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ABSTRACT 

 

Tropical montane forests (TMFs) play a crucial role in providing essential ecosystem 

services. However, these environments are increasingly threatened by deforestation and 

degradation. In the Philippines’ TMFs, the extent of deforestation, successional stages, and 

carbon stocks remain poorly explored. Hence, this study focuses on the Province of Benguet, 

Philippines, with three specific objectives: 1) to demarcate deforestation using the fusion of 

Sentinel-1,-2, and biophysical data through a traditional classifier, machine (ML) and deep 

learning (DL) algorithms; 2) to map the successional stages in different vegetation types 

through Interferometric Synthetic Aperture Radar (InSAR), Global Ecosystem Dynamics 

Investigation (GEDI), Sentinel products and biophysical data with ML; and, 3) to estimate the 

above-ground biomass (AGB) and above-ground carbon (AGC) through optical, radar, 

biophysical data and ML. In addition to the field assessments conducted from December 2023 

to January 2024, a systematic review of spaceborne remote sensing applications in global 

TMFs reinforced the significance of this study. The following results are the highlights of this 

study: 1) generally, RS investigations on TMFs are concentrated in the Americas (62%), with 

optical sensors (85.76%) being used more frequently than SAR (12.70%); 2) the fusion of 

Sentinel-1-2 and biophysical data with U-Net DL algorithm effectively demarcated the 

deforestation (Overall Accuracy (OA) = 86.77%, Kappa Index (KI) = 78.89); 3) elevation 

emerged as a significant predictor of vegetation type distribution, with Random Forest’s (RF) 

top 10 features yielding the best predictive performance (OA = 84.22%, KI = 81.19%);  and, 

4) among the various algorithms utilized for AGB assessment, RF demonstrated the highest 

accuracy (r = 0.982; RMSE = 53.980 Mgha -1). Above-ground carbon density varied from 0 to 

434.94 Mgha-1. This study underscores the urgency of formulating conservation and 

sustainable management policies. It also emphasizes the significance of Benguet’s TMF in the 

context of carbon sequestration initiatives like REDD+. 
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CHAPTER 1: INTRODUCTION 

 

1.1. Background 

 

Tropical montane forests (TMF) are tropical rainforest ecosystems along the equator 

(Figure 1.1). Although experts have yet to agree on the elevation gradients of TMFs (Kappelle, 

2004), which are influenced by a number of factors and environmental conditions, such as those 

found on volcanic islands, in archipelagic regions, and wind-sheltered mountain valleys (FMB 

- DENR, 2011; Kappelle, 2004; Bruijnzeel & Veneklaas, 1998; Soh et al., 2019), it is realistic 

to infer that they occurred between 500 and 4,000 meters in elevation (Richter, 2008). The 

Global Forest Resources Assessment (2001) of the FAO estimates that TMFs cover 

4,524,967.60 km2. 

 

TMFs are often involved in manufacturing   important ecosystem services such as 

water, oxygen, and biological diversity (Wallis et al., 2019). They also hold a significant 

amount of biomass, which is vital in regulating the global carbon cycle (Spracklen & Righelato, 

2014). Pests and diseases, land conversion, and human reliance on water and food threaten 

TMFs (Körner, et al., 2005). In Asia, for instance, mountains are being encroached to make 

way for agriculture and human settlements. The mountain forest system in Africa is adversely 

impacted by fire and agricultural expansion (FAO, 2001).  The world’s tropical forests have 

lost more than 7 million hectares between 2000 and 2010, and agricultural land gained 6 million 

hectares (FAO, 2016). These deforestation and degradation have led to the loss of vital 

vegetation and biodiversity (Turner et al., 1996). The variations in the forest structure influence 

the forest growth and biogeochemical cycles, particularly carbon stock (Helmer et al., 2000). 

Forest succession, or the development of forest structure over time, is an essential ecological 

process in terrestrial ecosystems  (Liu et al., 2008). Knowledge of forest successional stages 

can aid in predicting and comprehending the global carbon cycle (Helmer et al., 2000; Liu et 

al., 2008). 
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Figure 1.1 Mt Ulap, a tropical montane forest in Benguet Province, Philippines 

 

In the Philippines, forest cover declined from 90% in 1900 to 23% (7 Mha) in 2015 

(Pulhin et al., 2020). Several literature attribute forest decline to land conversion for agriculture 

and development, overexploitation, the prevalence of fire, and pest and disease outbreaks 

(Lasco & Pulhin, 2003;  Miettinen et al., 2014; FAO, 2015; Hu et al., 2021; Kowaal, 1966; 

Philippine Statistics Authority, 2020). In the mountainous land-locked region of the 

Philippines, Cordillera Administrative Region (CAR), deforestation and forest degradation are 

also prevalent. It is anticipated that 300 hectares (0.022%) of the region's forest reserves will 

be lost annually (Walpole, 2010; ESSC, 2012). CAR has  44.6 percent (1.35 million hectares) 

of forested mountain terrain. The region's 1.81-million-hectare catchment serves Ilocos and 

Cagayan Valley regions, with a combined population of 10.8 million as of the 2020 Philippine 

census (Philippine Statistics Authority, 2021). 

 

Forest management has been a significant topic of discussion across the globe up until  

this juncture (Grêt-Regamey & Weibel, 2020). Several global initiatives to manage the world's 

forests have been established, including the UN 2030 Agenda for Sustainable Development, 

the REDD+ program, and the New York Declaration on Forests (NYDF) (Albrich et al., 2020; 

Cadman et al., 2017; Kauffman & Donato, 2012). Despite these growing forest management 
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efforts, there are still concerns surrounding the sustainability of forest management (Soh et al., 

2019). Restoring particular ecosystem functions and services necessitates a thorough 

evaluation (Camarretta et al., 2019). Also required is a greater understanding of the ecological 

significance of TMFs, particularly those in Southeast Asia, where little research has been 

conducted (Soh et al., 2019; Altarez et al., 2022).  

 

Consequently, this study sought to assess, quantify, and map deforestation in the 

Philippines' TMFs, understand successional stages, and estimate carbon stocks using remote 

sensing (RS) particularly, the data derived from spaceborne optical sensors, Synthetic Aperture 

Radar (SAR), and Light Detection and Ranging (LiDAR), in conjunction with deep learning 

(DL) and machine learning (ML) algorithms.  

 

 

1.2. Statement of the problem 

 

The increasing human population entails a growing demand for space for housing and 

agricultural land, which leads to a continuous loss of forest cover (FAO, 2015). The 

Philippines, like many other developing Southeast Asian countries, has experienced extensive 

and rapid deforestation (Apan et al., 2017). The Philippines’ forest cover has fluctuated 

profoundly over time, falling from 90% in 1521 to 22% in 1998 (ESSC, 1999), and then slightly 

improved to 23% in 2015 (Pulhin et al., 2020).  

 

The CAR is composed of five provinces, namely Abra, Apayao, Benguet, Ifugao, and 

Mountain Province. The Province of Benguet, in particular, is an example of TMF that has 

three vegetation zones: tropical lower montane forest (pine forest), tropical upper montane 

forest (mossy/cloud forest), and grassland summit  (DENR - FMB, 2011; Fernando & Cereno, 

2010). Sadly, the province is a source of lumber for construction and other uses. It was also 

heavily altered for settlements, agriculture, and mining (Perez et al., 2020). Over half of the 

forests in Apayao, Kalinga, and Mountain Provinces have been logged over. Agro-forestry 

operations have encroached on protected forests in Benguet, Mountain Province, and Ifugao. 

Forest fires are causing significant forest disturbance and damage. From 2008 to 2018, fires 

destroyed 21,242.40 hectares of Cordillera forest (PSA, 2020). In Benguet,  fires destroyed 

899.53 hectares of natural forest in 2020 (Dionisio & Agoot, 2020).   
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Tropical rainforests are the most productive of all forest types  (Wallis et al., 2019). They 

store 70-90 percent of the carbon  (González-Jaramillo et al., 2018). TMFs, as one of the 

tropical forest types, store a lot of biomass  in their steep slopes (Spracklen & Righelato, 2014). 

Estimating biomass helps researchers determine how much carbon is released into the 

atmosphere due to deforestation (Salvaña et al., 2019). Biomass assessment also determines 

the forest's ability to store carbon (DENR, 2009).  

 

Unfortunately, the TMF's complex terrain makes estimating biomass difficult (González-

Jaramillo et al., 2018).  Likewise, the altitude also drives its ecological composition (Chapman 

et al., 2016) poses a challenge for an assessment. Wallis et al. (2019) highlighted that 

performing assessments in TMF is labor-intensive. Knowledge about carbon studies in TMFs 

is still lacking (Anderson-Teixeira et al., 2016). Studies related to TMFs are scarce in Southeast 

Asia alone, and spatial comprehension of ecosystem dynamics is still in its infancy (Soh et al., 

2019). Examples of research gaps include carbon stock and biomass in different vegetation 

zones or forest types across the TMF’s elevation gradient (Salvaña et al., 2019). 

 

With the advent of carbon payment schemes under REDD+ or the reporting of 

deforestation and forest degradation to global carbon emission under the UNFCCC, 

quantifying vegetation biomass became popular in tropical areas (Yuen et al., 2016; Gao et al., 

2020). The reporting requires precise measurements of forest cover, land use, and biomass 

(González-Jaramillo et al., 2019). Reich (2012) proposed quantifying and mapping TMF 

biomass to understand the carbon cycle better. RS gained popularity in forest studies due to its 

ability to map and monitor spatial conditions over time. However, processing is necessary for 

remotely sensed data to be useful. It frequently requires massive and complicated approaches 

to analyze the data manually (Ma et al., 2019). This gap can be bridged using machine and 

deep learning techniques, both of which fall under the scope of Artificial Intelligence (AI) 

(Maxwell et al., 2018). These techniques have become popular, as they have been successfully 

used for classification, regression, clustering, etc. (Camps-Valls, 2009). Thus, combining DL, 

ML and RS can improve forest and environmental assessments. 

 

Considering the problems and opportunities stated above, this research sought to 

understand the forest dynamics in Benguet’s TMF and explore its significance in carbon 

studies, which is underrepresented in the current literature. 
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1.3. Significance of the study 

 

Unprecedented changes in land use have resulted in the loss of pristine forest cover 

around the world (Cronin et al., 2014). The FAO (2016) estimates that agricultural land 

increased by at least 6 million hectares per year for every 7 million hectares of forest loss from 

2000 to 2010. The global climate change also affects the climate patterns of TMFs (Ray, 2013; 

Eller et al., 2020).  

 

There is a need to understand the rate of deforestation and the importance of carbon 

stock in TMFs because global deforestation is still widespread and unwarranted (Ray, 2013). 

Likewise, there needs to be more defined research directions that could enable the long-term 

use of the world's TMFs (Soh et al., 2019). According to IPCC (2007), deforestation is 

projected to contribute between 17 and 20% of global greenhouse gas (GHG) emissions. These 

deforestations mainly occur in tropical forests, abundant in many developing countries, 

including the Philippines (Carandang et al., 2013). These phenomena threaten the country's 

remaining forests (Avtar et al., 2020). 

 

The assessment of TMFs in space and time may lead to defining their dynamics and 

comprehension of carbon cycling (Paulick et al., 2017). However, unlike the tropical lowland 

forests, only a few studies investigate the TMFs (Anderson-Teixeira et al., 2016; Paulick et al., 

2017), especially in South East Asia (Soh et al., 2019). In particular, Spracklen & Righelato 

(2014) emphasized the scarcity of carbon studies, including the measurement of above-ground 

biomass (AGB) and other carbon-related metrics along elevation gradients. Assessment of 

these parameters is critical for environmental studies and conservation initiatives, such as the 

program reducing emissions from deforestation and forest degradation and the role of 

conservation, sustainable forest management, and enhancement of forest carbon stocks in 

developing countries (REDD+) (González-Jaramillo et al., 2019), and the United Nations 

Framework Convention on Climate Change (UNFCCC) policies on issues relating to reducing 

emissions from deforestation and degradation in developing countries (Carandang et al., 2013).  

 

This thesis has produced four (4) publications with the following specific significance: 

 

1. The systematic review of spaceborne RS to TMFs shifted the current knowledge 

of its application to tropical areas with towering terrain, which has received 
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disproportionate attention compared to other forest types worldwide. In addition 

to advancing our understanding of RS’s role in forest research, this study shed 

light on how far the technology has been used for monitoring and mapping 

TMFs (Publication 1); 

 

2. Mapping the extent of deforestation enabled the opportunity to comprehend the 

effects of deforestation in Benguet, Philippines’ TMF. The generated data 

provided essential knowledge and a basis for policy formulation, conservation 

strategies, and appropriate land resource management measures (Publication 2);  

 

3. The evaluated successional stages of the TMF addressed the knowledge gap 

about the distribution and growth patterns of Benguet’s three vegetation zones.  

The study also revealed which parts of the TMF can store more carbon and 

which areas need improvement. The findings also keep track of the disruptions 

that necessitate the keen intervention of relevant government agencies 

(Publication 3); and,  

 

4. Quantifying the magnitude of carbon stock in the three vegetation zones of the 

province is helpful in various applications (i.e., conservation planning, 

comprehensive land-use plan, policymaking). Similarly, TMF's carbon stock 

and density calculation are particularly relevant in REDD+ greenhouse gas 

emission reporting (Publication 4). 

