly extracted from quartz sand. After the extraction process a high purity 

silicon rod is formed. Polycrystalline cells can be made from this material and 

monocrystalline material can be seeded from it to make a single crystal. 

Monocrystalline cells have less internal losses than polycrystalline due to their single 

crystalline structure. The crystalline rods are then cut into wafers (between 200 – 500 

μm slices) which are then cleaned and doped. Metal contacts are then screen printed 

on with thin contacts on the front and, generally, the whole back section covered. 

The front section is only covered in thin strips to minimise the amount of reflection 

caused by the contacts and to allow maximum light to be available to the cell. The 

cell is then covered in an antireflective coating to help reduce reflection and then 

joined together into a module (Quaschning 2007). 

 

Thin film panels are generally considered less efficient than poly and 

monocrystalline panels but have the benefit of being cheaper to produce, not 

requiring inter-cell connections, and maintain good efficiency when exposed to heat 

or shading (Turner 2007). Thin film panels are made, like their name suggests, by 

depositing a thin film of silicon straight onto a base substrate, usually glass, which 

has been coated in transparent tin oxide strips (connections). The glass substrate will 

then function as the front of the panel. After the p and n thin film layers have been 
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applied aluminium is used to create the back contacts and the whole panel is coated 

in some form of protection coating such as a polymer to allow the panel to be able to 

withstand climatic conditions (Quaschning 2007). When deciding on a PV it is 

important to weigh up the benefits of cost versus efficiency and the temperature co-

efficient. For Australian climates it may be more beneficial to install thin film PV 

panels as they have a better efficiency when exposed to varying climatic conditions. 

 

Another important consideration is the energy costs of producing the PV. It is now 

possible to acquire an embodied energy rating as part of the information provided by 

the PV manufacturer. This embodied energy rating tells how many years it will take 

to counteract the amount of energy used to produce the panel (Turner 2007). Most 

modern PV panels however have 25-year warranties so they will more than repay 

even a 4-year embodied energy debt. This means that they will produce far more 

clean energy than the energy used to produce them. 

 

Steenblik (2005) states that the lifetime emissions from the entire life cycle of a PV 

system would create less than 100 grams per kilowatt-hour of emissions. This is far 

less than fossil fuels which produce 10 to 20 times that amount. Turner (1999) 

concluded that a 1kWh PV panel would save 1330 kg of CO2 per year by replacing 

fossil fuels after it paid back its embodied energy debt. This reduction in GHG 

emissions will help to mitigate climate change and PV systems also have the benefit 

of being able to be standalone systems. This makes them ideal for use in remote 

areas which removes the high economic and energy cost of installing grid connection 

lines to remote areas (Steenblik 2005). However, PV systems are still not as cost 
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effective as, for example, renewable wind power generation or the traditional fossil 

fuel energy plants. 

 

2.1.5 Wind turbines 

The power output of a wind turbine is affected by wind speed and each turbine will 

have a characteristic wind speed-power curve. As the name suggests the wind speed-

power curve is a graph of electrical power output versus wind speed. The equation 

governing these graphs is: 

;
2

3 AvcP P


  

Where P is the electrical power output, cP is the power coefficient of the wind 

turbine, ρ is the density of air, v is the wind velocity, and A is the area swept by the 

rotor (Hau 2000). However, if there is not a known power coefficient available, then 

a theoretical graph or manufacturer‟s graph can be obtained or created. 

 

Speed-power graphs are useful for determining what the actual output of the turbine 

will be for a specific site. A theoretical graph can be obtained using the rated power 

of the wind turbine with its rated speed. For example, the 5.5 m HUSH wind turbine 

has a rated power output of 20 kW at 15 m/s and a cut-in speed of 2 m/s (HUSH 

Wind Power n.d). The cut-in speed (or velocity) is the minimum wind speed that a 

turbine needs to start generating power. To create a wind speed-power graph for this 

turbine, we divide (varying) wind speed by the rated wind speed then multiply by the 

power output. We then set the cut-in speed to zero, and for all wind speeds greater 

than the rated output speed we set the power output to the rated value. The only 

information this graph lacks is the cut-out velocity which is the highest speed that 
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the turbine can operate while still delivering power. The benefit of these types of 

graphs is that they allow for site specific wind speeds to be used to generate the 

graph. Figures 6 and 7 demonstrate a theoretical graph for a 5.5m HUSH wind 

turbine and a 9m Proven wind turbine with a rated 15kW at 12m/s. 

 

Figure 6- Electrical power output vs wind speed for a 5.5m HUSH wind turbine. A theoretical speed-

power graph using the rated output and speed information available from the manufacturer for a HUSH 

wind turbine. 

 

Figure 7 – Electrical power output vs wind speed for a Proven 9m wind turbine. A theoretical speed-power 

graph using the rated output and speed information available from the manufacturer for a Proven wind 

turbine. 
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The manufacturer‟s wind speed-power graph is part of the performance guarantee of 

the wind turbine. However, Gipe (2004) states that there are fewer rules governing 

small wind turbine testing and energy calculations compared to medium sized 

turbines that undergo independent testing. Therefore, the data provided by small 

wind turbine manufacturers should be viewed with care. The guidelines/ 

recommendations for a manufacturer to produce a power curve are based on three 

threshold points (Hau 2000). These are the cut-in speed, the rated wind velocity, and 

the cut-out velocity, and are used to determine the shape of the graph. The rated 

wind velocity is the wind speed where the maximum power output is reached. The 

power is also considered to be the net power, so it should include losses caused by 

the turbines‟ internal parts (Hau 2000). 

 

 

2.1.5.1 Types of wind turbines 

Wind turbines designs generally fall into two categories, horizontal or vertical axis 

(Figure 8). Horizontal axis turbines are the most common type used today. A 

common sight seen in the Australian outback is the horizontal axis “American 

multivane” windmill used for pumping water. Horizontal axis turbines range from 

these multivaned blade types to one, two, or three blade streamlined wind turbines 

(Hinrichs & Kleinbach 2006). Multivaned units are described as high-solidity 

devices while the types with fewer blades are conversely known as low-solidity 

devices. Modern horizontal axis turbines are low-solidity devices and owe their 

design to recent improvements in our understanding of aerodynamics (Boyle 2004). 
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Figure 8 - The diagram shows horizontal and vertical axis wind turbine design (Scottish 

government 2010). 

 

Vertical axis wind turbines are relatively modern designs and were invented in 1925 

by Georges Darrieus. Thus, the Darrieus is one type of vertical axis turbine, and 

bears some resemblance to an eggbeater. These turbines can harness wind from any 

direction without needing to reposition the rotor. However, they are generally 

difficult to transport, install, and manufacture, which makes them less economically 

viable than horizontal axis turbines. Vertical axis turbines are believed to offer 

advantages over horizontal axis turbines when it comes to larger sizes and are thus 

the focus of current research that may eventually make them more economically 

viable than their horizontal counterparts (Boyle 2004). 

 

No matter the type of turbine selected there is always the need for wind to make 

these turbines operate. Joselin Herbert et al. (2007) state that the wind availability 

(average wind speed and wind speed distribution at the site), the influence of height 

of installations above ground, and the total cost of the turbine system must be taken 



 

 

37 

 

into account to ensure the feasibility of wind turbine installation. These authors 

suggest that sites with average wind speeds of 20 km/h at a hub height of 30 m with 

a power density of 150 W/m
2
 are economically viable. For Australian sites that do 

not have their own wind data it is possible to use data from the Bureau of 

Meteorology to create a wind profile for their site. However, on-site data is to be 

preferred when available as the most accurate information for a given time period. 

 

2.1.6 Algae for biodiesel 

The third most likely renewable technology reviewed was algae for use as biodiesel. 

A bioreactor is the most likely design to grow algae efficiently for biodiesel. 

Historically, the first bioreactors were not designed to grow algae for biofuel but 

instead used to study photosynthesis or as a feedstock for fisheries. One of the first 

photobioreactors was developed in the early 1940s by Myers and Clark (1944) to 

allow them access to a source of algae of high uniformity and to stabilize internal 

variables so that the relation of culture conditions to photosynthetic behaviour might 

be explored. 

 

In 1979 the need for a large scale algal culture vessel to grow feedstock for seeding 

oysters led to the development of a 200 L bioreactor being constructed at the 

Fisheries Experiment Station at Conwy (Helm, Laing & Jones 1979). The Conwy 

reactor placed fluorescent lamps inside white tubes. The major drawbacks are the use 

of artificial lighting in conjunction with a non-continuous culture. Basically, this 

bioreactor is constructed from tubes made of white pigmented glass-fibre with a 

fluorescent lamp inserted into the middle of the tubes (Figure 9). The light from the 

lamp is reflected off the outer white surface increasing the exposure of the algae to 
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the light source. The temperatures were maintained at 18° C with the use of cooling 

water and CO2 was added to aeration ports which also served to agitate the culture. 

The output showed that these vessels were capable of producing 52 litres per day of 

Tetraselmis at a density of 1000 cells µL
-1

, and the average lifespan of cultures was 

64 days (Helm, Laing & Jones 1979).  

 

 

Figure 9- A longitudinal section through a Conwy vessel. Note the fluorescent lamp placed in the centre of 

the reactor. The outer walls are white to help reflect light back into the reactor (Helm, Laing & Jones 

1979). 

 

 

At the same time a very simple design was developed for the growth of algae as a 

feedstock for larval fish (Baynes, Emerson & Scott 1979). These 480 L vessels use 

polythene bags that are supported vertically by tubes of galvanised mesh (Figure 10). 
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The polythene bags are made of clear tubing that have been heat-sealed at the top 

and bottom and are relatively contaminant free and therefore require no pre-

sterilization. Air-lines and outlet taps are inserted straight into the bags as the 

stretched polythene creates a firm seal around the inserted pipes. The system is able 

to be used inside or outside, with natural or artificial light and has a small ground 

area yet a large surface area which allows for light penetration. The most limiting 

factor with this design is light availability as the light is reduced within the bag due 

to self-shading by the algae. This can be reduced by removing part of the culture 

periodically to encourage cell division. Trials with 12 bags placed outside indicated 

that they maintained their yield even in dull weather by three bags at a time having ¼ 

of their volume removed every fourth day which allowed the culture time to replace 

that amount in the non-harvesting days. These cultures had a lifespan of 6-8 weeks 

before contaminants began to influence their growth after which new bags were set 

up (Baynes, Emerson & Scott 1979). These „big bag‟ vessels have been the most 

commonly used large scale systems for the growth of algae in the aquaculture 

industry (Borowitzka 1999). This system appears to be a fairly cheap yet effective 

system to set up, with reliable yield and a simple, replaceable bag design. However, 

Borowitzka (1999) states that for temperature control this system needs to be 

indoors, resulting in the need for artificial lighting. In addition, this system 

inadequately mixes cultures, resulting in recurrent culture crashes, and thus creating 

a much higher production cost. 
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Figure 10 -“Big bag” vessel diagram. The outer frame supports polythene bags, which are replaceable in 

this type of reactor (Baynes, Emerson & Scott 1979). 

 

2.1.6.1 Photobioreactor designs for the production of biofuel 

Flat plate and tubular photobioreactors are currently the design of choice for the 

growing of algae for biodiesel production. Tubular and flat plate bioreactors enable a 

consistent composition and quality of alga by having high light efficiencies, 

controllable temperatures, sustainable cultures, and being contamination free. They 

are also able to be operated both in and outdoors and in differing climates and higher 

operating cell densities reduces harvesting costs and land use area (Borowitzka 

1999). 



 

 

41 

 

 

Fine tuning designs on flat plate reactors and tubular photobioreactors now appear to 

be the direction that designs for efficiency are heading. Borowitzka (1999 p. 319) 

states that „the fundamental principle in all of these designs is to reduce the light path 

and thus to increase the amount of light available to each cell‟. There are a number 

of patents and designs around for flat plate and tubular bioreactors all with slight 

variations (e.g. Hu, Guterman and Richmond 1996). Nevertheless, they all follow the 

principle stated by Borowitzka. The various designs will be discussed in the pages 

below. 

 

2.1.6.2 Flat plate photobioreactors 

Hu, Guterman and Richmond (1996) developed a version of the flat plate 

photobioreactor called a Flat Inclined Modular Photobioreactor (FIMP) for use 

outdoors. The FIMP utilizes both direct and diffuse sunlight and incorporated 

variable tilt angles to maximise the amount of direct radiation throughout the year. 

Cascades of flat glass reactors were set up tilted, facing the sun and with a vigorous 

agitation system to enable mixing of the culture. The width between the glass plates 

(sitting on top of each other) is 2.6cm with the individual reactors being 90 by 70 cm 

and connected in series by PVC tubing (Figure 11). Maximum daylight temperature 

was maintained at 34 ºC, 35 ºC, and 40 ºC, depending on the type of algae used. The 

temperature was controlled by a temperature control sensor that was calibrated to 23 

ºC and used a type of water sprinkler. A tube with sprinklers set 6 cm apart ran 

across the upper side of the front panel and used evaporative cooling by spraying 

water onto the top irradiated surfaces. This intermittent spray used an average rate of 

50 litres per hour. CO2 was added to the air mixer and hence to the air supply lines 
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which were perforated tubes running along the bottom and halfway through the 

reactor. The FIMP was able to be run continuously with high cell densities due to the 

short light-path and vigorous agitation system (Hu, Guterman & Richmond 1996). A 

possible drawback for using this type of system in Australia may be the amount of 

water required for cooling purposes. Also it is assumed that opaque waste water 

would be unable to be used as any darkening of the front glass panels would reduce 

the amount of radiation passing into the system though it may be possible for some 

types of grey water to be used. Hu, Guterman and Richmond (1996) however, do 

state that excess flow due to cooling can be collected into troughs placed alongside 

the reactors and fed back into the cooling water reservoir. 

 

 

 

Figure 11 -„Schematic diagram of the flat inclined modular photobioreactor (FIMP) showing the first (1F) 

and last (1L) units in the cascade, (2) perforated tubes for bubbling compressed air, (3) thermosensor, (4) 

cooling water line and sprinklers, (5) thermostat, (6) solenoid valve, (7) culture medium reservoir, (8) 

pump, (9) airlift pipe, (10) recycling tubing, connecting the first with the end reactor in the row, (11) 

harvesting outlet, (12) harvesting reservoir, (13) compressed air supply, (14) line supply 2% CO2 enriched 

air, (15) compressed air port for the airlift, and (16) sampling port.‟ (Hu, Guterman & Richmond 1996) 
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2.1.6.3 Tubular photobioreactors 

Tubular bioreactors come in a variety of designs from horizontal tubes to tubes 

coiled vertically around a cylindrical frame (Lee 2001). The Centro di Studio dei 

Microrganismi Autotrofi of Florence started development of a horizontal tubular 

bioreactor in 1976 due to an increased interest in Spirulina, and the negative effect 

the climatic conditions in Italy had on its growth, as the ideal growth temperature is 

around 35 ºC (Tredici & Materassi 1992). The tubular photobioreactor is made of 

plexiglass tubes connected by PVC u-shape joins to create loops (Figure 12). The 

tube loops are laid on white polyethylene sheets and mixing is done by a diaphragm 

pump that lifts the culture up to a tank 3m above the ground and discharges back into 

the bioreactor every 4 minutes. The study found that this pulsing mixing worked 

better than continuous mixing. The 5 year tests on these systems showed an average 

productivity of 30-33 t ha
-1

y
-1

 (Tredici & Materassi 1992) which is equivalent to 

8.219 g m
-2

d
-1

. It should be pointed out that at the time of Tredici and Materassi‟s 

report the cost of plexiglass was high and so it was not thought that this design 

would be suitable for translation into large scale industry (Tredici & Materassi 

1992).  
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As an example of the wide range of bioreactor designs that have been developed for 

commercial use, in 1999 a tubular bioreactor was patented, based on the improved 

productivity of photosynthetic algae (Amnon Yogev & Dan Yakir 1999). This 

design is interesting to note as it has incorporated a Compound Parabolic solar 

Concentrator (CPC) into the design. The tube is placed in the centre of the CPC, 

which increases the light efficiency and distribution of radiation to the tubes (Figure 

13) (Amnon Yogev & Dan Yakir 1999). This design approach thus bears similarity 

to the use of the polyethylene sheet in the horizontal tubular system and the white 

pigmented glass-fibre of the Conwy system, where the white surface reflects the 

radiation. 

Figure 12 - The plexiglass tubular photobioreactor. The tube loops are placed on a white sheet to help 

reflect light back into the reactor (Tredici & Materassi 1992). 
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There are a number of draw backs and comparisons to be made with both tubular and 

flat plate reactors. Nerantzis et al. (n.d) state that „reliability, scalability, control, low 

outputs, large energy and labour inputs are the main problems that in some cases 

override the benefits‟ for the mass production of algae. Accumulation of 

photosynthetically generated oxygen or dissolved oxygen (DO) is a problem, 

especially in tubular photobioreactors and many designs need some form of 

degassing vessel as high levels of DO reduce productivity (Nerantzis et al. n.d). 

Many algal species cannot survive exposure for 2-3 hours to oxygen levels above air 

saturation (Tredici & Materassi 1992). Tubular systems seem to have more problems 

with DO and a comparison can be seen in the amounts of DO in the FIMP compared 

to horizontal tubular reactors. The highest FIMP amount of DO concentration was 

10.5 mg l
-1 

compared to 30-40 mg l
-1

 for the tubular reactors (Hu, Guterman & 

Richmond 1996). The lower rate in the FIMP had to do with a reduction of 

Figure 13 - Tubular photobioreactor with Compound Parabolic solar Concentrator (34) incorporated into the design. 

The parabolic reflector concentrates light back into the tube (2) of the reactor (Amnon Yogev & Dan Yakir 1999). 
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photosynthesis at night, a short oxygen path, and the high rate of aeration (Hu, 

Guterman & Richmond 1996).  

