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ABSTRACT

This study assessed the utility of hyperspectral imagery in
discriminating remnant tree species and stand
regeneration stages in Southeast Queensland, Australia.
Reflectance data of three species of woody vegetation (i.e.
Eucalyptus populnea, Acacia pendula and Eucalyptus
orgadophila), acquired using a HyMapTM airborne
system, were analysed using partial least squares (PLS)
regression. Three groups of E. orgadophila species,
representing stand regeneration status, were also
evaluated. For discriminating such tree species, the PLS
results showed high prediction accuracy ranging from 83
88%. The most significant spectral bands span from the
visible region (peak at 558nm and 689nm), near-infrared
region (peak at 987nm), and shortwave infrared region
(peak at 1788nm). Hyperspectral data was able to
discriminate the old stand of E. orgadophila from the
young stand, with a moderate accuracy of 72%. Results
such as these confirmed the potential utility of
hyperspectral data in vegetation mapping and stand
characterisation.

Index Terms- hyperspectral, vegetation, species,
regeneration, Australia

1. INTRODUCTION

Remnant vegetation pertains to remaining vegetation after
an area has been cleared or modified. Patches of remnant
vegetation are important for a wide variety of functions,
such as a) habitat of wildlife [1], and b) control of soil
erosion and dryland salinity [2]. As their extent and
distribution continue to decline due to anthropogenic
activities and natural causes, reliable information about
remnant vegetation is necessary for effective resource and
environmental management. Among the information
frequently needed by scientists and managers refers to
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species richness (e.g. [3]) and regeneration stages (e.g. [4]).
Hyperspectral remote sensing offers some potential to map
vegetation species and regeneration stages. Previous studies
have demonstrated that hyperspectral data and derived spectral
vegetation indices (SVls) can achieve better results in mapping
vegetation. For instance, it was found that hyperspectral data
from CASI sensor acquired at 1m spatial resolution could
provide discrimination of woodland species in the Southern
Brigalow Belt, Queensland [5].

The objectives of this study were to: a) examine if selected
remnant vegetation species and regeneration stages can be
adequately discriminated from airborne measurements of
hyperspectral reflectance, b) determine the best spectral bands
relevant to discrimination, and c) compare the prediction
accuracies and errors produced from using raw hyperspectral
data, spectral vegetation indices (SVls), and other data
transformations.

2. RESEARCH METHODS

2.1. Study area and image data acquisition

The study area was located on the property "Well Park"
(approximately 27.105°S, 151.345°W), on the Darling Downs
region of Southeast Queensland, Australia (Figure 1). It is
primarily an agricultural landscape, with vast alluvial plains
being planted with cereal crops, such as wheat and sorghum.
The riparian areas on the eastern side of the image are
dominated by poplar box (Eucalyptus populnea), myall
(Acacia pendula) and river red gum (Eucalyptus
camaldulensis). On the basaltic upland areas to the west of the
image, mountain coolibah (Eucalyptus orgadophila)
dominates the remnant vegetation communities.

This study acquired an aerial hyperspectral image on 16
April 2004 using the Hyperspectral Mapper (HyMapTM)
system [6]. The sensor utilised four 32-element detector arrays
to provide 126 spectral channel covering the 450nm to
2500nm spectral range over a 512 pixel swath. The spatial
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resolution achieved at that miSSIOn was about 3m,
covering a swath width of approximately 2km. The data
provider performed radiometric calibration to deliver data
in apparent surface reflectance unit.

HyMap Image of "Well Park" , Darling Downs, Queensland

16th Apri/2004

,........--.--,
o 05 1 10m RGB(1652Snm. 8037nm. 6749nm)

Figure I. Location map of the study area

2.2. Field data collection

Three native vegetation species were included in this
study: poplar box (Eucalyptus populnea), myall (Acacia
pendula) and mountain coolibah (Eucalyptus
orgadophila) (Table 2 and Figure 2). A total of 107
samples across the study area was collected using a
combination of simple random sampling and purposive
selection method. A number of selected tree attributes, i.e.
diameter at breast height (dbh), tree height, and canopy
diameter at the major and minor axis , were measured
correspondingly.

2.3 Data processing

The image data processing involved the following main
components: a) calculation of spectral vegetation indices
(SVI), b) training sample selection, and c) assembling textual
data into spreadsheet for regression analysis. For SVI
calculation, the ENVITM 4.3 Vegetation Index Calculator
module [9] was used to generate 14 vegetation index layers
(Table 4).

Figure 2. Tree species (a =poplar box; b = myall; and c = coolibah)
included in the study and a close up image (d) of the basaltic upland.