 

Finally, the novel methods applied in this study (e.g., the use of multi-temporal SAR 

bands, optical imagery, and DL and ML) to understand the Philippines' TMFs dynamics can 

be applied to other TMFs globally. It is noted from the various published literature that more 

work needs to be done on the aspect of carbon stock estimation using radar applications in the 

Philippines' TMF. Hence, this study is novel in the country as it hoped to estimate biomass and 

carbon density using RS technologies and emerging DL and ML algorithms for a more accurate 

assessment. Subsequently, this research is valuable for monitoring local and national 

government reforestation and restoration efforts.  
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1.4. Aim and objectives 

 

The broad aim of this study is to assess, quantify, and map deforestation and 

successional stages of tropical montane forest (TMF) of the Philippines, as well as their carbon 

stocks, using Remote Sensing (RS), Deep Learning (DL) and Machine Learning (ML). 

Specifically, this study has the following objectives: 

 

1. to evaluate the utility of Sentinel-1 and Sentinel-2 data and their fusion to compare 

the image classification performance of the traditional classifier (Maximum 

Likelihood), ML algorithms (Random Forest, K Nearest Neighbor, KD Tree 

Nearest Neighbor), and DL (U-Net). The Objective 1 paper also intended to 

determine which satellite input and AI algorithm is best for assessing the extent of 

deforestation in the area under investigation. 

 

2. to refine the classification and map successional stages of a TMF in the Philippines 

based on forest types as determined by topographic factors through GEDI, 

Sentinel-1 InSAR, Sentinel products, and biophysical data. The Objective 2 paper 

also aspired to contribute to the growing interest in using GEDI and InSAR in a 

TMF utilizing ML regression for continuous data. 

 

3. to test the synergistic approach of ML, optical and radar-derived satellite images, 

and other biophysical parameters to investigate its potential to estimate both the 

above-ground biomass (AGB) and above-ground carbon (AGC) in the tropical 

montane forest in the northern Philippines. In particular, the Objective 3 paper 

aimed to (1) determine the AGB and AGC of the three vegetation zones in the 

Province of Benguet; (2) evaluate the predictive capacity of ML algorithms using 

the combination of Sentinel-1 and 2 imagery and biophysical data; and, (3) map 

the carbon stock in the study area using ML.   
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1.5. Scope and limitations of the study 

 

The study is concentrated on the province of Benguet, where multiple cases of forest 

degradation have been documented. This thesis focused on mapping the deforestation in the 

province, modelling the successional stages of three vegetation types, namely pine forest, 

mossy forest, and grassland summit, including the quantification of above-ground biomass and 

carbon density. At present, no definite elevation gradient defines the stratification of the three 

vegetation zones. Hence, we defined pine forests as areas with an elevation from 700 – 1,400 

meters, mossy forests as areas with an elevation between 1,400 – 2,600 meters, and grassland 

summit as areas over 2,600 meters. These assumptions were based on the available literature 

(Whitford, 1911; DENR - FMB, 2011; Fernando & Cereno, 2010), satellite data inspection, 

and observations during fieldwork.  

 

The seasonal variability of data collection is not taken into account in this study. Data 

collection took place from December 2023 to January 2024 to facilitate more accessible field 

sampling and to avoid unintended mishaps because the steep slopes of the montane ecosystem 

in Benguet are harshly eminent, especially during the rainy season. Allometric equations 

determined the biomass and carbon density of vegetation in the TMF because sampling of soil 

and living and dead plants are strictly prohibited in Benguet's protected areas per Philippine 

Republic Act number 7586. Sentinel-1 C band SAR imagery, which has readily accessible data 

for the province, was utilized for Objectives 1-3. Relatively cloudless Sentinel-2 bands 2-8a 

and 11-12 were utilized. Finally, the DL and ML approaches included in programs like ArcGIS 

Pro, SNAP, WEKA, and Whitebox Runner aided in the development of classification and 

regression models. Further information about the software is discussed in Chapters 4-7, and 

specific technical limitations were also provided 

 

 

1.6. Conceptual framework 

 

The conceptual framework of the study is depicted in Figure 1.2. The systematic review 

of RS applications to TMFs strengthens the comprehension of the spaceborne RS application 

to TMFs globally and in the local context. The findings were used to justify the necessity of 

conducting the three forest assessments in Benguet’s TMF. The TMFs' dynamics can be better 

understood by integrating data from three studies that all have interconnected relationships: 
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deforestation, succession stages, and carbon stock analyses.  Like many other forest 

ecosystems, deforestation and degradation potentially affect the pattern of vegetation growth 

and carbon stocks on TMFs. To determine the extent of deforestation and degradation in 

Benguet, a study that focuses on mapping deforestation and degradation using radar and optical 

imagery and deep learning was employed. The stages of succession per forest type were also 

modelled through various integration of spaceborne RS and ML. Further, the carbon stocks of 

the different vegetation types were estimated using the same approach. The successional stages 

and carbon stock assessment were all validated through field data observations.  

 

Apart from the eminent knowledge of deforestation rate, successional growth patterns, 

and carbon stock information, the study’s results offer a crucial basis for developing policy and 

conservation strategies and measures. The science-based plans may be used to generate 

sensible land resource management approaches, sustainable utility of forests, and biodiversity 

conservation and restoration methods.  

 

 

1.7. Organization of the dissertation 

 

This thesis is organized into eight (8) chapters. Chapter 1 presents the Introduction. 

This section includes the background of the study, statement of the problem, significance of 

the study, aims and objectives, scope and limitations and the conceptual framework.  

 

In Chapter 2, the literature review covers the latest knowledge on the TMF and the use 

of RS technologies, as well as the emerging trend of artificial intelligence in TMF research. 

 

In Chapter 3, the research methodologies used to describe the study area, the general 

design of this thesis, and field data gathering and processing are discussed.  

 

The published papers from this thesis are included in chapters 4-7. In Chapter 4, a 

comprehensive assessment is presented of the use of spaceborne RS and emerging ML 

techniques in the investigation of TMFs located all over the world. Chapter 5  

 

 

 



 

10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2 Conceptual framework of the study 

 

 

Systematic Review of Spaceborne 
Remote Sensing to Tropical 

Montane Forests (TMF)  

Mapping the Extent of 
Deforestation using 
optical, radar, and 

biophysical data and 
comparing the 

classifying capabilities 
of traditional, machine 

learning, and deep 
learning algorithms 

(Objective 1)  

Modeling the 
successional stages of 

various forest types 
using InSAR, GEDI, 
Sentinel products, 

biophysical data, and 
machine learning 

(Objective 2)  

Estimating carbon 
stocks of the different 
vegetation types in the 
province of Benguet 

through Sentinel-1, -2, 
field data, and 

machine learning 
(Objective 3)  

Forest Dynamics of TMF  

Extent of Deforestation, Assessed 
Successional Stages, and 
Estimated Carbon Stocks 

Policy Formulation and 
Management Strategies 
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talks about mapping deforestation in Benguet by integrating radar, optical, and biophysical  

raster data with deep learning algorithms, particularly the U-Net convolutional neural network. 

In this chapter, the method described which combinations and algorithms gave the most 

accurate representation of the forest loss. 

 

The findings of the study that mapped the succession stages of the pine forest, mossy 

forest, and grassland summit found in the province of Benguet are presented and discussed in 

Chapter 6. The InSAR, GEDI, and Sentinel products were used with ML methods to predict 

the successional stages. The method employed in this study was novel in a way that InSAR and 

GEDI have been used to model forest attributes in a TMF, which was not done in the 

Philippines and South East Asia.  

 

Chapter 7, on the other hand, presents the results of the above-ground biomass and 

above-ground carbon density estimations using RS and ML. These estimates were 

complemented by field observations and data obtained through RS. Several ML algorithms in 

the WEKA software were tested to determine which highly corresponds to estimating the 

biomass. In this chapter, we also covered the topic of the spatially explicit model that uses 

Random Forest in Whitebox Runner. 

 

The overall findings, implications, research contributions, and recommendations for 

further study are presented in the eighth and final chapter, “Chapter 8". 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1. Introduction 

 

The previous Chapter presented the overall background of the study, highlighting the 

need to investigate the TMF using spaceborne remote sensing (RS), deep and machine learning 

(DL and ML). This Chapter, reviews the current literature on TMF about mapping its 

deforestation, successional stages, and estimation of above-ground biomass and density. A 

comprehensive discussion of the application of spaceborne RS to TMF across the globe and its 

future trends is elaborated in Chapter 4. Additional reviews specific to each technical chapter 

(i.e., pertaining to Objectives 1, 2, and 3) are presented in Chapters 6 to 7. 

 

The remainder of this Chapter is organized into seven sections. Section 2.2 discusses 

the distribution and status of TMFs across the globe. Section 2.3 talks about the importance 

and threats to TMFs. Section 2.4 is about using RS and ML to TMF for improved assessment 

of deforestation and land conversion. Section 2.5 outlines the implication of ML for forest 

assessment. Section 2.6 deals with mapping and monitoring TMF’s successional stages and 

regeneration. Section 2.7 presents the estimation of biomass and carbon density using SAR and 

ML. This Chapter ends in Section 2.8, which summarizes the literature review. 

 

 

2.2. Tropical montane forests: Distribution and status 

 

TMFs are one of the types of tropical rainforest ecosystems found at middle to high 

elevations (Richter, 2008). According to the FAO's Global Forest Resources Assessment 

(2001), they cover 4,524,967.60 km2 of the earth's surface area and are found in North and 

South America, Eastern Africa, and Asia (Figure 2.1). 

 

TMFs are classified into three mountain zones based on their ecotones: tropical 

lowland, tropical lower montane, and tropical upper montane (Ohsawa, 1991). Scholars have 

expressed concern about identifying TMFs based on elevation gradient (Kappelle, 2004) 

because vegetation types inherent to TMFs can occur at lower elevations than the conventional 

guideline of 500-4,000 masl. For instance, it appears at 300 masl on volcanic islands and other 
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archipelagic regions (Kappelle, 2004; Bruijnzeel & Veneklaas, 1998; Soh et al., 2019), and 

vegetation also changes at wind-protected valleys (FMB - DENR, 2011). 

 

 

 

 
Figure 2.1 The global ecological regions of the world  (FAO, 2012) 

 

 

In the Philippines, TMFs are found in the mountains of Luzon, Zambales, Mindoro 

Island, and Mindanao (DENR - FMB, 2011; Wikramanayake, 2021). Figure 2.2 illustrates the 

Philippines' elevation map, emphasizing the mountain zones where TMFs can be found. 

 

The vegetation zones in the Philippines’ TMF can be classified as the following: lower 

montane forest, upper montane forest, subalpine forest (DENR - FMB, 2011), and grassland 

summit in some mountains (Fernando & Cereno, 2010). This vegetation stratification can be 

linked to elevation changes. Elevation influences important environmental parameters (Jin et 

al., 2008; Benner et al., 2011); for instance, the amount of sunshine that plants receive lessens, 

the amount of water that plants absorb varies (Mc Daniel, 2017), and the nutrient content in the 

soil decreases (Bruijnzeel & Veneklaas, 1998). As a result, particular vegetation grows best at 

higher elevations but not at lower elevations. However, based on extensive literature and 

research, no map delineates the aforementioned vegetation stratifications in the Philippines.   
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Figure 2.2 Relief map of the Philippines 

 

 

The lower montane forest is most commonly referred to as the pine forest. Benguet pine 

(Pinus kesiya) (which was treated conspecific with Pinus insularis) and Mindoro pine (Pinus 

merkusii) are two types of pine trees that thrive in the Philippines. The Benguet pines flourish 

in the high mountains of the Cordillera Administrative Region, where altitudes range from 700 

to 1,800 meters (Figure 2.3). Pinus insularis and Pinus merkusii are found at elevations ranging 

from 500 to 1,500 masl in Zambales, but Mindoro pine is found scattered in as low as 60 masl. 

In Mindoro, a pure stand of Pinus merkusii grows at elevations ranging from 500 to 1,500 masl 

(Whitford, 1911; DENR - FMB, 2011). 
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Figure 2.3 Pine forest ecosystem in Baguio City, Philippines 

 

 

The tropical upper montane forest, also known as the mossy or cloud forest, occurs on 

mountains above 1,000 masl, with upper limits varying depending on the locality and height 

of the mountains. Mossy or cloud forest comprises rugged ridges, canyons, shallow soil, 

landslips, and exposed rocks (Whitford, 1911). In general, the climatic conditions are 

extremely wet, with high exposure to winds. As a result, the vegetation is usually stunted, and 

the trees are frequently twisted (Figure 2.4). The trunks and branches of trees are typically 

covered with mosses, giving rise to the name "mossy forest" (DENR - FMB, 2011). Dwarfed 

trees found in this forest are Dacrydium and Poducarpus spp., Eugenia spp., Tristania 

decorticates, Leptospermum ambionense, Decaspermum spp., Quercus spp., Myrica spp., 

Englehardtia spicata, Acronuchia laurifolia, Symlocos sp. (Whitford, 1911; DENR - FMB, 

2011). Lithocarpus jordanae, L. luzoniensis, L. woodii are other common oaks (Fernando & 

Cereno, 2010). 
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Figure 2.4 Mossy forest of Mt Pulag, Kabayan, Benguet 

 

 

The subalpine forest is only found in the peak of Mindoro Island's Mt Halcon-Mt 

Sialdang range, an elevation range of 2,470 – 2,587 masl. The soil is shallow, acidic, and 

nutrient deficient, resulting in open vegetation. Small and woody dicots dominate the 

vegetation in subalpine forests (DENR - FMB, 2011). Unlike Mt Halcon, the summits of Mt 

Pulag and Mt Akiki are dominated by grasses, which continue till the rolling terrain, gentle 

slopes, and plateaus (Fernando & Cereno, 2010). In Mt Pulag, dwarf bamboo (Yushania 

niitakayamensis), locally known as útod, is also present other than grasses and sedges (Figure 

2.5). During the wet season, mini marshes occur on these grasslands; during the dry season, 

they become susceptible to fires (Fernando & Cereno, 2010).   
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Figure 2.5 Grassland summit in Mt Pulag, Kabayan, Benguet 

 

 

2.3. The importance and threats to tropical montane forests 

 

TMFs are crucial in providing various ecosystem services. These services include a 

source of clean water (Martínez et al., 2009), a host of biodiversity richer than lowland forest 

(Kappelle, 2004; Wallis et al., 2017),  a large quantity of carbon stored on steep slopes 

(Spracklen & Righelato, 2014) and soil erosion prevention (Brenning et al., 2015). 