 

Thermal heating of outdoor bioreactors is also a problem as the solar energy not used 

in photosynthesis can heat the reactor 10-30 ºC above ambient temperature for 

several hours a day (Nerantzis et al. n.d). This could be a serious problem for 

Australian photobioreactors during the summer months if there is no cooling system 

in place. Otherwise, thermotolerant species of algae (Shen & Lee 1997) or 

chlorophyll reduction (Kizililsoley & Helvacioglu 2008) may be a solution for the 

Australian climate. 

 

A study comparing the efficiencies of sunlight utilization between tubular and flat 

plate photobioreactors was carried out by Tredici and Zittelli (1997). They used for 

the outdoor study a coiled tubular, near horizontal straight tubular, and a near 

horizontal flat panel reactor. For the laboratory studies under artificial illumination 

they used a flat and tubular chamber reactor (Figure 14). Photosynthetic efficiency 

(PE) and dry biomass concentration was measured daily to estimate the productivity 

of the cultures in the different reactors. The near horizontal tubular reactor had the 

highest volumetric output and the second highest PE, with the coiled tubular design 

showing the highest PE. The Tredici and Zittelli (1997) study showed that the curved 

surface of the tubular reactors spread the incoming radiation over a greater surface 

area, thus reducing the light saturation effect and increasing PE. This study also 

showed the importance of the design of photobioreactors in regards to reducing the 

intensity of solar radiation to limit the light saturation effect. [The light saturation 

effect is where further increases in light will not increase the rate of photosynthesis. 
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Spreading light of the same intensity over a larger area (e.g. Incident light radiation 

hitting the surface on an angle) reduces the energy per unit area (Parisi, Sabburg & 

Kimlin 2004)]. The curved surface of the tubular reactors increases the PE, giving 

them a greater utilization of sunlight. 

 

 

Figure 14 - Diagrams of the photobioreactors used in the comparison study. (A) is the coiled tubular 

reactor, (B) are the near horizontal flat and tubular reactors, and (C) are the flat and curved chamber 

reactors (Tredici & Zitelli 1997). 

 

As the processing of algae into biodiesel is a set process the only factor for industries 

to decide before growing algae for biodiesel is based on: what is the best 

photobioreactor for their needs, and are they economically viable? Flat-plate and 

tubular technology appear to be appropriate for industries that aim to develop 

biodiesel as their primary product for the replacement of fossil fuel. These 

photobioreactors provide continuous culture and allow for optimum control of 

environmental factors (such as light availability) to provide ideal growing conditions 
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for the algae. The continuous culture output and the need for continuous production 

of their main product balances the higher structural costs for building these types of 

bioreactors.  

 

Chapter 3: Part 1 Renewable Energy Results  

3.1.0PV 

Payback period calculation for PV was made using the method given by Boyle 

(2004, p.434). This method uses the capital cost, energy output, and the competing 

energy price to calculate the number of years needed to pay back the initial cost. The 

value of annual electricity generation is given by: 

Value of annual electricity generation (dollars) 
100

priceoutput 
 ; 

Where the output is the annual energy output of the renewable in kWh per year and 

price is the cost of the competing energy price (such as coal or electricity) in cents 

per kWh. 

The payback time is then calculated by: 

Payback time (years) 
generation

capital
 ; 

Where capital is the initial capital cost in dollars, and generation is the value of 

annual electricity generation in dollars. 

 

 

A number of quotes for PV systems were obtained. Information provided by 

Ekoenergy (2010, pers. comm., 25 October) stated that Ekoenergy could provide a 

10 kW system that would produce 40 kWh per day for $38 800 or a 3 phase system 
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at 10 kW per phase, 162 panels, for $125 300 not including ancillary costs such as 

installation. Using the supplied data and a competing electricity price of $0.05 kWh 

the payback period is 53 years. Using the supplied data and a competing electricity 

price of $0.11 kWh the payback period is 24 years. Table 5 demonstrates the 

payback calculations for varying electricity prices based on the information received 

from Ekoenergy. 

 

Table 5 - Demonstrates the payback calculations for Ekoenergy using a competing energy price of $0.05 

and $0.11 per kWh, giving payback periods of 53 and 24 years respectively. 

Ekoenergy 

Competing energy 

price  

System Produces per day kWh per year $0.05 electricity system cost 

10 kW 40 kWh 14600  $38,800 

     

 

value annual 

electricity generation 730   

 Payback  53.15 yrs   

System Produces per day kWh per year $0.11 electricity system cost 

10 kW 40 kWh 14600  $38,800 

     

 

value annual 

electricity generation 1606   

 Payback  24.16 yrs   

 

 

 

Information provided by Solar Guys (2010, pers. comm., 22 October) gave the cost 

per Watt as $4.50 and a production of 4.4 kWh per kW. For CA this would mean 

$4.50 times 1.5 million (to cover peak load) giving a total cost of $6 750 000.  
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Table 6 demonstrates the payback calculations for varying electricity prices and for a 

$1 per Watt PV system. Using the supplied data from the Solar Guys and a 

competing electricity price of $0.05 kWh the payback period is 56.04 years. Using 

the supplied data and a competing electricity price of $0.11 kWh the payback period 

is 25.47 years. Using the supplied data and a competing electricity price of $0.50 

kWh the payback period is 5.6 years.  

 

Using the supplied data, a competing electricity price of $0.11 kWh, and the cost of  

$1.00 per Watt,  the payback period is 5.66 years. 

 

Using CA‟s electricity use reported in the NGER, 5 898 407 kWh per year, a basic 

capital cost calculation can be made based on the value of annual electricity 

generation (PV) and a 5 year payback period.  The needed payback period is 5 years, 

using the current competing energy price of $0.11 kW/h, and value of annual 

electricity generation of $648 824 then; 

Capital cost (dollars) = Payback x value of annual electricity generation, 

gives a capital cost of $3 244 123. Thus, if a PV system cost $3 244 423.00 and 

produced 5898407 kWh annually then it would become viable with a payback period 

of 5 years.  
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Table 6 - Demonstrates the payback calculations for Solar Guys using differing competing energy prices 

and a calculation based on a $1 per Watt PV system. The viable payback periods belonging to the $0.50 

competing electricity price and the $1.00 per Watt PV system. 

Solar Guys   

Competing 

energy price  

System total kWh per day kWh per year $0.05 electricity system cost 

generic 6600 2409000  $6,750,000 

     

 

value annual electricity 

generation 120450   

 Payback (yrs) 56.04 yrs   

System total kWh per day kWh per year $0.11 electricity system cost 

generic 6600 2409000  $6,750,000 

     

 

value annual electricity 

generation 264990   

 Payback (yrs) 25.47 yrs   

System total kWh per day kWh per year $0.50 electricity system cost 

generic 6600 2409000  $6,750,000 

     

 

value annual electricity 

generation 1204500   

 Payback (yrs) 5.6 yrs   

System total kWh per day kWh per year $0.11 electricity system cost 

generic 6600 2409000  $1, 500,000 

     

 

value annual electricity 

generation 264990   

 Payback (yrs) 5.66 yrs   
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3.1.1 Wind Turbines 

 

 

 

Figure 15 - A histogram demonstrating the frequency of wind speeds for Amberley air base using data 

obtained from the Bureau of Meteorology spanning from June 1952 to March 2010. The majority of wind 

speed falls within the 1 -10 km/h range. 

 

A graph demonstrating the frequency of wind speeds at the Amberley air base is 

presented in Figure 15. Amberley Air Base is located within sight of CA and 

therefore, was considered an appropriate source for wind data. The data obtained was 

from the Bureau of Meteorology.  This graph shows that the majority of the wind 

speed falls between 1 to 10 km/h. Hinrichs and Kleinbach‟s (2006) method was used 

to prepare a wind turbine power output profile for Amberley Air Base (and therefore, 

CA) using the rated wind speed output and rated wind speed for a HUSH wind 

turbine (rated output for HUSH wind power 5.5m turbine: 20 kW at 15 m/s with cut-

in speed 2m/s). Where the power at each wind speed (calculated using the wind 

F
re

q
u

e
n

c
y
  

Wind speed (km/h) 

12am 3am 6am 9am 12pm 3pm 6pm 9pm 



 

 

53 

 

speed-power profile method) is multiplied by the number of hours at that speed per 

month, and then summed to give the number of kWh produced per month.  

 

To calculate the energy output it was assumed that the times 9am and 3pm 

represented average wind speed for the site. Therefore, for each 24hr period half the 

wind speed was calculated for 9am and the other half for 3pm wind speed. Wind 

speeds below the cut-in speed of 2 m/s were set to 0 as they would produce no 

output. Table 7 shows the monthly average wind speeds for the site for the years 

1941- 2010 and 1981- 2010 (with zeroes added where the wind speed was less than 

the minimum cut in speed of the turbine). For the final calculation the years 1981- 

2010 were chosen to represent the data. The amount of kWh per month were then 

divided by the maximum power output per month of the wind turbine to give a 

percentage of the actual output to maximum rated output. The month of May shows 

the lowest output as 10% of the rated power. October shows the highest percentage 

as 26% of the rated output.  
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Table 7 - Demonstrates using Hinrichs and Kleinbach‟s (2006) method for calculating energy output for 

specific wind turbines. As shown by the figures below the wind turbine will be operating at far below the 

rated output capacity and thus will be ineffective. 

Rated output for HUSH wind power 5.5m turbine: 20 kW at 15 m/s  

        

 Mean wind speed for Amberley (km/h)    

 Jan Feb Mar Apr May Jun Years 

9am 
8.8 8.4 7.9 6.1 5.2 5.5 

1941-
2010 

3pm 
16.5 15.1 14.3 12.3 11.1 12 

1941-
2010 

9am 
8.7 8.5 8.8 6.9 5.6 5.7 

1981-
2010 

3pm 
16.1 15 14.7 12.8 11.1 12.1 

1981-
2010 

        

 No. kW per hour      

9am 3.26 3.11 2.93 2.26 1.93 2.04 
1941-
2010 

3pm 6.11 5.59 5.30 4.56 4.11 4.44 
1941-
2010 

9am 3.22 3.15 3.26 2.56 2.07 2.11 
1981-
2010 

3pm 5.96 5.56 5.44 4.74 4.11 4.48 
1981-
2010 

        

Assuming average wind speed is the average of the 9am and 3pm values.  

 Avg. per month using 1981-2010 data    

 38.67 37.78 39.11 30.67 24.89 25.33  

 71.56 66.67 65.33 56.89 49.33 53.78  

total kWh per day 110.22 104.44 104.44 87.56 74.22 79.11  

total kWh per month 3416.89 2924.44 3237.78 2626.67 2300.89 2373.33  

        

 max output      

20kW for 24hrs 480 480 480 480 480 480  

times days a month 14880 13440 14880 14400 14880 14400  

        

        

ratio of kWh per 
month 0.23 0.22 0.22 0.18 0.15 0.16  

% 22.96 21.76 21.76 18.24 15.46 16.48  
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 Jul Aug Sep Oct Nov Dec Years 

9am 
5.3 5.8 7.4 8.5 9.2 8.6 

1941-
2010 

3pm 
12.6 13.8 15.8 17.9 17.9 17.6 

1941-
2010 

9am 
5.9 6.4 8.2 9.1 10 9.1 

1981-
2010 

3pm 
13.1 14.3 16.7 18.3 17.8 17.4 

1981-
2010 

        

        

9am 1.96 2.15 2.74 3.15 3.41 3.19 
1941-
2010 

3pm 4.67 5.11 5.85 6.63 6.63 6.52 
1941-
2010 

9am 2.19 2.37 3.04 3.37 3.70 3.37 
1981-
2010 

3pm 4.85 5.30 6.19 6.78 6.59 6.44 
1981-
2010 

        

Assuming average wind speed is the average of the 9am and 3pm values.  

        

 26.22 28.44 36.44 40.44 44.44 40.44  

 58.22 63.56 74.22 81.33 79.11 77.33  

total kWh per day 84.44 92.00 110.67 121.78 123.56 117.78  

total kWh per month 2617.78 2852.00 3320.00 3775.11 3706.67 3651.11  

        

        

20kW for 24hrs 480 480 480 480 480 480  

times days a month 14880 14880 14400 14400 14400 14880  

        

        

ratio of kWh per 
month 0.18 0.19 0.23 0.26 0.26 0.25  

% 17.59 19.17 23.06 26.22 25.74 24.54  

 

 

 

Another method to visualise the expected output for a wind turbine is to prepare a 

speed-power graph and superimpose on it the sites‟ actual wind speed. Figure 16 

demonstrates the Amberley air base wind speeds for 9am and 3pm included on the 

speed-power graph for a Proven 9m wind turbine. This shows that the site would 

receive a maximum of roughly 6 kW at their maximum wind speed. The maximum 

rated speed of 15 kW is not produced at all. 
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Figure 16- Speed-power graph for a Proven brand (9m) wind turbine with wind speeds and output for 

Amberley air base shown in pink and yellow. Note the 9am wind speed is below the cut-in speed and 

therefore is not producing power. 

 

A payback calculation was made for CA using an example wind turbine as 

representative of the wind turbine industry. Using the power output figures (given by 

the company) for the annual output as 15000 – 30000 kWh for the Proven 15kW, 9m 

diameter, 15m high wind turbine and the capital cost of the system ($100 550) the 

payback period for wind turbines at a competing electricity cost of $0.05 is 67 years. 

This calculation does not take into account the low wind speed profile of the site 

which would increase the payback period.  
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3.1.2 Algae 

 

A number of companies were contacted to attempt to get some quotes for 

photobioreactors. For example, Global NRG (n.d) advertised that they have 

produced a closed bioreactor „design‟. They state that “A Green NRG algae farm 

will consume approximately 500 metric tons of CO2 per hectare per year” (Global 

NRG n.d). They claim an average growth rate of 80 grams of algae per metres 

squared per day, or roughly 25 kg/m
2
y, that the algae contains 25% of their weight as 

oil, and will consume 1.9 times the amount of biomass produced in CO2 (Global 

NRG n.d). However,  when Global NRG were approached for a quote for one of 

these bioreactors it was found that these types of bioreactors are not yet available due 

to suffering from culture crashes and were therefore still in the testing stage (Bartlett, 

M 2010, pers. Comm., 1 September). Most bioreactors appear to be in pilot stages, 

large dedicated algal farms exist but there doesn‟t appear to be smaller scale designs 

suitable for industry that have moved beyond these pilot studies. Designs are 

available but their viability needs to be demonstrated through further research and 

development. Therefore, it was not possible to calculate a payback period for 

photobioreactors. 

 

Algae grown in abattoir wastewater do seem to offer some promise to the industry. A 

study done on the use of high rate algal ponds for the treatment of abattoir waste was 

successful and appears promising (Fallowfield, Cromar & Evans 2001). The study 

found that abattoir wastewater that had been pre-treated in anaerobic digesters was 

suitable for the high rate algal ponds. The ponds in conjunction with the anaerobic 

digester removed 95 – 99% of the BOD, 73 – 80% of the COD, 50 – 60% of the 

nitrogen, and 14 – 28% of the phosphorous. These removal rates in the wastewater 
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could help abattoirs in their wastewater treatment while also producing a resalable 

item in the algae. Unfortunately the Fallowfield, Cromar and Evans (2001) study did 

not progress to a full scale treatment plant but was successful in showing that 

abattoir wastewater is suitable to grow algae. So the problem with deciding if algae 

is a viable renewable energy source lies in the lack of full scale/available/trialled 

systems. 

 

 

 

 

 

Chapter 4: Part 1 Renewable Energy Discussion  

4.1.0 PV 

The payback periods for PV show that they are not currently economically viable for 

implementation at CA. The payback periods ranged from 24 to 56 years for CA 

using current PV capital costs and CA‟s current electricity prices. CA had stipulated 

that they desired a renewable energy source to have a 5 year payback period to make 

it economically viable. Therefore, PV is not currently economically viable. However, 

an economically viable payback period of 5.6 years was calculated using either the 

capital cost of $1 per watt for a PV system or a competing energy price of $0.50 per 

kWh. In either of these cases then PV would become economically viable for CA. 

 

A report by IT Power (Franklin et al. 2010) performed case studies at a number of 

Australian meat processing plants to assess options for renewable energy and energy 

efficiency. In these case studies plant B most closely resembles CA. Plant B is a beef 

processing plant with similar kill rates and facilities eg, kill floor, refrigeration, and 

rendering and with similar energy consumption and electricity costs of less than 
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$0.10 per kWh. IT Power‟s study determined that for plant B the payback period for 

PV would range between 20 – 25 years making PV not viable. Their payback is 

however consistent with the results of the present study, and their results also 

support the findings of the current study that rising electricity costs and falling PV 

capital cost will make PV viable for industry in the near future. 

 

4.1.1 Wind 

The wind speed and power output profile for CA demonstrates that wind turbines are 

not an appropriate technology for CA. The month of May showed the lowest output 

as 10% of the rated power while October showed the highest percentage as 26% of 

the rated output. These very low percentages due to low site wind speeds 

demonstrate that CA would not get even 50% of the rated energy output of a wind 

turbine, making wind unsuitable for CA as a renewable energy technology. Thus no 

attempt has been made to include building height and obstacles into the wind speed 

profile, and the calculations limited to the average wind speed of the site at 9am and 

3pm each month. The calculated payback period of 67 years also did not take into 

account the low wind speed profile of the site, which would further increase the 

payback period. Wind turbines are clearly not economically viable for CA. 

 

The low output percentages obtained from the calculations demonstrate the hazards 

of purchasing a wind turbine without preparing a wind speed profile, and assuming 

that a wind turbine will produce output similar to its rated output for its expected life 

span. The reality is that in low wind areas wind turbine output performance can drop 

dramatically and seriously reduce economic viability.  
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The report by IT Power (Franklin et al. 2010) did a payback calculation for plant B 

based on a theoretical output for a wind turbine based on a percentage of its rated 

output. The IT Power calculations showed that wind turbines were not economically 

viable for plant B due to a payback period of 14 – 95 years. It is noted that such a 

calculation was not based on the sites‟ actual wind speed, and so it would not be 

possible to know whether the site could attain the predicted percentage output. 

