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ABSTRACT4

Finding an optimum reinforcement layout for underground excavation can result in a5

safer and more economical design, and therefore is highly desirable. Some works in the6

literature have applied topology optimisation in tunnel reinforcement design in which rein-7

forced rock is modelled as homogenised isotropic material. Optimisation results, therefore,8

do not clearly show reinforcement distributions, leading to difficulties in explaining the final9

outcomes. In order to overcome this deficiency, a more sophisticated modelling technique10

in which reinforcements are explicitly modelled as truss elements embedded in rock mass11

media is employed. An optimisation algorithm extending the Solid Isotropic Material with12

Penalisation (SIMP) method is introduced to seek for an optimal bolt layout. To obtain the13

stiffest structure with a given amount of reinforced material, external work along the open-14

ing is selected as the objective function with a constraint on volume of reinforcement. The15

presented technique does not depend on material models used for rock and reinforcements16

and can be applied to any material model. Nonlinear material behaviour of rock and rein-17

forcement is taken into account in this work. Through solving some typical examples, the18

proposed approach is proved to improve the conventional reinforcement design and provide19

clear and practical reinforcement layouts.20
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INTRODUCTION22

In tunnel reinforcement design with a wide range of rock mass types and complicated23

corresponding behaviour, selecting a design tool capable of considering complex rock mass24

conditions is important. With analytical approach, explicit calculations can be provided,25

however, its applicability is restricted to only simplified cases such as circular tunnels. Em-26

pirical methods which have been broadly used in the state-of-the-art reinforcement design,27

on the other hand, generally determine the support design based on classification systems.28

In heterogeneous and poor ground conditions these approaches can provide improper designs29

(Palmstrom and Stille 2007). Additionally, as constructed from long-term accumulated expe-30

riences in older projects, it is not guaranteed that the suggested design is the most reasonable31

one in both economical and technical terms for a particular situation. It is also worth noting32

that both empirical methods and analytical calculations are limited to free-field (Chen et al.33

1999) and incapable of coping with the designs covering interaction between a new tun-34

nel and adjacent structures. Owing to the ability in modelling complex ground conditions35

with consideration of discontinuities or adjacent structures, usage of numerical simulation36

has recently become common in tunnel excavation design (Gioda and Swoboda 1999; Jing37

2003; Bobet et al. 2009). An appropriate combination of a numerical analysis method and38

an optimisation technique would provide a promising tool for obtaining an optimal tunnel39

reinforcement design.40

Topology optimisation has been continuously developed and extended to a wide range of41

engineering applications in the past two decades. However, there have been limited works42

on utilising these optimisation methods in geotechnical, and particularly in tunnelling engi-43

neering (Ghabraie 2009). Yin et al. (2000) initiated by applying the homogenisation method44

in tunnel reinforcement design in which every element in the design domain is assumed as45

a square cell made of original rock surrounded by reinforced rock. The external work along46

the tunnel wall has been minimised under a prescribed reinforcement volume. Yin and Yang47
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(2000a) conducted further research on optimising tunnel support in various layered geological48

structure conditions. The solid isotropic material with penalization (SIMP) method was em-49

ployed to determine the optimum distribution of reinforcement density in the design domain.50

In addition, tunnel and side wall heaves caused by swelling or squeezing rock, were addressed51

by Yin and Yang (2000b). This issue was also tackled by Liu et al. (2008b) using a fixed-52

grid bidirectional evolutionary structural optimisation (FG BESO) method. With regards53

to the shape optimisation of underground excavations, Ren et al. (2005) and Ghabraie et al.54

(2008) demonstrated the ability of evolutionary structural optimisation (ESO) method in55

searching for the optimal shape based on stress distribution. A simultaneous optimisation of56

shape and reinforcement distribution of an underground excavation for elastic material was57

explored by Ghabraie et al. (2010) using bi-directional evolutionary structural optimisation58

(BESO) method. It should be emphasized that all the earlier works on reinforcement opti-59

misation have been restricted to linear elastic analysis, which is mostly not an appropriate60

assumption for geomechanical materials. This limitation has been removed by Nguyen et al.61