Unfortunately, TMFs are also prone to several threats (Paulick et al., 2017).  

 

Humans have become more pervasive and abusive in resource consumption, and the 

rapid changes in land use have resulted in the loss of forest cover (Cronin et al., 2014). As 

mentioned in Chapter 1, between 2000 and 2010, agricultural land increased by at least 6 

million hectares per year in exchange for more than 7 million hectares of forest (FAO, 2016). 

Global climate change also affects the climate patterns in TMF, subsequently affecting its 

forest composition (Ray, 2013; Eller et al., 2020). The loss of natural landscape structure in a 

TMF may cause fires that may destroy other areas of the environment (Ray, 2013). In the 

Philippines, deforestation and forest degradation strain the country's remaining forest cover 
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(Avtar et al., 2020). In 2015, the forest cover of the Philippines was only 23% or 7 Mha (Pulhin 

et al., 2020). Literature points out land conversion for agriculture and habitation, undervalued 

environmental services, overexploitation, and natural occurrences such as fire and the presence 

of pests and diseases as causes of deforestation and degradation (Lasco & Pulhin, 2003; 

Miettinen et al., 2014; FAO, 2015; Hu et al., 2021; Kowaal, 1966; Philippine Statistics 

Authority, 2020). The Cordillera Administrative Region (CAR), which serves as a watershed 

zone for surrounding low-lying regions in North Luzon, faces the same fate, with 300 hectares 

of forest reserve estimated to be lost each year (Walpole, 2010). 

 

 

2.4. Application of RS and ML to improved assessment of TMFs’ deforestation and 

land conversion  

 

The ecological significance of forests has always been of interest to many as the rate of 

deforestation and its causes are still alarming (Liu et al., 1993). Forest evaluation necessitates 

accurate forest information, which is frequently unavailable in TMFs. Remote sensing (RS) is 

a very effective method for addressing this issue (Ochego, 2003). 

 

RS provides an opportunity to analyze and monitor deforestation, degradation, and 

fragmentation. It enables us to work at varying scales (i.e., kilometer to centimeter spatial 

resolutions). Remotely sensed data could be obtained regularly, allowing us to monitor forest 

resources in real time, which is extremely useful for monitoring natural calamities such as 

forest fires. Because RS data provides synoptic coverage, information can be acquired even in 

difficult-to-reach areas. As a result, RS is one of the most effective means of assessing and 

monitoring forest resources in TMFs. However, it is crucial to know that RS does not replace 

field surveys but instead supports them (FAO, 2007). dos Santos et al. (2014) summarize the 

benefits and limitations of remote sensing for forest studies (Table 2.1). RS, particularly time 

series analysis, has seen a significant advantage in detecting deforestation and land conversion 

globally (Stone et al., 1991; Biggs et al., 2008; Reiche et al., 2018). Ochego (2003) used 

Landsat TM to detect forest loss in Kenya with an unsupervised classification method. 

Buchanan et al. (2008) and Masum et al. (2017) used a similar method to identify conservation 

priority but with classification. Elhag et al. (2021) used Landsat-derived vegetation indices, 

including the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation 

Index (EVI)  along with MODIS to monitor and record changes in vegetation cover across 
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Greece from 1995 to 2015.  Richards & Friess (2016) identified deforestation in Southeast 

Asian mangrove regions from 2000 to 2012 by categorizing patches connected to direct 

deforestation causes (aquaculture, rice-dominated arable, oil palm plantation, urban and other 

terrestrial forests). Apan et al. (2017) analyzed the rate and extent of forest loss in the 

Philippines’ terrestrial protected areas from 2000 to 2012 using Hansen et al. (2013) high-

resolution global maps of forest cover data. As a result, the study could distinguish forest 

changes in the period by classifying the map as loss (1) or no loss (0). Perez et al.'s (2020) use 

of time series analysis of Landsat and MODIS satellite imagery from 2001 to 2018 fully 

justified the forest cover change in Northern Luzon.  

 

Table 2.1 Benefits and limitations of remote sensing data to forest studies. 

Products Description Benefits Limitations Uncertainty 

Optical 

remote 

sensors 

• Use visible and infrared 

wavelengths to measure 

spectral indices and 

correlate to ground-based 

forest biomass 

measurements (Examples: 

Landsat, AVNIR/ALOS, 

HRV/SPOT, MODIS) 

• Satellite data routinely 

collected and available 

on regional and/or 

global scale 

• Regionally and/or 

globally consistent 

• Limited ability to 

develop good models 

for tropical forests 

• Spectral indices 

saturate at relatively 

low C stocks 

• Can be technically 

demanding 

High 

Very high 

resolution 

optical 

remote 

sensors 

• Use very high-resolution 

images to measure tree 

height and crown area and 

allometry to estimate 

biomass stocks 

(Examples: 3D digital 

aerial imagery, IKONOS, 

QuickBird) 

• Reduce time and cost of 

collecting forest 

inventory data 

• Reasonable accuracy 

• Excellent ground 

verification for 

deforestation baseline 

• Only cover small areas 

(10 000s ha) 

• Can be expensive and 

technically- demanding 

• No allometric relations 

based on crown area 

are available 

Low to 

medium 

Radar 

remote 

sensors 

• Use microwave signal to 

measure forest vertical 

structure (Examples: 

ALOS/PALSAR-2, 

RADARSAT-2, 

COSMOSkyMed, 

TanDEM/TerraSAR-X) 

• Some satellite data are 

generally free 

• Can be accurate for 

open or sparse primary 

forest and secondary 

succession 

• Less accurate in 

complex canopies of 

mature tropical forests 

because signal 

saturates 

• Mountainous terrain 

also increases the 

number of errors 

• Can be expensive and 

technically- demanding 

Medium 

Laser 

remote 

sensors 

• LiDAR uses laser light to 

estimate forest 

height/vertical structure 

(Examples: Structure and 

biomass 3-D satellite 

system combines 

Vegetation canopy 

LiDAR (VCL) with 

horizontal imager) 

• Accurately estimates 

full spatial variability 

of forest carbon stocks 

• Potential for satellite-

based system to 

estimate global forest 

carbon stocks 

• Airborne-mounted 

sensors only option 

• Requires extensive 

field data for 

calibration 

• Can be expensive and 

technically- demanding 

Low to 

medium 
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While countries increasingly monitor forest cover change using RS, it is vital to have 

field observations to accurately identify the land changes (Romijn et al., 2015).  

Misrepresentation of forest cover change in forest change mapping is likely, leading to 

inefficient policy action and, in some cases, increased illegal logging (Ahrends et al., 2021).  

Despite this interest, there has yet to be a consistent method of mapping the deforestation rate 

based on the reviewed literature. Interestingly, various developments in forest mapping have 

significantly increased to accurately assess the deforestation rate. The improvements made in 

forest assessment are as follows:  

 

• inclusive mapping with the community (Galido-Isorena, 2011);  

 

• collaboration with the government sector of the country of interest (FAO, 2010);  

 

• the use of constantly improving satellite and airborne sensors to include analysis 

and methods (De Sy et al., 2012); and,  

 

• the integration of artificial intelligence, primarily ML, for improved forest 

classification (Xu et al., 2016). 

 

 

2.5. The implication of ML for forest assessment 

 

Machine learning (ML) is a subset of Artificial Intelligence. ML is a robust empirical 

approach for regression or classification (supervised or unsupervised) of various systems. Such 

systems can be massively multivariate, with a few to thousands of variables (Lary et al., 2016). 

ML is concerned with methods and strategies that allow computers to "learn" by example, 

which is especially valuable for predictions (Lary et al., 2018). 

 

RS necessitates processing techniques for correct analysis. With ML at their fingertips, 

the RS community could fine-tune components such as pre-processing, segmentation, and 

classification (Ma et al., 2019). Several studies have shown that various ML algorithms provide 

higher accuracy than traditional parametric classifiers, particularly for complex data with a 

high-dimensional spatial characteristic (Maxwell et al., 2018). Many ML algorithms have been 

developed for various applications, yet their results vary substantially. As a result, locating 

suitable ML algorithms for your research is challenging (Sarker, 2021).  
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The artificial neural network, the first algorithm to detect patterns and forms, was 

created in 1958. Since its inception, the development of ML has grown in popularity (Liu et 

al., 2018; Sarker, 2021). Figure 2.6 shows the trend of the classical, ML and deep learning (DL) 

emergence in ecological studies. ML algorithms can be classified as supervised or 

unsupervised, and some authors classify other algorithms as reinforcement as they learn data 

and discover patterns from their surroundings (Alloghani et al., 2020). This review will 

concentrate on supervised learning, commonly used in forest assessments (Lapini et al., 2020). 

Studies such as the paper of Olaode & Todd (2014) provided a rigorous analysis of 

unsupervised learning algorithms for special applications. 

 

Support vector machine (SVM) and Random Forest (RF) are two of the most widely 

utilized ML algorithms in forest assessment nowadays (Ma et al., 2019). SVM uses higher-

dimensional space to gain improved prediction power (Mantero et al., 2004) or offers good 

results with a small number of training data (Mountrakis et al., 2011). On the other hand, RF 

is an ensemble learning classification method that decides on the aggregated classification 

result from multiple weak classifiers (Lapini et al., 2020).  It is noted in the study of Belgiu & 

Drăgu (2016) that RF has high accuracy in classifying land uses.   

 

 

 

Figure 2.6 The three eras of statistical learning from 1920 to the present (Pichler & Hartig, 2023) 
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DL, such as the Artificial Neural Network (ANN), is also a standard algorithm for 

geoscience problems (Lary et al., 2015). ANN can estimate the non-linear relationship between 

the input data and the intended outputs. ANN has been shown in multiple studies to be more 

accurate than traditional classification methods (Yuan et al., 2009).  

 

DL and ML were powerful in classification and regression investigations for forests 

and ecological settings however Hütt et al. (2016), Shivakumar & Rajashekararadhya (2018), 

and Norovsuren et al. (2019) found that the classic Maximum Likelihood Classification (MLC) 

was equally superior. MLC is a typical classifier that requires a normal or near-normal spectral 

distribution of reach features of interest and an equal prior probability among classes, which 

means that the MLC assumes a given pixel belongs to a specific category (Li et al., 2011).  

 

The accuracy of the traditional, ML, and DL in classifying land use land cover change 

in TMFs have never been compared. A comparison analysis of the four ML algorithms is an 

interesting concept for this study. Likewise, the trend of artificial intelligence application and 

how these techniques were applied to remote sensing for studying TMF would be another 

valuable topic of future research.  

 

2.6. Successional stages and regeneration of TMF: Mapping and monitoring 

 

The successional stages in the forest have profound biophysical, biological, and 

biogeochemical implications in the terrestrial environment (Liu et al., 2008). In earlier studies 

by Foody & Curran (1994) and (Yanasse et al., 1997), there were up to six forest succession 

stages; however, three (3) stages of Secondary Succession (SS) with non-forest (NFO) and 

mature/old-growth forest (OGF) are now accepted: Initial (SS1), Intermediate (SS2), and 

Advance (SS3) (Lu, 2005; Li et al., 2011; Bispo et al., 2019). Identifying forest successional 

stages is immensely useful for reducing the uncertainty of carbon emission and sequestration 

measurements and determining their effect on soil fertility, degradation, and restoration (Lu, 

2005). The old-growth forest is believed to be carbon neutral, but the secondary forest is 

partially accountable for the "missing sink" in the global carbon budget if it is incorrectly 

characterized (Brown & Lugo, 1990; Helmer et al., 2000).  

 

Mapping land cover and forest successional stage using satellite data in the tropical 

regions was primarily done at mildly flat or lower elevations. Researches on TMFs are affected 
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by the challenges imposed by the complexity of the terrain and the variability of vegetations 

within them (Helmer et al., 2000; Mukul et al., 2016; Perez et al., 2020; Ferrer Velasco et al., 

2022). A systematic search at Scopus search engine using "The Philippines," "Succession," 

"Forest" keywords coupled with "*" wild card revealed 149 hits from 1995-2021, with 0 studies 

that focus on forest succession in the Philippines. This result demonstrates that, unlike other 

tropical regions, forest succession studies in the Philippines have not been thoroughly 

investigated (Espírito-Santo et al., 2005;  Li et al., 2011; Caughlin et al., 2021). According to 

the literature reviewed, no standard method for delineating successional stages exists. As a 

result, numerous efforts have been made to define forest succession through field 

measurements (Lu, 2005;  Liu et al., 2008) and RS (Song et al., 2002; Vieira et al., 2003;  Liu 

et al., 2008; Li et al., 2011; Schwartz et al., 2017;  Caughlin et al., 2021).  

