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ABSTRACT
A non-overlapping domain decomposition-based parallel algorithm coupled with a compact local
integrated radial basis function (CLIRBF) method is developed for solving Navier-Stokes equations.
For this approach, a problem is divided into subdomains. In each sub-domain, a CLIRBF scheme is
applied to solve the Navier-Stokes equations of flows. A relaxation factor is used at the interface
between sub-domains to ensure the quick convergence of the present method. The Bitmap termi-
nation detection technique is introduced to complete the global termination. The present approach
is verified using two fluid flow problems: the lid-driven cavity and the natural convection in con-
centric annuli flow. The numerical results have demonstrated the efficiency of the present parallel
method comparedwith the corresponding sequential one and other publishedmethods. Especially,
super-linear speed-up was achieved for several CPUs. In terms of accuracy, the obtained results are
in very good agreement with benchmark results.
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1. Introduction

Domain decomposition (DD) scheme, also called as
Schwarz alternating DD method, is a sufficient way
to deal with large-scale problems (Schwarz 1869).
This approach’s idea is to split a considered domain
into smaller sub-domains and the problem is then
solved in each sub-domain separately. On the artificial
boundaries between sub-domains, Dirichlet bound-
ary conditions (BCs) are set up for the start-up time
and updated for the next repeat times using the
obtained values fromneighbouring sub-domains. This
approach is applied for a group of DD methods,
characterised by the fact that adjacent sub-domains
must overlap with each other (Smith, Bjorstad, and
Gropp 1996). That yields (i) difficulties in solv-
ing problems with irregular domains and (ii) an
increase in the overhead of degrees of freedom to each
sub-domain.

Non-overlapping DD methods are classified into
two sub-groups: the Schur complement and the
Steklov–Poincaremethods (Quarteroni andValli 1999).
The Schur complement method divides a structure
into substructures in which all artificial boundaries
are fixed (Haynsworth 1968). The actual value of field
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variables on artificial boundaries is determined from
the equilibrium equations of forces (Gander and Tu
2014). The problem is then solved independently and
separately in substructures. For the Schur method,
the computation cost of obtaining solutions on the
artificial boundaries is much higher in comparison
with the benefit by the parallel calculation on sub-
structures. Meanwhile, the Steklov–Poincare method
is to construct an equivalent problem by introduc-
ing transmission conditions (Quarteroni and Valli
1999). The newly formed problem is then solved sep-
arately in sub-domains. Results, which were obtained
from sub-domains, are gathered back into the original
domain. This approach is better than the overlapping
DD scheme because of its minimised degree of free-
doms (Tran, Phillips, and Tran-Cong 2009). Further-
more, the method is potential in parallel computation
in which all sub-domains can run concurrently but
do not cause the bottle-neck as in the Schur comple-
ment method. More details on this approach will be
presented as a part of our present work in Section 3.

Radial basis function (RBF) and specially, the
integrated RBF (IRBF) have been a well-known
approximation method owing to its high convergence
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rate (Fasshauer 1999; Mai-Duy and Tran-Cong 2001)
and recently applied to efficiently simulate various
complicated polymeric liquid problems from non-
Newtonian flows (Tran-Canh and Tran-Cong 2004;
Tran et al. 2012) to fibre suspensions (Nguyen andTran
2022; Nguyen, Tran, and Tran-Cong 2015). However,
its stability degrades relatively fast with respect to col-
location density because of the ill-condition of the cor-
responding system matrix. This drawback of IRBF is
mitigated by combining it with compact local schemes.
Numerical results demonstrated that by appropri-
ately choosing the shape parameter β , IRBF compact
schemes have achieved a very high convergence rate
while maintaining a low condition number of the sys-
tem matrix (Hoang-Trieu, Mai-Duy, and Tran-Cong
2012). So, in this present work, the non-overlapping
DDcoupled compact local integrated radial basis func-
tion (CLIRBF) method is developed into one paral-
lel algorithm to efficiently solve Navier–Stokes equa-
tions. The accuracy and efficiency of the approach are
investigated and evaluated by solving two benchmark
problems, the lid-driven cavity fluid flow (LDC) and
natural convection (NC), whose obtained results are
compared with those of the non-parallel method as
well as with benchmark results.

For this paper, the two dimensions – IRBF (2D-
IRBF) method and a compact local scheme are firstly
reviewed in Section 2. Section 3 represents a non-
overlapping Dirichlet–Neumann DD method where
the present parallel algorithm based on the combina-
tion ofCLIRBF andDDmethod is introduced.Numer-
ical results by solving the lid-driven cavity and NC
problems compared with benchmark results are pro-
vided and discussed in Sections 4 and 5.

2. Review on Compact Local 2D-IRBFMethod

2.1. 2D-IRBF Scheme

Consider a 2D elliptic problem.

{
Lu(x) = f , x ∈ �
Bu(x) = g, x ∈ ∂� (1)

where x is the position variable; u(x) is an unknown
function; L is the second order differential operator; B
represents the boundary conditions; f and g are known
functionswith respect to x; Ω is the considered domain
and ∂Ω is the boundary.

With the 2D-IRBF discretisation scheme, the sec-
ond derivatives of function u are expressed as a combi-
nation of RBFs (Mai-Duy and Tran-Cong 2010; Tran-
Canh and Tran-Cong 2002)

∂2u(x)
∂x2j

=
n∑

i=1
wigi(x) =

n∑
i=1

wi(t)G
[2]
i (x) (2)

where xj is the j-component of x (j = 1, 2); {wi}ni=1
is the set of weights; and {gi(x)}ni=1 is the set of RBFs
associated with n centres.

In this work, the centres are chosen to be the grid
points and the multiquadric RBF (MQ-RBF) func-
tion is used and given by G[2]

i (x) =
√
(x − ci)+ a2i ,

where{ci}ni=1 and {ai}ni=1 are MQ-RBF centres and
widths, respectively. It is noted that superscript [.] is
used to denote the associated derivative order.

The first-order derivative and the function are
directly integrated in Equation (2) with respect to xj
as follows.

∂u
∂xj

=
n∑

i=1
wiG

[1]
i (x)+ C1 (3)

u =
n∑

i=1
wiG

[0]
i (x)+ C1xj + C2 (4)

where G[1]
i (x) = ∫ G[2]

i (x)dxj, G
[0]
i (x) = ∫ G[1]

i (x)dxj
andC1, andC2 are integral constants withCi = Ci(xk),
k �= j.

Collocating Equations (2–4) at the grid points
{xi}ni=1 yields.

∂2ũ
∂2xj

= ς [2]xj w̃xj (5)

∂ũ
∂xj

= ς [1]xj w̃xj (6)

ũ = ς [0]xj w̃xj (7)

With w̃xj = (w1,w2, . . . ,wn,C1,C2)
T
xj ; ũ = (u1, u2,

. . . , un)T ; ∂
kû
∂xkj

=
(
∂ku1
∂xkj

, ∂kω2
∂xkj

, . . . , ∂kωm
∂xkj

)T
where

ui = u(xi) (i = 1, 2, · · ·, n); ς [2]xj , ς
[1]
xj and ς [0]xj are

known matrices.
It is worth noting that the subscript xj denotes the

quantity associated with the integration process on the
xj direction. In a 2D problem, Equation (4) generates
two approximations for the function u and they will be
naturally forced to be identical.
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For the sake of easy following, in the next sections,
x and y notations will be used to represent dimensions
instead of x1 and x2 and xk to represent a grid point k.

2.2. Compact Local IRBF Scheme

In general, a set of points of a local scheme called sten-
cil is used for discretisation. In compact local 2D-IRBF
scheme, a ‘9-point stencil’ is described in Figure 1.