(2014) where nonlinear material models were considered in optimising tunnel reinforcement62

distribution.63

In the above-mentioned works, to model the areas of the rock mass reinforced by rock64

bolts, a homogenised isotropic material which is stronger and stiffer than the unreinforced65

rock mass material is used . This modelling technique may result in a considerable reduction66

in computational time compared to explicit modelling of rock bolts. However, a perfect67

bonding between the reinforced material and the surrounding rock needs to be assumed for68

such modelling (Bernaud et al. 2009). More importantly, such a model can not consider69

the anisotropic nature of the reinforced rock which is significantly stronger in bolt direction70

and weaker in normal directions. Additionally, results obtained by such an approach need71

to be further processed to yield a clear bolt distribution design (see for example section 7.472

in Nguyen et al. 2014). To handle these shortcomings, one should model the reinforcements73

explicitly using linear inclusions embedded in the rock mass. This approach may take more74
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time and efforts especially in topology optimisation, but a higher level of accuracy could be75

achieved.76

The scope of this work is to combine an extended optimisation technique and numerical77

analysis to seek for an optimal rock bolt configuration. Rock bolts are explicitly modelled and78

nonlinear behaviour of rock and bolts are considered in order to achieve a more practical and79

effective bolt design. The remaining parts of this paper are organised as follows. The next80

section presents the modelling of underground excavation and reinforcement installation,81

followed by a sensitivity analysis of reinforcement elements. A typical example is presented to82

show the application and efficacy of the proposed approach. A systematic study of various in83

situ stress states, optimisation parameters and ground conditions is performed to investigate84

their effects on optimised bolt layouts and also to illustrate the usefulness of the proposed85

method.86

MODELLING OF TUNNEL EXCAVATION AND REINFORCEMENT SYSTEM87

For simplicity, the considered tunnel is assumed to be long and straight enough to satisfy88

plane strain assumption. The support system employed to reinforce the tunnel excavation is89

a combination of a 100 mm-thick shotcrete lining and rock bolts. The shotcrete elements are90

attached to deform together with the rock elements around the excavation boundary. Rock91

bolts can be generally classified into two categories, namely anchored bolts and fully grouted92

bolts. This study focuses on pre-tensioned anchored bolts. Due to their small cross-section93

area, the bending stiffness of rock bolts can be neglected and hence truss elements are used94

here to model pre-tensioned bolts (Coda 2001; Leite et al. 2003). Rock bolts are embedded95

in the rock mass by connecting two ends of the bolts to nodes of the rock elements.96

Some studies have attempted to simulate rock bolt designs in three dimensions (3D)97

(Grasselli 2005; Liu et al. 2008a). The main advantage of a 3D model over a 2D one is98

that the former is capable of exactly simulating actual fracture geometry, locations of bolted99

system and sequences of tunnel advancement and reinforcement installation. However, a100

3D modelling also requires expensive computational cost and time. When performing an101
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optimisation in particular, the excessive computational time required for a 3D analysis is a102

major drawback as several analyses are required in solving an optimisation problem.103

As tunnel construction is practically conducted in three-dimensions, a volume of ground104

material is squeezed into the opening, creating deformation around the opening. A straight-105

forward modelling of support system in two-dimensional numerical tool is incapable of taking106

into account this 3D effect. To realistically simulate tunnel support in a plane strain condi-107

tion, one needs to adopt assumptions accounting for the volume loss and deformations of the108

excavation boundary occurred before any support is installed. The convergence-confinement109

method (Panet and Guenot 1982) is adopted by applying a fictitious pressure inside the tun-110

nel area to represent the effects of gradual decrease of the radial resistance. In the examples111

presented here, a fictitious pressure of 70% of the initial stress is applied to simulate this112

effect.113

Sequences of excavation process and reinforcement installation are modelled with three114

separate steps with the aid of ABAQUS6.11. The in situ stress is imposed in the first step.115

The weight of ground material is neglected while the in situ stress is imposed to the model by116

creating an initial stress field with the considered horizontal to vertical stress ratio. Along the117

outer boundaries, the tangential tractions and normal displacements are confined while the118

nodal displacements of the elements on the excavation boundary are restrained to simulate119

the pre-excavation situation. The bolts and the shotcrete lining elements are absent in this120

step. In the second step, 70% of the calculated nodal forces around the opening are reversely121

applied to the excavation boundary. Deformation due to squeezing of ground material into122

the tunnel before rock bolt installation is simulated in this step. The final step includes123

removing the nodal forces and simultaneously activating the shotcrete lining elements and124

the bolts which are pre-tensioned to 60% of their yield stress capacity. It should be noted that125

these modelling assumptions explained above are by no means imposed by the optimisation126

approach. The proposed optimisation approach can be used with any other model including127

even 3D models without any modification.128
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PROBLEM STATEMENT AND OPTIMISATION METHOD129