 

The basic payback calculations for solar PV and wind demonstrate that these two 

renewable energy technologies are not currently economically viable for CA, CA is 

however an appropriate site for PV technology and should become viable in the 

future. On the other hand, unless there is significant meteorological change at the site 

or better developed low wind speed wind turbines, wind is not likely to ever become 

viable for CA. 

 

4.1.2 Algae 

Photobioreactors using algae to produce biodiesel do offer great promise as a 

renewable energy source. Algae produced for the use as biodiesel have many factors 

that clearly demonstrate the viability of this technology over foodcrop systems for 

biodiesel production, and help mitigate climate change, especially through carbon 

capture. While photobioreactors have varying outputs of algae and reactor-specific 

drawbacks they are at a stage that industries can take advantage of their multi-

purpose function, that of producing algae for biodiesel and their added 

environmental benefits such as CO2 capture. The cost of algae production for 

biodiesel is still comparatively high to fossil fuel. However, improvements in 

photobioreactor design, in combination with molecular engineering, (rising fossil 
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fuel costs, and rising environmental awareness) will reduce the cost of algal 

biodiesel, helping to make it become more economical and environmentally benign 

(Christi 2007). 

 

Biodiesel from algae is a far more practical solution for the replacement of 

petroleum derived transport fuels than using food crops. It is able to capture carbon, 

treat wastewater, and uses less area than foodcrops (Patil, Tran & Giselrod 2008). As 

noted by Sheehan et al. (1998): 

 

Algal biodiesel is one of the only avenues available for high-volume re-use of CO2 

generated in power plants. It is a technology that marries the potential need for 

carbon disposal in the electric utility industry with the need for clean-burning 

alternatives to petroleum in the transportation sector (Sheehan et al. 1998). 

 

Christi (2008) compared the land area required for oil palm and algae to produce the 

required annual amount of biodiesel to replace the petroleum derived transport fuel 

for the United States. Based on the rate needed of 0.53 billion m
3
 per year of 

biodiesel the oil palm would need to be grown over an area of 111 million hectares 

or over 61% of all agricultural cropping land in the United States. Assuming 30% oil 

content, algae would require 5.4 million hectares or 3% of the agricultural cropping 

land. This comparison of land use required for oilcrops such as oil palm (one of the 

most productive oil crops) compared to algae show the unrealistic choice of land 

crops for biodiesel production. Algae are also not in competition with food stocks. 

Reijnders (2009) states that the shortfall in food and fodder production that takes 

place when European wheat is diverted to the production of ethanol can lead to 
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expanding crop production elsewhere, which can result in land clearing, and which 

adds to environmental damage and climate change and to rising food prices. 

 

Through the process of photosynthesis, algae are able to capture carbon from the 

atmosphere. In a study done by Miron et al. (2003) it was found that the elemental 

composition of an algal biomass was 49.2 % and was contained mostly in 

carbohydrates and lipids. The carbon was from photosynthesis fixation of CO2 and 

the rate of carbon fixation was 2.5 mg C per litre per hour. Christi (2008) therefore 

states that algal biomass fixes 183 tons of CO2 when 100 tons of biomass are 

produced. Tests done by CK Environmental showed that over seven days the 

photobioreactors reduced nitrogen oxide emissions by 85% and CO2 emissions by 

82% on sunny days and about 50% each on very cloudy days (Davidson 2006). Thus 

photobioreactors can be used to remove CO2 from flue gases and reduce green house 

gas emissions (Patil, Tran & Giselrod 2008). 

 

Waste water treatment can be economically and technically demanding. Therefore 

using wastewater as the nutrient source for the bioreactors increases the 

environmental and economical benefits. Algae can effectively remove heavy metals, 

nitrogen, and phosphorus from aqueous solutions (Patil, Tran & Giselrod 2008). 

 

A benefit of biodiesel is that it can be stored and transported using existing diesel 

tanks and equipment. As it is oxygenated biodiesel is also more of a lubricant than 

diesel and is combusted more completely, thus increasing the life of engines. 

Biodiesel also has a higher flash point than diesel, making it safer to use, handle and 

store, and it has a low emission profile (Vasudevan & Briggs 2008). 
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Dedicated algal farms for biodiesel do look likely to be a viable market option. 

However, for CA, algae for biodiesel production is not viable. Three litres of algae 

are needed to produce 1 litre of biodiesel (assuming algal oil content of 30%). This 

would equate to 135 000L of algae needing to be produced at CA each year to cover 

their current diesel usage. Assuming that a photobioreactor will produce 25 

kg/m
2
/year as given by Global energy (n.d) then CA would need an area of 5400 m

2
 

to produce enough algae to cover their diesel usage.  Thus a large scale plant is 

required for the production of algae for the purpose of creating biodiesel and 

therefore, algae for the production of biodiesel does not appear currently feasible for 

CA. However, algae to treat wastewater and produce methane may be a viable 

solution for CA. 

 

Part 1 of the feasibility study of renewable energy for CA shows that of the top three 

renewables studied there are none that are currently viable for immediate 

implementation.  With changing electricity prices and dropping PV capital cost PV 

should be viable in the (near) future. Wind turbine energy shows little hope of ever 

becoming viable due to the lack of high wind speed at the site. Algae for use other 

than biodiesel shows some promise, but further feasibility studies need to be done.  
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Chapter 5: Part 2 – The viability of paunch for use as a Biofuel 

 

5.1.0 Paunch literature review 

During the 1970s and early 80s a number of studies were published regarding the 

benefits of drying paunch, although research on this topic has decreased until now. 

One of the first people to suggest that paunch be dried for beneficial uses (as a feed 

additive) was Baumann (1971), due to his research into reducing water pollution 

caused by blood and paunch. Baumann (1971) made recommendations to the beef 

processing industry that all abattoirs should install dehydrators for both blood and 

paunch. The abattoir where the study was conducted slaughtered 1,368 head of cattle 

per day, and a gas-fired dehydrator was run for 6 months to produce 588 tons of 

dried paunch in 1,260 hrs (Baumann 1971). Converting these numbers to their metric 

equivalent gives: 

 

                       

                                             
     

                

   
 

 

 

The costs calculated in 1971 were $38.46 USD dehydration cost/ton (Baumann 

1971). Using an inflation calculator this would equate to $204.70 USD in 2010 

(Friedman n.d). While the output rate of 10.2 tonne of dry paunch produced per day 

is an excellent rate for drying paunch the cost is more than double the cost of 1 tonne 

of coal ($100) which would be the competing fossil fuel. Solar drying of the paunch 

could reduce the dehydration costs per tonne making it a more cost competitive 

product. If an economically viable method exists for drying paunch today, then 

Baumann‟s recommendation of 1971 should still stand. 
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In an attempt to reduce environmental damage and financial burdens at abattoirs eds 

Witherow and Scaief (1976) identified numerous methods for handling paunch. The 

methods with the most potential and interest for this report are: 

 

1. Lagooning or stockpiling 

Stockpiling relies on evaporation and moisture transference to soil or land. 

This method showed that it is possible to lower the moisture content by 2 to 5 

% in a few hours and by 65% over a few weeks. Paunch has a high BOD 

which prevents it from being allowed to enter surface or ground water thus, 

presenting drainage issues (eds Witherow & Scaief 1976). However, there is 

also a large odour problem associated with this method as well as flies, rain, 

and drainage problems. 

 

2. Rotary dryers (Baumann as cited in eds Witherow & Scaief 1976)  

See the previous discussion (Baumann 1971) regarding gas fired dehydrators. 

 

3. Solar & air drying 

Yin and Farmer (as cited in eds Witherow & Scaief 1976) successfully used 

air drying to dry paunch to 16 to 20 % moisture content in a week. They 

turned a 10 cm layer of paunch daily to stop a crust forming along the top. 

Paunch forms an outer crust that acts to seal the paunch and significantly 

reduce the migration of moisture from the interior (De Baerdemaeker & 

Horsfield 1976, cited by Farmer, Farouk, Brusewitz 1980). This can be seen 

at CA as the paunch left in the sun develops a dry crust that insulates the 
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interior and prevents further drying. Therefore, paunch agitation is an 

important factor in drying.  Also of note is that paunch starts to compost after 

24 hrs (Spence, M 2010, pers. Comm., 19 April). Other problems 

encountered with Yin and Farmers‟ study were rain rewetting the paunch 

through the open sides of the drying shed, fly and odour problems. They dealt 

with these problems through the building of a solar still with mechanical 

agitation as opposed to hand stirring of the paunch (eds Witherow & Scaief 

1976). 

 

4. Presses 

Presses are any mechanical means used to dewater paunch. Paunch has a 

tendency to clog a wide range of presses but in eds Witherow and  Scaief 

(1976) report it was determined that screw presses were the most suitable for 

dewatering paunch. This has remained true as many abattoirs currently use 

screw presses to dewater the paunch and separate the liquid from the solid 

paunch waste stream. 

 

5. Incineration 

A number of incineration designs were suggested but only one appears to 

have been completed. Of note from these reports is that paunch incineration 

is self-sustaining when the solids content is over 30 % (eds Witherow & 

Scaief 1976). 
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6. Pyrolysis 

A pyrolysis study was done using steer manure and the outcome of the report 

suggests that paunch would be a suitable candidate for pyrolysis if there was 

a suitable market for the by-products (eds Witherow & Scaief 1976). 

 

Editors Witherow and Scaief (1976) demonstrated that there are a number of paunch 

handling techniques that could be incorporated into an abattoir and that, if dried, 

paunch could be used as a beneficial biofuel.  

 

Ricci (1977) set about to design and demonstrate a fluidized bed incineration system 

to handle the paunch waste stream produced by (beef) abattoirs. The design had two 

separate dewatering systems in place to handle the coarse and fine particles 

contained in the paunch. These streams then passed into a settler and/or filter before 

entering the incinerator. The two stage dewatering system was developed due to the 

poor filtration rates and dewatering characteristics of the paunch in filtration and 

compressibility testing. Simple and pressure dewatering was then investigated with 

the solids concentration increasing to a maximum of 27% by being fed between 

rollers.  From these studies it was suggested that a modified screw press be used as 

the primary dewaterer to separate the streams before passing into a second dewaterer 

and filter or settler and filter combination. This design was produced for an Illinois 

company and was prompted due to the cost of using Chicago‟s sewerage system. At 

the time of printing (Ricci 1977) it was implied that this design would proceed and 

results in the implementation be presented in a subsequent report. Data are not 
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readily available to indicate whether this study was successful or would be 

economically viable in today‟s market. 

 

A study by Farmer, Brusewitz and Moustafa (1979) identified that solar dried 

paunch has the potential to become a fuel source for abattoirs. They modified a 

simple solar still design to test their hypotheses on drying paunch with a solar still 

type design. Their results suggest that; 

 

 „An open mesh tray bottom significantly increases the drying rate. 

 Breaking of the crust on the second or third day increases the condensate 

production rate. Continued stirring on subsequent days is not necessary. 

 Covering the dryer at night extends drying later into the evening. 

 Forced air circulation had negligible effect for dryers of this size 

 Output from the double length dryer was twice that of the standard length 

dryer. Although the average moisture content was similar, the variability was 

greater in the double – length dryer (Farmer, Brusewitz & Moustafa 1979, p 

224)‟. 

 

Additional information contained in the above study includes:  

 The removal of surface moisture by pressing was easiest for high forage 

rationed (grass fed) cattle as this moisture was of low viscosity. Whereas 

high concentrate ration (grain fed) cattle moisture was more viscous and 

therefore harder to remove.  

 Pre-frozen paunch delays the drying rate by a minimum of 2 days. 
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 The paunch temperature lagged the internal temperature of the dryer by about 

1 to 2 hrs during the afternoon. 

 Condensate was still produced 3 to 4 hrs after dusk. 

 A relationship between ambient temperature and humidity and the internal 

temperature of the dryer needs to be determined. 

 The drying time was increased by 10 to 12 days if the crust was not agitated 

during drying (Farmer, Brusewitz & Moustafa 1979). 

 

These results from the Farmer, Brusewitz and Moustafa (1979) study can benefit 

future efforts into paunch drying, as their conclusions should be applicable to all 

types of solar dryers, and not just modified solar still designs. 

 

Griffith and Brusewitz (1980) performed a study using a tunnel dryer to determine a 

drying constant as a function of air relative humidity, material depth, and time after 

slaughter in order to optimise paunch moisture reduction. This drying constant 

characterises the rate of drying by combining all the transport properties of drying 

(i.e. thermal conductivity, moisture diffusivity, interface heat, and mass transfer 

coefficient) into a simple exponential function (Mujumdar 2007). Drying constants 

are applicable to constant air conditions and are themselves a function of moisture 

content, material temperature and thickness, air humidity, temperature, and velocity 

(Mujumdar 2007). To obtain a drying constant Griffith and Brusewitz (1980) used a 

set temperature of 35°C with varying relative humidity at 20%, 50%, and 80%. Their 

study found that paunch composition (i.e. grass or grain fed) had the greatest effect 

on drying rates compared to humidity, age, or depth. These authors found that the 

drying time for a high concentrate ration feed was five times higher than that for a 
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high forage diet.  There was also an age - humidity relationship for medium to high 

humidity and fastest drying occurred at low humidity and shallow depth.  Griffith 

and Brusewitz‟s (1980) data suggests that there is no effect on the drying rate for 

depths of 2cm to 10cm. However, they only used solid wall drying pans which 

therefore restricted the flow of moisture transfer to the upward direction. Older 

paunch can also reduce the drying constant along with high humidity. It was found 

that all drying constants were high for humidities up to 20%.  

The drying constant, k, determined in this study was determined using the drying 

equation for an unsaturated surface: 

      
   ; 

Where MR is the moisture ratio, Mi is the initial moisture ratio, k is the drying 

constant, and t is time (Henderson & Perry, cited in Griffith & Brusewitz 1980, p. 

1016). The moisture ratio was used to compare samples with different initial 

moisture content and was calculated by: 

   
      

       
; 

Where MR is the moisture ratio, M is the moisture content, Me is the equilibrium 

moisture content, Mi is the initial moisture content (Griffith & Brusewitz 1980). 

 

Griffith and Brusewitz‟s (1980) preliminary drying constant for paunch ranged from 

0.005 – 0.108 per hour and was most affected by paunch content as opposed to the 

drying conditions. There then appears to be a number of typographical errors in their 

paper regarding the main experiments‟ drying constants. In the main body of the text 

they state that the average drying constant is 1.17 (per hour) with a standard 

deviation of 0.41. However, this average is from the average of the data contained in 

table 2 of their results, which instead gives an average of 1.17   10
2 

per hour with a 



 

 

71 

 

range between 0.47 - 2.21  10
2 

per hour. In addition, Griffith and Brusewitz‟s 

(1980) figure 3 is an example of run# 2 in their table. When the data contained in this 

figure are analysed it shows a slope of -0.0114 per hour. Further examination of the 

drying constants in their figures 4, 5, and 6 shows the drying constant ranges from 

approximately 0.005 to 0.022 per hour. Therefore, it appears that their drying 

average is 1.17  10 
-2 

per hour for the main experiment. It is also unclear as to 

whether their figure of 0.108 per hour is correct for the preliminary experiment. This 

rate is much higher than would be expected for the drying conditions and when 

compared to the rates found in their main experiment. 

 

It is interesting to note the range of more than an order of magnitude in the drying 

constant values provided by Griffith and Brusewitz (1980). This indicates that 

paunch is highly susceptible to internal and external conditions that either help or 

hinder the drying process. As expected the drying constant is thus only applicable to 

certain conditions. 

 

Farmer, Farouk, and Brusewitz (1980) using direct solar energy and solar-

regenerated desiccant for low-insolation days found that they could reduce paunch 

moisture from 80% to 30% in 5 days.  The dryer was designed to operate 

independently as a modified solar still  on high insolation days or in conjunction 

with the desiccant during low insolation days. This study was noteworthy due to the 

size of the dryer (pilot-plant size as opposed to laboratory studies) and an innovative 

concentrating solar air collector. The concentrating solar air collector (Figure 17) 

was 1.10 m × 1.75 m, adjusted to remain perpendicular to incoming solar radiation, 

and Farmer, Farouk, and Brusewitz (1980) claim that it produced equivalent energy 
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compared to a 1.5 times larger flat plate collector. Also of note from this study are 

the following results: 

 

 Internal dryer temperature reached its maximum between 2 – 3pm, 

 Drying without using the desiccant was slow with an average daily moisture 

removal rate of 30%, 

 More uniform moisture distributions were achieved by using desiccant and 

forced convective air, 

 Drying averaged out over 24 hr period showed a constant rate drying period 

with the falling rate period of little importance as it could be averaged into 

the constant period, 

 Although the drying to 30% in 5 days occurred using the combined direct 

solar radiation and desiccant night drying it would be possible to obtain the 

same result in regions of higher insolation. 

 

This dryer design was again a modified solar still design. It would be interesting to 

determine if a faster drying rate could be obtained using a different type of solar 

dryer. However, Farmer, Farouk, and Brusewitz‟s (1980) results shows that it is 

possible using a pilot-plant sized dryer to dry paunch in 5 days. 
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Figure 17 -The concentrating solar air collector was 1.10 m × 1.75 m, adjusted to remain perpendicular to 

incoming solar radiation and produced energy equivalent to a 1.5 times larger flat plate collector (Farmer, 

Farouk, and Brusewitz 1980) 

 

Brusewitz, Moustafa and Farmer (1981) claim that pneumatic dewatering of paunch 

to remove loosely held moisture could be done with less energy and in a fraction of 

the time compared to evaporation techniques. Their study showed that dewatering 

soon after slaughter removed the most amount of liquid and that storage at low 

temperatures (10°C) resulted in 10 to 50% less water being removed.  They also 

found that larger mesh sizes did not increase the amount of solids in the expressed 

liquid and that small mesh sizes still allowed the liquid to be expressed for up to an 

hour and did not need mesh cleaning between trials. Farmer, Farouk, and Brusewitz 

(1980)  showed that the fastest expressed liquid removal rate was for 40 mesh 

(0.400mm wide openings), 20 mesh (0.841mm wide openings), and 16 round-hole 

screens and that they could dewater paunch to 10% moisture content in maximum 

time of 16.5 min with 20 kPa and 40 mesh size. They also suggested that a possible 
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way of dewatering paunch would be by using the positive pressure created by using a 

column of paunch as the creator of its own positive pressure. The weight of the 

paunch would press down, enabling it to dewater itself of some of its surface 

moisture. 