For such stencil, Equations (5–7) are explicitly
expressed along x-dimension by

∂2ũ
∂2x

= ς [2]x w̃x (8)

∂ ũ
∂x

= ς [1]x w̃x (9)

ũ = ς [0]x w̃x (10)

where

ς [2]x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G[2]
x1 (x1) . . . G[2]

x9 (x1) 0 0 0 0 0 0

G[2]
x1 (x2) . . . G[2]

x9 (x2) 0 0 0 0 0 0

G[2]
x1 (x3) . . . G[2]

x9 (x3) 0 0 0 0 0 0

G[2]
x1 (x4) . . . G[2]

x9 (x4) 0 0 0 0 0 0

G[2]
x1 (x5) . . . G[2]

x9 (x5) 0 0 0 0 0 0

G[2]
x1 (x6) . . . G[2]

x9 (x6) 0 0 0 0 0 0

G[2]
x1 (x7) . . . G[2]

x9 (x7) 0 0 0 0 0 0

G[2]
x1 (x8) . . . G[2]

x9 (x8) 0 0 0 0 0 0

G[2]
x1 (x9) . . . G[2]

x9 (x9) 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 1. ‘9-point stencil’ of 2D-IRBF scheme with x5 is the point
under consideration.

ς [1]x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G[1]
x1 (x1) . . . G[1]

x9 (x1) 1 0 0 0 0 0

G[1]
x1 (x2) . . . G[1]

x9 (x2) 0 1 0 0 0 0

G[1]
x1 (x3) . . . G[1]

x9 (x3) 0 0 1 0 0 0

G[1]
x1 (x4) . . . G[1]

x9 (x4) 1 0 0 0 0 0

G[1]
x1 (x5) . . . G[1]

x9 (x5) 0 1 0 0 0 0

G[1]
x1 (x6) . . . G[1]

x9 (x5) 0 0 1 0 0 0

G[1]
x1 (x7) . . . G[1]

x9 (x7) 1 0 0 0 0 0

G[1]
x1 (x8) . . . G[1]

x9 (x8) 0 1 0 0 0 0

G[1]
x1 (x9) . . . G[1]

x9 (x9) 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ς [0]x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G[0]
x1 (x1) . . . G[0]

x9 (x1) x1 0 0 1 0 0

G[0]
x1 (x2) . . . G[0]

x9 (x2) 0 x2 0 0 1 0

G[0]
x1 (x3) . . . G[0]

x9 (x3) 0 0 x3 0 0 1

G[0]
x1 (x4) . . . G[0]

x9 (x4) x1 0 0 1 0 0

G[0]
x1 (x5) . . . G[0]

x9 (x5) 0 x2 0 0 1 0

G[0]
x1 (x6) . . . G[0]

x9 (x6) 0 0 x3 0 0 1

G[0]
x1 (x7) . . . G[0]

x9 (x7) x1 0 0 1 0 0

G[0]
x1 (x8) . . . G[0]

x9 (x8) 0 x2 0 0 1 0

G[0]
x1 (x9) . . . G[0]

x9 (x9) 0 0 x3 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and y-dimension as

∂2ũ
∂2y

= ς [2]y w̃y (11)

∂ ũ
∂y

= ς [1]y w̃y (12)

ũ = ς [0]y w̃y (13)

where

ς [2]y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G[2]
y1 (x1) . . . G[2]

y9 (x1) 0 0 0 0 0 0

G[2]
y1 (x2) . . . G[2]

y9 (x2) 0 0 0 0 0 0

G[2]
y1 (x3) . . . G[2]

y9 (x3) 0 0 0 0 0 0

G[2]
y1 (x4) . . . G[2]

y9 (x4) 0 0 0 0 0 0

G[2]
y1 (x5) . . . G[2]

y9 (x5) 0 0 0 0 0 0

G[2]
y1 (x6) . . . G[2]

y9 (x6) 0 0 0 0 0 0

G[2]
y1 (x7) . . . G[2]

y9 (x7) 0 0 0 0 0 0

G[2]
y1 (x8) . . . G[2]

y9 (x8) 0 0 0 0 0 0

G[2]
y1 (x9) . . . G[2]

y9 (x9) 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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ς [1]y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G[1]
y1 (x1) . . . G[1]

y9 (x1) 1 0 0 0 0 0

G[1]
y1 (x2) . . . G[1]

y9 (x2) 1 0 0 0 0 0

G[1]
y1 (x3) . . . G[1]

y9 (x3) 1 0 0 0 0 0

G[1]
y1 (x4) . . . G[1]

y9 (x4) 0 1 0 0 0 0

G[1]
y1 (x5) . . . G[1]

y9 (x5) 0 1 0 0 0 0

G[1]
y1 (x6) . . . G[1]

y9 (x5) 0 1 0 0 0 0

G[1]
y1 (x7) . . . G[1]

y9 (x7) 0 0 1 0 0 0

G[1]
y1 (x8) . . . G[1]

y9 (x8) 0 0 1 0 0 0

G[1]
y1 (x9) . . . G[1]

y9 (x9) 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ς [0]y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G[0]
y1 (x1) . . . G[0]

y9 (x1) y1 0 0 1 0 0

G[0]
y1 (x2) . . . G[0]

y9 (x2) y2 0 0 1 0 0

G[0]
y1 (x3) . . . G[0]

y9 (x3) y3 0 0 1 0 0

G[0]
y1 (x4) . . . G[0]

y9 (x4) 0 y1 0 0 1 0

G[0]
y1 (x5) . . . G[0]

y9 (x5) 0 y2 0 0 1 0

G[0]
y1 (x6) . . . G[0]

y9 (x6) 0 y3 0 0 1 0

G[0]
y1 (x7) . . . G[0]

y9 (x7) 0 0 y1 0 0 1

G[0]
y1 (x8) . . . G[0]

y9 (x8) 0 0 y2 0 0 1

G[0]
y1 (x9) . . . G[0]

y9 (x9) 0 0 y3 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

So, the conversion matrix is determined as follows

⎛
⎝ ũ
Õ
k̃

⎞
⎠ =

⎡
⎢⎣ζ

[0]
x 0
ζ
[0]
x −ζ [0]y
kx kx

⎤
⎥⎦(w̃x

w̃y

)
= C

(
w̃x
w̃y

)
, (14)

where the first sub-matrix ũ = ς
[0]
x w̃x is used to col-

locate the function u over the stencil; the second sub-
matrix ς [0]x w̃x − ς

[0]
y w̃y = 0̃ is to force nodal values of

u obtained from the integration with respect to x and y
to be identical; the third sub-matrix κxw̃x + κyw̃y = k̃
is to express values of the PDE (1) at selected colloca-
tion points, which are (x2, x4, x8, x6) in this study (see
Figure 1).

The network-weight space (space of weights) into
the physical space is achieved by inverting Equation

(14) as
(
w̃x
w̃y

)
= C−1

⎛
⎝ũ0̃
k̃

⎞
⎠. In other words, we have.

w̃x = Cx

⎛
⎝ũ0̃
k̃

⎞
⎠ (15)

and

w̃y = Cy

⎛
⎝ũ0̃
k̃

⎞
⎠ (16)

where (Cx,Cy)
T = C−1. By substituting Equations

(15) and (16) into Equations (8–10) and (11–13), the
derivatives of function u with respect to x and y over a
local stencil are now expressed in physical space.

2.2.1. BCs Applied for CLIRBF Schemes
It can be found that, for the Dirichlet BC, the gov-
erning equation yields at each grid point an algebraic
equation whose variables are the function values of
points in the associated stencil. Applying this proce-
dure for all interior points (of the considered domain)
and their associated stencils yields a system of alge-
braic equations. Since the variables of these equations
at boundary points are known as Dirichlet BC, they
are moved to the right-hand side, yielding a new sys-
tem of equations which is now solved using an iterative
method.