 

Field-measured parameters such as vegetation age, basal area, diameter breast height 

(DBH), and canopy height were utilized to define forest succession (Moran et al., 1994; Vieira 

et al., 2003).  Lu et al. (2003) used the ratio of tree biomass to total biomass. However, this 

measurement is limited by the typically labor-intensive process of calculating biomass (Moran 

et al., 1994). Others (Pettorelli et al., 2005; Requena-Mullor et al., 2018) utilized vegetation 

indices (VI), such as the Normalized Difference Vegetation Index (NDVI), to simplify the 

distinction of forest succession. Recent initiatives have utilized multidate satellite imagery to 

determine the age of a forest and relate it to its stage of succession (Helmer et al., 2000;  

Espírito-Santo et al., 2005;   Liu et al., 2008;   Caughlin et al., 2021). Although VIs can be 

determined from satellite reflectance, they lack a direct physical interpretation of forest 

succession, and their relevance to forest structure during regrowth requires further study 

(Frolking et al., 2009).  

 

A novel approach by Bispo et al. (2019) used canopy height derived from TanDem-X 

SAR interferometry. He used the height to map out forest successional stages in the Brazilian 

Amazon. He discovered a strong association with extremely low uncertainty in the reference 

data. Further, he concluded that forest height could be utilized to detect distinct stages of forest 

succession using SAR interferometry. Ghosh et al. (2020) discovered that forest height could 

be approximated by combining Sentinel-1 Interferometry with the integration of optical 

imagery-derived vegetation indices and Random Forest and Symbolic Regression ML 

techniques. Mapping successional stages through forest height in tropical areas is very rare 

(Berveglieri et al., 2016). Most studies used it in mangrove forests, with only a fraction 



 

 

24 

attempting it in tropical forests (Aslan et al., 2018; Ghosh et al., 2020). Classifying RS images 

using ML algorithms has clearly delineated forest succession (Li et al., 2011).  

 

Given the scarcity of researches on forest succession in the Philippines’ TMFs, this 

study's innovative attempt is to delineate forest succession using available spaceborne remote 

sensing data and ML.   

 

 

2.7. Synthetic aperture radar and ML application to TMF for biomass and carbon 

density estimation 

 

Global concern regarding greenhouse gas accounting has prompted efforts to accurately 

measure forest carbon stock or the total amount of carbon stored in an environment (e.g., above-

ground and below-ground biomass). It is widely acknowledged that tropical rainforests capture 

more carbon than other terrestrial forests worldwide (Figure 2.7)  (González-Jaramillo et al., 

2018; Wallis et al., 2019). In addition, Spracklen & Righelato (2014) outlined the significance 

of TMFs in REDD+. They discovered that steep slopes of TMFs contain a substantial volume 

of biomass. However, compared to lowland tropical rainforests, many critical processes related 

to carbon cycling remain unclear (Anderson-Teixeira et al., 2016). Similarly, there is a lack of 

knowledge about carbon stocks and density in the Philippines and other Southeast Asian 

countries' montane environments (Soh et al., 2019). Carbon density refers to the concentration 

or amount of carbon per unit area. Given the conditions whereby forest degradation pressure 

remains and will likely continue, sustained forest assessment in these areas is necessary 

(Miettinen et al., 2014). 
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Figure 2.7 The world’s above-ground biomass map in 2017 (European Space Agency, 2019) 
 

 

TMFs have a difficult terrain that hinders field measurements for biomass assessment 

(González-Jaramillo et al., 2018).  Thus, RS, which can monitor and map areas remotely, has 

been utilized for numerous mountain forest analyses (Timothy et al., 2016). Several studies 

highlighted its synergy with RS to categorize land use/cover (Moumni et al., 2021) and collect 

data on above-ground biomass (Santi et al., 2020).   

 

Some studies approach the measurement of above-ground biomass using airborne light 

detection and ranging (LiDAR) data, which may be expensive and not all present in developing 

countries (González-Jaramillo et al., 2018; Loh et al., 2020). Optical sensor satellite data are 

robust in multidate analysis but possess frequent cloud coverage (Wallis et al., 2019). 

Unmanned aerial vehicle (UAV) was used to tackle cloud difficulties inherent in space-borne 

optical imagery (González-Jaramillo et al., 2019). However, the method's limitations in terms 

of cost and technical expertise in operating the equipment are an issue for forest evaluation. 

Utilizing Synthetic Aperture Radar (SAR), which can see through clouds, is an additional 

emerging method for assessing forest carbon stock (Timothy et al., 2016). The literature 

demonstrates that SAR backscatter correlates with forest structure and can be utilized to 

estimate the AGB of TMFs (Castel et al., 2000; Liao et al., 2019; Rodríguez-Veiga et al., 2017; 

Joshi et al., 2015). Longer wavelength (L- and P-band) and cross-polarized (HV and VH) 

sensor configurations should be considered when using SAR data to estimate AGB 

measurements  (Rodríguez-Veiga et al., 2017). Longer SAR wavelengths are more vital to 
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penetrate the surface and canopy cover, and cross-polarized sensor configurations are sensitive 

to scattering factors within a tree canopy (Mitchard et al., 2011). 

 

A growing number of studies in the Philippines use SAR data backscatter to estimate 

AGB in mangrove forests (Castillo et al., 2017; Singh et al., 2017; Argamosa et al., 2018; 

Makinano-Santillan et al., 2019). SAR data has also been used to study the AGB of other 

habitats, including the Northern Sierra Madre Natural Park and Mt. Apo Natural Park (Monzon 

et al., 2015; Washington-allen, 2015). Only Avtar et al. (2020) attempted to investigate the 

efficacy of SAR data in calculating AGB in Ifugao's upper montane environment. The forest 

stock evaluation of the various vegetation zones in the elevation gradients of TMF in CAR is 

still inadequate. Its function in the global carbon cycle has never been evaluated. Using SAR 

data to estimate AGB could be an innovative method for assessing this environment. 

 

Gibbs et al. (2007) note that there is no standard approach for assessing forest carbon 

stocks. Rodríguez-Veiga et al. (2017) state that the AGB-derived information from SAR data 

is uncertainty. Validation of its data from field-measured AGB is essential to reduce the 

ambiguity in the outcome (Gibbs et al., 2007).    

 

There are two methods for measuring forest biomass on the ground: destructive and 

non-destructive. The destructive method can precisely measure the carbon biomass, but it 

requires harvesting all tree parts, which is time-consuming, expensive, and sometimes illegal 

(Yuen et al., 2016). The alternative is to use regression equations (derived from a previously 

felled sample of trees) that estimate biomass through observable predictors such as tree 

diameter or height (Banaticla et al., 2007). Allometric equations are fundamental for the non-

destructive estimation of vegetation (Kuyah et al., 2012).  The most common allometric 

equations for tropical forest trees are the ones proposed by Brown (1997), and the improved 

Chave et al. (2014). In the Philippines, Banaticla et al. (2007) reviewed the applicability of 

current equations in the tropical tree plantation species common in the country. Mangrove 

allometry was also taken into account by Gevana & Im (2016). In the highlands, the work of 

Napaldet & Gomez (2015) showed an allometry equation specific for Pinus kesiya.  

 

Species-specific allometry can provide accurate carbon stock analysis (Kuyah et al., 

2012). The lack of specific equations for some tree species in the Philippines necessitates the 

utilization of generic equations for predicting the biomass of individual trees and other 
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vegetation (Banaticla et al., 2007). Brakas & Aune (2011) and Avtar et al. (2020) utilized 

generic allometry equations in their study. Researchers must use caution when employing 

generic equations because they could overestimate the actual biomass of a tree. Consequently, 

the requirement to evaluate its relevance to species and sites may reduce uncertainty (Banaticla 

et al., 2007). 

 

 

2.8. Summary 

 

The following research gaps were identified in order to comprehend deforestation, 

successional stages, biomass, and carbon density of the three vegetation types in Benguet's 

TMF:  

 

• There is a lack of defined research directions that could enable the long-term or 

sustainable use of the world’s TMFs (Soh et al., 2019). Deforestation is still prevalent 

in relation to the continuous need for space for human settlements and agriculture. 

Deforestation is projected to contribute between 17 and 20% of global greenhouse gas 

(GHG) emissions (IPCC, 2007). These deforestations mainly occur in tropical forests, 

abundant in many developing countries, including the Philippines (Carandang et al., 

2013). Because global deforestation continues to grow, it is imperative that we 

understand the rate of deforestation and determine the significance of carbon stocks in 

TMFs (Ray, 2013). 

 

• Investigation of TMFs is not intensively considered unlike the tropical lowland forests 

(Anderson-Teixeira et al., 2016; Paulick et al., 2017), especially in South East Asia 

(Soh et al., 2019). The spatial and temporal evaluation of TMFs may lead to the 

definition of their successional growth dynamics and a greater comprehension of the 

carbon cycle (Paulick et al., 2017).  

 

• Carbon studies, including the measurement of above-ground biomass and other carbon-

related metrics along the elevation gradients of TMFs, are scarce (Spracklen & 

Righelato, 2014). Numerous environmental research and conservation efforts to reduce 

global warming rely on the precise evaluation of such defining studies (González-

Jaramillo et al., 2019).  
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• The REDD+, or the reducing emissions from deforestation and forest degradation and 

the role of conservation, sustainable forest management, and enhancement of forest 

carbon stocks in developing countries, and the UNFCCC policies on issues relating to 

reducing emissions from deforestation and degradation in developing countries are 

among the initiatives that require carbon measurements (Carandang et al., 2013). 

 

• Remote sensing (RS) demonstrates strength in approaching temporal and spatial TMFs 

assessment (Timothy et al., 2016). The ability of RS to monitor and study forest 

degradation and estimate forest biomass without requiring fieldwork has long been its 

main advantage (González-Jaramillo et al., 2018). Utilizing DL and ML algorithms 

with a large quantity of RS data can expedite the detection of patterns and their 

association with forest parameters for enhanced assessment. 

 

The next Chapter outlines the overarching technique and approaches employed to 

accomplish the objectives outlined in Chapter 1, namely Objectives 1 to 3. 
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CHAPTER 3: RESEARCH METHODS 

 

3.1. Introduction 

 

The preceding chapters established the foundation for understanding the importance of 

studying the tropical montane forest (TMF) in the Philippines and its unique environment. 

Deforestation, successional stages, carbon stocks, and density were all discussed in detail in 

Chapters 1 and 2. Further, Chapter 2 outlined the current research gaps in TMF studies in the 

Philippines, highlighting the need for more in-depth investigation into this topic. The study's 

goals and methods were developed based on these findings. This chapter describes the 

overarching strategy, design, and methodology used in the study to accomplish the goals of 

each paper published in this study. The following topics are covered in this chapter: 1) The 

Study Area; 2) Field Sampling Design; and 3) Summary. A discussion of research 

methodologies is provided in detail in Chapters 4-7, which corresponds to the stated aim and 

objectives of this Thesis. 

 

 

3.2. The study area 

 

Benguet is situated in the northern-central region of Luzon and the southernmost area 

of the Cordillera Administrative Region (CAR) (figure 6). The month of May through October 

is the wet season, with the rest of the year being relatively dry. Parao et al. (2016), the average 

temperature from January to June is between 17.3 and 20.7 degrees Celsius. Mount Pulag, at 

2,926 meters above sea level, is the highest point in the province (Doyog et al., 2021). It is 

geographically situated between 16°11’ and 16°56’ north latitudes and 120°28' to 120°53' east 

longitude. It has 2,826.59 km2 area and is bordered by the  Mountain Province on the north, 

Pangasinan on the south, Ifugao and Nueva Vizcaya on the east, and La Union and Ilocos Sur 

on the west (Cruz et al., 2019).  

 

The elevation gradient in the province leads to the development of three vegetation 

types: pine forest at 700-1,800 meters (Department of Environment and Natural Resources - 

Forest Management Bureau, 2011); mossy forest, found at elevations greater than 1,000 meters 

that have steep ridges, canyons, presence of landslides, exposed rocks, and flora that is typically 
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stunted, twisted, and covered in mosses, and microclimate is wet, cloudy and windy  (Fernando 

& Cereno, 2010); and, grassland found at the highest peak of Mt Pulag and Mt Akiki which 

continue  down to the rolling terrain, gentle slopes, and plateaus (Fernando & Cereno, 2010). 

 

The province is divided into 13 municipalities, with La Trinidad as the capital (Figure 

3.1). According to the 2015 census, Benguet has 444,224 people, accounting for 25.08% of the 

overall population of the CAR (Provincial Governor’s Office - Information Technology, 2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Location of the study area (Benguet Province, Philippines) 

 

 

Benguet's temperate climate is excellent for cultivating most vegetables, including 

carrots, cabbage, potatoes, and celery. Due to the province's extensive cultivation of temperate 

vegetables, it is the largest vegetable-producing region in CAR, making it the "salad bowl" 

capital of the Philippines (Piadozo & Fujimoto, 2007). However, the province's high vegetable 

output bears a greater price. In the province, competing land uses exist. Several forests in 

Benguet and adjacent provinces have been cleared for vegetable farms. These agricultural 
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activities extend even into protected forest areas (Manzano, 2019). Unprecedented urban 

development is also impacting the province's pristine forests. In addition, forest fires in the 

province are causing substantial forest destruction and disturbance. PSA (2020) presented that 

around 21,242.40 hectares of forests were significantly destroyed in CAR from 2008-2018. In 

2020, almost 900 hectares of pristine forest lands in several municipalities in Benguet were 

destroyed due to forest fires (Dionisio & Agoot, 2020).  