 

Bridle (2010) undertook a desktop study to review waste pyrolysis using paunch and 

DAF sludge (DAF sludge is fat and protein, meat slivers and fat, that gets into the 

wash water). The study identified that there are potential economic and 

environmental benefits using abattoir waste for pyrolysis or gasification. However, 

the report showed that the paunch and DAF sludge would need to be dried to 20% 

moisture content (80% total solids) or below prior to being used as moisture contents 

higher than this would require a much higher energy from the pyrolyser and produce 

poor quality syngas, thus rendering it uneconomical. 

 

 

After the previous desktop study Bridle (2011) undertook to design a programme to 

dry, characterise, and use paunch and DAF sludge in two systems; Pacific Pyrolysis, 

and BiGchar gasification. He also undertook a desktop review on the use of paunch 

and DAF sludge in abattoir boilers. The study predicts that pyrolysis and gasification 

are the most attractive for the meat industry with possible gains of GHG credits up to 

1 tonne CO2e and net energy credits up to 3.2 GJ per tonne of feedstock. However, he 

claims that thermally dried paunch and DAF sludge is not economically viable for 

co-combustion in boilers, whereas dewatered paunch is viable for co-combustion due 

to some environmental benefits and as a disposal method.   
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The process to dry the paunch for the two system tests and for use in the desktop 

study was done by spreading 2 to 3 m
2
 (estimated 1350 kg wet weight) of paunch 

was over an area of 25 m
2
  at a depth of  10 to 15 cm and sun dried over a period of 

two weeks. The area was increased to 50 m
2
 after the first week and the paunch was 

hand stirred twice a day. The evaporation rate was determined to be 2.1 kg water per 

day which Bridle (2011) claims is half the typical drying rate of a solar dryer. The 

calculated final weight of the dried paunch was 270 kg. Analysis of data taken from 

these samples showed that paunch has a reasonable (dry) gross calorific value of 

18.74 MJ/kg.  

 

The desktop study for co-combustion examined current boiler practices, possible 

problems, and economics associated with using abattoir waste mixed with coal in the 

boilers. It was noted that solid waste material is only suitable for solid-fuel fired 

boilers and not liquid or gas fired boilers. It was shown that abattoir waste could 

create about a quarter of the energy needed for boiler operations. Problems that were 

identified in the Bridle study were; 

 Potential clogging  and feed problems due to waste particle size and bulk 

density, 

 Ash fusion/ melting, 

 High particulate carry-over, 

 Increased corrosion. 

The economic factor that made co-combustion unattractive was the high cost 

associated with drying the paunch. However, this was based on the cost and 

maintenance of a fossil-fuel run dryer. The dewatered paunch approach as a waste 

disposal system was economically attractive due to paunch only needing a total solid 

of 30% to burn self-sustainingly. This is around the total solid count from 
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dewatering systems such as a screw press. However, this method was only suggested 

for use as a waste disposal method with little or no energy recovered.  

 

Bridle (2011) then undertook an assessment of dewatered paunch for use in a co-

combustion boiler.  The results of this study show great promise for paunch waste to 

be used in co-combustion with a net economic benefit of $1.58 million over 20 years 

for use in existing boilers and a net economic benefit of $2.85 million over 20 years 

for a new boiler able to co-fire biomass. Paunch could provide 30% of boiler fuel 

requirements with potential for GHG credits. There were minor environmental 

impacts and no impact on boiler combustion performance (at 5% paunch rate with 

total solids of 30%). The environmental impact of increased stack emissions 

remained within regulatory guidelines. 

 

Paunch needs to be dried cost effectively to be used as a biofuel. Horsfield (1973) 

did a calculation on the cost to use fossil fuel to dry pig manure based on the amount 

of manure produced per pig and the latent heat of vaporization for water. This 

calculation can easily be modified for paunch. One cow produces approximately 25 

kg of paunch at 85% moisture content, Therefore, 21.2 kg of water needs to be 

removed to produce 3.8 kg dry weight. If the latent heat of water is 2260 kJ/kg then 

47912 kJ is needed to remove the water. If diesel costs $1.50 per litre (BP Australia 

2010) and has an energy content of 38 MJ/L (BP Australia 2010) then it would cost 

$1.95 per head of cattle to dry its paunch using a fossil fuel. This is unfeasible as it 

would cost on a daily basis $195 if only 100 head of cattle were processed each day. 

On a yearly basis this cost would equate to more than is currently spent on coal 
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(which paunch would possibly be replacing). Therefore, to enable paunch to be used 

as a biofuel, a cheaper method of drying is needed.  

 

5.1.1 Concluding remarks regarding this review of literature 

The studies discussed here have helped our understanding of the factors involved in 

drying paunch. They also demonstrate a common theme that paunch needs to be 

dried before it can become a useful biofuel. Thus a method needs to be developed to 

dry paunch quickly and easily as well as cheaply as possible (for example a 5-day 

drying time would create a backlog of wet paunch due to the large amount of paunch 

produced weekly at CA). In the present study the properties of drying paunch are 

investigated through laboratory tests to determine optimum factors for fastest drying 

times and test the idea that solar drying of paunch is likely to lead to a viable source 

of biofuels for abattoirs such as CA. 

 

 

5.2.0 Paunch Methods 

In the second part of the present study organic waste streams, meat and bone meal, 

tallow, and paunch have all been investigated in search for a viable renewable energy 

source. Of these, dried paunch was identified as a potential renewable energy fuel for 

boilers, or for pyrolysis.  The focus of the study then turned to the drying properties 

of paunch, to determine if paunch could be dried quickly to create an economically 

viable fuel source.  
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5.2.1 The Meteorological conditions at CA 

 

For paunch (for use as a biofuel) to become an economically viable choice for 

abattoirs it needs to be dried cheaply and quickly. The simplest method for reducing 

the drying costs is to use a “free” energy source such as the sun. The Sun is our own 

nuclear fusion reactor. Under immense temperature and pressure the Sun fuses 

hydrogen into helium mostly using the proton-proton chain whereby four hydrogen 

nuclei are used in a series of reactions to produce one helium nucleus. During this 

process a small proportion of the mass is converted into energy. Solar 

electromagnetic radiation is emitted from the sun as radiant energy. Electromagnetic 

radiation ranges from gamma rays (10
-12

m) to radio waves (10
4
m) and includes 

visible light (10
-7

m). The Sun emits substantial amounts of infrared, ultraviolet, and 

visible light (Giancoli 1998). In one year the sun produces around ten thousand times 

more energy than the annual total global energy demand (Quaschning 2007). 

 

The power of electromagnetic radiation incident on a surface, per unit area (Wm
-2

), 

is given the term irradiance, I. Irradiance is the total amount of radiation present at 

all frequencies, and global irradiance is made up of direct, diffuse and reflected 

radiation. Measurements have shown that the amount of power which falls on each 

square metre of the Earth‟s surface is about 1400 watts. That is, each square metre 

could light 14 standard 100W light bulbs (Jefferys & Robbins 1981). 

  



 

 

79 

 

 

Terrestrial solar radiation reaching the earth‟s surface is influenced by a number of 

factors. These include: 

1. The solar zenith angle or height of the sun above the horizon. 

2. The changes annually of the earth-sun distance. 

3. The chemistry of the atmosphere. 

4. Cloud cover. 

5. The albedo of the ground and surroundings. 

6. Altitude above sea level. 

 

The solar zenith angle (SZA) affects how much of the atmosphere the solar radiation 

is passing through. The higher the sun is in the sky the smaller the SZA, meaning 

that the radiation has less atmosphere to travel through before reaching the Earth‟s 

surface and therefore undergoes less atmospheric scattering and absorption. As the 

SZA increases (the sun is lower in the sky) therefore, the radiation is spread over a 

larger surface area which thus reduces the direct irradiance.  

The SZA is calculated by: 

SZA= 90º - solar altitude 

The solar altitude can be found at: http://aa.usno.navy.mil/data/docs/AltAz.php by 

entering the appropriate longitude and latitude details (NASA 2008). 

 

The distance between the Earth and sun varies between 1.47 x 10
8
 km and 1.52 x 10

8
 

km throughout the year, which causes variation in the irradiance between 1325 W/m
2
 

and 1420 W/m
2
. The average value of irradiance is the solar constant Io = 1,367 ± 2 

W/m
2 

  (Quaschning 2007). Seasonal changes in sunlight are due to the tilt of the 

http://aa.usno.navy.mil/data/docs/AltAz.php
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Earth as it spins on its axis as it orbits the sun. The Earth is tilted at an angle of 23.5º 

to its plane of motion about the sun. This means is that during summer the South 

Pole is tilted towards the sun and during winter is tilted away from the sun. 

Conversely the North Pole, during their summer, is tilted towards the sun during the 

southern hemisphere‟s winter. Winter months receive less radiation due to the same 

principle as the solar zenith angle. Due to the tilt the radiation is spread over a larger 

area and passes through greater depth of atmosphere and thus faces more absorption 

and scattering (Hinrichs & Kleinbach 2006). 

 

The chemistry of the atmosphere influences the amount of radiation present due to 

the natural chemistry of the atmosphere and to pollution caused by humans. Mie and 

Rayleigh scattering are the two forms of scattering due to particles. Mie scattering is 

due to dust and pollution where the particles are larger than the radiation 

wavelengths. Rayleigh is due to molecular scattering where the particles are smaller 

than the radiation wavelengths. The effect of clouds on the radiation is due to Mie 

scattering and also the reflecting of radiation back into space. Therefore, clouds can 

reduce (and sometimes increase) the amount of radiation reaching the surface of the 

earth (Quaschning 2007).  

 

Albedo is the fraction of light hitting a surface that gets reflected away and can be 

expressed as a ratio of the upwelling irradiance to the downwelling irradiance (Parisi 

& Kimlin 1997). As shown in: 

A = ;
i

r

I

I
 

Where A is the albedo, Ir is reflected irradiance and Ii is incoming irradiance 

(Lenoble 1993). 
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The Earth has an albedo of 0.39 and therefore reflects 39% of incoming solar 

radiation back into space and is mostly caused by clouds. To put albedo into 

perspective; a surface with an albedo of 1 would be perfectly white, it would reflect 

all incoming radiation, and a surface with an albedo of 0 would be perfectly black, it 

would absorb all incoming radiation (Seeds 2008). Solar radiation is also affected by 

altitude above sea level. This again is due to how much of the atmosphere through 

which the radiation must pass.  

 

Meteorological conditions at CA were investigated to determine its suitability for 

solar technologies. Solar radiation (insolation) reaching the Earths‟ surface on 

average per day ranges between 6.8 MJ/ m
2
/d to 23 MJ/m

2
/d (Hinrichs & Kleinbach 

2006). Ipswich, Australia has on average 18 – 21 MJ/m
2
/d (Figure 18) (BOM 2011).  

The average annual daily sunshine hours for Ipswich are approximately 7 – 8 hours 

with the monthly averages ranging from 6 – 9 hours, the highest averages being in 

the periods August through to December (Figure 19) (BOM 2011).  This high 

insolation in conjunction with good average annual daily sunshine hours shows 

promise for solar technologies. 
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Figure 18 – Shows the annual average daily solar exposure for Australia in MJ/m2. Ipswich, Australia has 

on average 18 – 21 MJ/ m2/d (BOM 2011). 

 

 
 

Figure 19 - Shows the Australian annual daily sunshine hours average. Ipswich annually has between 7 to 

8 hours of sunshine daily (BOM 2011). 
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Cloud cover data also suggests that Ipswich is a suitable site for solar technology. 

Clear, cloudy, and cloud cover data was obtained from the Bureau of Meteorology 

(2011) for Amberley air base, which is situated within sight of CA. Figure 20 gives a 

graphical representation of this data. It demonstrates that there are on average more 

clear days than cloudy from May to October and that there is a large portion of clear 

days (> 10 days) per month from June to October each year. The mean 3pm cloud 

cover for those months is less than 4 octas, where 1 octa is equal to 1/8
th

 of the sky 

being obscured by clouds. Therefore, less than half the sky is obscured by cloud. 

This means that during periods of lower insolation, such as winter months, there are 

still a large amount of clear skies. The months with the clearest days that correspond 

to the longest sunshine hours are August to October.  

 

 

Figure 20- Clear/ cloudy day, and cloud cover data for Amberley. The months of June to October each 

year show greater than 10 clear days per month (BOM 2011). 
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Relative humidity (RH) also has an effect on solar drying technologies. Relative 

humidity is a percentage of how much water is in the air compared to how much 

water the air can hold. Warmer air can hold more water and therefore, has a lower 

RH than cooler air (BOM 2011). RH is important when it comes to drying as this 

ability of air to contain water can limit how fast things can dry as the water acts as a 

medium to remove moisture. The Ipswich area has a range of RH between 40 – 80 

%. As expected the 3pm RH is less than the 9am RH with August and September 

showing the lowest average RH (Figure 21). The RH can be lessened by an absorber 

on a solar dryer (due to heating the air), and hence the ambient RH is not as great a 

meteorological concern as insolation, sunshine hours, and clear days. Therefore, 

solar technologies would be suitable for use at CA as far as meteorological 

conditions are concerned due to the large number of clear days combined with the 

high solar insolation.  

 

Figure 21– Average maximum and minimum monthly relative humidities, 9am & 3pm, for the greater 

Brisbane area, Australia (BOM 2011). 
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5.2.2 Solar drying  

The global situation regarding solar drying has been reviewed by Brenndorfer et al.  

(1985): 

 

…solar drying is still far from being a widely used technology. Apart, perhaps, from 

the incorporation of solar collectors into grain drying and storage silos in North 

America, there is not one instance of widespread and widely acceptable use of solar 

dryers for the drying of crops and foodstuffs. Although solar drying has received 

appreciable research interest worldwide in universities and technical institutes this 

has been mainly in the form of thermodynamic studies, a comparison of sun and 

solar drying rates, or in very recent years, computer modelling techniques, all 

performed in an academic environment….Perhaps the principal and most important 

failing of many projects is a lack of appreciation of the environment for which the 

dryer is intended. The final design is frequently inappropriate and the subsequent 

transfer of technology from researcher to end-user is anything but effective….and to 

some extent, the tendency has been that a dryer is designed and then an application 

sought (Brenndorfer et al.  1985). 

 

A solar dryer is an enclosed unit that uses solar thermal energy to dry substances as 

opposed to open air sun drying which as the name suggests is just spreading the 

substance to be dried out in the sun. There are a number of drawbacks to open air 

drying such as, the large surface area required to spread the product, possible 

infestation from insects, the product is exposed to the elements such as rain, possible 

odour problems, etc. Solar dryers do not face these problems and are also capable of 

increasing temperature and air movement, and decreasing the RH which not only 

increases the drying rate but also increases the throughput of the product (e.g. 

Belessiotis & Delyannis 2010).  

 

Solar dryers can be broadly classified into two groups: passive and active dryers 

which can be further broken down into three sub-categories (e.g. Weiss & Buchinger 

n.d, Brenndorfer et al.  1985). In essence, an active solar dryer incorporates a 
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mechanism such as a fan that requires a source of power (which can be supplied by a 

PV). In contrast, a passive dryer relies on natural convection to move the air passing 

over the product, and can run independently of a power supply. The sub-categories 

for solar dryers are; direct, indirect, and mixed mode type dryers (Weiss & 

Buchinger n.d).   Direct dryers expose the product to be dried directly to the solar 

radiation, whereas indirect dryers dry the product in the shade. Mixed-mode dryers 

use both direct and indirect drying modes. Active dryers can improve drying time by 

up to three times and decrease the size of the solar absorber by 50%, through forced 

convection. Therefore, active drying shows promise when considering the design of 

future paunch solar dryers.  

 

Solar drying, e.g. solar tunnel dryers, have been used with success for many years. 

Solar dryers are typically made up of an absorber, a drying chamber, and an exhaust 

or ventilation holes. Depending on the design these components may be separate or 

all part of the one unit. There are numerous solar dryer designs available from simple 

solar stills (a hole in the ground covered by a weighted clear plastic sheet) to solar 

tunnel dryers which use a transparent plastic covered flat plate collector and a drying 

tunnel (with fans) to blow hot air over the item needing drying (Bala & Mondol 

2001). The fans in the tunnel dryer can be run by PV panels which have the added 

benefit of self-regulating the dryer as on high insolation days the fans run faster than 

on low insolation days (Bala & Mondol 2001).  This use of fans and variations on 

this technique have proved successful for drying fish, fruit, and vegetables. 

 

The absorber component of a solar dryer can elevate ambient air by greater than 

40°C. Absorbers also come in a variety of designs with greater or less capacity to 
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raise the ambient air for example, a double pass flat plate collector passes the 

incoming air both under then over the absorber, which increases the path length 

travelled by the air, and thus increasing the absorbers‟ capacity to increase the air 

temperature (Brenndorfer et al.  1985). Therefore, solar drying using an active dryer 

with a suitable absorber appears to be a possible solution to cheaply drying paunch. 

However, in order to design the optimum solar dryer, the drying properties of paunch 

need to be understood. 

 

5.2.3 Churchill Abattoir 

Cattle paunch was obtained from CA which is an energy intensive medium sized 

facility and is representative of the Australian meat industry. CA paunch is first dry 

dumped where the contents are dumped out without the addition of water and then 

the emptied paunch is umbrella washed. The paunch then passes through a Bauer 

screw press separator which is situated above a cemented holding area (Figure 22). 

The screw press dewaters the paunch of most of its surface water, thus separating the 

liquid from the solid. The resulting liquid waste stream, once separated from the 

solids, passes to holding ponds. The solids pile is cleared two to three times per week 

and sent off site to a composting facility. CA make no money from this practice but 

benefit from the reduction in their National Greenhouse and Energy Reporting 

(NGER) as paunch is not reportable under NGER if sent off-site Nevertheless, the 

assumption of non-reportability doesn‟t take into account CA‟s net carbon footprint. 