In the present CLIRBF approach, there are twoways
to impose the Neumann BC on the final system of
algebraic equations. The first one is to add expressions
of Neumann BC to the final equation system. This
approach is effective for coarse grids but may cause
numerical instability for dense grids due to the high
condition number of corresponding system matrices.

The second way is to introduce expressions of Neu-
mann BCs into conversionmatrices of associated sten-
cils. Governing equations at the boundary points are
then also derived and put into the final algebraic sys-
tem of equations. For example, take a 9-point stencil
as shown in Figure 1 with Neumann BC ∂u

∂x = e(x)
applied at the boundary nodal points {x7, x8, x9}. The
conversion matrix is constructed as.

⎛
⎜⎜⎝
ũ
0̃
k̃
ẽ

⎞
⎟⎟⎠ =

⎡
⎢⎢⎢⎣
ς
[0]
x 0
ς
[0]
x −ς [0]y
κx κy

ς
[1]
x 0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
C

(
w̃x
w̃y

)
= C

(
w̃x
w̃y

)
, (17)

where e(x) is a given function, and ẽ = [e(x7), e(x8),
e(x9)]T .
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2.2.2. Non-Rectangular Domains
In non-rectangular domains, some points are posi-
tioned near the non-rectangular boundary. The sten-
cils associated with these points can be arbitrary as
shown in Figure 2. The IRBF approximation for these
stencils is carried out in a dual stencil associated
with x-gridlines and y-gridlines, namely the x- and
y-stencils.

For example, take the non-rectangular stencil as
shown in Figure 2, the x-stencil is the set X of grid
points and boundary points generated by the intersec-
tion of x-gridlines and the boundary: X = {x1, x2, x3,
x4, x6, x7, x8, x10}. Similarly, the y-stencil is the set Y
of grid points and boundary points generated by the
intersection of y-gridlines and the boundary:Y = {x1,
x2, x3, x5, x6, x7, x9, x10}.

The x-stencil is used to approximate unknowns and
their derivatives with respect to x, i.e. ∂

2u
∂x2 ,

∂u
∂x and ux,

while the y-stencil is to approximate those with respect
to y, i.e. ∂

2u
∂y2 ,

∂u
∂y anduy, whereux andux are determined

by Equation (4) with xj ≡ x and uy with xj ≡ y.
In order to construct the conversion matrix, several

sets of points are explicitly defined as follows.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S1 = X = {x1, x2, x3, x4, x6, x7, x8, x10}
S2 = Y\X = {x5, x9}
S3 = X ∩ Y = {x1, x2, x3, x6, x7, x10}
S4 = {x2, x7}
S5 = {x2}

Figure 2. Non-rectangular stencil.

where S1 is the set of all points in x-stencil; S2 is the set
of boundary points generated by y-gridlines crossing
the non-rectangular boundary; S3 is the set of common
points between x-stencil and y-stencil and S4 is the set
of compact points, which are grid points lying on the
cross whose centre is the reference point x5.

Suppose that a Neumann BC ∂u
∂x = e(x) is imposed

at x2 then S5 = {x2} is defined as the set of points with
Neumann BC in x-dimension. The conversion matrix
associated with this stencil is determined as follows.

⎛
⎜⎜⎜⎜⎝
ũS1
ũS2
0̃S3
k̃S4
ẽS5

⎞
⎟⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎢⎢⎣
ς
[0]
x 0
O ς

[0]
y

ς
[0]
x −ς [0]y
κx κy

ς
[1]
x 0

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
C

(
w̃x
w̃y

)
= C

(
w̃x
w̃y

)
, (18)

where ς [0]x w̃x = ũS1 captures the collocation of ux at
S1, ς

[0]
y w̃y = ũS2 is the collocation of uy at S2, ς

[0]
x w̃x −

ς
[0]
y w̃y = 0̃S3 is the enforcement ux = uy at S3, κxw̃x −
κyw̃y = k̃S4 is the compact information, which repre-
sents the governing equation at S4, and ς

[1]
x w̃x = ẽS5 is

the Neumann BC at S5.

3. Compact Local IRBF Coupled
Non-Overlapping DD Parallel Method

A new approach based on the marriage of Steklov–
Poincare non-overlapping DD scheme and the com-
pact local IRBF method is developed into a paral-
lel algorithm. Figure 3 describes an example for the
present method with two sub-domains whose bound-
ary is ∂Ω = 	1 ∪ 	2, and one artificial boundary
(	).

3.1. Review onNon-Overlapping
Dirichlet-NeumannDDmethod

The 2D problem Equation (1) is represented with the
introduction of artificial boundary 	 as.

{
Lu = f , x ∈ �

Bu = g, x ∈ 	1 ∪ 	2 (19)

The problem Equation (19) is expressed for a consid-
ered domain of two sub-domains Ω1 with ∂Ω1 = 	1
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Figure 3. Non-overlapping DDmethod in 2D.

∪ 	 and Ω2 with ∂Ω2 = 	2 ∪ 	 as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Lu1 = f , x ∈ �1
Bu1 = g, x ∈ 	1
u1 = u2 x ∈ 	
Lu2 = f x ∈ �2
Bu2 = g x ∈ 	2
∂u2
∂n = ∂u1

∂n x ∈ 	

(20)

The two constraints u1 = u2 and ∂u2
∂n = ∂u1

∂n are BCs
for u across the artificial boundary 	. It is proved
that the solution of the equivalent problem Equation
(20) converges to the solution of the original prob-
lem Equation (19) as stated by Quarteroni and Valli
(1999). Thus, the present non-overlapping Dirich-
let–Neumann DD method can be written for a step k
for each sub-domain as⎧⎨

⎩
Luk

1 = f , x ∈ �1
Buk1 = g, x ∈ 	1
uk1 = uk−1

2 x ∈ 	
(21)

and ⎧⎪⎨
⎪⎩
Luk

2 = f , x ∈ �2
Buk2 = g, x ∈ 	2
∂uk2
∂n = ∂uk1

∂n x ∈ 	
(22)

In order to improve the convergence of non-
overlapping Dirichlet––Neumann DD method, a
relaxation factor θ is introduced into the transmission
condition in Equation (21) as follows,

uk1 = θuk−1
1 + (1 − θ)uk−1

2 , x ∈ 	

where θ ∈ [0, 1].

3.2. Review on Parallel Algorithm of
Non-Overlapping Dirichlet-NeumannDDMethod

It can be found that the DD method presented in
Section 3.1 is not suitable for parallel computing
because the calculation in sub-domain 2 by Equations
(22) requires values on the artificial boundary from
sub-domain 1 by Equations (21) in the same itera-
tion step. Fortunately, this issue (data dependence)
can be handled by introducing the parallel computa-
tion. There are two common ways of parallelisation of
non-overlapping DD method.

The first way is to use the black and white colour-
ing technique. By this technique, sub-domains that
have no-common artificial boundary, i.e. not adja-
cent, are marked with black colour. The remaining
sub-domains, which are also not adjacent, are marked
with white colour. In the first iteration, only black sub-
domains are computed in parallel, and in the next
iteration, only white sub-domains are computed in
parallel and so on. Although the approach maintains
the form of the equivalent problem Equation (19), it
only allows atmostN/2 sub-domains to run in parallel,
where N is the number of sub-domains.

For the second way, a small modification to
Equation (22) is carried out as below to allow all sub-
domain to run concurrently.

⎧⎪⎨
⎪⎩
Luk

2 = f , x ∈ �2
Buk2 = g, x ∈ 	2
∂uk2
∂n = ∂uk−1

1
∂n x ∈ 	

(23)

where the values of the first-order derivative on the
artificial boundary of sub-domain 2 are obtained from
sub-domain 1 in the previous time step. The second
way is used in the present method.