 

The selection of the study area is crucial because it serves as one of the foundations on 

which the entire investigation is established. The area must correspond with the research 

objectives and provide a representative sample of the phenomenon being investigated. Hence, 

the following considerations are taken into account for selecting the study area:  

 

• The prevalence of three vegetation zones in the province, namely pine forest, mossy 

forest, and grassland summit, has received little consideration in the scientific 

community. Its destruction due to land-use conversion is imminent; consequently, 

evaluating these three distinct zones requires greater consideration. 

 

• TMFs present challenging topographical environments that have discouraged 

scientific exploration. In CAR, Benguet stands out as a frequently visited province 

by tourists, hence a higher level of development. Therefore, research access in this 

province is more reliable, facilitating more opportunities for exploration and 

research.  

 

• The municipalities and city take adequate measures to ensure safety and order, 

contributing to the area's well-deserved reputation for peace. The presence of 

military installations also contributes to the security. 

 

 

3.3. Field sampling design 

 

This study, particularly Objectives 2 and 3, employed a stratified random sampling 

approach. The research area has been divided into three strata: pine forest, mossy forest, and 

grassland summit. Generally, the pine forest can be found in every part of the province, whereas 

the mossy forest and grassland summit can be found at the highest elevations of Kabayan, 
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Benguet. Chapter 5 details the specific methodology and sampling design for Objective number 

1. 

 

The approach described by Pearson et al. (2005) was used to compute the number of 

samples contained within each stratum of the study (Equation 1). Based on the findings of 

Lasco et al. (2005); Lasco et al. (2008); Lasco & Pulhin (2003); Avtar et al. (2020); Doyog et 

al. (2018) Jeyanny et al. (2014), the calculation was completed with a desired precision of 80% 

or 20% allowable error, a t value of 2 at 95% confidence level, and a 10 m radius sampling plot 

(Table 3.1). As a result, 34 samples were taken from pine forests, 12 from mossy forests, and 

7 from grassland summit. 

 

 

𝑛ℎ = 𝑛 𝑥 
𝑁ℎ 𝑥 𝑠ℎ

∑ 𝑁ℎ 𝑥 𝑠ℎ
𝐿
ℎ=1

           (Equation 1) 

 

Where:  

n = the total number of plots, 

nh = the number of plots in stratum h,  

N = the number of sampling units in the population, 

Nh =  the number of sampling units in stratum h,  

s =  the standard deviation, 

sh = the standard deviation in stratum h. 

 

Additional plots representing various land use and land cover types were included for 

Objectives 2 and 3. These supplemental plots were included to ensure that the field data 

obtained is representative of a wide variety of conditions, to enhance the reliability of the 

regression model, mitigate the possibility of overfitting, and to yield a model with practical 

application in a variety of scenarios (Sarstedt & Mooi, 2018; Hastie et al., 2009).  
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Table 3.1 Recorded carbon pool in pine forest, mossy forest and grassland ecosystem in the 

Philippines and other South East Asian country. 

Vegetation 

Type 
Area Year 

Total C 

in 

Biomass 

(tC/ha) 

Reference 

Grassland 

Philippines (General) 2000 6  
Lasco et al. 

(2008) 

Leyte Philippines (Imperata 

cylindrica) 
1999 8.9 

Lasco et al. 

(2005) Philippines 

(Saccharum spontaneum) 
1999 15.2 

Standard deviation 4.70  

Mossy 

Forest 

Malaysia  2018 253.02 
Jeyanny et al. 

(2014) 

Philippines 2000 183.8 
Lasco & 

Pulhin (2003) 

Ifugao, Philippines 2020 126.14 
Avtar et al. 

(2020) 

Standard deviation 63.53  

Pine Forest 

Philippines 2000 90.1 
Lasco & 

Pulhin (2003) 

Sagada, Philippines 2018 411.68  
Doyog et al. 

(2018) 

Pantabangan watershed, 

Philippines 
2005 181.22 

Lasco et al. 

(2005) 

Standard deviation 140.67  

 

 

3.4. Considerations for the field data collection  

 

The field survey team consists of the author, the primary supervisor, and two staff 

members with administrative and forestry experience (Figure 3.2). The team was also 

accompanied by monitoring staff and park rangers from the Mt. Pulag Protected Landscape 

(MPPL) park ranger offices in Tabayo and Babalak, Kabayan Benguet, and personnel from the 

Baguio City Environment and Parks Management Office (CEPMO).   
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Figure 3.2 The field survey team  

 

 

Several factors were considered during field data collection. First, proper coordination 

has been taken to government offices for the conduct of the study. A letter requesting approval 

of the thesis data collection has been sent to the Department of Environment and Natural 

Resources – Cordillera Administrative Region (DENR – CAR). Similarly, the thesis and 

purpose of the data collection were presented to the Mount Pulag Protected Landscape – 

Protected Area Management Board (MPPL-PAMB) on 4 November 2023 via online 

conference. The author was provided with PAMB resolution number 24 series of 2022, which 

authorized data collection in the MPPL. In addition, data collection was also coordinated with 

the City Mayor of Baguio through the City Environment and Parks Management Office 

(CEPMO), the Superintendent of the Philippine Military Academy (PMA), MPPL – Protected 

Area Superintendent (Figure 3.3), and the Watershed and Water Resources Research 

Development and Extension Center – Ecosystems Research and Development Bureau 

(WWRRDEC – ERDB). 
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Figure 3.3 Courtesy call by the field survey team to the MPPL-Park Superintendent 

 

 

Accessibility to the plot is crucial, with locations near roads or paths given preference, 

and extremely steep slopes were avoided for safety reasons. The plot's location is determined 

by locating a tree as the center of the plot and recording its coordinates with a Garmin etrex10 

handheld GPS device. A layout of the 10-m radius plot was laid, subdivided into four quadrants 

(Figure 3.4). 

 

 

 

 

 

 

 

 

 

Figure 3.4 The 10-m radius plot layout divided into four quadrants 

 

 

All trees, including the saplings/wildlings, with a circumference equal to or greater than 

5 cm were recorded, and their diameter at breast height (DBH) was measured at 1.3m above 

the ground using a diameter tape. Height measurements were taken using a clinometer and laser 

Q1 

Q2 Q3 

Q4 
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finder. All data were recorded in the field data sheet. Only living trees are considered during 

the data collection. Three readings of the densiometer were taken at the center of the plot to 

estimate the canopy cover.  The FAO national forest inventory guidelines for measuring tree 

height and DBH are followed (FAO, 2016). Measurements of individual tree data were 

systematically done and graphically presented in Figure 3.5.  

 

 

 

 

 

 

 

 

 

Figure 3.5  The systematic collection of vegetation parameters within the study plot's quadrat 

 

 

After data collection was completed in one plot, the next was established approximately 

50 meters away from the first plot. To save time and resources, the plot’s locations of plots 

were selected in relatively flat terrain and easy access (Figures 3.6-3.8). Personnel from local 

government agencies, such as the CEPMO, were requested to guide the team during data 

collection on the ground.   
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Figure 3.6 Data gathering in a pine forest in Baguio City with CEPMO personnel 

 

 

 

 

Figure 3.7 Lay outing of plot in a mossy forest in Mt Tabeyoc, Kabayan, Benguet 
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Figure 3.8 Data collection on the dwarf bamboo (Yushania niitakayamensis)  

at an elevation of 2,867 meters on Mount Pulag 

 

 

 

3.5. Satellite imagery acquisition 

 

The majority of satellite imagery used in Chapters 5-7 came from Sentinel-1 (Synthetic 

Aperture Radar (SAR) data) and -2 (Optical Sensor data). The succeeding chapters describe 

the dates and numbers of Sentinel-1 and -2 imagery. Likewise, each technical chapter of this 

thesis contains a comprehensive discussion of additional satellite imagery to supplement the 

analysis. 

 

The Sentinel-1 data were acquired at the Alaska Satellite Facility (ASF) of NASA 

Earthdata, specifically the Earth Observing System Data and Information System (EOSDIS) of 

NASA. The imagery came from the Sentinel-1 mission, which consists of two polar-orbiting 

satellites (Sentinel-1A and Sentinel-1B) equipped with a C-band SAR instrument operating at 

a center frequency of 5,405.5 GHz. It functions day and night and acquires images regardless 

of illuminating and weather conditions, with a 250 km swath at 5 m to 20 m spatial resolution 

and a 6-day revisit period (Filipponi, 2019). The standard format for Sentinel-1 data is Ground 

Range Detected (GRD) for this study. They were acquired using Interferometric Wide Swath. 

The polarizations have been captured in the VV and VH in descending orbital directions. The 
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pixel dimensions and resolutions are measured in 10 meters for range and azimuth directions 

(Table 3.2). 

 

The Sentinel-2 mission consists of two satellite configurations (Sentinel-2A and 

Sentinel-2B) in polar sun-synchronous orbit. Sentinel-2 data provides a combination of 

capabilities suitable for various applications (Meygret et al., 2009). The imagery has a 290 km 

wide field of view, a 5-day high revisit, a high spatial resolution of 10m, 20 m, and 60 m, and 

multispectral imagery (13 bands in the visible and short-wave infrared spectrum). The Sentinel-

2 data were accessed through the Copernicus Open Access Hub in Bottom-of-Atmosphere 

(BOA) and level 2A format. Cloud cover is 0-30% and is collected in descending orbital with 

a 100 x 100 m tile dimension and a 290 km swath width. Bands 2-8a and 11-12 were considered 

for the deforestation, successional stages mapping, and carbon stocks estimation. B1, which 

corresponds to coastal aerosol; B9, which corresponds to water vapour; and B10, which 

corresponds to cirrus clouds, were the excluded bands in this study (Table 3.2). 

 

 

Table 3.2 Principal features of the Sentinel-1 and -2 imagery 

Sentinel 1 features 

Band C (center frequency of 5.405 GHz) 

Mode Interferometric Wide Swath 

Product Type Ground Range Detected 

Pixel Spacing 10 m in the ground resolution 

Orbit Descending 

Polarization VV & VH 

Swath Width 250 km 

Incidence angle (°) 29.1°–46.0° 

Map projection WGS84(DD) 

Sentinel 2 features 

Bands (10 m resolution) 

B2 – Blue, 492.4 nm (S-2A), 492.1 nm (S–2B) 

B3 – Green, 559.8 nm (S-2A), 559.0 nm (S–2B) 

B4 – Red, 664.6 nm (S-2A), 665.0 nm (S–2B) 

B8 – NIR, 832.8 nm (S-2A), 833.0 nm (S–2B) 

Bands (20 m resolution) 

B5 – Vegetation red edge, 704.1 nm (S-2A), 703.8 nm (S–2B) 

B6 – Vegetation red edge, 782.8 nm (S-2A), 739.1 nm (S–2B) 

B7 vegetation red edge, 782.8 nm (S-2A), 779.7 nm (S–2B) 

B8a – narrow NIR, 864.7 nm (S-2A), 864.0 nm (S–2B) 

B11 – SWIR, 1613.7 nm (S-2A), 1610.4 nm (S–2B) 

B12 – SWIR, 2202.4 nm (S-2A), 2185.7 nm (S–2B) 

Swath width 290 km 

Tile size 100 x 100 km 

Cloud cover 0–30% 

Map projection WGS84(DD) 
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3.6. Satellite imagery processing 

 

The Sentinel-1 and -2 data processing was primarily done in the Sentinel Application 

Platform (SNAP) software 2.80 (SNAP Development Team, n.d.).  

 

The Sentinel-1 GRD imagery follows the pre-processing steps proposed by Filipponi 

(2019). To ensure that the whole study area was captured in the images, SAR mosaic was used. 

The orbit file was then applied to correct the orbital orientation of the images. Thermal and 

GRD boundary noise were removed to enhance the images further. Finally, the VV and VH 

coefficients of the backscattering were converted to sigma nought (σ°). The speckle problem 

was subsequently addressed by implementating Refined Lee filter. The images were geocoded 

with SRTM at a 1 sec 30 m resolution, and then linear to decibel (dB) was calculated. 

 

In order to apply a scene classification, atmospheric correction, and subsequent 

conversion into an ortho-image Level-2A Bottom-of-Atmosphere (BOA) reflectance product, 

the Sentinel 2 Level-1C Top-of-Atmosphere (TOA) images are run through the Sen2Cor, a 

prototype processor for Sentinel-2 Level 2A product formatting and processing (Mueller-Wilm 

et al., 2016). This step was skipped over as most imagery used in this study was obtained from 

the Copernicus Hub, which provides Sentinel-2 data in L2A format. The bands B5 – B7, B8a, 

B11 – B12 were resampled to a 10 x 10-meter resolution using a bilinear interpolation method 

in SNAP software to match the other bands. The imagery was subjected to a subset to get the 

entirety of the study area. Finally, the clouds were masked using the land-sea masked operation.  

 

 

3.7. Summary 

 

The study area is Benguet Province, Philippines. The area was chosen because of the 

following reasons: 

 

• the province’s three vegetation types—pine forest, mossy forest, and grassland 

summit—have been understudied by researchers. As land-use modification 

threatens its survival, analyzing these three types is crucial;  

 

• the TMFs’ challenging topography has hindered scientific research;  
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• Benguet province is a tourist destination in CAR, and it is under increasing pressure 

for land development. Research access in this province is more reliable, enabling 

more accessible exploration and study options; and,  

  

• the area is generally peaceful. The municipalities and city employ appropriate safety 

and order measures, and the presence of military installations enhances security.  