CA‟s treatment of paunch is a generally accepted treatment method in Australia. 
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Figure 22 - Paunch on site at CA passes from the screw press to fall into a pile in the cement holding area. 

 

 

The use of solar dried paunch nevertheless has the potential to significantly offset 

CA‟s energy costs. Approximately 23 – 25 kg of paunch is produced per head of 

cattle (wet weight) or roughly 3.8 kg dry weight (Ricci 1977, eds Witherow & Scaief 

1976, Doyle & Lant 2001). CA produce between 60 – 90 m
3
 of paunch per week, 

which equates to 60 – 90 tonnes per week when wet, or about 15 tonnes dry weight 

per week. Assuming a 51 week operating year would mean there is potentially 765 

tonnes of paunch (dry weight) available to use as a coal substitute. Therefore, it may 

be possible to reduce CA‟s coal consumption and gain GHG and energy credits.  
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5.2.4 Factors that affect drying 

Theory predicts how paunch will dry. There are a number of external, general factors 

that affect paunch drying. These factors can be placed into two groups depending on 

the different stages of drying. The first stage is evaporation which has a constant 

drying period and the second is the internal migration of water from the interior 

which has a falling rate drying period (Brenndorfer et al.  1985). Evaporation from a 

wet surface (as long as the surface remains wet) can be considered the same as for 

evaporation from a free water surface and is mostly affected by temperature and 

humidity (Brenndorfer et al.  1985). This behaviour can be seen in the rate of 

evaporation, which is proportional to the difference between the saturated vapour 

pressure of water at the surface and the partial vapour pressure of water in the 

adjacent air (Brenndorfer et al.  1985). Using Daltons development of evaporation 

theory we set: 

 

E = f(ū) (ps – pa); 

 

Where E is the rate of evaporation, f is a function of the mean wind speed, ū is mean 

wind speed, ps is the saturated vapour pressure at the temperature of the water 

surface, and pa is the partial vapour pressure of water in adjacent air. 

 

Daltons‟ law of partial pressure says that the partial pressure is the sum of the 

pressures of the individual gases present in the air. The equation for the rate of 

evaporation shows that temperature and humidity are the largest contributors to the 

rate. This behaviour rises as the saturated vapour pressure, ps, increases as 

temperature increases at constant humidity while the partial vapour pressure, pa, 
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increases with humidity at a fixed temperature. Therefore, as the rate is dependent on 

the difference, ps – pa, it follows that the evaporation rate will increase with 

temperature and decrease with increased humidity (Brenndorfer et al.  1985).  

 

Penman also developed an equation for evaporation from an open water source 

which gives the kilograms of water evaporated every second for each square metre 

of area: 

 

   
            

       
; 

 

Where m = psychrometric slope, Rn = net irradiance, ρa = density of air, cp = heat 

capacity of air, g = surface aerodynamic conductance (represents the intensity of the 

near-surface vertical turbulence that transports heat and moisture), D = saturation 

deficit, L = latent heat of vaporization, Ks = psychrometric constant. Temperature, 

relative humidity, and wind speed impact the values of m, g, ca, ρa, and D. 

 

The Penman equation can be reduced to: 

 

E = ARn + B(a+bW)D; 

 

Where E is the evaporation rate, Rn, is the net radiation, W is the wind speed, A and 

B are coefficients that contain physical properties of air and water vapour, and D is 

the saturation deficit of the air (Mason & Hughes 2001).  
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The saturation deficit, D, gives the evaporation capability of air and is the difference 

between the saturation vapour pressure and the vapour pressure of a volume air: 

D = ew – e; 

Where e is the actual vapour pressure for a given volume of air and ew is the 

saturation vapour pressure of the volume at a given temperature. 

 

The saturation deficit can also be expressed in terms of the relative humidity (RH): 

D = ew(1-
  

   
); 

This equation shows that the saturation vapour pressure will thus rise with rising 

temperature. So the same RH will correspond to a greater saturation deficit creating 

greater evaporation at warmer temperatures. 

 

The reduced Penman equation shown above also demonstrates the factors that 

influence drying rates. The evaporative rate can be broken into two terms. The 

radiation term, ARn, is dependent on the amount of radiation energy available for 

evaporation. The aerodynamic term, B(a+bW)D, depends on temperature and 

relative humidity as related to, D, the saturation deficit and wind speed, W. The 

aerodynamic term contains the factors that control the movement of water vapour 

and sensible heat away from the evaporative surface. A large D term is generated by 

hot, dry air and produces greater evaporative rates. The saturation deficit is then 

related to the wind speed whose effect is also greatest for hot, dry air and therefore a 

larger contributor to the potential evaporative rate (Mason & Hughes 2001). 
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The second stage of drying is the internal migration of water from the interior. In this 

stage temperature and particle size are of most importance. Table 8 shows the two 

different drying stages and the factors that affect them. For moisture to migrate from 

the interior there are two underlying principals, diffusion and capillary flow 

(Brenndorfer et al.  1985). The equation for diffusion of a liquid through a solid tells 

us that moisture content in time is proportional to a change in moisture gradient and 

the moisture rate decreases with bigger particle size (Brenndorfer et al.  1985).   

Therefore, this second drying stage is the limiting factor in drying times, as when 

there is sufficient moisture (moisture gradient) in the material there is a constant 

flow of moisture to the surface which is then evaporated. However, once the material 

starts to dry this rate drops and then tends to zero once equilibrium moisture content 

has been reached (Brenndorfer et al.  1985). 

 

 
Table 8 - Factors that affect the two stages of drying  

Surface evaporation 

 

Internal migration 

 

Temperature; Warmer air  >  evaporation rate Temperature is important 

More humid  <  evaporation rate Humidity not important (apart from where it 

affects the evaporation from the surface). 

Velocity (movement of air)  > evaporation 

rate but the gain is limited above certain 

velocities 

Air velocity is no longer important 

Unaffected by particle size of the sample to 

be dried 

Size of particle is important 

Heat conduction and radiation of drying 

chamber can also add to rate 

Physical structure of the solid, solid porosity. 

Moisture content. 
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Equilibrium is met when the rate of evaporation equals the rate of condensing of a 

substance. What this means is that due to kinetic energy molecules will leave a 

substance, and then due to an attracting force, will return.  When the amount of 

molecules leaving the water equal the amount of molecules condensing (or 

returning) then equilibrium has been reached (Giancoli 1980). Equilibrium moisture 

content is important in terms of drying in that once it has been reached, no further 

drying is possible. 

 

Ficks‟ laws of diffusion tells us that a substance will flow from an area of high 

concentration to an area of low concentration. His second law tells us how diffusion 

causes the concentration to change with time: 

  

  
  

   

   ; 

Where   is the substance concentration, t is time, D is the diffusion coefficient, x is 

the position or length. 

 

From Ficks‟ law a general equation for the diffusion of liquid through a porous solid 

can be generated: 

   

  
  

    

   ; 

In this equation MC is the moisture content, t is time, D is the diffusion coefficient, 

and x is the distance through the solid (distance from the surface of the particle/solid) 

(Brenndorfer et al.  1985). 

 

The above equation tells us that if x is big then the rate of change of moisture content 

over time is small. Therefore, particle size is important, and  increasing surface area 

increases both the evaporative stage and internal migration. The diffusion 
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coefficient, D, increases with increased temperature, thus increasing the rate of 

change (Brenndorfer et al.  1985). 

 

In some cases where the second stage is predominant, a hard impermeable skin is 

formed on top of the product. The material is then called casehardened and such 

behaviour is characteristic of paunch. A possible method for dealing with 

casehardening is to retard evaporation and keep it in time with the internal migration 

of moisture from the interior, thus not allowing a crust to form. This improvement 

could be achieved by increasing the relative  

humidity and therefore lowering the evaporative rate, while not affecting the second 

stage of drying (Mujumdar 2007). 

 

 

5.2.5 Moisture content 

Moisture content is the amount of water contained in the material and is given as a 

ratio or percentage, where 0 is completely dry, and 1 (or 100%) is completely 

saturated. The moisture content can be given as a wet or dry moisture basis. 

 

Wet basis is a ratio of the weight of water to the wet weight of the product (Teter 

1987) given by: 

       
   

 
 ; 

where Mw is the wet basis moisture content percentage, W is the wet weight, and D 

is the dry weight. 
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Dry basis is the ratio of the weight of water to the dry weight of the product (Teter 

1987) given by: 

 

      
   

 
; 

where Md is the dry basis moisture content percentage, W is the wet weight, and D is 

the dry weight. 

 

 

A useful way to understand and gain insightful knowledge into paunch drying is 

Farmer, Farouk and Brusewitz‟s (1980) equation for an average daily drying rate, 

given by: 

              ; 

Where MC is the final moisture content, MCi is the initial moisture content, ADR is 

the average daily drying rate, T is time. 

 

This equation was used to graph the change in moisture content versus time in hours 

to give the average daily drying rate for varying temperatures. This allows 

calculations to be made regarding the times to dry to certain moisture contents.  

 

Blending wet product with dry product is also a valid way to aid in moisture 

reduction. The equation for the quantity required for blending is given by (NDSU 

2011): 

 

                                
       

       
   ; 
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Where dMC is the desired MC,  kMC is known MC, rMC is required MC, and kQ is 

known quantity. The total product produced at the desired moisture content is the 

total of the quantity required for blending plus the known quantity. 

 

The equation for the quantity required for blending allows for calculation of blending 

with another product as well as blending with the same product where one has been 

dried more than the other. Thorough mixing is required using this method to avoid 

creating wet spots and warmer temperatures, and aeration will aid in equalizing the 

moisture content (NDSU 2011). 

 

5.2.6 Experimental equipment  

A study was undertaken with the main objective to measure the effect of varying 

temperature on the drying time of paunch. The experimental equipment for paunch 

drying comprised of several components: 

 

 Tunnel dryer, 

 Ohaus MB45 Moisture Analyser, 

 Psychrometer, 

 Remmington hot air blower, 

 Davis instruments Turbo Meter ( wind speed indicator), 

 Digital thermometer. 

 

The design of the tunnel dryer was similar to Griffith and Brusewitz‟s (1980) design 

and can be seen in figures 23 and 24. In their design they passed heated air over their 
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samples which were contained in solid wall drying pans. They measured air 

temperature, humidity and dew point before and after the samples. In the current 

study the tunnel dryer had a heat source at the entry which blew hot air over the 

samples. The sample was situated in the centre of the box at a depth of 2.5cm, Figure 

24.  The paunch was enclosed on all sides except the top which allowed the air to 

pass over the sample. Therefore, drying was restricted to the upward direction. The 

psychrometer was placed into a resealable hole in the box lid to enable entry air 

temperature and relative humidity measurements to be taken. Another reading was 

done on the outside of the exit air vent to determine the temperature and relative 

humidity leaving the box. Thermocouples and alcohol thermometers were also 

placed at these locations as a backup means of measuring the temperature (refer to 

appendix 2).  

 

The dimensions of the tunnel dryer were 1.055m x 0.2m x 0.21m. As air can be 

considered a fluid it is possible to calculate the volumetric flow rate (volume of fluid 

passing a point in the system per unit time) of the air passing over the paunch. The 

volumetric flow rate (airflow rate) for inside the box is calculated by: 

 

                            
  

 
                         ; 

 

The cross sectional area is the area perpendicular to the flow rate. Therefore, the 

cross sectional area is the width times the depth of the box, 0.042m
2
.  
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The volumetric flow rate for each temperature is: 

 

 41°C volumetric flow rate = 0.45m
3
s

-1
 

 55°C volumetric flow rate = 0.38m
3
s

-1
 

 72°C volumetric flow rate = 0.39m
3
s

-1
 

 

This volumetric flow rate will allow fan power calculations to be made for future 

dryer designs if the new design is to match the experimental conditions achieved in 

the lab scale tunnel dryer. 

 

 

 

Figure 23 - Tunnel dryer; hot air passes from the entry at left, over the paunch and out the air 

vent at the end on the right. 
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Figure 24- Paunch inside the tunnel dryer. 

 

 

 

 

The moisture contents were measured using an OHAUS MB45 moisture analyser 

(Figure 25). The moisture analyser was used to measure initial and final moisture 

contents for each experimental run. The drying profile for the analyser was a step 

profile, with step 1 set at 200°C for 7 min, step 2 set at 150°C for 1 min, and step 3 

set at 105°C for 37 min, for a total run time of 45 min. This profile was based on the 

operation manuals‟ suggested setting for wet vegetables and tested for repeatability 

for paunch. This operating profile produced dry weight without burning (or overly 

browning) the paunch.  

 

 



 

 

100 

 

 

Figure 25 –The  Ohaus MB45 moisture balance. 

 

 

5.2.7 Experimental procedure 

The collection of data on paunch drying was done on-site at CA. Paunch samples 

were collected as the paunch passed out of the screw press and therefore, all samples 

were less than a day old. The maximum age of paunch on-site at CA is 2 – 3 days 

before removal off-site. The three temperature settings were chosen to represent 

possible solar dryer operating temperatures. 41°C was picked as the lowest setting as 

CA has fairly high daily insolation and 40°C would be fairly easy to achieve with a 

solar dryer. The maximum temperature was picked as a good solar absorber can raise 

ambient temperature by 30°C quite easily. The initial moisture content of the paunch 

was measured in the moisture balance before being placed inside the tunnel dryer. 

The temperature and humidity inside the entry and outside the exit were taken at 
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half-hour intervals for each sample run. The initial runs at each temperature setting 

were done for 1, 2, 3, 4, and 5 hours. At the end of each run the final moisture 

content was measured by the moisture balance. All relative humidities were below 

10% based on Griffith and Brusewitz (1980) results that suggest that fastest drying 

times for paunch occur at relative humidities below 20%. This was a reasonable 

factor as the temperature of the heated air naturally produced relative humidities 

below 20%, except for the lowest temperature setting of 41°C entry air, which had 

humidities above 20% (but below 40%). Multiple initial and final moisture contents 

were taken and the average values graphed. After the data were analysed it was 

decided to run another set of tests for periods of time greater than 5 hours to test the 

experimental   average drying rates (ADRs). The second set of tests were run up to 

12 hrs for 72°C entry air, up to 14 hrs for 55°C entry air, and up to 16 hrs for 41°C 

entry air. 
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Chapter 6: Part 2 – Paunch Results 

 

 

6.1.0 Operating temperature inside tunnel dryer 

The operating temperature and relative humidity of the tunnel dryer were measured 

at half-hour intervals inside the box at the entry and at the exit via the exhaust hole. 

Figures 26 and 27 are examples and demonstrate the variation between entry and exit 

and start up time. As expected, the temperature dropped at the exit due to heat loss/ 

transfer inside the box, and humidity increased at the exit due to air picking up 

moisture (evaporation) from passing over the paunch. Temperature and RH generally 

reached a steady operating range within an hour of start-up. Measurements were 

carried out on hot, cold, and rainy days. However, the operating temperature and 

humidity remained largely consistent for and between each run. Most variation was 

seen on days with high humidity (rainy days), and this can be seen in figure 27 at 

approximately two and a half hours, where there is a slight rise in RH due to an onset 

of rain which increased the ambient RH.  Variations in operating conditions for the 

experiment between runs remained small in all cases. 
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Figure 26 - The variation of entry (i) and exit (x) temperature (Tp) and relative humidity (RH) in the 

tunnel dryer averaged for all 3 hr runs at 72°C entry air. 

 

 

 

 

 

 
 

Figure 27 - The variation of entry (i) and exit (x) temperature (Tp) and relative humidity (RH) in the 

tunnel dryer for   one run at 72°C entry air for 4 hr. The run on this  particular day had a period of rain 

which increased the RH inside the box at two and a half hours into the measurement sequence. 

 

0 

1 

2 

3 

4 

5 

6 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

0 1 2 3 

Tpi Tpx Rhx Rhi 

Te
m

p
er

at
u

re
  (

°C
) 

R
el

at
iv

e
 h

u
m

id
it

y 
(%

) 

Hours of operation 

0 

1 

2 

3 

4 

5 

6 

7 

0 

10 

20 

30 

40 

50 

60 

70 

80 

0 1 2 3 4 

Tpi Tpx Rhx Rhi 

Te
m

p
er

at
u

re
  (

°C
) 

R
el

at
iv

e
 h

u
m

id
it

y 
(%

) 

Hours of operation 



 

 

104 

 

6.1.1 Average drying rates 

 

Paunch drying times varied according to temperature. The average drying rates 

(%ΔMC/ hr)  

for varying temperature (wet and dry basis) for up to 5hrs are shown in table 9. 

These are based on Farmer, Farouk and Brusewitz‟s (1980) equation for an average 

daily drying rate which is given by: 

              ; 

Where MC is the final moisture content, MCi is the initial moisture content, ADR is 

the average daily drying rate, T is time. 

 

 

Table 9- Paunch average drying rates (ADR) for wet and dry basis up to 5 hrs. 

Temperature ADR wet basis (up to 

5hrs) 

ADR dry basis (up to 

5hrs) 

72 °C 6.1  36.4 

55°C 2.8 29.7 

41 °C 2.6 20.7 

 

 

The 72 °C entry air showed a significant increase in the ADR when compared to the 

55°C and 41°C entry air. This variation and increased drying rate for higher 

temperatures was expected due to the theory that increased temperature increases the 

rate of drying. The ADR for 72°C entry air suggests that if paunch continued to dry 

at this rate it would be possible to dry paunch to 20% moisture content in 8 hours. 

However, further experimentation indicated that the ADR changed after 5 hrs(refer 

to appendix 1 for ADR graphs up to 5hrs for 41 and 55°C entry air).  
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Figure 28- Change in moisture content (wet basis) versus time for 72 °C entry air temperature, paunch 

depth 2.5cm, time up to 5hrs. The data points have been fitted with a linear trend line. 