3.3. The Present Compact Local IRBF Based
Non-Overlapping DD Parallel Method

The considered domain of problem is divided into
non-overlapping sub-domains. In each sub-domain,
a sub-problem with either Dirichlet or Dirichlet and
Neumann BC will be solved using the compact local
IRBF approximation scheme as presented in Section
2. The solution is considered converged once the con-
vergence measures (CM) in each sub-domain and on
all artificial boundaries achieve predefined tolerances.
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3.3.1. Communication and synchronisation
The present parallel algorithm is implemented in
MATLAB environment. The parallel communication
is achieved by using standard send and receives func-
tions (MathWork 2012). Since these operations are
synchronous, the synchronisation and delivery ofmes-
sages are guaranteed.

3.3.2. Termination
As presented before, the algorithm stops when CMs
reach given tolerances. CM is the norm-2 of a field
variable and defined as follows.

CM =

√
n∑

i=1
(uk+1

i − uki )
2

√
n∑

i=1
(uki )

2
(24)

where k is the iteration step, n is the number colloca-
tion points and u is the field variable.

In this method, three CMs are used to verify the
convergence of the numerical solution. CM[u] is the
convergence measure of the field variable obtained
by two successive time steps within a sub-domain.
ABCM[u] is the convergence measure of the velocity
on the artificial boundary between two adjacent sub-

domains. ABCM
[
∂u
∂n

]
is the convergence measure of

the first derivative of velocity on the artificial bound-
ary between two adjacent sub-domains. The solution is
considered converged if all three following conditions
are met⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CM[u] < CMtol, ∀x ∈ �
ABCM[u] < ABCM[u]

tol , ∀x ∈ 	

ABCM
[
∂u
∂n

]
< ABCM

[
∂u
∂n

]
tol , ∀x ∈ 	

(25)

where CMtol, ABCM
[u]
tol and ABCM

[
∂u
∂n

]
tol are the given

tolerances for velocity within sub-domains, on artifi-
cial boundaries, and the first derivative of velocity on
artificial boundaries, respectively.

In parallel computation, each sub-domain is a part
of a distributed system. A sub-domain can terminate if
there is no other adjacent sub-domain communicating
with it. In this work, the Bitmap distributed termina-
tion detection (DTD) algorithm (Pham-Sy et al. 2013)
is used to achieve an efficient termination.

3.3.3. Review on Bitmap DTD Algorithm
The method uses a bitmap (group of binary bits) to
store the state of all processes in the system. Each bit
has two values 0 and 1, which are correspondingly
equivalent to two states (active or passive) of a pro-
cess. The length of a bitmap is equal to the number
of processes in the system. During the computation,
the bitmap is spread throughout the system and itself
expresses current state of the system. One process,
depending on the value of the bitmap, can judge the
global state of the whole system. The bitmap with all
bits of 1 means all processes are passive.

The present DTD algorithm consists of two parts:
(i) termination detection and (ii) synchronous termi-
nation. The Termination detection part aims to detect
the system’s quiescence. Once the quiescence state is
detected, the Synchronous Termination is activated to
get all processes terminated simultaneously at the same
step. It is noted that if one process terminates while
some processes are still active, those active processes
cannot exchange information with their terminated
neighbours and thus cannot finish their work. Conse-
quently, the system will end up with deadlock. So, an
important goal of our DTD algorithm is to allow all
processes to terminate simultaneously.

The termination detection algorithm in each pro-
cess is started by setting a zero bitmap. Take an arbi-
trary process as an example, this process keeps its
bitmap as a record of current state of the system. After
each iteration of the underlying computation, if the
process becomes passive, the bit corresponding to its
enumeration number will be set to 1, and then the
bitmap will be exchanged with its neighbours. When
this process receives a bitmap from one of its neigh-
bours, it will update its own bitmap by doing a binary
union between its bitmap and received bitmap. Finally,
the process checks the value of its bitmap. If the bitmap
with all bits of 1, the process detects termination. Oth-
erwise, the algorithm is repeated. The bitmap DTD
algorithm allows any sub-domain to detect the termi-
nation. More details on Bitmap DTD algorithm can be
found in Pham-Sy et al. (2013)

3.3.4. The Present Numerical Algorithm
The parallel algorithm of the present method as
described in Flowchart (see Figure 4) consists of two
parts: a sequential part and a parallel part.

The sequential part includes two blocks of process-
ing, the DD at the beginning and the collecting results
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Figure 4. Flowchart of non-overlapping Dirichlet-Neumann DD
method based parallel algorithm.

at the end. The block of DD is to create sub-domains
and their relative coordinates in the whole domain.
The collecting results block is to gather data from all
sub-domains and then merges them into one global
solution.

In the parallel part, each sub-domain firstly needs to
identify its neighbours. The Navier–Stokes equations
are then solved together with BCs in each sub-domain
using 2D Compact Local IRBF scheme (see Section
2.2). The obtained solution is used to approximate
the first-order normal derivative of the field variable
on artificial boundaries. Both the field variable and
its normal derivative on artificial boundaries are sent
to neighbouring sub-domains. These data are used to
determineCMand to check the convergence condition
as mentioned in expressions (25). The algorithm will

be completed by the termination detection, which is to
find whether the calculation in a current sub-domain
is finished and to terminate accordingly.

4. Numerical Examples

The efficiency of the present method is demonstrated
by solving two benchmark problems: the LDC fluid
flow and the NC in concentric annuli. The obtained
results are compared with those of the non-parallel
method as well as with benchmark results to investi-
gate and evaluate the accuracy of the present method
of a parallel computation.

The numerical computations were performed on
high-performance computing (HPC) cluster, which
comprises: 48 compute nodes, each with 2 × quad-
core 2.7GHzAMDOpteronCPUs and 16GB ofmem-
ory and 1 visualisation node consisting of Sun X4440
system with 4 × six-core 2.4GHz Opteron CPUs, 64
GB of memory, and NVidia graphics card. Also, there
is 80 TB of shared storage.

4.1. LDC Fluid Flow

The LDC fluid flow is described in dimensionless
form, where the square cavity has three fixed walls and
a sliding top lid. The cavity is filled with a viscous fluid
which is driven by the lid with a velocity of 1 from left
to right (see Figure 5).

The governing equations of the problem expressed
in stream-function and vorticity formulation are given
as.

∂2ψ

∂x2
+ ∂2ψ

∂y2
= −ω, (26)

1
Re

(
∂2ω

∂x2
+ ∂2ω

∂y2

)
= ∂ω

∂t
+
(
∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y

)
,

(27)

whereψ is the stream-function variable andω the vor-
ticity variable. The Reynolds (Re) number is defined as
Re = UL

ν
, whereU is the speed of the lid; L is the side of

the cavity and ν is the kinematic viscosity of the fluid.
The relationship of ψ and ω with velocity compo-

nents u and v is given by

u = ∂ψ
∂y ;v = − ∂ψ

∂x ,ω = ∂v
∂x

− ∂u
∂y

.
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Figure 5. The LDC fluid flow problem. (a) Geometry and BCs and (b) for parallel computing, the domain is divided into several equal
rectangular sub-domains: an example of nine sub-domains with BCs on artificial boundaries.

The BCs of the LDC problem are determined in Figure
5 as follows.

ψ = 0,
∂ψ

∂y
= 1 ∀(x, y) ∈ 	1; (28)

ψ = 0,
∂ψ

∂x
= 0 ∀(x, y) ∈ 	2 ∪ 	3 ∪ 	4. (29)

For parallel computation, the considered domain
(Figure 5) is divided into a range of equal rectangular
sub-domains {2, 4, 9, · · ·, 81}.