The aim of the tunnel reinforcement design is to employ a minimum amount of reinforce-130

ments while tunnel deformation after activating the reinforcements needs to be limited. This131

objective can be reformulated as finding the minimum tunnel deformation under a prescribed132

reinforcement volume. In the proposed method below, the optimisation process minimises133

the external work along the tunnel wall which is a functional of the tunnel deformation un-134

der a constrained reinforcement volume. The final solution is thus an optimised rock bolt135

distribution for a certain amount of bolt volume resulting in a minimum external work. It136

can be shown that any solution to this problem is also a solution to finding a minimum137

reinforcement volume subject to a constrained external work. The optimisation problem can138

be stated as139

min W =

∫
f · du = lim

n→∞

[
1

2

n∑
i=1

(ui − ui−1) · (fi + fi−1)

]

subject to: VR =
t∑

m=1

AmLm

(1)

where W is the total external work, f the external force vector, u the displacement vector,140

n the number of iterations in solving the non-linear equilibrium equations, VR the given141

volume of rock bolt, Am the cross section of rock bolt m, Lm the length of rock bolt m, and142

t number of rock bolts.143

The ground structure concept (Bendsøe and Sigmund 2003) is used here. A ground144

structure is generated with all the possibilities of rock bolts one wishes to consider in the145

assigned design domain. Within a given ground structure, the proposed approach seeks for146

an optimal layout of rock bolts. In tunnel reinforcement design, these rock bolts have one of147

their ends on the tunnel opening and another in the rock mass. Using the ground structure,148

length of each rock bolt is fixed while its cross section area is selected as a function of a design149

variable. A power-law interpolation scheme, which is commonly used to define intermediate150

material properties in the SIMP method (Bendsøe 1989) is expressed below and employed151
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to define the cross section area of each rock bolt.152

Am = Amin + xpm(Amax − Amin) (2)

Here Amin and Amax are the lower and upper bound values of cross section area, respectively.153

p is the penalty factor, and 0 ≤ xm ≤ 1 the design variable of rock bolt m. Selection of154

Amin and Amax restricts the desired range of cross section areas in the optimisation outcomes.155

Choosing Amin = 0, one enables the optimisation engine to completely eliminate unnecessary156

bolts if required.157

The penalty factor is used to penalise the intermediate values and consequently push the158

cross section areas of bolts to the two extremes of Amin and Amax. Without penalisation159

(p = 1), the cross section area varies continuously from the lower to the upper bound values.160

On the other hand, a penalty factor p > 1 tries to push the intermediate values to the lower161

and upper bounds. The effect of penalisation then reduces to limiting the variety of bolt162

areas per unit length, ultimately leading to a reduction in the number of bolt types and/or in163

the number of drillings. It should be noted that using a very large value of the penalty factor164

results in local minima or convergence problem (Stolpe and Svanberg 2001). Selection of165

the penalty factor can have a considerable effect on optimisation results. Therefore, it needs166

to be carefully considered to meet technical aspects as well as economical terms. Effects of167

penalty factor are studied in Section 7 via a simple example.168

It should be noted that as a two dimensional model is considered here, the obtained169

optimisation outcomes are bolt cross section areas per unit length of the tunnel. When170

translating the designs back to three dimensions, based on available bolt diameters and the171

limitations of the drilling machine, one can work out the spacing between bolts in the third172

dimension to satisfy the required area per unit length.173

The sensitivity analysis presented in the next section is employed to update the cross174

section area of each bolt in each iteration. Further details on updating schemes for these175
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design variables can be found in Sigmund (2001). The process of finite element analysis and176

updating design variable continues until no design variable experiences a change of more177

than 10−4 in two consecutive iterations. The flowchart of the proposed approach is depicted178

in Fig. 1.179

SENSITIVITY ANALYSIS180

The sensitivity of the objective function due to an infinitesimal change in variable x is181