 

 

Further experimental work was done for times greater than 5 hours. The ADR for the 

varying temperatures greater than 5hrs is shown in table 10. A single satisfactory 

ADR was difficult to find for 72°C entry air. There were two distinct rates of change 

between 0-5hrs and >5hrs. The ADR in wet basis shows this most clearly with a 

reduction in ADR of almost half at over 5 hrs of drying time. This is interpreted as 

the second phase of drying, where the ADR drops as it is restricted by internal 

moisture migration. There was a clearly observable drying zone in the paunch at the 

end of each run. There was a clear dry zone on top with a drying zone that extended 

from about halfway through the paunch to closer to the bottom of the container, 

depending on the number of hours the test had run. When the drying zone through 

the paunch was situated about halfway, there was a clear undried zone at the bottom 
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layer of the paunch. Figures 29 – 31 show the change in moisture content versus 

time for varying temperature for wet basis. The slope of the line gives the ADR.  

 

 

Table 10 - Paunch average drying rates (ADR) for wet and dry basis for over 5 hrs. 

Temperature ADR wet basis ADR dry basis 

72°C 3.46 (up to 12hrs) 30.1  

72 °C 6.1 (up to 5 hrs) 36.4 

72 °C 3.03 (over 5hrs)  28.98 

55°C 2.6  17.5  

41 °C 1.3  11.2 

 

 

Figure 29 - Change in moisture content (wet basis) versus time for 55 °C entry air temperature, paunch 

depth 2.5cm, time over 5hrs. The data points have been fitted with a linear trend line. 
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Figure 30 - Change in moisture content (wet basis) versus time for 41 °C entry air temperature, paunch 

depth 2.5cm, time over 5hrs. The data points have been fitted with a linear trend line. 

 

 

 

Figure 31 - Change in moisture content (wet basis) versus time for 72 °C entry air temperature, paunch 

depth 2.5cm, time over 5hrs. The data points have been fitted with a linear trend line. 
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The graphs were fitted with a linear trend line and error bars were based on a 

comparison between the values found for the 2 hour runs at 71 °C air temperature. 

Using percentage error calculations: 

 

                                   

              
      ; 

 

Of the two hour values at 71 °C air temperature the two values that were used were 

chosen as their initial moisture content varied by only 0.88% and were run under 

similar conditions (as were all tests). The resulting variations have been used to 

represent the percentage errors for individual measurements obtained in the 

experiment. The change in final moisture contents for the two values differed by 

1.04% and gave a percentage error of ± 11.21%. 

 

 

6.1.2 Equilibrium moisture content 

Equilibrium moisture contents were based on yellow dent corn which was similar to 

soft and hard wheat moisture content (Grainnet n.d). This decision was made due to 

a lack of access to drying ovens to allow paunch equilibrium moisture contents to be 

determined, and instead use an existing published equilibrium moisture content 

similar to the feed given to feedlot cattle. Table 11 show the wet and dry basis 

equilibrium moisture contents for yellow dent corn. 
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Table 11 - Equilibrium moisture contents for yellow dent corn (wet and dry basis). 

 
Yellow dent corn equilibrium moisture 
content (grainnet n.d). 

Temperature RH 30%  

40° 12% d.b 10.6% w.b 

55° 11% d.b 9.6% w.b 

70° 10% d.b 8.7% w.b 
 

 

 

6.1.3 Drying constant 

 

Drying constants, k, for dry basis were determined based on the drying equation for 

an unsaturated surface: 

      
   ; 

Here MR is the moisture ratio, Mi is the initial moisture ratio, k is the drying 

constant, and t is time (Henderson & Perry, cited in Griffith & Brusewitz 1980, p. 

1016). Where the moisture ratio is given by: 

   
      

       
; 

Here MR is the moisture ratio, M is the moisture content, Me is the equilibrium 

moisture content, Mi is the initial moisture content (Griffith & Brusewitz 1980). This 

equation can be rearranged as: 

         

 
  ; 

 

Thus, setting the initial moisture ratio to zero (as performed by Griffith & Brusewitz 

1980) gives a plot of 
     

 
 where the slope of the line is the drying constant k. 

Equilibrium values for yellow dent corn were used for equilibrium moisture content, 

and the linear regression was forced through zero. Figures 32 to 34 show the graphed 
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data fitted with a linear trend line. Table 12 summarizes these results and 

corresponding R
2
 value. 

 

 

 
Table 12 – Summary of drying constants, K, (dry basis) for present experiment. 

Temperature °C K value R
2
 Time 

72 -0.173 0.195 1 - 12 

55 -0.1187 0.923 1 - 14 

41 -0.0643 -1.237 1 - 16 

 

 

 

 

 

 

Figure 32 - Drying constant ,k,  for 71°C  entry air for up to 12 hours. Data have been fitted with a linear 

trend line. 
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Figure 33 - Drying constant, k, for 55°C entry air for up to 14 hours. Data have been fitted with a linear 

trend line. 

 

 

 
 

Figure 34 - Drying constant, k, for 41°C entry air for up to 16 hours. Data have been fitted with a linear 

trend line. 
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6.1.4 Optimal drying temperature and RH  

 

The results of the measurements performed for this study show that optimal drying 

will require temperatures over 55°C and with relative humidity under 20% if drying 

is to be optimised. Due to the amount of paunch produced each week drying over 

more than a few days (without a very large capacity dryer) would produce an 

unacceptable backlog of paunch to be dried. Simple sun drying is thus not feasible as 

it requires a large spreading area, and up to two weeks drying time. An ageing 

paunch would further slow the drying process as Griffith and Brusewitz (1980) and  

Brusewitz, Moustafa and Farmer (1981) showed that increased paunch age reduces 

drying rates and dewatering, and would also create a need for an extra holding area, 

increased smell, and fly problems. So the need for a dedicated solar dryer is clear, 

and its required operating conditions can be established. 
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Chapter 7: Part 2 – Paunch Discussion 

 

7.1.0 Effect of temperature 

The results indicate the importance of temperature on paunch drying. It is clear from 

the variation of ADRs (1.2 for 41°C, up to 6.1 for 72°C) that higher temperatures 

will result in faster drying times. Theory tells us that there are two stages in drying; 

the evaporative period and the migration of moisture from the interior. Although 

these two stages are intimately linked it is the second phase, where moisture needs to 

be transferred to the surface via diffusion or capillary action to be evaporated, which 

is the limiting factor in drying. By knowing how much drying can be hastened an 

effective solar dryer can be designed. There were two distinct rates of change in the 

drying of paunch between 0-5hrs and >5hrs for 72°C entry air, with the second phase 

of drying apparently occurring after 5 hrs, where the ADR drops by being restricted 

by internal moisture migration. Nevertheless, a second factor that may also be at 

work for longer drying times is that the paunch may be insulating itself through the 

development of an outer crust.  

 

The drying times are limited due to internal migration of moisture and 

experimentation is needed to find how limiting it will be. If the ADR of 72°C air was 

not limited by this then it would be possible to dry paunch in 8 hrs. Experimentation 

is needed to confirm whether it is possible to increase the ADR using methods 

suggested by Farmer, Brusewitz and Moustafa (1979), such as an open mesh tray, or 

agitation of the crust, and by manipulating the operating conditions that affect the 

second phase of drying. If these strategies could be used to increase the ADR it may 

be possible to reduce the moisture content to 20% in as short as 8 hrs (based on the 
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ADR of 6.1 for 72°C air). The existence of a drying zone that was observable for 

each run leads to a reasonable assumption that paunch can be dried at a faster rate 

than the discovered ADRs. This assumption is based on the fact that drying in the 

experiment was limited to the upward direction. By stirring the paunch or placing it 

in mesh holders will increase the surface area of the paunch, thus reducing the 

distance/path length needed to be travelled by the moisture. Clearly the ADRs would 

be much higher had the undried and drying zones also been exposed to the surface 

air conditions. 

 

7.1.1 Viability of paunch for use in boilers 

The experimental ADRs suggest that the time required to dry paunch may make it a 

viable option as a renewable energy source. Yin and Farmer (as cited in eds 

Witherow & Scaief 1976) sun dried (air dried) paunch in week, Bridle (2011) sun 

dried paunch in two weeks, Farmer, Farouk, and Brusewitz (1980) used a modified 

solar still to dry paunch to 30% in 5 days. This makes it feasible to expect that a well 

designed solar dryer at CA can achieve an ADR approaching the experimental 

results in this study and should be able to dry paunch in a few days, thus making 

paunch a viable energy source. 

 

It is also interesting to note that Nippon meat packers conducted studies on burning 

70% paunch mixed with 30% sawdust in their boiler. They bought a new $77 000 

screw press to dewater their paunch to a moisture content of 47 – 49%. This firm had 

success with the boiler performance but were experiencing inconsistencies with the 

paunch from the screw press and were therefore unable to fully integrate paunch as a 

fuel source. This firm also stated that sun drying of paunch was not a viable option 
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for them due to the large area that would be required for spreading the paunch 

(Triance, A 2012, pers. comm., 16 May). In this case a solar dryer may thus allow a 

more consistent fuel source to be created. The screw press would create lower 

paunch initial moisture content for the dryer and increase drying times.  

 

A possible solution for the problem of waste particle size and bulk density when 

burning paunch in a boiler (Bridle 2011) is to use a cheap pelletizer after paunch 

drying to allow easier feeding into boilers and storage. Global Energy produce a 

portable pellet mill that costs $6 400 and can pelletize 650 – 750 kg per hour 

(Bartlett n.d). This machine should be capable of handling the amount of paunch 

produced by CA with quite a low capital cost. However, no study has yet been done 

on pelletizing dried paunch and it would be interesting to determine if this was a 

suitable method for handling and storing dried paunch. 

 

Paunch has a self-sustaining flame when the total solids are ≥ 30% (eds Witherow & 

Scaief 1976, Bridle 2011).  Figure 35 graphically demonstrates that for inconsistent 

initial moisture content all final moisture contents are >30% for 72°C entry air, and 

are achievable in less than 15 hrs. 
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Figure 35 – Initial and final total % total solids versus time for 72°C entry air. All final total solids are 

>30% and were achievable in under 24hr. 

 

 

Water content impacts boiler output, is boiler specific and can be found in boiler 

specification sheets. Hatt (1997) states that boiler efficiency loss is approximately 

0.1% for each 1% increase in MC. Coal ranges in MC depending on the type: 

 2.8 – 16.3% for anthracite, 

 2.2 – 15.9% for bituminous, 

 39% for lignite (Engineering toolbox n.d). 

CA currently uses coal with an inherent MC of 4.2% and a total MC of 6.5%. They 

then spray the coal with a mist to stick the finer coal (dust) particles to the larger coal 

stones (1 inch). This produces a total MC of 9 – 10% entering the boiler. If boiler 

output drops due to MC it is possible to increase the feed rate of the boiler to 

increase the output. However, this would significantly decrease the financial viability 

with the increased coal usage. In contrast, a more efficient way is to decrease the 

initial moisture content of the feedstock, in this case paunch. Therefore, for efficient 
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boiler output paunch should have a substantially lower MC than 70% (w.b). Also, as 

stated by Bridle (2011) burning paunch with 70% moisture content would only be 

suitable as a waste disposal method with the paunch itself providing little or no 

energy. Therefore, there are two ways to lower the moisture content. The first is 

using a solar dryer to lower the moisture content and the second is to mix the paunch 

with a dryer substance. It may be possible to mix the paunch with the coal prior to 

entering the boiler. This could act as a substitute for spraying the coal and capturing 

the finer dust particles.  However, due to the need for thorough mixing to achieve a 

consistent MC it may not prove economically viable to pre-mix the paunch with 

coal.  

 

 

 

7.1.2 Comparison of results with previous research 

Farmer, Farouk, and Brusewitz (1980) found an ADR  of 30.5 % ΔMC d.b per day 

for their solar dryer (a modified solar still) using direct insolation. The authors‟ 

ADRs ranged from 1.27 to 2.73 % ΔMC d.b per hour for direct insolation and 

desiccant drying. The present experimental ADRs ranged between 11 to 36 % ΔMC 

d.b per hour. This is a rate up to 24 times greater than Farmer, Farouk, and 

Brusewitz‟s (1980) value.  

 

Comparison between Farmer, Farouk, and Brusewitz (1980) and the results of the 

present study is difficult as Farmer, Farouk, and Brusewitz (1980) had ambient 

temperatures between 10 - 25°C, with operating temperatures of 15 - 50°C at the 

high end of their dryer and 15-35° at the low end. It took Farmer, Farouk, and 

Brusewitz (1980) 5 days (compared to the present experiments 12 hrs) to reach 
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similar final moisture content from comparable initial moisture contents. It took 

these authors 6 hrs to reach just below 50°C at the high end where it then started to 

drop over the next 4hrs to below 40°C. Therefore, Farmer, Farouk, and Brusewitz‟s 

(1980) stated ADR is only useful for their dryer design, and not a true value for 

average drying rates of paunch as it includes large variations in temperature such as 

those experienced between day and night the dryer would have been inactive. The 

work of Farmer, Farouk, and Brusewitz (1980) suggests that during each night the 

paunch would have been undergoing much slower drying rates as it tried to reach 

equilibrium with the conditions inside the box. Therefore, as it is expected that 

Farmer, Farouk, and Brusewitz‟s (1980) drying mostly took place in the peak 

temperature range (not in the whole 24hr period), their true drying rate could be 

orders of magnitudes greater than that published. The experimental ADR from the 

present study were measured with consistent temperature and RH and give a more 

precise in time indication of the hourly changes of moisture content for paunch at 

those conditions. 

 

It is interesting to note that Farmer, Farouk, and Brusewitz (1980) stated that their 

dryer would be suitable for use as a straight direct insolation dryer in areas with 

higher insolation. Their insolation for the testing of the dryer ranged from 4.45 – 

14.27 MJ/m
2
 per day. Ipswich has on average per day an insolation of between 18 – 

21 MJ/m
2
 which is significantly higher. This suggests that Farmer, Farouk, and 

Brusewitz‟s (1980) dryer would perform better in Ipswich, with higher internal 

temperatures, and faster dryer rates. 
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Griffith and Brusewitz (1980) measured a drying rate constant, k, of 0.005 to 0.108 

/hr for their preliminary results and an average rate of 0.0117 /hr for their main 

experiment. In comparison, the new experimental k values obtained varied from 

0.0643 to 0.1703 /hr. While these fall within the range given by Griffith and 

Brusewitz (1980) caution should be exercised in making direct comparisons with the 

results from the present study. This is because while both experiments have similar 

designs, Griffith and Brusewitz‟s (1980) experiment used a lower temperature of 

35°C, and used RH that ranged higher, up to 80%. Griffith and Brusewitz‟s (1980) 

results also used paunch from just three different cows whereas the present 

experimental results used paunch obtained from the screw press at CA, for each 

separate run, with the paunch being either grass or grain fed in origin, or a mixture of 

both, from many cows. 

 

Another point of difference between the present study and Griffith and Brusewitz‟s 

(1980) study is that equilibrium moisture content has been derieved differently. 

Griffith and Brusewitz‟s (1980) results used an experimentally acquired equilibrium 

moisture content for paunch that was not published in the paper, so the present 

experiment has used a published estimate from the literature based on yellow dent 

corn which should be similar to paunch. In addition, Griffith and Brusewitz‟s (1980) 

experiments were run from 1 to 88hrs (3.6 days) whereas the present experiment was 

operated for less than 1 day for each set of temperatures, which ranged up to 71°C 

compared to Griffith and Brusewitz‟s (1980) 35°C.   

 

Temperature plays an important part in both the evaporative and internal moisture 

migration stages whereas humidity is only of importance during the evaporative 
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stage. As a result, a comparison of drying rates between Griffith and Brusewitz‟s 

(1980) and the present experiment is difficult, as the present experiment used 

varying temperatures which affected both stages of drying, whereas Griffith and 

Brusewitz‟s (1980) related only to the evaporative stage. Given that the present 

experiment operated at a higher temperature, lower humidity than Griffith and 

Brusewitz‟s (1980), the similarity of the resulting drying constants (0.0643 to 0.1703 

/hr, 0.005 to 0.108 /hr, 1.17 /hr) remains surprising. Theory (refer section 2.2.4) 

suggests that higher temperature and lower humidity will have an increased effect on 

drying times.  It appears more likely that Griffith and Brusewitz‟s (1980) drying 

constant has a typographical error and if out by a factor of 10
-2

 we get a more 

reasonable comparison. Figure 36 demonstrates the final moisture ratio obtained 

using the drying constant, k, in the exponential equation e
-kt

.  Series A represents the 

believed error in Griffith and Brusewitz‟s (1980) paper with series B being the 

corrected value. Series C, D, and E represent the k value found in the present 

experiment for 41, 72, and 55°C entry air respectively. Series A shows that if this 

constant was correct then it would reach a zero moisture content in approximately 5 

hrs. From the present experiment it is clear that 35°C air with changing RH will not 

dry paunch in this time. Series B with the corrected drying constant for Griffith and 

Brusewitz‟s (1980) leads to a more reasonable outcome. 
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Figure 36 - Griffith and Brusewitz‟s (1980)  and present experiment  k values. The A series (-1.17)  is the 

believed typographical error in Griffith and Brusewitz‟s (1980) paper  and series B (-0.0117) is the 

corrected value. Series C, D, and E are the present experiment values for 41, 72, and 55°C respectively.  

 

 

From Farmer, Farouk, and Brusewitz‟s (1980) solar dryer design it is known that it is 

possible to dry paunch in 5 days. Yin and Farmer (as cited in eds Witherow & Scaief 

1976) used air drying to reach a final moisture content of 16 – 20% in one week. 

Griffith and Brusewitz (1980) demonstrated the relationship between RH, age, and 

depth of paunch. The experimental ADRs and k values show that it may be possible 

using higher temperatures to significantly increase the drying rate. Therefore, it 

should be possible to dry paunch within a maximum of 5 days, using Farmer, 

Farouk, and Brusewitz‟s (1980) solar dryer design as a baseline.  