As the Dirichlet–Neumann non-overlapping DD
method is applied, there is an alternation from the
Dirichlet BCs on one side of artificial boundaries to the
Neumann BCs on another side. For the load balance,
while the Dirichlet BCs are set on the top and right
artificial boundaries, the Neumann BCs are installed
on the bottom and left artificial boundaries for each
sub-domain. An example of nine sub-domains with
BCs on artificial boundaries is described in Figure
5(b).

In each sub-domain, the problem is solved through
the following steps.

(a) Guess the initial BCs on the artificial bound-
aries.

(b) Solve Equation (26) using the compact local
2D-IRBF method as presented in Section 2
for a rectangle domain to obtain the value
of the stream-function variable ψ at collo-
cation points within the sub-domain.

(c) Approximate the vorticity variable ω at col-
location points on the artificial boundaries,
and then solve Equation (27) using the com-
pact local 2D-IRBF method to obtain the
value of the vorticity variable ω at colloca-
tion points within the sub-domain.

(d) Exchange the Dirichlet and/or Neumann
BCs over the artificial boundaries between
sub-domains.

(e) Check the termination conditions using
expressions (25). If the termination condi-
tions are met then terminate. Otherwise,
update BCs on the artificial boundaries and
go back to step (b).

Since the BCs of ω are unknown, they need to be
determined to solve Equation (27). In this implemen-
tation, the BCs of ω are approximated from Equation
(26) using the global 1D-IRBF method (Mai-Duy and
Tran-Cong 2001).
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Table 1. Parallel computation of the LDC problem with Re = 100 and 400.

t CMTol CMP t CMTol CMP t CMTol CMP

nx × ny CPUs Re = 100 Re = 400 Re = 1000

101× 101 4 1.E−3 1.E−6 3.2612E−7 1.E−3 1.E−6 3.4120E−7 1.E−4 1.E−6 2.8976E−7
9 1.E−3 1.E−6 2.6812E−7 1.E−3 1.E−6 2.6732E−7 1.E−4 1.E−6 3.5392E−7
16 1.E−3 1.E−6 2.5326E−7 1.E−3 1.E−6 2.5307E−7 1.E−4 1.E−6 2.8731E−7
25 1.E−3 1.E−6 2.2448E−7 1.E−3 1.E−6 2.0506E−7 1.E−4 1.E−6 2.4154E−7
36 1.E−3 1.E−6 2.0544E−7 1.E−3 1.E−6 1.3151E−7 1.E−4 1.E−6 1.8338E−7

151× 151 4 1.E−3 1.E−6 3.4122E−7 1.E−3 1.E−6 3.7022E−7 1.E−5 1.E−6 2.9676E−7
9 1.E−3 1.E−6 2.7182E−7 1.E−3 1.E−6 3.3321E−7 1.E−5 1.E−6 3.6542E−7
16 1.E−3 1.E−6 2.6828E−7 1.E−3 1.E−6 3.3147E−7 1.E−5 1.E−6 2.8731E−7
25 1.E−3 1.E−6 2.4384E−7 1.E−3 1.E−6 2.8603E−7 1.E−5 1.E−6 2.3874E−7
36 1.E−3 1.E−6 2.2544E−7 1.E−3 1.E−6 2.8931E−7 1.E−5 1.E−6 1.7498E−7
49 1.E−3 1.E−6 2.0872E−7 1.E−3 1.E−6 2.4277E−7 1.E−5 1.E−6 1.7053E−7
64 1.E−3 1.E−6 1.5316E−7 1.E−3 1.E−6 2.5118E−7 1.E−5 1.E−6 1.5181E−7

209× 209 9 1.E−4 1.E−6 2.9116E−7 1.E−4 1.E−6 3.2546E−7 1.E−6 1.E−6 1.8643E−7
16 1.E−4 1.E−6 3.2836E−7 1.E−4 1.E−6 3.8783E−7 1.E−6 1.E−6 1.9179E−7
25 1.E−4 1.E−6 3.3027E−7 1.E−4 1.E−6 3.1972E−7 1.E−6 1.E−6 1.7723E−7
36 1.E−4 1.E−6 2.3864E−7 1.E−4 1.E−6 2.2997E−7 1.E−6 1.E−6 1.5456E−7
64 1.E−4 1.E−6 2.0216E−6 1.E−4 1.E−6 2.7347E−7 1.E−6 1.E−6 1.4622E−7

nx × ny , grid of collocation points; CPUs, number of CPUs (number of sub-domains); t, time step; CM[u]
tol = 10−6 ABCMTol (ABCM

[u]
tol or ABCM

[
∂u
∂n

]
tol ): tolerance of

convergence measure at interfaces; CMp, average convergence measure of the whole analysis domain.

To demonstrate the convergence achieved in the
present parallel method, fluid of Re numbers (100, 400
and 1000) is considered in the simulation using several
uniform grids nx × ny (101× 101 points; 151× 151
points, and 209× 209 points), θ = 0.45 and β = 2.
The time step (t) is chosen in the range from 10−3

to 10−5 based on Re value and grid size (smaller time
steps are for finer grids or/and higher Re). Results
by the present parallel method using a range of sub-
domains (4, 9, 16, 25, 36 and 64) in Table 1 show the
convergences of the three grids of collocation points
have reached with the order of 10−6 for the average
convergence measure of the whole analysis domain
(CMp).

Also, Figure 6 depicts profiles of the velocities u and
v along the vertical and horizontal centrelines, respec-
tively at Reynolds numbers 100, 400 and 1000 with
grids of 101× 101 points (6(a,b)), 209× 209 points
(Figure 6(c,d)) and using the present parallel method
with 36 sub-domains. These results are in very good
agreementwith the benchmark solution byGhia,Ghia,
and Shin (1982) using a grid of 129× 129 points.
Meanwhile, grid of 151× 151 points is selected to thor-
oughly discuss on the accuracy and efficiency of the
present parallel method.

The LDC fluid flow problem by the present parallel
method is investigated with several Reynolds numbers
{100, 400, 600, 1000} using a grid of 151× 151 points,
θ = 0.45 and β = 2; and converges with given toler-

ancesCM[u]
tol = 10−6,ABCM[u]

tol = 10−6,ABCM
[
∂u
∂n
]

tol =

10−6, for velocitywithin sub-domains, velocity on arti-
ficial boundaries and the first-order derivatives on arti-
ficial boundaries, respectively. The contours of stream-
function ψ and vorticity ω are presented in Figures 7
and 8 while the velocity profiles are shown in Figure 9.

• On the accuracy of the present parallel method,
the contours of stream-function and vorticity in
Figures 7 and 8 using the presentmethodwith 16
sub-domains using 16 CPUs, show a great agree-
ment with benchmark results by Ghia, Ghia, and
Shin (1982) and Botella and Peyret (1998).While
the velocity profiles u along the vertical cen-
treline and v along the horizontal centreline in
Figure 9 also go well through the corresponding
values given by Ghia, Ghia, and Shin (1982).

• The efficiency of the parallel method is often
evaluated by the speed-up S and the efficiency E,
which are determined as follows,

S = Ts

TP
; E = S

p
(30)

where Ts is the computation time on a single
CPU, Tp is the computation time on parallel
CPUs, p is the number of parallel CPUs.

The efficiency of the present parallel method is
demonstrated using a grid of 151× 151 with a range
of numbers of CPU {1, 2, 4, 9, 16, 25, 36, 49, 64, 81}.