The regeneration status ("young stand', "middle-aged
stand' and "old stand') of the mountain coolibah species
was visually identified on the ground (Table 3), and was
confirmed by using the tree variables mentioned above.

libahfibT bl 3 Ra e es cncranon attn utes 0 mountam coo I trees
Regeneration Foliage Attributes Structural Attributes
Stage (Based from Field

Data)
Young stand Alternate, petiolate, Ave Dm-I= 20.9 em

ovate to lanceolate; Ave height = 13.9 m
7-15 x 2-4cm; green Ave crown diameter =
to greyish green, 4.4 m
becoming
concolorous [71

Old stand Alternate, petiolate, Ave DBB = 80.4 cm
lanceolate to Ave height = 19.7 m
narrow-Ianceolate; Ave crown diameter =
8-17 x 0.8-2.5cm; 17.0m
green to greyish
green, concolorous
[71

Middle-aged Attributes in Ave DBH = 46.8 em
stand between the young Ave height = 13.3 m

stand and old stand Ave crown diameter =
1O.6m

The selection of training samples for each tree species was
started by identifying two "starting pixels" representing the
centre of the tree canopy. Then, a "region growing" facility of
ENVI software was utilised, employing a threshold of 2
standard deviations away from the mean of the starting pixel
value, and by using the 4 neighbouring pixels to determine the
growth pattern. The final selection of pixels was determined

d. I d d i hT bl 2 Va e ezetanon species me u e 10 t e study

Common Scientific Attributes
Name Name
Mountain Eucalyptus Open-woodland species; mature
Coolibah orgadophila tree can range from IS-20m

height and up to 1m dbh; open,
straggly crown; leaf size and
colour shades vary between
juvenile and adult trees; green to
arevish green leaves [7]

Poplar Eucalyptus Open-woodland species; 8-20m in
box populnea height; up to 0.8m dbh; medium

sized compact crown; glossy
green, concolorous; elliptical to
ovate, elliptical, broad-Ianceolate
[71

Myall Acacia A species of wattle which grows
pendula up to IO metres in height;

pendulous (drooping) in form with
grey green narrow phyllodes
(modified petioles serving leafs
purpose) which are about 8 em in
length; Yellow ball-shaped
flowers appear in spring [8]
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iteratively, based from this spectral-based technique and
the knowledge of the crown canopy diameter measured
on-site.

Table 4. Spectral vegetation indices used in this study.
Name
I. Normalized Difference Vegetation Index
2. Simple Ratio Index
3. Atmospherically Resistant Vegetation Index
4. Red Edge Normalized Difference Vegetation Index
5. Vogelmann Red Edge Index I
6. Red Edge Position Index
7. Photochemical Reflectance Index
8. Red Green Ratio Index
9. Carotenoid Reflectance Index I
10. Carotenoid Reflectance Index 2
I I. Anthocyanin Reflectance Index I
12. Water Band Index
13. Moisture Stress Index
14. Normalized Difference Infrared Index

2.4 Partial least squares regression

PLS regression is a bilinear modelling method for relating
the variations in one or several response variables to the
variations of several predictors [11]. Using this technique,
information in the original X-data (independent variables)
is projected onto a small number of underlying ("latent")
variables called PLS components or factors. The PLS
method was originally developed as an extension of the
more familiar principal component analysis (PCA).

The reflectance data was transformed by three
procedures: a) first derivative of raw reflectance spectra b)
smoothing by moving average, and c) using the
wavelengths or SVls identified by the Martens'
Uncertainty Test [12].

Similar with traditional regression analysis, PLS
regression requires that the response ("Y" dependent)
variable be a quantitative data. Because of this, the values
for species type variable were coded "0" and "1", and
consequently limited the analysis to only two classes at a
time. A full cross-validation (leave-one-out) technique
was applied for this study.

The performance of each PLS model was measured by
calculating the root mean square error of prediction
(RMSEP). A measure of the average difference between
predicted and measured response values, it can be
interpreted as the average prediction error, expressed in
the same unit as the original response value [10].

3. RESULTS AND DISCUSSION

3.1. Prediction of tree species and regeneration stages

The PLS regression results demonstrated the potential to
predict the tree species from HyMap hyperspectral data.
Between mountain coolibah and poplar box, there was a
high correlation between predicted and measured values

for the validated samples, i.e. r=0.90 to 0.97 (Table 5). The
root mean square error of prediction (RMSEP) was relatively
low (i.e. from 0.12 - 0.21 in a range of 0-1), indicative of the
good prediction accuracy (79-88%) of the regression models.
Among the three species combinations , it appears that spectral
discrimination between myall and poplar box has the least
accuracy (75-83%), although this value is still relatively high.

The spectral discrimination between old and young stands
achieved a cross-validated maximum accuracy of 72%, with
correlations between the predicted and measured values
ranging from r=0.78 to 0.83. The result between young and
middle-aged stands was basically the same, as it produced an
accuracy of 73%. However, the discrimination between
middle-aged and old stand is relatively lower in magnitude
(highest at 67% accuracy and correlation of r=0.74).