 

Field sampling was conducted in the province’s three vegetation types from December 

2022 to January 2023. Stratified random sampling was used in this study, and the radius of the 

circular sampling plots was set at 10 meters. The calculated number of samples for the pine 

forest was 34, 12 for the mossy forests, and 7 for the grassland summit. The survey field team, 

composed of four personnel, was accompanied by MPPL monitoring staff and park rangers, as 

well as the personnel from CEPMO of Baguio City. In addition, the satellite imagery used to 

attain Objectives 1-3 were Sentinel-1 and -2 acquired from the Alaska Satellite Facility and 

Copernicus Open Access Hub, respectively. Appropriate pre-processing steps were employed 

before the data were subjected to higher analysis. The next chapters presented the details of the 

other types of satellite imagery used, other pre-processing steps, and how auxiliary variables 

were created. The pre-processing of Sentinel-1 and -2 images was primarily performed in the 

SNAP software. Finally, the specific ML and DL techniques employed were discussed in the 

next sections. 

 

The following chapter, Chapter 4, introduces the first technical chapter that includes 

the published paper entitled "Spaceborne Satellite Remote Sensing of Tropical Montane 

Forests: A Review of Applications and Future Trends." This published paper will discuss the 

current state of spaceborne RS applied to TMFs around the world and the future of the RS 

techniques in TMF research. 
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CHAPTER 4: PAPER 1 - SPACEBORNE SATELLITE 

REMOTE SENSING OF TROPICAL MONTANE FORESTS 

 

4.1. Introduction 

 

In Chapter 2, the emphasis was on providing a comprehensive overview of tropical 

montane forests (TMFs), delving into their distributions, current status, and threats they face. 

This publication investigates the implications of remote sensing (RS) for evaluating TMFs. In 

this chapter, the applications of spaceborne remote sensing techniques tailored explicitly to 

TMFs across the globe were intensely described. While Chapter 2 lays the groundwork by 

providing an overview of TMFs and introducing RS as a valuable tool, this chapter builds upon 

that foundation by advancing the discussion. Special emphasis is placed on a variety of factors, 

including temporal considerations, spatial distribution, journal publication records, 

methodologies employed, research themes, sensor systems employed, vegetation zones under 

investigation, urgent research needs, and the most effective techniques. In addition, this chapter 

investigates the challenges and opportunities associated with applying RS to the conservation 

and management of TMFs. This publication further provides a comprehensive view of how RS 

technologies can be optimally utilized to protect these vital ecosystems. 

 

 

4.2. Published paper 

 

The following page is a version of the article published in Geocarto International. The 

journal is Q1 (i.e., top 25% of journals in the list) under the Geography, Planning and 

Development, and published by Taylor & Francis with a source normalized impact per 

publication (SNIP) of 1.26, impact factor (IF) of 3.8 in 2022, and an h-index of 53. 



This article cannot be displayed due to copyright restrictions. See the article link in the Related 

Outputs field on the item record for possible access. 
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4.3. Summary and links 

 

This chapter presents a systematic literature review that describes the current state of 

research into using spaceborne RS to study TMFs. It was disclosed that the number of papers 

published between 1997 and 2021 increased significantly, with extensive studies done in the 

Americas leaving other countries behind. Due to the rapid degradation of TMF in these less-

studied countries, knowledge of TMF dynamics, mainly deforestation, successional stages, and 

carbon stocks, could be lost in the near future. There is also a knowledge gap pertaining to the 

location and size of TMFs in these countries that must be addressed. The use of optical sensors 

with low to medium spatial resolution was favored by researchers (85.76%), while synthetic 

aperture radar received little attention (12.70%). In order to get the intended outcome from any 

investigation, it is crucial to carefully select the appropriate spatial resolution of satellite 

imagery for TMF assessment. The majority of studies have been undertaken in the areas of 

forestry (42.66%), climate science (11.01%), and disaster management (9.63%). Finally, since 

RS evolves over time, it is advantageous to employ this technology in TMFs for enhanced 

assessments. The same holds true for the modernization of statistical and technological tools, 

including artificial intelligence, the Internet of Things, cloud computing, and machine, and 

deep learning. 

 

The mapping of deforestation using the fusion of Sentinel-1, -2, and biophysical data is 

presented in the next Chapter (Chapter 5), along with a comparative evaluation of a traditional 

classifier, three machine learning algorithms, and a deep learning algorithm for land use land 

cover classification.  
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CHAPTER 5: PAPER 2 - DEFORESTATION ASSESSMENT IN 

A TROPICAL MONTANE FOREST USING DEEP   

LEARNING AND REMOTE SENSING  

 

5.1. Introduction 

 

In the previous chapter (Chapter 4), a comprehensive and systematic review of 

spaceborne remote sensing (RS) to tropical montane forests (TMFs) across the globe is 

discussed. In this chapter, the usage of Sentinel-1 (S-1) and Sentinel-2 (S-2) and their fusion 

as input for land use land cover (LULC) mapping of Benguet, Philippines, was examined. 

Three different modelling classifiers—the classic Maximum Likelihood Classifier (MLC), the 

machine learning algorithms – Random Forest (RF), K Nearest Neighbor (KNN), and KD Tree 

Nearest Neighbor (KD Tree), and the deep learning approach U-Net were tested to gauge their 

predictive capabilities in terms of deforestation mapping. Finally, this study characterized the 

occurrence of deforestation based on proximity factors such as distance from roads, built-up 

area, agriculture, and waterbody, as well as topographic factors such as elevation, slope, and 

aspects. 

 

 

5.2. Published paper 

 

The succeeding page is a copy of the study that was published in a Q1 (top 25% under 

Computer in Earth Sciences) journal titled Remote Sensing Applications: Society and 

Environment by Elsevier.  In 2022, the journal's source normalized impact per publication 

(SNIP) was 1.32 and its impact factor (IF) was 4.7. Its h-index is 37. 



This article cannot be displayed due to copyright restrictions. See the article link in the Related 

Outputs field on the item record for possible access. 
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5.3. Summary and links 

 

This chapter (Chapter 5) shows the potential of traditional classifier, machine learning, 

and deep learning algorithms in demarcating deforestation in conjunction with the use of 

Sentinel-1 and Sentinel-2 imagery, in addition to auxiliary variables such as vegetation indices, 

biophysical data, and GLCM textures. The fusion of these imagery became more advantageous 

in LULC analysis. It is found that Sentinel-1 and -2 have a strong complementary feature. In 

terms of classifiers, the traditional MLC was best in binary satellite imagery classification. The 

RF proves robust in LULC classification compared to all other ML algorithms tested. U-Net 

deep learning outperformed traditional and machine learning classifiers when a more 

sophisticated LULC categorization was applied to the imagery. The best LULC model showed 

that 417.93 km2 of the research site was deforested from 2015 to 2022. This study further found 

that the closer a forest is to a human settlement or agricultural land, the more likely a forest 

will be removed for human use. Deforestation can occur in remote areas, even without roads 

or bodies of water. This study also suggests that anthropogenic deforestation can occur even in 

land areas with high elevations. This situation is not unique to the Philippines; it could occur 

anywhere in the globe. Hence, there is a strong need for its preservation and sustainable 

management. It is recommended that future research take into account the dynamics of 

ecological succession in the study area. Finally, policymakers and legislators can use the 

findings of this study to develop a comprehensive strategy for protecting and conserving the 

Benguet’s TMF. 

 

The next chapter details how machine learning can be applied to satellite imagery 

including Interferometric Synthetic Aperture Radar imagery, the Global Ecosystem Dynamics 

Investigation data, Sentinel products, and biophysical data to assess and create maps of 

successional stages for the three vegetation zones in the Benguet Province.  
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CHAPTER 6: PAPER 3 - MAPPING THE TROPICAL 

MONTANE FOREST’S SUCCESSIONAL STAGES  

 

6.1. Introduction 

 

In Chapter 5, the data from Sentinel-1 (S-1) and Sentinel-2 (S-2) imagery, as well as 

their fusion, was examined for land use land cover (LULC) mapping of Benguet, Philippines. 

The predictive skills of a traditional classifier, three machine learning (ML) algorithms, and a 

deep learning algorithm have been evaluated for deforestation mapping. In this present 

Chapter, the use of Interferometric Synthetic Aperture Radar (InSAR) imagery and the Global 

Ecosystem Dynamics Investigation (GEDI) data were tested to model canopy height as one of 

the variables in predicting successional stages (SS) in the three different vegetation types of 

the study area. S-1, S-2, and biophysical data, including elevation, were also added in the 

modelling of SS using ML. This study aimed to add to the growing body of literature on 

employing InSAR and GEDI data with ML-based spatially explicit regression for tropical 

montane forests. 

 

 

6.2. Published paper 

 

The next page contains a copy of the article and is under review in the Remote Sensing 

Applications: Society and Environment by Elsevier. The journal is among the top 25% (Q1) in 

the field of Computers in Earth Sciences. The source normalized impact per publication (SNIP) 

of this journal in 2022 is 1.32 and has an impact factor (IF) of 4.7. The journal's h-index is 37. 



Integrated multi-satellite data and machine learning approach in mapping the 

successional stages of forest types in a tropical montane forest 

Richard Dein D. Altarez a,b*, Armando Apana,b,c
, Tek Marasenia,d 

a Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland 4350, Australia 
b School of Surveying and Built Environment, University of Southern Queensland, Toowoomba, Queensland 4350, Australia 
c University of the Philippines Diliman, Institute of Environmental Science and Meteorology, Quezon City 1101, Philippines 
d Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China 

Abstract 

The knowledge of successional stages in a tropical montane forest (TMF) has a profound 

implication for improving its preservation and management. This study examined Sentinel-1, 

Sentinel-2, InSAR, GEDI, and machine learning to map the successional stages of different forest 

types in a Philippines’ TMF. Field data were collected from December to January 2023 for the 

creation and validation of successional stages models. Multiple correlation analysis revealed that 

Sentinel-1 interferogram, unwrapped interferogram, and coherence exhibited weak positive 

correlations with canopy height (r2 = 0.18). Incorporating GEDI with InSAR to predict canopy 

height presents less accurate outputs (r = –0.2 to 0.04; RMSE = 12 to 13 m).  Integrating the optical 

and radar data, along with auxiliary variables yielded an overall accuracy of 79.56% and a kappa 

value of 75.74%. Employing Random Forest's top 10 feature importance enhanced the accuracy 

(84.22%) and kappa value (81.19%). Elevation has significantly influenced forest type 

distribution, with mature and young pine forest dominating lower elevation (700-1,400m), while 

the mossy forest dominating the higher area (>1,400m). The disturbances across forest types 

emphasize the need for a solid preservation efforts and sustainable management of the TMFs. The 

results of this study can be applied to other TMFs other than the Philippines to understand their 

ecological significance. Future research should examine other factors of successional stages such 

as a time series evaluation to account the disturbances and patters of vegetation changes. The 

optimization of the RF’s parameters for regression and classification, and comparing it with a 

much-sophisticated algorithms is also a potential avenue of improvement.    

Keywords:  Forest succession stages, Sentinel-1, Sentinel-2, InSAR, GEDI, Machine learning 

1. Introduction

Understanding the forest succession stages is crucial for improving forest conservation and 

monitoring forest health (Bispo et al., 2019). Forest succession stages is the changes in vegetation 

composition over time and space (Taylor et al., 2009). Identifying these stages accurately is vital 

for reforestation projects and assessing the uncertainty in biomass and carbon storage, especially 

in challenging environments like tropical montane forests (TMF). This information can also help 

policymakers develop strategies on planting and managing native species to protect biodiversity 

and preserve critical habitats (Maraseni et al., 2012). While mapping land use land cover (LULC) 

and successional stages in tropical regions has focused on flatter areas, more research is needed 

for TMFs with steep slopes and multiple forest types (Carreiras et al., 2017). 
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The environment of TMFs are influenced by a range of climatic and site factors (Altarez et al., 

2023b). Its vegetation responds to the variations in this climate and physical factors, leading to 

changes in composition and structure (Crausbay & Martin, 2016). These dynamics are vital for 

biodiversity and hydroclimatic cycle (Paulick et al., 2017). Despite these significant 

characteristics, our grasp of TMFs successional stages is limited. This gap limits our ability to 

comprehend spatial vegetation patterns, which are essential for the protection and sustainable 

management of these forests. In addition, understanding these dynamics in TMFs have a direct 

impact on forest productivity and carbon storage. Studies have shown that young or early 

successional stages have lower wood density than mature forests, suggesting that carbon stock is 

likely to change overtime (Nyirambangutse et al., 2017). TMFs are rapidly degrading due to the 

expansion of urban and agriculture (Kumaran et al., 2011; Altarez et al., 2022), highlighting the 

urgency for scientific studies on their successional stages to prevent their loss from both 

anthropogenic and natural causes.  

Traditionally, forest successional stages are mapped using field data (Helmer et al., 2000). 