It can be seen in Figure 10(c), the throughput of the
present parallel method is very high. Furthermore, the
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Figure 6. The LDC fluid flow. Profiles of the u velocity along the vertical centrelines (a,c) and the v velocity along the horizontal cen-
tre lines (b,d) by the present parallel method using 36 CPUs at several Re numbers (Re = 100, 400, and 1000) and grids (101× 101
and 295× 295) in comparison with the corresponding Ghia’s results. (a) Grid 101× 101, (b) Grid 101× 101, (c) Grid 295× 295, (d) Grid
295× 295.

speed-up grows steadilywith the increase of number of
CPUs (see Figure 10(b)), this shows a good scalability
of the present parallel method.

For a parallel method, the threshold defines an
upper-bound, over which the efficiency of the parallel
computation commences to reduce. It is worth noting
that the speed-up of the present parallel method for
the LDC fluid flow problem deteriorates as the num-
ber of CPUs exceeds a certain threshold. For example,
the threshold is 64 CPUs for Re = 400 and 600; and 49
CPUs for Re = 1000 (see Table 3). Also, in this exam-
ple, it appears that the CPU threshold decreases with
increasing Re number.

The numerical results given in Figure 10 and Tables
2 and 3 also depict that the present method achieves
a very high efficiency, for example the efficiencies are
104.43; 112.61; 106.81 and 102.78 using 25, 36, 49, 64
CPUs, respectively, for Re = 600.

Furthermore, a super-linear speed-up is observed
with 25 CPUs for Re = 100; with {16, 25, 36, 49, 64}
CPUs for Re = 400 (see Table 1); and with {25, 36,
49, 64} CPUs for Re = 600; and with {16, 25, 36,
49, 64} CPUs for Re = 1000 (see Table 3). A reason
for this high efficiency is the insignificant increase of
number of iterations in the present parallel compu-
tation in comparison with the sequential one (using
1 CPU) while for an iteration the computation time
to solve Equation (26) in each sub-domain using the
compact local 2D-IRBF method reduces massively
as shown in Table 3 and the communication time
takes a small amount of total computation time using
bitmap DTD algorithm as discussed below and in
Table 4.

To investigate the ratio of the communication time
to the total execution time on each CPU, the time pro-
file of the case using 25 CPUs is recorded and provided
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Figure 7. The LDC fluid flow problem. Stream-function (ψ ) contours of the flow for four Reynolds numbers (Re = 100, 400, 600 and
1000) by the present parallelmethod using 16 CPUswith the specifications: grid 151× 151,t = 10−3, CM[u]

tol = 10−6,ABCM[u]
tol = 10−6,

ABCM

[
∂u
∂n

]
tol = 10−6, θ = 0.45 and β = 2.

in Table 4. The obtained results show that the percent-
age of the communication time in the total time ranges
from 12.38% to 24.29%.

For an objective comparison on the efficiency of the
present parallel computation over the sequential com-
putation, a normalised computation time is defined as
the time required for each CPU to complete compu-
tation task in an ideal parallel program and given by

S = Ts
TP . Hence, the efficiency E expressed in Equation

(30) can now be determined by.

E = S
p (31)

A bar graph of the efficiency of the parallel and the
sequential algorithms using the presentmethod is pro-
vided in Figure 11. The graph presents a quantita-
tive comparison between the communication time and



INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS 847

Figure 8. The LDC fluid flow problem. Vorticity (ω) contours of the flow for several Reynolds numbers (Re = 100, 400, 600 and 1000) by
the present parallel method using 16 CPUs. Other parameters are given in Figure 7.

computation time by the parallel computation as well
as the comparison between the present parallel com-
putation using 25 CPUs and the associated sequential
one, in which super-linear efficiency is observed.

4.2. NC in Concentric Annuli

The problem of NC in concentric annuli which plays
an important role in various engineering problems
such as heat distribution, reactor design and engine
design. For this problem, a fluid flow is enclosed in
an annulus including a concentric inner circular cylin-
der which is surrounded by an outer square cylinder

(Figure 12). The outer wall (cold wall) and inner wall
(hot wall) are kept at constant temperatures T = 0 and
T = 1, respectively. By Boussinesq approximation, the
temperature difference of the two walls generates NC.

Since the inner boundary is non-rectangular, the
present CLIRBF approximation uses a Cartesian grid
with added irregular boundary points as described in
Figure 13.

The dimensionless governing equations for the NC
problem are given by.

∂2ψ

∂x2
+ ∂2ψ

∂y2
= −ω, (32)
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Figure 9. The LDC fluid flow problem. Profiles of the u velocity along the vertical centreline (dashed – lines) and the v velocity along
the horizontal centreline (solid lines) for several Reynolds numbers (Re = 100, 400, 600 and 1000) by the present parallel method in
comparison with the corresponding Ghia’s results (for u velocity and for v velocity). The parameters of the problem are given in Figure 7.

√
Pr
Ra

(
∂2ω

∂x2
+ ∂2ω

∂y2

)
= ∂ω

∂t
+
(
u
∂ω

∂x
+ v

∂ω

∂y
− ∂T
∂x

)
(33)

1√
PrRa

(
∂2T
∂x2

+ ∂2T
∂y2

)
= ∂T
∂t

+
(
u
∂T
∂x

+ v
∂T
∂y

)
(34)

where Pr and Ra are the Prandtl number and the
Rayleigh number, respectively and are defined as

Pr = ν

α
,Ra = gβ(T)L3

να

where ν is the kinematic viscosity, α is the thermal dif-
fusivity, g is the acceleration due to gravity, β is the
thermal expansion coefficient, L is the characteristic

length and T is the difference between wall tem-
perature and quiescent temperature. The problem is
investigated using the following parameters

L
2R

= 2.5, Pr = 0.71,Ra = {104, 105, 106}

where L is the length of sides of the outer square profile
and R is the radius of the inner circular profile.

BCs of the NC problem presented in Figure 12 are
written as follows.

ψ = 0,
∂ψ

∂n
= 0, T = 0 on outer square;

ψ = 0,
∂ψ

∂x
= 0, T = 1 on inner square. (35)
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Figure 10. The LDC fluid flow problem. Performance of the present parallel algorithm for several Reynolds numbers (100, 400, 600 and
1000) with a grid of 151× 151 points: the efficiency, speed-up and throughput as a function of the number of CPUs. Other parameters
are given in Tables 2 and 3.

Table 2. The LDC fluid flow problem.

Re = 100 Re = 400

CPU Ni Tp S E Ni Tp S E

1 8814 32.25 1.00 100.00 22107 324.98 1.00 100.00
2 13486 91.41 1.45 72.34 28594 193.52 1.68 83.97
4 13793 42.37 3.12 78.04 30770 96.15 3.38 84.50
9 14330 18.07 7.32 81.30 31931 40.45 8.03 89.27
16 16332 8.80 15.03 93.96 33649 18.61 17.46 109.14
25 15096 5.12 25.84 103.34 37848 12.29 26.45 105.81
36 17665 4.08 32.44 90.10 34088 7.81 41.62 115.60
49 16212 2.90 45.59 93.04 37932 6.33 51.35 104.79
64 16257 2.31 57.22 89.41 33964 4.48 72.60 113.44
81 15989 1.97 67.05 82.78 38383 4.31 75.40 93.08

Parallel performance with grid 151× 151, t = 10−3, CM[u]
tol = 10−6, ABCM[u]

tol = 10−6, ABCM

[
∂u
∂n

]
tol = 10−6, θ = 0.45 and β = 2. CPUs, number of CPUs (sub-

domains); Ni , number of iterations; Tp, computation time (minutes) on parallel CPUs, Tp ≡ Ts when CPUs = 1; S: speed-up; E: efficiency.

Figure 14 suggests one way to partition the consid-
ered domain into 24 non-overlapping sub-domains.
Each sub-domain is assigned a number from 1 to
24 as process-index. The process-index is to position
sub-domains in the parallel system and to commu-
nicate with others, especially with their neighbour
sub-domains.