 

One way to create a more consistent dryer would be to change the dryer design and 

to use some of the abattoir excess heat as an initial air source for the solar absorber. 
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CA has a pipe that feeds the biofilter that contains air with a temperature of 34.3°C 

and a RH of 30.5% it could be possible to feed this air through an absorber and 

hence a solar dryer and then feed it back to the biofilter (to contain the smell). This 

would mean that on low insolation days with low ambient temperatures the air inside 

the dryer would still remain above 30°C which is higher than the maximum ambient 

conditions used in Farmer, Farouk, and Brusewitz‟s (1980) solar dryer.  In contrast, 

the heated air produced using a biofilter pipe should lead to similar temperatures to 

Griffith and Brusewitz‟s (1980) study and so produce a similar drying constant. 

 

7.1.3 Limitations of the present research  

The experimental results are limited due to a number of factors: 

 Direction of drying (moisture transfer in upward direction), 

 Uncontrolled ambient temperature and humidity, 

 No separation of grass from grain fed cattle paunch. 

As the paunch was placed in an enclosed holder (pan) the direction of moisture 

transfer to the surface was limited to the upward direction. This is similar to Griffith 

and Brusewitz (1980) study and allowed favourable comparison with their work. 

Other factors that may have affected the results were uncontrolled ambient air 

temperature and humidity outside the box. This contributed to slight variations of 

temperature and humidity inside the box due to ambient air passing into the box after 

being heated by the Remington hot air blower and by changing the temperature of 

the air surrounding the box which may have increased or decreased the operating 

temperature due to heat transference between the box and ambient air. However, the 

box was constructed out of wood and lined with thick plastic sheeting which made 

the box fairly insulated and therefore, transfer of heat was kept to a minimum. Only 
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at the highest temperature setting did the plastic lining showed some signs of 

deformation.  

 

It is noted that there was no separation of grass or grain fed paunch in the present 

study. Previous literature suggests that there can be an increase in drying times up to 

five times greater for grain fed cattle as opposed to grass fed (Farmer, Brusewitz & 

Moustafa 1979). 

 

The limitations in comparing the present results with similar research do not impede 

the validity of the present results. In real-world situations any solar dryer will be 

exposed to uncontrolled ambient air conditions. In addition, it is not reasonable to 

expect paunch types to be separated before drying. Therefore, drying rates should be 

able to encompass mixed feed ration types of paunch.  

 

7.1.4 Active dryers as an effective design 

Tunnel dryers appear to be the most effective design for paunch drying. The drying 

times for paunch vary from one to two weeks for sun drying, to possibly 8 hours as 

found by the present study (Yin & Farmer as cited in eds Witherow & Scaief 1976, 

Bridle 2011). A modified solar still dried paunch to 30% in 5 days which is only 

slightly better than the air drying rate (Farmer, Farouk & Brusewitz 1980). The most 

promising rates appear to be for the tunnel dryer type design with drying constants 

that imply a maximum of a couple of days (Griffith & Brusewitz 1980). The 

experimental design forms the basis of a modified tunnel dryer design with the 

expectation that it will be the most likely candidate for scaling up into an industrial-

sized paunch dryer. 
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Chapter 8: Conclusions and future work 

8.1 Conclusions 

Of the renewable energy sources assessed in part 1, none were found to be cost-

effective at current electricity prices. Photovoltaics may soon however become 

viable if the cost of electricity rises and capital costs drop. Wind turbine energy 

shows little hope of ever becoming viable for implementation at CA due to the lack 

of high wind speed at the site, and algae for uses other than biodiesel shows promise, 

but further study needs to be done.  

Photovoltaics offer a promising solution to reducing GHG emissions by replacing 

fossil fuels. The embodied energy shows that they will repay their environmental 

debt and continue to produce emissions free energy (Steenblik 2005). Research and 

development will help to improve cell efficiencies and production which will help to 

reduce the cost of PV systems. These costs could be further reduced by 

governmental policy which encourages the use of renewable energy over fossil fuels. 

The current rate at which photovoltaic technology is being implemented shows that 

there is an increasing global move towards renewable energy technology. This move 

towards renewables if coupled with further development and policy could well see 

photovoltaics playing a much larger part in world energy production. With changing 

electricity prices and dropping PV capital cost PV will likely be viable for 

implementation at CA in the near future. 

 

Paunch is the most likely organic waste candidate for CA to implement to produce 

energy. The preliminary results provided in this thesis support the hypothesis that 

solar dried paunch is a viable Biofuel for CA. The preliminary average drying rates 
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(1.2 up to 6.1 w.b) and drying constants (0.0643 to 0.1703 d.b) show that increased 

temperature increases the drying rates previously shown in the literature. The 

average dying rates will allow drying times to be determined depending on the 

specific parameters inside a solar dryer. The apparatus used for the experiments in 

this study appears to form the basis for an industrial dryer, as opposed to previously 

tested modified solar still designs. 

 

The results provided in this study indicate that solar drying of paunch holds promise 

as a cost-effective source of biofuel for abattoirs This will not only benefit CA but 

will then be easily implemented into the wider abattoir community and help them to 

reduce their environmental foot print and lower their energy costs, and help create a 

sustainable future. 

 

 8.2 Future work 

Algae for the production of biodiesel does not appear feasible for CA. However, 

algae for cleaning up wastewater or for methane production may have benefit to the 

meat industry. The study done by Fallowfield, Cromar, and Evans (2001) confirms 

that abattoir wastewater is suitable for growing algae and shows that it can have a 

beneficial effect on removing 95 – 99% of the BOD, 73 – 80% of the COD, 50 – 

60% of the nitrogen, and 14 – 28% of the phosphorous from the wastewater. David 

Batten and a team from CSIRO have developed a comprehensive pre-feasibility 

model for growing algae in wastewater (Batten, D 2011, pers. Comm., 15 February). 

Originally developed for a Melbourne sewerage treatment plant the model can be 

adapted for other sites. The model can produce different feasibility scenarios such as 

algae for use in a gasifier or anaerobic digester. Therefore, use of CSIRO‟s pre-
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feasibility model could produce relevant data for CA and may be feasible grounds 

for a pilot study on integrating algae into abattoirs. 

 

Photobioreactors in conjunction with open ponds may be a solution for abattoirs to 

allow them to grow algae. Huntley and Redalje (2007) developed the coupled 

photobioreactor-open pond cultivation system to solve the problem of open pond 

technology being affordable but unable to provide continuous cultures, while 

photobioreactors are able to provide continuous cultures but were not aimed at 

smaller industrial application. Their solution was to incorporate both systems into 

their designs. Closed photobioreactors are used for the first stage to produce a 

continuous supply of uncontaminated inoculum in large volume. Open ponds are 

used in the second stage where the most rapid growth rates occur. This system is 

continuous due to the bioreactors ability to supply new inoculum and the short algae 

retention time in the ponds. The algae only remained in the ponds for 1 day which 

removed the risk of contamination that ponds are normally susceptible to (unless the 

algae grown is of a type that has a high tolerance to extreme environmental factors). 

The batch cultures in the open ponds also quickly exhaust the nutrient supply also 

helping to avoid contamination by other species and also to increase the rates of oil 

productivity (Huntley & Redalje 2007), so the photobioreactors supply the initial 

culture and the open ponds grow the culture and also allow for greater oil content by 

the rapid removal of nutrients in the ponds. The removal of nutrients from the ponds 

is important as generally high oil strains of algae grow slower than lower oil strains 

(Vasudevan & Briggs 2008). This is how ponds quickly get contaminated by the 

unwanted lower oil species. The commercial scale demonstration facility for 

biodiesel production was run using this two stage approach for over a year and had 
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an average biomass energy production of 763GJ ha
-1

y
-1

(Huntley & Redalje 2007). 

Wang et al. (2008) state that this system is feasible, if fast growing algal species are 

used. 

 

However, big bag photobioreactors appear to be an appropriate technology for 

industries that are not producing biodiesel as their main output. Smaller industries 

and industries, such as abattoirs, using photobioreactors to clean up waste water, 

capture CO2 emissions and to produce biodiesel for private use would make more 

economic sense to use the big bag system. These systems are not continuous but 

have cheap structural costs and over 30 years of proven algal output. The culture 

crashes are easily remedied by bag replacement and research could be done into the 

possible effectiveness of bag rinsing or turning the bags inside out to limit the 

amount of bags used. They could also be used alone or in conjunction with open air 

ponds.  

 

Further study could be done into the feasibility of a central processing plant where 

small industry could send the biomass for processing into biodiesel or other resalable 

uses such as feedstock. Sun drying of the algal biomass would make storage and 

transportation easy. A central processing plant could allow small industry the 

benefits of algal production without the cost of transesterification (turning the algae 

into biodiesel) for possible “small” amounts of biodiesel. A buy back scheme could 

also be implemented for the industries involved to be able to gain access to the 

biodiesel. Algae left over from the transesterification process could then be a cheap 

high protein stock feed for the wider meat industry such as livestock producers. 
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These strategies could then make photobioreactors viable for smaller industries or 

industries not wishing to produce biodiesel as their main product. 

 

5.3 Paunch 

The ADRs obtained are precursors to paunch becoming a viable biofuel. Future work 

will involve testing the ADRs to increase the drying rates. Farmer, Brusewitz and 

Moustafa (1979) suggest that drying times can be almost halved by using mesh 

holders or agitating the crust. Instead of finding more ADRs for enclosed bottom 

pans a better use of the time would be acquiring ADRs for mesh holders, breaking 

the crust, and continuous stirring to determine which of these will produce the fastest 

rate. This will then lead to the design of the drying chamber component of the solar 

dryer. During these tests it will be possible to concurrently acquire the “best” drying 

parameters. Longer drying times also need to be determined to see if it is possible to 

reach 20% final MC in a timely fashion. This would then allow a conclusion to be 

drawn as to whether solar drying paunch would be suitable for use in pyrolysis. 

Another interesting study would be creating a drying chamber based on the results of 

the ADRs for different holders. This could be attached to the pipe at CA that feeds 

into the biofilter. This pipe looks to be an effective air source for a solar dryer as it 

has a temperature of 34.3°C and an RH of 30.5%. The drying chamber could be built 

without (yet) the need for an absorber and used to test minimum drying times that 

could be achieved without a solar absorber included. This would help determine the 

most effective drying chamber design in conjunction with the ADRs as well as 

provide the baseline drying times for cloudy days when there is low solar insolation. 
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Solar dryer types need to be evaluated to determine the most effective design. A 

definite focus should be on active dryers as opposed to passive dryers and tunnel 

type dryers over solar still designs. Absorbers should be investigated and a pilot size 

absorber should be built to allow air temperature and RH measurements to be 

determined. Fan power and air flow rates will need to be determined. Once these 

factors are known then it would be possible to make predictions for drying times in 

the solar dryer. 

Stockpiling would also be interesting to test to see if there are any advantages to 

using this method before drying the paunch (eds Witherow & Scaif 1976).  
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APPENDIX 1 -  ADR graphs  for 55°C and 41°C entry air. 

 

 
 

Figure 37 - Change in moisture content (wet basis) versus time for 55°C entry air temperature, paunch 

depth 2.5cm, time up to 5hrs. The data points have been fitted with a linear trend line. 

 

 

Figure 38 – Change in moisture content (wet basis) versus time for 41°C entry air temperature, paunch 

depth 2.5cm, time up to 5hrs.The data points have been fitted with a linear trend line. 
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Figure 39 - Change in moisture content (dry basis) versus time for 55 °C entry air temperature, paunch 

depth 2.5cm, time over 5hrs. The data points have been fitted with a linear trend line. 

 

 
 

Figure 40 - Change in moisture content (dry basis) versus time for 41 °C entry air temperature, paunch 

depth 2.5cm, time over 5hrs. The data points have been fitted with a linear trend line. 
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APPENDIX  2 – Example data for tunnel dryer monitoring 

 

Example of the operating temperature and humidity monitoring done for the tunnel 

dryer. 
Table 13 – Example table of data collected for each run of the present experiment. T1 and T2 are the 

thermocouple reading for temperature, Rhi is the entry relative humidity, Rhx is exit relative humidity, 

Tpi is entry psychrometer temperature reading, and Tpx is exit psychrometer temperature reading. 

test 1C 10.8.11 ambient  11. 5 thermometer  

high grain content <1 day old   

    Tp psych temp 

Time 8.30am  %  °C 

T1 51 Rhi 6.1 Tpi 58 

T2 47 Rhx 8.1 Tpx 48.1 

      

Time 9.00am     

T1 71 Rhi 4.6 Tpi 64.1 

T2 61 Rhx 6.4 Tpx 60.1 

      

Time 9.30am     

T1 77 Rhi 3.4 Tpi 69.2 

T2 67 Rhx 4.8 Tpx 65.1 

      

Time 10.00am     

T1 75 Rhi 3.5 Tpi 68.6 

T2 66 Rhx 4.8 Tpx 64.4 

      

Time 10.30am     

T1 79 Rhi 3.1 Tpi 70.6 

T2 69 Rhx 4.3 Tpx 66.1 

      

Time 11.00am     

T1 79 Rhi 3 Tpi 69.9 

T2 69 Rhx 4 Tpx 67 

      

Time 11.30am     

T1 77 Rhi 2.9 Tpi 70.4 

T2 70 Rhx 3.8 Tpx 66.7 

      

Time 12.00pm     

T1 78 Rhi 2.9 Tpi 70.4 

T2 71 Rhx 3.6 Tpx 67.7 

      

Time 12.30pm     

T1 80 Rhi 2.4 Tpi 73.1 

T2 72 Rhx 3.1 Tpx 69.5 

      

Time 1.00pm     

T1 77 Rhi 2.4 Tpi 73.1 

T2 69 Rhx 3.1 Tpx 67.7 
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APPENDIX 3 – PV theory 

 

PV‟s work due to the discovery of the photoelectric effect and the later development 

of doped semiconductor material. The photoelectric effect is where a metal ejects 

electrons when its surface is exposed to light. This is due to an energy transfer from 

a single photon to an electron in the metal. The energy of the ejected electron is 

independent of the light intensity. What this lead to was the idea that light was 

quantized (bundles of energy called photons) and that the energy, (E), of the light 

quanta (photon) was proportional to the frequency of its electromagnetic wave, given 

by: 

hf
hc

E 


 

Where h is Planck‟s constant, c is the speed of light, λ is the wavelength, and f is the 

frequency. 

 

The photoelectric effect can be separated into two groups: the internal and external 

photo electric effect (photoionisation). The internal effect applies to photons (such as 

visible light) without enough energy to ionize an atom but with enough energy to 

elevate an electron from the valence band into the conduction band. The external 

photo electric effect (ionisation energy) generally applies to x-rays and has enough 

energy to totally separate an electron from its nucleus and thus ionize the atom. The 

internal photoelectric effect applies to PV‟s as they use lower energy photons than x-

rays, mainly visible, ultraviolet and infrared. The transition of the electrons from the 

valence band to the conduction band creates an electric current. The band gap energy 

is the term used to describe the energy needed to move an electron from the valence 

band to the conduction band. The conduction band being the band that allows 
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electrical conductivity. If the energy of the light is greater than or equal to the energy 

of the conduction band minus the energy of the valence band, Elight ≥ Ec – Ev , then 

electrons can be photo-excited from the valence into the conduction band (Sorensen 

2004). 

 

There are three types of solids: insulators, semiconductors, and conductors (see 

figure 41). Insulators have empty conduction bands and require large amounts of 

energy due to their high band gap to jump electrons into the conduction band. Thus, 

insulators have high electrical resistance. Conductors have a partially filled 

conduction band and have low electrical resistance. Semiconductors have an empty 

conduction band but unlike insulators they have a low band gap energy. Thus, due to 

the inner photoelectric effect electrons can be elevated to the conduction band easily. 

PV‟s use semiconductor material for these reasons: they behave as insulators without 

the presence of radiation, and they can generate current due to the photoelectric 

effect (Quaschning 2007).  

 

 

Figure 41 - Conductor, semiconductor and insulator energy bands. Insulators have a full valence band and 

high band gap energy which makes them have high electrical resistance. Semiconductors have a full 

valence band but a low band gap energy which allows them to behave as a conductor in the presence of 

radiation. Conductors have a full valence band and partially filled conduction band which makes them 

have low electrical resistance. (Quaschning 2007). 
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The intrinsic conduction of semiconductors is due to holes that are formed when an 

electron is moved into the conduction band due to radiation. There are always equal 

amounts of holes and electrons as shown in the equation n = p where n (negative) is 

the electron density and p (positive) is the hole density. PV‟s use joined doped 

semiconductor material to create electrical energy differences thus removing the 

need for an externally applied electrical voltage. Doped semiconductors have an 

impurity added to them to either increase the amount of loosely bonded electrons (n-

doping, donors) or to increase the amount of holes (p-doping, acceptors). The loosely 

bonded electrons in the n-type semiconductor require little energy to be separated 

from the atom and are thus free electrons. In n-doped material the electrons are the 

majority carriers and in p-type material the holes are the majority carriers 

(Quaschning 2007). 

 

A p-n junction is created when the n and p- type material are placed together. This 

forms the principal concept of how PVs work. The holes and electrons diffuse from 

n to p and p to n type regions, due to the creation of a concentration gradient, 

forming positive and negative space charge regions (see figure 42). This leaves a 

build up of negative charge in the p-type region and a positive charge in the n-type 

region near the junction that form a dipole layer, (a dipole being a pair of electric 

charges with equal magnitude but opposite sign.), with an electrostatic potential 

difference. The electrostatic potential difference will hinder more electron flow until 

equilibrium is reached. Therefore, when PVs are in the dark with no external voltage 

there is no net current across the junction (Sorensen 2004). Once equilibrium  
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is reached a diffusion voltage (Vd) or built in voltage is produced between the n and 

the p regions: 
















2
ln

i

da
d

n

nn

e

kT
V  

Where 
e

kT
VT   thermal voltage (PVs are temperature dependent and cannot operate 

at absolute zero and conductivity decreases at low and high temperatures.), k = 

Boltzmann constant, T = temperature in Kelvin‟s, e = electron charge, na and nd are 

acceptor and donor concentrations, and ni = intrinsic carrier density.  

The space charge region width (d) is given by: 
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nn

nn

e

U
ddd
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Where ε0 = permeativity of free space, εr = relative permativity, nA and nD are the 

donor concentrations, e= electron charge, Ud = (Vd – V) diffusion voltage minus the 

applied bias (Quaschning 2007). 