Although this method is accurate, it is costly and limited to a specific spatial extent. Fieldwork in 

mountainous forests is time-consuming and labor-intensive (Liu & Wang, 2022). Integrating field 

data with remotely sensed information can generate meaningful extrapolated maps of forest 

successional stages. In recent years, remote sensing has become more robust because it is fast, 

efficient, and relatively accurate. Challenges such as cloud cover and atmospheric disturbances 

remains the negative feature in satellite images  (Liu et al., 2008). This challenge was later 

addressed by the rise of other groundbreaking technologies, such as the Synthetic Aperture Radar 

(SAR) and Light Detection and Ranging (LiDAR). While these technologies become powerful 

remote sensing tools, they come with drawbacks such as the technical complexity of their use, 

availability of data and cost. To mitigate these drawbacks, the optical remote sensing data, which 

are easier to handle and more cost effective, are coupled with field information. A growing number 

of literature combines remote sensing with field gathered information. Caughlin et al. (2021) 

assessed successional stages in a tropical forest by alleviating the uncertainties of Landsat imagery 

with field information.  Szostak et al., (2018) and Chraibi et al. (2021) on the other hand, explored 

the integration of Sentinel data and field data to automate forest succession detection, and patterns 

of forest regeneration, respectively. Bispo et al. (2019) and Berveglieri et al. (2018) have 

demonstrated how forest succession can be studied through height estimation as generated by SAR 

interferometry and airborne photogrammetric imagery. The potential applications of digital surface 

model for forest growth, on the other hand, have been investigated by Berveglieri et al. (2016). 

Additionally, the utilization of LiDAR technology (van Ewijk et al., 2011), and fusion of  optical 

and radar data (Carreiras et al., 2017) were found significant in successional dynamics studies. 

They also highlighted that determining the stages of forest succession requires detection of more 

subtle differences in vegetation properties. Hence, mapping of forest succession with remotely 

sensed imagery requires more detailed reference information (Helmer et al., 2000).  

The assessment of forest succession stages requires age and other physiological characteristics of 

vegetation including height, diameter at breast height (DBH), and basal area (Lu et al., 2003). 

These three dimensional variables are poorly detected in most passive optical sensor (Falkowski 

et al., 2009). Nevertheless, advancements in technology such as LiDAR and Interferometric or 

Polarimetric SAR (In/Pol InSAR), now offer solutions to this challenges (Bispo et al., 2019). 

Despite their applicability for detecting these required variable for forest succession, their 
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availability is limited (Wedajo, 2017). While LiDAR is a powerful tool, its cost and the need for 

historical data can hinder long-term time series analysis (Berveglieri et al., 2016). On the other 

hand, In/Pol-InSAR faces its own set of limitations. Spaceborne In/Pol-InSAR data are acquired 

in repeat-pass mode, which can lead to decorrelation of radar signals and inaccurate forest height 

measurements (Bispo et al., 2019). Yet, the success of new technologies in remote sensing is still 

paving the way to bridge the gaps in forest succession assessment.  

The NASA Global Ecosystem Dynamics Investigation (GEDI) collects vegetation structure data 

since April 2019 (Potapov et al., 2021). This GEDI instrument has a full-waveform sampling 

system. Despite this capability, it still contains weak, overlapping, and vast echoes, particularly in 

densely forested mountainous terrain that poses errors in forest height estimate (Liu & Wang, 

2022). With the use of optical imagery and machine learning (ML), the gaps in the use of GEDI 

may be resolved (Potapov et al., 2021; Gupta & Sharma, 2022). ML proved to give accurate and 

interpretable results (Lary et al., 2016). In addition, the use of Interferometric SAR (InSAR), 

growing in popularity, faces challenges in mountains (Kumar & Krishna, 2019; Loong et al., 

2013), although alternatives exist (De Petris et al., 2022). Combining Sentinel products with 

machine learned canopy height offers spatially explicit outcomes (Torres de Almeida et al., 2022). 

The technique has now been accepted in the literature, as InSAR relates significantly with forest 

parameters and shows promising results (Olesk et al., 2016). 

Despite these advancements, there remains a gap in the literature regarding the application of 

GEDI and Sentinel-1 InSAR for successional stages in TMFs. Hence, this study aims to examine 

GEDI, Sentinel-1 InSAR data, Sentinel-1 VV, VH and GLCM textures and Sentinel 2 spectral 

bands, biophysical attributes, along with machine learning regression, to map successional stages 

of a TMF in the Philippines. By pioneering this approach in the region, this study seeks to 

contribute to the growing interest in remote sensing technologies for carbon and biodiversity-

related goals in TMFs. 

This study employs GEDI and Sentinel-1 InSAR to refine the classification and map successional 

stages of a TMF in the Philippines based on forest types as determined by topographic factors. Its 

innovative approach aims to contribute to the growing interest in the use of GEDI and InSAR in a 

TMF utilizing ML regression for canopy height modelling. The novelty of the paper are as follows: 

First, the study evaluated the use of GEDI and InSAR for successional stages mapping which is 

first to be used in the Philippine’s TMF. Second, explicit machine learning regression to produce 

a continuous successional stages map is not common in most of the literature that performs 

classification of satellite imagery pixels and detection of objects for TMFs. Third, this study is one 

of the pioneering studies in the Philippines and Southeast Asia to map successional stages in a 

TMF using emerging remote sensing technologies. The results of this study can be employed in 

similar topographic and climatic region, and can assist policy makers at achieving carbon and 

biodiversity-related goals in TMFs.     
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2. Materials and methods

This section details the data and steps involved to attain the objectives set in Section 1.  The main 

steps involved are as follows: the Sentinel-1 and Sentinel-2 data were processed and prepared, 

canopy height maps using GEDI and Sentinel-1 InSAR data were modelled through RF regression 

together with field derived data, testing of the variables for successional stages using RF classifier, 

and finally, assessing the accuracy of the results (Figure 1).  

Figure 1. The overall workflow to map the successional stages of forest types in a tropical montane 

forest 

2.1.  Study area 

The study area is in Benguet, Philippines with a total land area of 2,826.59 km2 (Provincial 

Governor’s Office - Information Technology, 2020). Rainy season runs from May to October, and 

dry for the rest of the year. The average temperature is from January to June is 17.3 to 20.7 °C 

(Parao et al., 2016). The highest elevation is found in Mt Pulag at 2,926 masl (Doyog et al., 2021). 

The towering elevation results to the formation of three vegetation structures: pine forest at 700-

1,800 meter (DENR - FMB, 2011); mossy forest, found over 1,000 meters (Fernando & Cereno, 

2010); and grassland summit (figure 2). 
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Figure 2. Location of the study area (Benguet Province, Philippines) and the three vegetation 

zones found in the province 

2.2. Data collection 

Field and satellite data were collected from December 10, 2022, to January 08, 2023. The absence 

of forest age data led to the adoption of the following forest succession classes found in figure 3. 

Table 1 further defined the successional classes through “general structure” or how vegetation is 

arranged, and “composition” or the identity and abundance of different species present, including 

the forest vertical stratification (e.g., undergrowth, canopy, and emergent layer). It is assumed that 

the mixed forest at the defined elevation, which exhibits the same characteristics of pine forests, 

may contain both young and mature pine trees. A total of 359 polygons with a uniform area of 314 

m2 were generated for the classification. These were taken from both field work, and satellite 

imagery interpretation. Information taken for the field data includes DBH, canopy height through 

clinometer and laser finder; canopy cover using a densiometer; and general condition of the area 

(e.g., vegetations’ dominant maturity condition, regenerants, man-made and natural disturbances, 

and local knowledge). 737 random points were taken for each class for validation from Google 

Earth pro. 
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Figure 3. The forest succession stages in the study area. A. Grassland summit; B. Mature mossy 

forest; C. Young mossy forest; D. Mature pine forest; E. Young pine forest; F. Grassland patches 

near pine tree stands.  

2.3. Satellite data 

The GEDI LiDAR was used with field-derived data to produce forest height maps. It acquires data 

over eight tracks with a footprint spacing of 60 m along the track and 600 m across the tracks (Ngo 

et al., 2023). This five GEDI L2A version 2 h5 files were downloaded from the USGS LP DAAC 

server (Table 2). The GEDI L2A version 2 has improved geolocation error from 20.9 meters to 

10.3 meters (Beck et al., 2021). 

The Sentinel-1 data were acquired at the Alaska Satellite Facility (ASF) of NASA Earthdata. Two 

formats were used in this study, the Single Look Complex (SLC) for the interferometric analysis, 

and the Ground Range Detected (GRD) for the mapping of successional stages (Table 2). On the 

other hand, a single imagery from Sentinel-2 level 2A (Table 2) acquired from Copernicus Open 

Access Hub were utilized. The cloud cover is 0-30% and collected in descending orbital format 

with a tile size of 100 x 100 m and a swath width of 290 km. Bands 2-8a and 11-12 were considered 

for the mapping of successional dynamics.  

Table 1. The general structure and composition of successional stage classes used in this study 

area.  

Class Structure Composition 

GRM 

Located on the summit, composed 

generally of dwarfed bamboo and other 

grasses. 

Vegetation is simple, no complex vegetation 

composition, but can be found in higher elevations. 

The dwarf bamboo (Yushania niitakayamensis) can 

be found here. 

MMF 
Closed canopy cover, varied tree DBH, 

and various heights of trees. 

Vertical stratification is present, occurrence of rich 

undergrowth, and trees are covered with mosses and 

other epiphytic plants. Some dwarfed trees common 

A B C 

D E F 
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in this zone are Lithocarpus jordanae, L. 

luzoniensis, and L. woodie   

YMF 
Open canopy cover, less vegetation, 

and the presence of wildlings. 

Generally, bare and vertical stratification is not 

present, usually close to human or natural 

disturbance. 

MPF 
Closed canopy cover; presence of wide 

tree DBH; and tall pine trees. 

Diverse vegetation, and undergrowth such as grasses 

and other plants are present. Benguet pines (Pinus 

kesiya) are found thriving in this zone. 

YPF 

Open canopy cover; less vegetation; 

pine trees usually have smaller DBH 

and height, and presence of wildlings. 

Grasses and wildings exist, and man-made and 

natural disturbance is present. 

GRP 

Located in the lower elevation, 

composed generally of weeds and 

grasses. 

Vegetation is simple, no complex vegetation 

composition, but can be found in lower elevations. 

Table 2. Date of satellite imagery used in this study. 

Satellite Utilization Date 

GEDI Forest height 

10/10/2022 

10/21/2022 

09/13/2022 

11/17/2022 

Sentinel-1 
Interferometry 

02/10/2023 

02/22/2023 

12/12/2022 

12/24/2022 

Successional stages 12/12/2022 

Sentinel-2 Successional stages 02/11/2023 

2.4. Pre-processing of satellite data 

The GEDI L2A h5 files were processed in Jupyter Notebook Python version 3.0 based on the steps 

of Krehbiel (2021). The GEDI relative height (RH) metric 98 was chosen to represent the canopy 

height based on the previous literature (Lang et al., 2021; Ngo et al., 2023). Other RH metrics, 

such as RH95 and RH90  overestimate (Potapov et al., 2021) and underestimate (Dorado-Roda et 

al., 2021) canopy height, respectively. This pre-processing has resulted in 10,977 shots left for the 

training and validation of canopy height modeling. 

The Sentinel-1 SLC imagery was processed in SNAP 8.0 software, following the pre-processing 

steps of Braun (2021). Two images per date were mosaiced using slice assembly to cover the entire 

area. The Sentinel-1 GRD imagery, on the other hand, was also pre-processed using the same 

software. The pre-processing undertaken was based on the steps proposed by Filipponi (2019). For 

the Sentinel 2 L2A imagery, they were resampled to a 10 x 10-meter resolution using a bilinear 
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interpolation method in SNAP 8.0. The imagery was subjected to a subset to get the entirety of the 

study area. Finally, the clouds were masked using the land-sea masked operation.  

2.5. Auxiliary features for Sentinel-1 and 2 imagery 

All the auxiliary features were generated in SNAP 8.0. The Sentinel-1 GLCM were generated for 

both VV and VH polarization. The Sentinel-2 vegetation indices were carefully selected as they 

are widely examined and applied for vegetation analysis (Table 3). Likewise, the SRTM 30 m 

resolution elevation data was also added. The biophysical data added in the Sentinel-2 imagery 

were leaf area index (LAI), the fraction of absorbed photosynthetically active radiation (fAPAR), 

and the fraction of vegetation cover (fCover). According to Kamenova & Dimitrov (2021), LAI, 

fAPAR, and fCover are three biophysical parameters often linked with vegetation growth. 

Table 3. Vegetation indices generated using Sentinel-2 imagery. 

Vegetation Index S-2 Band Use Importance 

Normalize Difference 

Vegetation Index (NDVI) 
(B8-B4) / (B8+B4) 

Highly correlates with vegetation. 

Enhanced Vegetation Index 

(EVI) 

2.5 x (B8a – B4) / (B8 

+ 6 x B4 – 7.5 x B2 +

1)

Quantifies vegetation greenness and 

corrects atmospheric conditions (Xu et 

al., 2022).  

Normalized Difference 

Moisture Index (NDMI) 

(B8 – B11) / (B8 + 

B11) 

Strongly associated with forest health, 

water content, canopy cover, and 

biomass. It also provides forest loss 

information (Wilson & Sader, 2002).  

Bare Soil Index (BSI) 

(B11 + B4) – (B8 + 

B2) / (B11 + B4) + (B8 

+ B2)

Beneficial for soil mapping and crop 

identification (Akike & Samanta, 

2016).  

Normalized Burned Ratio 

(NBR) 

NBRI (Sentinel 2) =

(B8 – B12) / (B8 +

B12)

Detects burnt and healthy vegetation, 

dry and brown vegetation, and bare soil 

(García & Caselles, 1991).  

Optimized Soil Adjusted 

Vegetation Index (OSAVI) 

(1 + 0.16) * (B08–

B04) / (B08 + B04 +

0.16)

Better differentiates soil and canopy 

cover (Rondeaux et al., 1996). 

2.6. Modelling of canopy heights using ML 

Continuous canopy height models were created in Whitebox Runner, an analytical back-end for 

other GIS and remote sensing software, and the front end for running geospatial tools of the 

Whitebox Geospatial Analysts Tools (Whitebox GAT) (Lindsay, 2014).  