∂W

∂x
= lim

n→∞

[
1

2

n∑
i=1

(ui − ui−1) ·
(
∂fi
∂x

+
∂fi−1
∂x

)
+

1

2

n∑
i=1

(
∂ui

∂x
− ∂ui−1

∂x

)
· (fi + fi−1)

]
(3)

As the considered problem is a displacement-controlled analysis, in Eq. (3) the second sum182

vanishes. Equilibrium requires the residual force vector to be eliminated and is stated as183

R = f − p = 0 (4)

where p is the internal force vector. Combining Eq. (3) and Eq. (4) results in184

∂W

∂x
= lim

n→∞

1

2

n∑
i=1

(ui − ui−1) ·
(
∂p

∂x
+
∂pi−1

∂x

)
(5)

The internal force vector is carried by both the rock material and the bolts and can be185

expressed as186

p = pS
m + pR (6)

where pS
m and pR are the internal force vectors of the rock bolt m and the rock, respectively.187

The internal force vector carried by the rock is expressed as188

pR =
M∑
e=1

∫
e

CeBσdν =
M∑
e=1

∫
e

CeBDR
e εdν (7)

where M is the total number of rock elements, Ce the matrix which transforms the local189

force vector of element e to the global force vector, B the strain-displacement matrix and190
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DR
e the matrix defining the stress-strain relationship of the rock. As Ce, B and DR

e are191

independent of variable x, differentiating Eq. (6) leads to192

∂p

∂xm
=
∂pS

m

∂xm
(8)

Substituting Eq. (8) into Eq. (5) results in193

∂W

∂xm
= lim

n→∞

1

2

n∑
i=1

(ui − ui−1) ·
(
∂pS

mi

∂xm
+
∂pS

mi−1

∂xm

)
(9)

The internal force vector in a rock bolt can generally be calculated from194

pS
m(xm, δm) = Am(xm)σ(δm) (10)

where δm is the elongation of the rock bolt m and σ(δm) is the stress in the rock bolt which195

is a function of this elongation only. From Eq. (10) and Eq. (2), differentiation of internal196

force vector yields197

∂pS
m

∂xm
= pxp−1m (Amax − Amin)g(δm)

= pxp−1m (pSmax
m − pSmin

m )

(11)

Substituting Eq. (11) and Eq. (8) into Eq. (5) results in the following198

∂W

∂xm
= pxp−1m lim

n→∞

1

2

n∑
i=1

(ui − ui−1) ·
(
pSmax
mi
− pSmin

mi
+ pSmax

mi−1
− pSmin

mi−1

)
= pxp−1m (ΠSmax

m − ΠSmin
m )

(12)

where ΠSmax
m and ΠSmin

m are the total strain energies of the bolt m when its cross section areas199

are Amax and Amin, respectively. Setting Amin = 0 the above equation simplifies further to200

∂W

∂xm
= pxp−1m ΠSmax

m (13)
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From Eq. (11), it can be seen that the sensitivity of a truss element is a direct measure201

of its total strain energy and only depends on the considered element.202

It is important to note that the sensitivity analysis outcomes can be applied to any203

material models of the rock mass and bolts as no assumptions on material behaviour have204

been made in the above derivation.205

IMPROVING THE UNIFORM ROCK BOLT DISTRIBUTION206

A simple rock bolt design example is considered to illustrate the applicability and ef-207

fectiveness of the proposed approach. The geometry of the tunnel is a rectangle of size208

w × h = 10 m × 5 m augmented at the top with a semi-circle of radius 5 m. In order to209

ensure that the boundary effect is negligible, the modelled domain is chosen as a square of210

side length 20w (i.e. 200 m). Owing to symmetry, only half of this domain is modelled in the211

finite element analysis as displayed in Fig. 2. For a better view of the reinforcement layout,212

only an area around the opening with the size of 15 m × 30 m will be illustrated in other213

figures.214

A typical rock bolt design practice commonly involves determining three parameters,215

namely, length, spacing and cross section area of bolts. The bolts are empirically distributed216

uniformly around the areas of the opening which need to be reinforced and normal to the217

opening. Generally, the selection of bolt length is based on the thickness of unstable strata218

to ensure that the bolts are long enough to be firmly anchored in a competent rock mass. In219