Table 5. PLS regression results oftree species and hyperspectral data

Data Correlation RMSEP Accuracy
(r) of

Predi ction
%

A. Coolibah vs. Poplar bo x (n=72)
1. ~ Raw Spectra 0.96 0.1303 87
2.~ First Derivative of Raw Spectra 0.96 0.1303 87
3 . ~ Smoothing (Moving Average) 0.96 0.1272 87
4.~ Smoothed Raw Spectra 0.97 0.1235 88

(Marten's Significant Variables)
5.~ Spectral Vegetation Indices 0.90 0.2125

(SVIl 79
6 .~ SVI (Marten's Significant 0.91 0.2046

Variables) 80
B. ~JlJlJ!b~"h vs . My}!l! (n=69)
1.~ Raw Spectra 0.93 0.1717 83
2.~ First Derivative of Raw Spectra 0.91 0.1965 80
3.~ Smoothina (Movinc Averaae) 0.93 0.1802 82
4 .~ Smoothed Raw Spectra 0.96 0.1434 86

(Marten's Significant Variables)
5.~ Spectral Vegetation Indices 0.90 0.2119

(SVI) 79
6 .~ SVI (Marten's Significant 0.90 0.2100

Variables) 79
C. Mvall VS. Poplar bo x In=51)
1.~ Raw Spectra 0.88 0.2485 75
2.~ First Derivative of Raw Spectra 0.91 0.2102 79
3.~ Smoothing (Moving Average) 0.86 0.2545 75
4 .~ Smoothed Raw Spectra 0.94 0.1721 83

(Marten's Siqnificant Variables)
5.~ Spectral Vege tation Indices 0.93 0.1818

(SVI) 82
6.~ SVI (Marten's Significant 0.88 0.2487

Variables) 75

Correlation (r) is between predicted and measured values ; RMSEP - root
mean square error of prediction; n =the number of samples

3.2. Comparison of raw, SVIs, and transformed data

For tree species discrimination involving a) mountain coolibah
vs. poplar box and b) mountain coolibah vs. myall, the
prediction accuracy of raw spectra is relatively higher than the
accuracy of spectral vegetation indices (SVls) (Table 5). These
were a) 87% vs. 79%, and b) 83% and 79%, respectively. For
myall vs. poplar box, the accuracy of SVls is higher than raw
spectra, i.e, 75% vs. 82%. These varying results indicate that
the benefit of using vegetation indices is case-specific.

3

Authorized licensed use limited to: UNIVERSITY OF SOUTHERN QUEENSLAND. Downloaded on March 19,2010 at 23:53:19 EDT from IEEE Xplore.  Restrictions apply. 



With regards to regeneration stages, the prediction
performance of the raw reflectance spectra was generally
similar to that of the vegetation indices. In this case, it can
be generalised that the raw spectra and SVI datasets have
comparable predictive power for regeneration stages when
analysed using PLS regression. This suggests that the
transformations applied to vegetation indices did not
make a significant difference in model prediction.

Considering the PLS results of species discrimination,
the first derivative transformation and the smoothing
transformation did not bring significant improvement to
the RMSEP and prediction accuracy values. In few cases,
there was noticeable reduction in prediction accuracy
when these data transformations were applied. However,
it was the use of "significant variables" from the Marten's
Uncertainty Test that brought a consistent increase in the
accuracy for species discrimination. For example, for
myall vs. poplar box results, the 75% accuracy of raw
spectra has increased to 83% when data from Marten's
Uncertainty Test was used.

3.3. Significant spectral bands and indices

Based on the regression coefficient plot and by the results
of Martens' Uncertainty Test, the most significant spectral
bands for tree species discrimination span from the visible
region (peak at 558nm and 689nm), near-infrared region
(peak at 987nm), and shortwave infrared region (peak at
1788nm). Those wavebands in the NIR region attained the
highest regression coefficient values. With regards to
SVIs, the most significant variables were identified, in
descending order, as follows: Red Green Ratio Index
(RGRI), Simple Ratio Index, and Normalized Difference
Infrared Index.

For regeneration stage prediction, the results show that
the most significant spectral bands are those from the
visible region (peak at 704nm) and near-infrared region
(peak at 1289nm). On the other hand, the identified SVIs
to be most significant in the prediction model were
Anthocyanin Reflectance Index, Carotenoid Reflectance
Index and Water Band Index.

4. CONCLUSIONS

Cross-validated PLS regression models produced high
prediction accuracies, confirming the usefulness of
narrow-band spectral reflectance data for tree species
discrimination. Vegetation indices produced varying
accuracy results, indicating that their potential use for
species discrimination is case-specific. The data
transformation techniques (i.e. first derivative
transformation and smoothing) did not bring significant
improvement to prediction accuracy. In contrast, the use
of "significant variables" identified from the Marten's
Uncertainty Test brought a consistent increase in the
accuracy of the regression model.

The spectral separability of mountain coolibah trees under
different regeneration stages indicated a good separation
between the young stand and old stand in all regions of the
spectrum, except the far end of the shotwave infrared bands. In
addition to the NIR region, the spectral bands in the visible
region appeared to exert a key role in the separation of the
regeneration stages. This study found that the raw spectra and
vegetation indices datasets have comparable predictive power
for regeneration stages when analysed using PLS regression.

This study confirmed the potential utility of hyperspectral
data to discriminate selected tree species and regeneration
stages that can help improve vegetation mapping and stand
characterisation. More work is being done to classify the
image using per-pixel (e.g. support vector machine) and
object-based (image segmentation) approaches.
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