About the BCs of sub-domains, the top and right
artificial boundaries are of Dirichlet type and the
bottom and left artificial boundaries are of Neu-
mann type. A detailed example is described in
Figure 15.

In each sub-domain, the algorithm for theNCprob-
lem using the present method is given as follows.



850 N. PHAM-SY AND C.-D. TRAN

Table 3. The LDC fluid flow problem.

Re = 600 Re = 1000

CPU Ni Tp S E Ni Tp S E

1 25824 356.29 1.00 100.00 30442 453.65 1.00 100.00
2 33026 242.43 1.47 73.48 38044 261.37 1.74 86.78
4 35653 109.17 3.26 81.59 43619 130.61 3.47 86.83
9 35595 47.00 7.58 84.22 40853 50.51 8.98 99.80
16 38769 22.97 15.51 96.96 48079 27.34 16.60 103.72
25 36903 13.65 26.11 104.43 45085 14.49 31.30 125.20
36 38148 8.79 40.54 112.61 53924 11.35 39.98 111.06
49 40018 6.81 52.34 106.81 45231 7.76 58.44 119.27
64 40340 5.42 65.78 102.78 54754 6.93 65.49 102.33
81 46869 5.29 67.41 83.22 57140 6.24 72.73 89.79

Parallel performance with grid 151× 151, t = 10−3, CM[u]
tol = 10−6, ABCM[u]

tol = 10−6, ABCM[u]
tol = 10−6, θ = 0.45 and β = 2. CPUs, number of CPUs (sub-

domains); Ni , number of iterations; Tp, computation time (minutes) on parallel CPUs, Tp ≡ Ts when CPUs = 1; S, speed-up; E, efficiency.

Table 4. The LDC fluid flow problem: Comparisons on the total computation time between the present parallel method and sequential
scheme; and between computation time and communication time of the present parallel method.

Parallel Sequential

Re Tcmm Tcmp Tp %Tcmm Ts Tn E

100 0.63 4.49 5.12 12.38 132.25 5.29 103.34
400 2.78 9.50 12.29 22.66 324.98 13.00 105.81
600 3.31 10.33 13.65 24.29 356.29 14.25 104.43
1000 2.92 11.58 14.49 20.13 453.65 18.15 125.20

Parallel program runs using 25 CPUs. Re, Reynolds number; Tcmm, communication time (minute); Tcmp, computation time (minute); Tp, total computation time
(minutes) on parallel CPUs; %Tcmm, percentage of communication time in Tp; Ts, computation time (minutes) by sequential program; Tn, normalised time; E,
efficiency

Figure 11. The LDC fluid flow problem. Comparison of execu-
tion times between parallel computation with 25 CPUs and the
sequential computation using the present CLIRBF method.

(a) Set the initial values for ψ , ω, T. Guess the
initial values of BCs on artificial boundaries.

(b) Solve Equation (32) for ψ .
(c) Approximate u, v and solve Equation (34)

for T.

Figure 12. The NC in concentric annuli problem. Geometry and
BCs are described.

(d) Approximate ω on boundaries and solve
Equation (33) for ω.

(e) Exchange the values of Dirichlet and/or
Neumann BCs of ψ , ω and T over artificial
boundaries.
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Figure 13. The NC in concentric annuli problem. A sample grid
of 28× 28 points with 24 sub-domains, one sub-domain is pro-
cessed by one CPU.

Figure 14. The NC in concentric annuli problem with sub-
domain formation and enumeration.

(f) Check the termination conditions using
(25). If the conditions are satisfied then ter-
minate. Otherwise, update BCs on ABs and
go to step (b).

As presented in step (d) of the algorithm, the value
of ω on boundary needs to be approximated. As
described in Figure 13, since some boundary points
on the inner cylinder do not coincide with grid points,
equivalent formulas instead of Equation (40) are used

Figure 15. The NC in concentric annuli problem with BCs on
artificial boundaries of sub-domains.

to determine ω on artificial boundaries by (Le-Cao,
Mai-Duy, and Tran-Cong 2009).

ωb = −
[
1 +

(
tx
ty

)2]
∂2ψb
∂x2 for boundary points on x-

grid lines; and.

ωb = −
[
1 +

(
ty
tx

)2]
∂2ψb
∂y2 for boundary points on y-

grid lines,

where tx and ty are the x- and y-components of the unit
vector tangential to the boundary, respectively and the
value of ω on the inner cylinder can thus be approxi-
mated in only one dimension x or y. Such problemwas
solved using several different non-parallel methods by
Moukalled andAcharya 1996; Kim et al. 2008; Hussain
and Hussein 2010; Ngo-Cong et al. 2012.

Like to consider the LDC problem, three differ-
ent uniform grids, including 92× 92 points; 120× 120
points, and 156× 156 points, have been used to con-
sider the convergence of the present parallel method
using a range of sub-domains (2, 4, 8, 16, 24, 32, 48, 60,
72), θ = 0.25 and β = 2, t = 10−4; and converges
with given tolerances CM[u]

tol = 10−9, ABCM[u]
tol =

10−8 andABCM
[
∂u
∂n
]

tol = 10−8 for the problem of NC in
concentric annuli. The numerical experiments using
the three grids of collocation points show that the
present method has converged with the order 10−8
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of average convergence measure of the whole analy-
sis domain (CMP) for fluid with 3 Rayleigh numbers
Ra = {104, 105, 106}.

The following is the detailed discussion on the accu-
racy and efficiency of the present method for the case
using a grid of 120× 120 collocation points with 24
sub-domains.

Figures 16 and 17 show the stream-function (ψ),
vorticity (ω); temperature (T) contours and normal
derivative of temperature. Numerical results by the
present CLIRBF parallel method shown are in very
good agreementwith those by other works cited above,
using the same rheological parameters (Moukalled

Figure 16. TheNC in concentric annuli problem. Stream-function
(ψ ) contours (on the left) and vorticity (ω) contours (on the right)
of the flow for 3 Rayleigh numbers Ra = {104, 105, 106} using 24
sub-domains using grid of 120× 120,t = 10−4, CM[u]

tol = 10−9,

ABCM[u]
tol = 10−8, ABCM

[
∂u
∂n

]
tol = 10−8, θ = 0.25 and β = 2.

Figure 17. The NC in concentric annuli problem. Temperature (T)
contours (on the left) and normal derivative of temperature ∂T

∂n
along the inner circle (on the right) of the flow for 3 Rayleigh num-
bers Ra = {104, 105, 106} using 24 sub-domains. Other parame-
ters are given in Figure 16.

and Acharya 1996; Kim et al. 2008; Le-Cao, Mai-Duy,
and Tran-Cong 2009; Hussain andHussein 2010; Ngo-
Cong et al. 2012).

In order to verify the accuracy of the method, the
average Nusselt numbers (N̄u) associated with the
outer and the inner walls are calculated to compare
with those by other published works.

N̄u =
∮
∂T
∂n

ds (36)

As presented in Table 5, the average Nusselt num-
ber on the hot wall by the present method is in great
agreement with other results obtained by different



INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS 853

Table 5. The NC in concentric annuli problem.

Ra 104 105 106

Present method 3.23 4.91 8.90
Ngo-Cong et al. (2012)a 3.23 4.92 8.90
Le-Cao, Mai-Duy, and Tran-Cong (2009)b 3.21 4.89 8.85
Hussain and Hussein (2010)c 3.40 5.13 9.39
Kim et al. (2008)d 3.41 5.14 9.39
Shu and Zhu (2002)e 3.24 4.86 8.90
Moukalled and Acharya (1996)f 3.33 5.08 9.37

Comparison of average Nusselt numbers N̄u. Present results are obtained by
our parallel algorithm with 24 CPUs.
aUsing Local moving least square 1D-IRBFN.
bUsing 1D-IRBFN.
cUsing Finite volume method.
dUsing Immersed boundary method.
eUsing Differential quadrature method.
fUsing Finite volume method.