homogeneous rock media, however, bolt length is selected to generate a radial compression220

to the rock arch increasing load carrying capacity of the rock arch. For the investigation of221

bolts in a weak homogeneous rock, following the suggestion of Dejean and Raffoux (1976),222

length of rock bolts should be in the range of w
3

to w
2
, where w is the width of the opening.223

A fixed length of approximately 5 m is chosen herein.224

Fixing the rock bolt length and its orientation, a ground structure can be generated by225

assuming a value for rock bolt spacing. In this example, a ground structure is created with226

a bolt spacing of 1 m and is codenamed GS10 as displayed in Fig. 3. It is worth noting that227
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the considered ground structure reflects the empirical suggestions with even distribution of228

bolts (Bieniawski 1979; Grimstad and Barton 1993). Effects of ground structure densities229

on optimisation outcomes will be discussed in Section 8.230

Nonlinear material models are used to predict responses of the rock mass, shotcrete and231

rock bolts. The rock mass is modelled by an elasto plastic Mohr-Coulomb model with a232

non-associated flow rule, having a yield function and flow potential expressed as (Menétrey233

and Willam 1995)234

F = Rmcq − p tanφ− c = 0 (14)

G =

√
(εC|0 tanψ)2 + (Rmωq)

2 − p tanψ (15)

where235

Rmc(Θ, φ) =
1√

3 cosφ
sin
(

Θ +
π

3

)
+

1

3
cos
(

Θ +
π

3

)
tanφ, (16)

Rmw(Θ, e) =
4(1− e2) cos2 Θ + (2e− 1)2

2(1− e2) cos Θ + (2e− 1)
√

4(1− e2) cos2 Θ + 5e2 − 4e
Rmc(

π

3
, φ), (17)

Rmc(
π

3
, φ) =

3− sinφ

6 cosφ
, (18)

φ, c and ψ are the friction angle, cohesion and dilation angle of the rock, respectively. Θ the236

deviatoric polar angle, p is the mean stress, q the Mises stress, ε the meridional eccentricity,237

e the deviatoric eccentricity, and C|0 the initial cohesion yield stress. The shotcrete and238

rock bolts are assumed to be elastic perfectly-plastic. A non-associated flow rule Drucker-239

Prager model is used to govern the shotcrete behaviour with the yield function and the flow240

potential being defined as241

F = t− p tan β − d = 0 (19)

G = t− p tanψ (20)
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where242

t =
1

2
q

[
1 +

1

K
−
(

1− 1

K

)(
r

q

)3
]

(21)

p = −1

3
trace(σ) (22)

q =

√
3

2
S : S (23)

K is the ratio of yield stress in triaxial tension to yield stress in triaxial compression, S is243

the deviatoric stress. β, ψ and d are the friction angle, dilation angle and cohesion of rock244

material, respectively (ABAQUS 2013). The material properties of the rock mass, shotcrete245

lining and the rock bolts are summarised in Table 1. Typical properties of a very poor246

quality rock mass are used here (Hoek and Brown 1997).247

The lower bound value of cross section areas Amin is assigned to be zeros to allow complete248

elimination of unnecessary bolts and the upper bound value is 649× 10−6 m2 (corresponding249

to the bolt diameter of 29 mm). No penalisation (p = 1) is applied in this example. The bolt250

volume constraint is selected as 34381 mm2/m (see Fig. 3). In this example, an in situ stress251

condition with vertical component of σ1 = 5 MPa and horizontal stress ratio of k = 0.4 is252

considered. The optimised results are depicted in Fig. 4.253

Fig. 4a displays the optimised bolt layouts with numbers at the end of bolts representing254

their cross section areas per unit length of the tunnel (mm2/m). Since the tunnel is considered255

in plane strain condition, the obtained cross section areas per unit length can be converted to256

practical and appropriate spacings and sizes of bolts in three dimensions as noted before. It257

is noted that the plotted line width for each bolt is proportional to its cross section area. In258

order to demonstrate plastic behaviour around the opening, plastic strain magnitudes defined259

as
√

2
3
εpl : εpl (where εpl is the plastic strain tensor) are shown by colour-filled contour lines260

with a colour-bar on its right to define particular magnitudes. The elastic areas are coloured261

grey. It can be seen in Fig. 4a that more bolts are placed at the tunnel ribs where the largest262

plastic strains are observed.263
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The initial external work of the model is 1.37 MJ. A decrease in the objective function is264

obtained before reaching the convergence at the external work of 1.28 MJ (Fig. 4b). Hence,265