 

 

 

Figure 42 - P-n junction (Quaschning 2007). 
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APPENDIX 4 – Wind theory 

 

 
Figure 43 - The diagram shows air circulation and global wind patterns. Wind is formed due to the rising 

of hot air (heated by the sun) and the sinking of cool air (Simmons 2006). 

 

 

Wind is caused by the movement of atmospheric air mass. This movement is due to 

differences in atmospheric pressure caused by the differential heating of the earth‟s 

surface. This differential heating is due to the curvature of the earth‟s surface which 

means that the suns rays have more atmosphere to travel through as the latitude 

increases. Therefore, the solar radiation passes through greater depth of atmosphere 

and thus faces more absorption and scattering. This is why the tropics are hotter than 

high latitude regions (Boyle 2004). As air is warmed by solar radiation it becomes 

less dense and rises being replaced by denser cooler air. This can also lead to 

localised wind forming in mountain valleys and coastal areas (Boyle 2004).  
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Wind turbines convert the kinetic energy contained in the wind into electrical energy 

by the rotation of their blades. Wind power is the term given to the kinetic energy 

contained in the wind and is given by: 

35.0 AVP   

Where P is the power in Watts, ρ is the density of air in kg m
-3

 (density of air at sea 

level is 1.2256 kg m
-3

), A is the area in m
2
, and V is the velocity in m s

-1 
(Boyle 

2004). This equation is derived from the equation for kinetic energy in joules: 

2

2

1
mvK   

Where K is the kinetic energy of a particle (J), m is the mass of the particle (kg), and 

v is the velocity (m/s).  

The wind power (P) is then the mass (particles) of wind moving perpendicular to a 

plane of area (A). This movement is the rate of energy of the particles per unit time 

(J/s) which is given the term power in watts. Which can be expressed as: 

25.0 v
dt

dm

dt

dE
P   

Where P is the power (W), dE/dt is the rate of energy per unit time (J/s), dm/dt is the 

rate of mass (particles) per unit time (kg/s), and v is the velocity (m/s). 

Then the amount of air that has passed through the plane is calculated (distance 

through plane) for a certain amount of time. The volume of air is area times length 

and the mass is area times length times density or: 

ALm   

Where m is the mass (kg), ρ is the density of air (kg/m
3
), A is the area (m

2
), and L is 

the distance travelled by the air.  
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Therefore: 

Av
dt

dL
A

dt

dm
   

Where dL/dt is velocity. 

Therefore, substituting dm/dt into the power eqn: 

32 5.05.0 Avv
dt

dm

dt

dE
P   (Tyree 2008). 

 

However, Sen (2003) states that this equation is not quite correct and suggests that 

another derivation based on first principles will supply a coefficient of 
3

1
 instead of 

2

1
 in the wind power equation. This difference is based on the assumption that the 

kinetic energy equation used in the classic version is valid for solid materials with 

constant mass and that the new equation bases its assumptions on air being fluid and 

therefore uses force and energy to derive its equation. The derivation for the new 

equation is as follows: 

maF    

Where Newtons second law states force = mass x acceleration. 

dt

dv
mF   

Where dv/dt is wind speed (v) during time (t). 

Using Avtm   where m is mass, ρ is the density of air, A is area, v is velocity, and 

t is time in above equation then, 

dt

dv
AvtF   

Using the work-energy theorem, then force times distance (dl) gives, 
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dt

dvdl
AvtFdldE   

Where 
dt

dl
v  , the change in length divided by the change in time is the definition of 

velocity gives, 

tdvAvdE 2  

Integrating both sides  

  tdvAvdE 2  

                     
3

3

1
AtvP   (Sen 2003). 

 

For this thesis however, any use of the wind power equation will use the classic 

kinetic energy derived equation. 

 

The wind power equation shows three important relationships. Wind power is 

proportional to:  

1. Air density, Air density is lower at higher elevations and in tropical climates 

compared to cold climates. 

2. Area through which the wind passes,  

3. Velocity cubed has a strong influence on power output (a small rise in 

velocity equals a large rise in output) (Boyle 2004). 

 

Another factor affecting the available power contained in the wind is wind shear 

which is the change in wind speed at different heights. Wind speed increases with 

height where there is less friction and turbulence. Wind shear is low when surfaces 

are smooth and high when there are numerous factors introducing friction and 
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affecting the flow of the wind (Gipe 2004). The speed loss at lower heights is due to 

friction at the Earths surface, caused by mountains, buildings, trees and other 

obstructions. As with a lot of naturally occurring effects the increase of wind speed 

with height is not always true and there are rare instances when the opposite happens 

and wind speed can decrease with height. However, it is appropriate to assume that 

wind increases with height and Gipe (2004) states that there are two main methods to 

estimate the effect of wind shear; the logarithmic model and the power law equation. 

Gipe (2004) states that the power law equation is the most effective as it is based on 

real data and is more conservative than the logarithmic model. The power law 

equation is given by: 

o

o

V
H

H
V













  

Where V is the new wind speed, Vo is the initial wind speed, H is the new height, Ho 

is the initial height, and α is the wind shear exponent. The wind shear component is 

given by: 













oz

z
ln/1  

Where α is the wind shear exponent, z is the reference height, zo is the surface 

roughness length (Molly, cited in Gipe 2004, p. 41). Often an exponent of 1/7 is used 

to calculate the wind shear (Gipe 2004). However, Farrugia (2003) states that the use 

of the 1/7 power law could lead to underestimation of long-term mean wind speed. 

Farrugia (2003) found that measurements made at a Mediterranean site were 17% 

higher than the extrapolated value given by using the 1/7 power exponent.  
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Using the equation for wind power, the area swept out by the turbine blades, and the 

maximum energy conversion efficiency of the turbine then the maximum power 

output of the wind turbine (Betz limit) is given by: 

3241083.2 vDP   

Where P is the maximum power output in kW, D is the blade diameter in metres, v is 

the wind velocity in ms
-1

 (Hinrichs & Kleinbach 2006). Figure 44 shows the 

maximum theoretical output for a wind turbine based on wind speed and blade 

diameter. The graph demonstrates the relationship between power output and blade 

diameter. Increased blade diameter increases power output. 

 

Figure 44 -  The maximum theoretical output for a wind turbine based on wind speed and blade diameter 

using the equation: 
3241083.2 vDP  . 
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Lift and drag forces 

 

Wind turbines operate due to the transfer of force from a fluid (air) to a solid object. 

Lift and drag are terms used in aerodynamics to explain the force experienced by an 

object in an air stream. Lift and drag are two component forces that act in 

perpendicular directions. The magnitude of these forces is affected by the shape of 

the object, its orientation to the direction of the air stream, and the air stream 

velocity. The drag force acts in the direction of the air stream while the lift force acts 

perpendicular (90º) to the air stream (Boyle 2004). 

 

 

Figure 45 - The diagram demonstrates the lift and drag forces acting perpendicular to each other (First 

flight n.d). 

 

The drag force is referred to as streamline when the object is designed to minimise 

the drag force. The drag force equation is: 

2

2

1
AvCD   

Where D is the magnitude of the drag force in Newtons, C is the drag coefficient, ρ 

is the air density in kilograms per cubic metre, A is the cross sectional area 

perpendicular to the velocity in metres squared, and v (in this case) is the velocity of 
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the air stream in meters per second (Halliday, Resnick & Walker 1997). From the 

equation it is possible to see that drag depends on A and v. If an object such as a 

plate had its flat side perpendicular to the direction of v, it would have maximum 

drag. If the plate has its flat side inline with the direction of v, its drag force would 

be at a minimum (Boyle 2004). 

 

 

Lift force is where air flows at higher speeds along the upper body of an object and 

lower speeds along the underside of an object which results in a lower pressure 

above the object and a higher pressure below. Thus, there appears to be a suction 

force on the object in a direction perpendicular to the direction of the velocity. The 

relationship between air speed and pressure is known as the Bernoulli effect (Boyle 

2004, Quaschning 2007). Although the word lift is used it is also possible for the lift 

force to act in a sideward or downward motion depending on the application as well 

as in an upward motion (Boyle 2004). The lift force is given by: 

2

2

1
AvCL   

Where L is the magnitude of the lift force in Newtons, C is the lift coefficient, ρ is 

the air density in kilograms per cubic metre, A is the projected body area in metres 

squared, and v is the velocity of the air stream in metres per second (Quaschning 

2007). The area is found by taking the chord length times the span (which is 

approximately equal to the rotor radius). The chord is a reference line from which 

measurements are made on an aerofoil section (figure 46). 

 

 



 

 

153 

 

 

Figure 46 - The diagram shows the chord length for an object which gives the area of an object when 

multiplied by the span (NASA 2009). 

 

 

 

An aerofoil is a streamlined shape that is capable of generating significantly more lift 

than drag. Modern wind turbines make use of aerofoil designs in order to extract as 

much power from the wind as possible. Therefore, factors such as number of blades, 

relative wind angle, and total torque can have an effect on the power output of a 

wind turbine (Boyle 2004). 
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APPENDIX 5 - Algae 

 

 Algae are from the plant kingdom and consist of both eukaryotic and prokaryotic 

types, with cyanobacteria and prochlorophytes being prokaryotes, and the rest 

eukaryotes (see note at end) (Bold & Wynne 1985). Algae range in size from the 

macro (>30m) to the single celled microalgae (Sze 1993). Microalgae are used for 

the production of oils for biodiesel as they generally produce more of the right kinds 

of natural oils needed for biodiesel (Sheehan et al. 1998). Therefore, for the purpose 

of this report, the term algae will be used to refer specifically to microalgae.  

 

Algae are photosynthetic organisms and Sheehan et. al. (1998) suggest that the four 

most important categories of microalgae in terms of abundance are: The diatoms 

(>100 000 species), the green algae, the blue-green algae (nitrogen fixers), and the 

golden algae. Microalgae are the most primitive form of plants and as such are more 

efficient converters of solar energy, due to their simple cell structures. This means 

that when compared to terrestrial plants, microalgae can produce thirty times the 

amount of natural oil per unit area of land (Sheehan et. al. 1998). Compared to 

switchgrass (the fastest growing terrestrial plant) algae biomass productivity can be 

50 times greater due to their high growth rates and photosynthetic efficiencies (Li et 

al. 2008). 

 

 

Photosynthesis converts radiant energy from the sun into chemical energy. 

Chlorophyll contained within chloroplasts in eukaryotic cells and the thylakoid 

membrane in prokaryotes are the sites of photosynthesis. The chlorophyll uses light 

to convert carbon dioxide and water into organic compounds (carbohydrates and 
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water) and oxygen (Campbell & Reece  2002). This process can be described by the 

summary equation: 

                                                                           LIGHT 

6 CO2         +    12H2O                            6 (CH2O)     + 6H2O     + 6O2 

Carbon                          water                 CHLOROPHYLL       Carbohydrate              Water            Oxygen 

Dioxide 

(Campbell & Reece 2002). 

 

 

Through the process of photosynthesis, algal cells assimilate carbon and the two 

storage forms that carbon can take are in lipid or carbohydrate form. A higher rate of 

enzyme activity in lipid synthesis pathways increases the rates of oil production in 

algae (Sheehan et al. 1998). It was found that nitrogen (N) and silicon (Si) depletion 

increased oil production but slowed cell division. Sheehan et al. (1998) also found 

that silicon depleted cells used more incoming carbon for lipid production and less 

for carbohydrate production and that the cells slowly converted non-lipid cell 

components into lipids. It has been suggested that the reduction of cell division due 

to nutrient depletion may be overcome by careful control of the timing of nutrient 

depletion and cell harvesting (Sheehan et al. 1998). Thus, by putting the alga under 

stress it is possible to increase the amount of natural oils available for biodiesel 

production. 

 

Algal biomass is made up of three main components: carbohydrates, protein, and 

natural oils. Biodiesel production uses only the natural oil component of the alga. 

However, when the natural oils are removed for use as biodiesel the remaining 

biomass can be used as a secondary product such as high protein stock feed (Sheehan 
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et al. 1998). While biodiesel can be produced from terrestrial oilseed crops such as 

soybean oil, some algal species can produce 60% of their body weight in natural oils 

or triacylglycerols (TAGs). This means that algae can efficiently take the place of 

oilseed crops for the production of biodiesel and therefore not compete with existing 

oilseed markets (Sheehan et al. 1998). 

 

Photobioreactors allow manipulation of the algae to increase growth rates and oil 

production. A photobioreactor is a closed system that can be used to grow algae in 

highly selective environments. Grobbelaar (2000) states that the major factors 

available for manipulation in both closed and open systems for the production of 

mass algal cultures are: culture depth or optical cross section - culture depth over 

100mm of water will absorb more and more light thus reducing light available for 

photosynthesis. The efficiency of this process is affected by (Figure 47) turbulence, 

mixing rates and patterns can be altered, nutrient content and supply (eg. CO2), 

cultivation procedure, biomass concentration and areal density, and the state or 

potential of the photosynthetic system. 

 

Figure 47 - The major factors available for manipulation in both closed and open systems 

(Grobbelaar 2000) 
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The main benefits of closed system bioreactors are reduced contamination risk, 

controllable temperature and cultivation conditions, and no CO2 losses (Pulz 2001). 

Borowitzka (1999) states that there are two types of closed systems in which to grow 

algae: photoautotrophically and heterotrophically. In algae, heterotrophy is the 

ability to oxidize organic compounds in the dark for energy (Sze 1993). 

Heterotrophic systems use acetate or glucose as carbon sources to cultivate the algae. 

However, it is not possible to grow all algae heterotrophically and it often changes 

the algal chemical composition (Borowitzka 1999). Photoautotrophic systems use 

photosynthesis to create energy. Therefore, the focus of this report was on 

photoautotrophic systems or photobioreactors.  

 

A number of equations can be used to aid in the measurement of inputs and outputs 

of photobioreactors. The equation used by Helm, Laing and Jones (1979) allows for 

the division rate per day of the algae to be calculated. This can be seen in the 

equation division rate per day (K): 

K = 
No

Nt

t
elog

443.1
  

Where Nt number of cells at first harvest µ l
-1

, No number of cells at inoculation µl
-1

, 

t is time in days to first harvest, 1.443 is factor transforming loge to log2 in the 

calculation of cell division per unit time (Helm, Laing & Jones 1979).  

 

The inoculum volume (Iv) given by Laing (1979) can be used to calculate the amount 

of starter culture needed to give a particular density in the culture vessel as seen in 

the equation: Iv = (Culture volume (L) x required inoculum density (cells/ µL
-1

)) / 

density of inoculating culture (cells/ µL
-1

) (Laing 1979). For example, a 2 L culture 
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with a density of 10 000 cells per litre is used as an inoculum to give a density of 1 

000 cells per litre in a 20 L culture (Laing 1979). 

 

The harvesting volume (Vh) equation given by Hu, Guterman and Richmond (1996) 

allows for harvesting operations to be carried out and can be calculated using: 

Vh

2

12 )(

X

VXX t
  

Where Vh is the harvested volume or the volume to be harvested in litres, Vt is the 

total culture volume in litres, X2 and X1 are cell densities (gL
-1

) at daily (24hr) 

intervals, X1 being any cell density desired to be established after harvesting as long 

as 21 XX   (Hu, Guterman & Richmond 1996). 

 

 

 

 

 

 
Note: 

It is not actually correct to call the prokaryotic types, cyanobacteria and prochlorophytes, algae. 

Cyanobacteria (blue-green algae) and prochlorophytes belong to the kingdom Monera and are groups 

of bacteria. Algae belong to the kingdom Protista and are eukaryotic cells. Cyanobacteria and 

prochlorophytes are oxygenic phototrophs and resemble algae in that they have chlorophyll a, 

prochlorophytes also have chlorophyll b yet lack phycobilins (found on the thylakoid membranes of 

cyanobacteria) (Madigan et al. 2009). The prokaryotes cyanobacteria and prochlorophytes lack a 

nuclear region and nuclear envelope and complex oraganelles such as chloroplasts or mitochondria. 

They do contain thylakoids which are where the photosystems (using chlorophyll) are contained (Sze 

1993). The chloroplasts in eukaryotes are related to cyanobacteria due to an endosymbiotic 

relationship (a cell which lives inside another cell). A heterotrophic protist may have engulfed a 

cyanobacteria which evolved into red and green algae (Campbell & Reece 2002). 

 

The reason for grouping cyanobacteria and prochlorophytes with algae for this report was due to their 

similarities to algae and therefore many studies into biofuel group these together. 
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APPENDIX 6- Glossary 

 

Augering –  A drill bit with one or more blades (like a corkscrew) is used to cut 

away earth (or compacted material from pipes) which then feeds itself upwards 

inside the drill. 

 

DAF – Water saturated with air at high pressure is added to abattoir wastewater into 

an open top tank. Reducing the pressure causes the air to leave the solution, bubbles 

form on particles within the solution, causing the particles in the wastewater to float 

to top. Thus, allowing the solids to be scraped from the surface of the tank and 

removed (Sindt n.d). 

 

Fluidized bed incineration – like pyrolysis (see below) but in an oxygen depleted 

environment as opposed to in the absence of oxygen. 

 

Gasification – The incomplete combustion of carbonaceous materials (biomass) 

resulting in the production of combustible gases (syngas) consisting of Carbon 

monoxide, Hydrogen, Carbon dioxide, and traces of Methane. Created by reacting 

the biomass with a controlled amount of oxygen and/or steam at high temperatures 

and pressures (CSIRO 2011).  

 

Insolation – incoming solar radiation. 

 

Paunch – partially digested grass and grains from the first stomach of ruminant 

animals. 

 

Pyrolysis –  Where an organic material is separated into its component parts by heat 

(>200°C) in the absence of oxygen. 

 

Screw press – Machine that dewaters a high solids liquid waste stream (Doyle & 

Lant 2001). 

 

Solar still – A solar dryer design that is used to distil water. In its most basic form it 

consists of a pit covered with a clear plastic sheet. 

 

Syngas –  The resulting gas mixture from gasification and is itself a fuel (CSIRO 

2011). 

 