Table 6. The NC in concentric annuli problem.

CPUs Ni N̄uo N̄ui t(m) S E

1 118288 3.2253 3.2245 1635.58 1.00 100.00
2 120297 3.2253 3.2249 446.17 3.67 183.29
4 120275 3.2253 3.2249 232.23 7.04 176.08
8 125224 3.2253 3.2247 124.47 13.14 164.26
16 124170 3.2252 3.2251 51.05 32.04 200.25
24 132465 3.2253 3.2253 33.48 48.85 203.56
32 131055 3.2253 3.2247 27.62 59.21 185.02
48 130681 3.2253 3.2262 18.37 89.05 185.52
60 135502 3.2253 3.2251 15.35 106.55 177.58
72 136952 3.2254 3.2244 13.35 122.48 170.11

Parallel performance with Ra = 104, grid 120× 120, t = 10−4, CM[u]
tol =

10−9, ABCM[u]
tol = 10−8, ABCM

[
∂u
∂n

]
tol = 10−8, θ = 0.25 and β = 2. CPUs,

number of CPUs (sub-domains); Ni , number of iterations; N̄uo , average Nus-
selt number on the outer square (cold wall); N̄ui , average Nusselt number
on the inner circle (hot wall); t(m), elapsed time (minutes); S, speed-up; E,
efficiency.

non-parallel numericalmethodswith single domain. It
is noted that the averageNusselt number in some of the
works cited are calculated for half of the domain and
thus in this work, the actual average Nusselt number
needs to be divided by 2 for comparison purpose.

Tables 6–8 present numerical results of the NC
problem in a concentric annulus using the present
parallel computation method with a range of number
of CPUs for three Rayleigh numbers Ra = {104, 105,
106}.

It can be seen that the variation of the average Nus-
selt numbers on the outer square and the inner circle
with respect to several numbers of CPUs is insignifi-
cant. For example, the maximum differences in Nus-
selt numbers are around 0.08%, 0.11% and 0.13% for
Ra = 104, Ra = 105 and Ra = 106, respectively (see
Tables 6–8). This confirms the stability of the present
parallel computation with different numbers of CPUs.

Furthermore, in this example, the super-linear
speed-up is also observed with a whole range of

Table 7. The NC in concentric annuli problem.

CPUs Ni N̄uo N̄ui t(m) S E

1 386141 4.9053 4.9065 4542.72 1.00 100.00
2 392906 4.9053 4.9072 1509.73 3.01 150.45
4 401923 4.9053 4.9073 764.73 5.94 148.51
8 420629 4.9047 4.9063 420.99 10.79 134.88
16 422929 4.9054 4.9069 190.56 23.84 148.99
24 448339 4.9045 4.9072 115.11 39.46 164.43
32 443774 4.9040 4.9059 90.69 50.09 156.54
48 446269 4.9047 4.9100 62.49 72.69 151.44
60 446010 4.9030 4.9060 52.31 86.84 144.73
72 445250 4.9035 4.9055 45.80 99.19 137.76

Parallel performancewith Ra = 105, grid 120× 120, other parameters can be
seen in Table 6.

Table 8. The NC in concentric annuli problem.

CPUs Ni N̄uo N̄ui t(m) S E

1 759280 8.8726 8.9015 9093.03 1.00 100.00
2 759000 8.8673 8.9034 2882.77 3.15 157.71
4 785182 8.8676 8.9034 1483.05 6.13 153.28
8 846039 8.8652 8.8990 833.02 10.92 136.45
16 895329 8.8686 8.9021 404.71 22.47 140.42
24 902945 8.8658 8.9043 245.91 36.98 154.07
32 902989 8.8655 8.8991 181.62 50.07 156.45
48 897475 8.8717 8.9075 126.41 71.93 149.85
60 900293 8.8668 8.9019 100.34 90.62 151.04
72 904160 8.8624 8.8956 88.91 102.28 142.05

Parallel performancewith Ra = 106, grid 120× 120, other parameters can be
seen in Table 6.

Table 9. Condition number of systemmatrix in LDC andNCprob-
lems with respect to number of CPUs (sub-domains)

LDC grid 151× 151 NC grid 120× 120

CPUs CNψ CPUs CNψ

1 10724.71 1 4563.29
2 4143.51 2 4316.68
4 2680.41 4 4036.09
9 1191.68 8 883.07
16 688.34 16 346.73
25 429.04 24 251.40
36 297.15 32 230.75
49 230.75 48 122.08
64 171.32 60 93.48
81 137.00 72 106.50

numbers of CPUs from 2 to 112 for all three consid-
eredRayleigh numbers as found inTables 6–8 (column
E). One reason for the super-linearity can be explained
by the significant reduction of condition number with
the increase in the number of CPUs as seen in Table 9
for both the LDC and NC problems. For example, the
condition number for the NC problem reduces from
4563.29 down to 106.50 when increasing the number
of CPUs from 1 to 72 sub-domains with a 120× 120
grid.

Moreover, the efficiency and throughput of the
present method are high as shown in Figure 18(a,c),
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Figure 18. The NC in concentric annuli problem. Performance of the present parallel algorithm for several Rayleigh numbers: the
efficiency, speed-up and throughput with respect to the number of CPUs. Other parameters are given in Table 6.

Table 10. The NC in concentric annuli problem.

Parallel Sequential

Ra Tcmm Tcmp Tp %Tcmm Ts Tn E

104 10.07 23.41 33.48 30.07 1635.58 68.15 203.56
105 42.03 73.09 115.11 36.51 4542.72 189.28 164.43
106 64.95 180.96 245.91 26.41 9093.03 378.88 154.07

Comparison between the computation time and communication time in parallel program, and the total time between parallel computation and sequential com-
putation. Parallel program using 24 CPUs. Ra, Rayleigh number; Tcmm, communication time (minute); Tcmp, computation time (minute); Tp, total computation
time (minutes) on parallel CPUs; % Tcmm, percentage of communication time in Tp; Ts, computation time (minutes) by sequential program; Tn, normalised time;
E, efficiency.

respectively. The speed-up for all three Rayleigh num-
bers presented in Figure 18(b) linearly increases with
respect to the number of CPUs. Like in the LDC prob-
lem, this confirms the high scalability of our present
parallel method.

The comparison of the communication time vs the
computation time in parallel computing as well as the
total execution time in the present parallel program
using 24 CPUs vs the sequential one is given in Table
10. A bar graph is also provided in Figure 19 for better
visualisation of these comparisons.

5. Conclusions

In this paper, the non-overlappingDirichlet–Neumann
DD method coupled with a 2D-CLIRBF method to
solve the Navier–Stokes equations has been success-
fully developed. For the accuracy, the achieved results
by the present parallel method for the LDC fluid flow
and the NC in concentric annuli are in very good
agreement with benchmark results. Meanwhile, the
time efficiency and throughput are very high. Espe-
cially a super-linear speed-up is achieved with a wide
range of numbers of CPUs. This super-linearity can be
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Figure 19. The NC in concentric annuli problem: A bar graph
for the comparison of execution times between the sequential
computation and parallel computation using 24 CPUs.

partly explained by the impressive decrease of the con-
dition number of the system matrix of sub-problems
and by the insignificant increase in number of itera-
tions required for the solution to converge. Further-
more, the variation of solutions with varying number
of CPUs is very small. In addition, the method also
showed good scalability as the speed-up grows con-
sistently as a function of number of CPUs with given
grids.
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