6% improvement of the objective function is achieved which demonstrates the advantage of266

the obtained result compared with the empirical design.267

To illustrate and compare tunnel convergence under the initial uniform and the optimised268

bolt layouts, displacements around the opening are displayed in Fig. 5. It can be seen that269

the proposed bolt layout provides smaller displacements nearly everywhere around the cavity,270

particularly at the tunnel ribs where a considerable displacement reduction is obtained. In271

other words, the presented algorithm has redistributed the initially uniform bolt layout to a272

more effective one.273

Further advantages of this approach will be pointed out via further examples by examin-274

ing various in situ stress and ground conditions. These examples will also demonstrate how275

this approach can be used to provide us with a better understanding of rock bolt design.276

EFFECTS OF IN SITU STRESS CONDITIONS ON ROCK BOLT DESIGN277

An investigation on effects of various in situ stress conditions on optimisation outcomes278

is conducted by varying magnitudes of vertical stress (σ1 = 3, 4, 5 MPa) and horizontal279

stress ratio (k = 0.4, 1, 2). A circular tunnel with a radius of 5 m is considered. The initial280

guess design is shown in Fig. 6. Other modelling and optimisation parameters are similar281

to the example described in Section 5. Fig. 7 displays all the obtained bolt layouts and the282

corresponding objective function variations.283

For the case of hydrostatic stress state (k = 1), as expected, bolts are mostly distributed284

evenly around the opening (Figs. 7b, 7e and 7h). For the case of k = 0.4, more bolts are285

observed in the horizontal direction. Finally, for the case of k = 2, bolts are distributed286

mostly in vertical direction (Figs. 7c, 7f and 7i). It can be clearly seen that bolts tend to be287

distributed more densely at regions with large plastic strains.288

With regards to the objective function variations, a stable convergence is observed in all289

cases (Fig. 7j). As expected, for the hydrostatic stress conditions, the optimised layouts are290
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just slightly different from the initial design and small improvements of approximately 0.3%291

are obtained for the objective function. For the other stress states, higher improvements292

are achieved with the largest value of 4.8% observable for σ1 = 4 MPa and k = 0.4. The293

magnitudes of initial and optimised objective function and their relevant improvements are294

tabulated in Table 2 for all cases of stress states depicted in Fig. 7295

EFFECTS OF PENALISATION ON OPTIMISATION OUTCOMES296

In order to clearly show the role of the penalty factor (p) on optimisation outcomes,297

the example presented in Section 6 with the stress condition of σ1 = 4 MPa and k = 0.4298

is reconsidered with different values of penalty factor. The obtained optimised bolt layouts299

and variations of objective function are presented in Fig. 8.300

By increasing the value of p from 1 to 3, the ineffective bolts are gradually eliminated,301

leading to a decline in the number of bolts (number of drillings) (Figs. 8a and 8b). However,302

as the value of p continues to increase to 7, the bolt layouts remain unchanged (Figs. 8b,303

8c and 8d). It is worth noting that with those p values, the objective function converges at304

almost the same magnitudes (converged values are shown below each figure in Fig. 8). As305

p reaches 8, a convergence problem occurs with fluctuation of objective function about the306

optimised value obtained with smaller penalty factors (Fig. 8f). As expected, this example307

shows that using penalisation might result in a reduction of bolt numbers. However, it is308

observed that convergence problems might occur with large values of p.309

EFFECTS OF GROUND STRUCTURE DENSITY ON OPTIMISATION310

OUTCOMES311

Along with the ground structure GS10 introduced in Section 5, two other ground struc-312

tures with different densities are generated to investigate their effects on the optimisation313

outcomes. One is with the bolt spacing of 0.5 m (codenamed GS05) as shown in Fig. 9a and314

the other one with the spacing of 1.5 m (codenamed GS15) as shown in Fig. 9b.315

The in situ stress condition of σ1 = 3 MPa and k = 0.4 is investigated and the obtained316

outcomes are detailed in Fig. 10 and Table 3.317
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It can be seen that the optimised bolt layouts are almost qualitatively similar for different318

ground structure densities (Fig.10a, 10b and 10c) with more bolts observed at the tunnel319

floor and tunnel ribs. However, various bolt densities result in various levels of improvements320

in the objective function. As tabulated in Table 3, there is not much difference in the321

initial values of external work for the three ground structures. Nevertheless, the objective322

function improvements are considerably different. While 8.4% and 4.8% improvements in the323

objective function are achieved for the ground structures GS05 and GS10, respectively, only324

2% improvement is obtained for GS15. This is expected as denser ground structures provide325

more freedom and more choices to the optimisation algorithm to chose from. Therefore, to326

obtain higher improvements, it is beneficial to use a denser ground structure. However, in327

practice choosing a very small bolt spacing might result in damage around bearing plates328

due to stress concentration and also introduce more drilling work.329

EFFECTS OF ROCK MATERIAL ON OPTIMISED BOLT LAYOUT DESIGN330

Rock mass is naturally discontinuous with fractures, cracks, bedding planes, etc. A thor-331

ough consideration of fractures is necessary to obtain a more accurate model and hence a332

more reliable tunnel reinforcement design. To demonstrate the efficacy of the proposed ap-333

proach for different material models, here a heavily jointed rock mass with highly densed334

parallel joint surfaces in different orientations is considered. A jointed material model sup-335

ported in Abaqus 6.11 library is employed to describe the jointed rock mass behaviour. The336

jointed material model involves two governing behaviours for the bulk material and the joint337

systems (ABAQUS 2013). Bulk material is governed by the Drucker-Prager model. Addi-338

tionally, the jointed material model includes a failure surface due to sliding in joint system339

a, which is expressed as340

fa = τa − pa tan βa − da = 0 (24)

where τa and pa are respectively the shear and normal stress along the joint surface. βa and341

da are the friction angle and cohesion for system a, respectively.342
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Replacing the homogeneous model by the above jointed material model, the tunnel ge-343

ometry investigated in Section 5 is reconsidered here. Two models, one with a horizontal set344

of joints and one with a vertical set of joints, are explored. Properties of the bulk material345

and the joint systems are identified in Table 4.346

Fig. 11 displays the optimised bolt layouts for the cases of horizontal joints and vertical347

joints. It can be seen that the introduction of joint systems has altered the plastic strain348

and optimised bolt distributions around the opening. For the horizontal joints (Fig. 11a),349

the bolts are only present at the tunnel crown and tunnel floor. On the other hand, for350

the case of vertical joints (Fig. 11b), the bolts are concentrated at the corner of the tunnel351

crown and the tunnel ribs, and at the tunnel floor. Objective function values and obtained352

improvements are demonstrated in Fig. 11c and Table 5.353

EFFECTS OF BEDDING PLANE ON OPTIMISED BOLT LAYOUT354

This section aims to explore the effects of a bedding plane presence on optimised bolt355

layouts. The tunnel investigated in Section 5 is considered with the existence of a bedding356

plane at 1.5 m above the tunnel crown. A surface-based contact supported by ABAQUS6.11357

is employed to model the interactions of surfaces. The mechanical behaviour of the surface358

interaction is governed by the Coulomb friction model in which the coefficient of friction (µ)359

is defined as the ratio between a shear stress and a contact pressure. A hydrostatic stress360

condition with a vertical stress of 5 MPa and two friction angles (φ) of the bedding plane,361

5◦ and 15◦, are investigated. Fig. 12 displays the achieved optimised bolt layouts and Table362

6 tabulates the related objective functions.363

It can be generally seen that with both values of friction angle, more bolts are distributed364

at the top of the tunnel where the bedding planes are located than the other positions around365

the opening (Figs. 12b and 12d). Also, the bolt volume at the tunnel crown of the case of366

friction angle of φ = 5◦ is more than that of the friction angle of φ = 15◦. In order to display367

slippage along the bedding planes, relative tangential displacement (RTD) is illustrated for368

the initial and the optimised bolt layouts. Clearly, the concentration of more bolts at the369
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tunnel top areas has partly reduced slippage along the bedding planes; especially for the case370

of friction angle of φ = 5◦. Additionally, further improvements of the objective functions371

are obtained as displayed in Fig. 12e and summarised in Table 6. Consequently, it can be372

concluded that the effects of the bedding planes can be effectively captured by the proposed373

method.374

DISCUSSIONS AND CONCLUSIONS375

A new approach incorporating an optimisation technique with numerical analysis has376

been introduced to search for improved rock bolt designs and proved to be a potentially useful377

tool in tunnel reinforcement design. By explicitly modelling the rock bolts, the proposed378

approach is capable of providing clearer, more accurate, more effective and more practical379

reinforcement layouts compared to earlier works in this area.380

The proposed optimisation algorithm is independent of material models and thus the381

complexity of the models adopted in this approach is only limited to the capabilities of382

the method used for analysis. Furthermore, as the sensitivities are directly calculable from383

displacements, any analysis method which can provide the values of displacements under384

different loadings can be easily adopted in this approach. Nonlinear behaviour of both385

reinforcement material and rock in homogeneous media and fractured rock mass have been386

considered in this paper and finite element method is used as the method of analysis.387

It has been shown that this approach can be effectively used to study and improve our388

understanding of effects of different parameters on optimised bolt layouts. The examples389

demonstrated that the commonly-employed empirical method where a uniform distribution390

of bolts is used is not necessarily optimal and can be further improved by the proposed391

approach. In the considered examples, reductions of up to 8% have been reported in the392

value of external work which was selected as the objective function.393

In this study, the effects of ground structure and penalisation factor are demonstrated394

through some examples. Also, the impacts of in situ stresses, rock material properties and395

geological features such as bedding planes on optimised solutions are studied via several396
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examples.397

Finding an optimal rock bolt design is a complicated problem which obviously needs to398

be studied in a case-by-case basis. The incorporation of advanced numerical modelling in399

the optimisation algorithm enables the proposed method to consider many significant factors400

in tunnelling design. Various ground conditions including in situ stress conditions, complex401

geomaterial properties, different geological features, or effects of adjacent constructions, etc.402

can be taken into consideration. Using this approach, it is also possible to study the effects of403

other important tunnelling features on optimal reinforcement layouts such as tunnel shapes404

or construction sequences. Consequently, the proposed method is expected to be a powerful405

tool in reinforcement design.406

The proposed optimisation algorithm determines various bolt sizes around the opening to407

satisfy the given objective function while the bolt pattern has not been taken into account.408

In order to obtain a more effective bolt design, all bolt parameters including size and pattern409

should be accounted for in the optimisation algorithm. The authors are currently working410

on this matter to propose a more rational and powerful bolt design approach.411

To the extent of this study, only minimisation of external work (equivalent to maximi-412

sation of structural stiffness of the design) has been considered. Other objective functions413

such as floor or side wall heave are also widely employed in tunnel design. The proposed414

approach can be easily extended to incorporate these objective functions as well.415
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TABLE 1

Material properties Rock Rockbolt Shotcrete
Young modulus (GPa) 1.4 200 25
Poisson’s ratio 0.3 0.3 0.2
Friction angle (◦) 24 - 30
Dilation angle (◦) 0 - 12
Cohesion (MPa) 0.3 - 3
Yield stress (MPa) - 400 20
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TABLE 2

In situ stress
Objective function

Improvement (%)
Initial (J) Optimised (J)

σ1 = 3 MPa, k = 0.4 135171 132563 1.9
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σ1 = 5 MPa, k = 1 830538 827360 0.4
σ1 = 5 MPa, k = 2 4210250 4088152 2.9
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TABLE 3

Ground structure
Objective function

Improvement (%)
Initial (J) Optimised (J)

GS05 344021 314947 8.4
GS10 344098 327392 4.8
GS15 343410 336584 2
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TABLE 4

Material properties Bulk material Joint surface
Young modulus (GPa) 5 -
Poisson’s ratio 0.3 -
Friction angle (◦) 35 26
Dilation angle (◦) 5 12
Cohesion (kPa) 6× 103 70
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TABLE 5

Ground condition
Objective function

Improvement (%)
Initial (J) Optimised (J)

Rock mass with horizontal joints 218925 216038 1.3
Rock mass with vertical joints 258340 255437 1.1
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TABLE 6

Friction angle
Objective function

Improvement (%)
Initial (J) Optimised (J)

φ = 5◦ 1400179 1355220 3.2
φ = 15◦ 1176049 1167870 0.6
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