The Random Forest (RF) algorithm was used for the spatially explicit regression. The forest is 

comprised of 100 trees, with a minimum of one sample required per leaf and a minimum of two 

samples needed to split a node. Additionally, a test proportion of 70% training and 30% validation 

was employed. RF has been widely utilized for modelling and classification applications for TMF 

studies (Altarez et al., 2022).  The bands produced from interferometric computation were tasted 
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as predictors of canopy height. Interferogram is highly correlated with terrain topography, 

unwrapped interferogram can reveal subtle changes in ground elevation that might occur during 

succession, while coherence indicates how well each pixel between two SAR images reflect each 

other (Braun, 2021). Previous studies in the literature have demonstrated the utilization of 

interferograms products to model canopy heights (Loong et al., 2013; Olesk et al., 2016; Kumar 

& Krishna, 2019; De Petris et al., 2022; Torres de Almeida et al., 2022). Interferogram, coherence, 

and unwrapped interferogram, were combined differently. The canopy height derived from 

fieldwork and GEDI was also tested to evaluate which combination can give a better model. These 

variable combinations were then iterated based on December 2022 and February 2023 imagery. 

The dependent variable data was divided into 70% training and 30% validation. R coefficient and 

root mean square error (RMSE) were used to measure the validity of the model outputs.  

2.7. Mapping of successional dynamics 

Successional stage mapping was done in SNAP 8.0 through Random Forest Classifier, with 

parameters set to 5,000 number of training samples, 10 for the number of trees, and a minimum 

and maximum power set of 2 and 7, respectively. The layers used were the Sentinel-1 VV and VH, 

GLCM textures, Sentinel-2 bands, vegetation indices, and biophysical parameters, including RF 

derived canopy height. The field and satellite-derived 359 training polygons, with uniform size 

and shape, were used to classify the study area. Different layer combinations were tested: All 

variables, top 10 variables, top 5 variables, Sentinel 1 with textures, Sentinel 2 with vegetation 

indices, and biophysical parameters. The selection of the top features combination was based on 

the conservative approach recommended by Guyon & Elisseeff (2003). A confusion matrix 

assessed the map validity. 

2.8. Characterization of successional stages in different forest types 

Using the best model for the classification, vegetation types were characterized based on elevation. 

This characterization was done in the ArcGIS Pro. The elevation gradients used are described in 

the literature (Whitford, 1911; DENR - FMB, 2011; Fernando & Cereno, 2010). We defined pine 

forests situated at  700 – 1,400 meters, mossy forests at 1,400 – 2,600 meters, and grassland summit  

over 2,600 meters. These assumptions were based on the literature, satellite data inspection, and 

fieldwork observations.  

3. Results

3.1. Canopy height 

A multiple correlation coefficient (R) analysis of the interferometric product combinations versus 

field-derived height revealed weak positive correlation (Henseler et al., 2009) with R-square 

values ranging from 0.1817 to 0.1826 (Table 4), despite an overall significance of less than a = 

0.05.  This shows that 18% of the variability in field canopy height can be explained by the 

interferometric product combinations.  

106 



Validation tests for the canopy height models, using field data only as variable, produced accurate 

results with an r coefficient ranging from 0.5 to 0.8 and RMSE between 4 to 6 meters (Figure 4). 

Adding GEDI and field canopy height, regardless of interferometric product combinations, 

resulted in less accurate outputs (r = –0.2 to 0.04; RMSE = 12 to 13 m) (Figure 5). This implies 

that GEDI data is not suitable for the modelling TMFs’ canopy height, which can be attributed to 

its geolocation error (Shendryk et al., 2021). Two months were selected to determine if moisture 

affects the model. The December model was more accurate, with the unwrapped interferogram 

and coherence combination as the most valid (r = 0.808; RMSE = 4.24 m), followed by the 

interferogram and coherence combination (r = 0.740; RMSE = 4.81 m). It can be noticed in the 

models that the month of December provide better distinction of the surface (figure 5). The map 

exhibits various patterns, with darker shades representing urban areas, bare soil, and water bodies, 

and lighter colors representing vegetation.  

Table 4. Multiple correlation coefficient (R) of three predictor combinations for the dependent 

variable canopy height. 

Predictors R square Adjusted 

R Square 

P-Value

Interferogram, Unwrapped Interferogram and 

Coherence 

0.1826 0.1669 6.49x10-7 

Interferogram and Coherence 0.1817 0.1712 1.46 x10-7 

Unwrapped Interferogram and Coherence 0.1817 0.1712 1.46 x10-7 

Table 5 presents the accuracy of integrating all layers to classify successional stages in different 

forest types. The all-layer combination model achieved an over-all accuracy (OA) of 79.56% and 

a kappa index (KI) of 75.74%. Isolated group layers based on Sentinel-1 (OA = 53.79%; KI = 

44.61%), Sentinel-2 (OA = 67.64%; KI = 61.59%), and biophysical data (OA = 65.78%; KI = 

56.03%), shows a lower OA and KI. One-way ANOVA revealed a significant difference between 

the OA and KI of the layer combinations (p-value = 0.027; a = 0.05), indicating that the all- layer 

predictors outperform the other combinations.  

The feature importance from the RF classification was used to refine the model. The top 10 

variables among the 43 layers were Elevation, σ° VH Angular Second Moment (ASM), BSI, 

fCover, σ° VH GLCM Variance, fAPAR, σ° VV GLCM Correlation, σ° VV Homogeneity, σ° VH 

GLCM Correlation, and σ° VH GLCM Mean (figure 7). Elevation has the highest importance 

among the top 10 variables at 72%. Also, 60% of the factors are GLCM textures, followed by 

biophysical layers at 30%. The least is the optical layers at 10%. Using the identified top 10 

features enhanced  the OA and KI by 5.53% and 6.71%, respectively, compared to the all-feature 

combination (84.22%; 81.19%). Testing the top 5 variables resulted to an OA and KI of 83.82% 

and 80.75%, respectively (Table 6). The choice of the top 10 layers is preferred over the top 5. 
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Figure 4. Validity evaluations of continuous canopy height models developed from interferometric 

product combinations and field data for December 2022 and February 2023:  A-D. Interferometric 

product combinations vs field canopy height for December 2022. E-H. Interferometric product 

combinations vs field canopy height for February 2023. 
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Figure 5. Validity evaluations of continuous canopy height models developed from interferometric 

product combinations and combined GEDI & field data for December 2022 and February 2023:  

A-D. Interferometric product combinations vs GEDI and field canopy height for December 2022.

E-H. Interferometric product combinations vs GEDI and field canopy height for February 2023.
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Figure 6. Validity evaluations of continuous canopy height models developed from interferometric 

product combinations and combined GEDI & field data for December 2022 and February 2023:  

A-D. Interferometric product combinations vs GEDI and field canopy height for December 2022.

E-H. Interferometric product combinations vs GEDI and field canopy height for February 2023.

3.2. Best combination for the successional stages map

A B C D 

E F G H 
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Table 5. OA and KI of layer combinations used to classify the successional stages in different forest 

types of the study area.   

Layer predictor OA KI 

All Predictors 

Sentinel-1: VV and VH GLCM textures – Contrast, 

Dissimilarity, Homogeneity, ASM, Energy, Max, Entropy, 

Mean, Variance, Correlation 

σ° VV & VH (db) (12/2022) 

Sentinel-2: B2,3,4,5,6,7,8,8A,11,12 

NDVI, EVI, NDMI, BSI, NBR, OSAVI 

Biophysical: Elevation Canopy height derived from 

Unwrapped Interferogram and Coherence, LAI, fAPAR, 

fCover 

79.56 75.74 

Sentinel-1 data: 

VV and VH GLCM textures – Contrast, Dissimilarity, 

Homogeneity, ASM, Energy, Max, Entropy, mean, 

Variance, Correlation 

σ° VV and VH (db) (12/2022) 

53.79 44.61 

Sentinel-2 data: 

B2,3,4,5,6,7,8,8A,11,12 

NDVI, EVI, NDMI, BSI, NBR, OSAVI 

67.64 61.59 

Biophysical data: 

Elevation 

Canopy height derived from Unwrapped Interferogram and 

Coherence  

LAI, fAPAR, fCover 

65.78 56.03 
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Figure 7. Top 10 variables' importance score in RF classification of successional stages in 

different forest types 

Table 6. OA and KI of successional stage classification using RF importance features. 

Predictors OA KI 

Top 10 variables: 

Elevation, σ° VH ASM, BSI, fcover, σ° VH GLCM 
Variance, fAPAR, σ° VV GLCM Correlation, σ° VV 
Homogeneity, σ° VH GLCM Correlation, σ° VH GLCM 
Mean 

84.22 81.19 

Top 5 variables: 

Elevation, Sigma0_VH_ASM, BSI, fcover, 
Sigma0_VH_GLCM Variance 

83.82 80.75 

The successional stage map produced from the top 10 features with the highest OA and KI is 
shown in Figure 8. MMF and YMF are mostly found on high mountains of Kabayan, Bugias, 
Bokod, and Kibungan. MPF and YPF are widespread across the province. NFO is mainly in 
Baguio city, indicating urban areas. Other NFO areas are water bodies and bare soil, mostly in 
Itogon and Bokod. Table 7 displays the area and percentage distribution of succession stage 
classes. MPF covers the largest area at 40.38%, while MMF-YMF-GRM cover s less than 10%. A 
little percentage, 1.31%, is classified "No data". This is primarily due to cloud coverage, a 
limitation inherent to topical forest studies that are often covered by clouds. 
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Table 7. Area and percentage of successional stages in the study area. 

Classes Area (hectares) Percentage 

GRM 2,989 1.16 
MMF 6,608 2.56 
YMF 8,486 3.29 
MPF 104,230 40.38 
YPF 61,812 23.94 
GRP 20,355 7.88 
NFO 50,279 19.48 
No data 3,393 1.31 
Total 258,152 100 

Figure 8. The successional stages map in different forest types of the study area using the Top 10 

variables as the basemap 
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3.3. Characterization of successional stages per forest types 

Table 8 displays successional stage classes by elevation gradient. MPF dominates (42.90%), 
followed by GRP (17.38%), and NFO (25.34%) below 700m elevation. GRM, MMF, and YMF 
are expected to be low at a total of 1% as the conditions are not ideal for their survival and growth. 
In the 700-1,400 m elevation, MPF and YPF dominate (67%), while NFO covers 21.93% due to 
urban areas. From 1,400 to 2,600m, MMF, YMF, and GRM prevail (17%) because its physical 
conditions are optimal for their growth. Above 2,600 meters, GRM, MMF, and YMF cover 88.5% 
with minimal YMF and YPF (0.67%). The vegetation shifts from pine forest from lower elevation 
to mossy forest and grassland at a higher elevation, with mossy forests becoming prominent at 
higher elevations. NFO is consistent, covering less than 30% coverage across elevations. Missing 
areas are scattered but minor in proportion. 

4. Discussion

4.1. The role of canopy height in TMF successional stages 

Canopy height is a critical parameter for understanding the dynamics of ecological succession 
(Bispo et al., 2019). This study shows that interferometric products exhibit a weak positive 
correlation with field canopy height. The addition of coherence improves the accuracy of height 
estimation, aligning with the study of Olesk et al. (2016) and  Ghosh et al. (2020). Coherence 
provides information about the spatial distribution and structure of vegetation, making it a 
complementary predictor for forest canopy height (Liao et al., 2019). 

Similarly, De Luca et al. (2022) exploited SAR coherence to enhance forest classification 
accuracy. However, the result of this study contrasts with the result of De Petris et al. (2022), 
wherein unwrapped phase interferogram and coherence presented a better spatially explicit canopy 
height model. It should be noted that different methods were applied to produce the height model. 
On the other hand, using GEDI data to derive height estimation corroborate with the results of Liu 
& Wang (2022). GEDI is limited to highly dense mountainous areas, which may be attributed to 
its restriction with slope affecting tree height estimation (Potapov et al., 2021). Careful 
consideration should be applied when using GEDI data for estimating canopy height in tropical 
forests (Oliveira et al., 2023). It is advised that GEDI can be used in lower elevations  that is easier 
to discern than mountainous areas (Gupta & Sharma, 2022). 

Even though canopy height was hypothesized to be crucial for TMF successional stages, the results 
obtained contradicted the initial hypothesis, showing that canopy height did not significantly 
influence the variability of the successional stages. The unexpected outcome may be attributed to 
unique environmental factors in the study area (Altarez et al., 2023a). Notably, elevation is the 
dominant factor affecting vegetation. As the elevation increases, the environmental factors change, 
influencing the growth and structure of vegetation  (Crausbay & Martin, 2016). In the future, 
integrating biophysical parameters, Sentinel-1, and Sentinel-2 data could enhance the accuracy of 
canopy height model. In addition, fine tuning the RF regression model for canopy height could 
potentially enhance the result of the canopy height estimation.   
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Table 8. The area and percentage of successional stages in vegetation types with respect to 
elevation.

Elevation 
(m) 

General Land 
Cover LULC Area 

(hectares) Percentage 

0-700 Others 

GRM 13 0.05 
MMF 2 0.01 
YMF 22 0.09 
MPF 10,425 42.90 
YPF 2,840 11.69 
GRP 4,222 17.38 
NFO 6,158 25.34 

No data 616 2.54 
Sub-total 24,298 100 

700-1,400 Pine Forest 

GRM 142 0.11 
MMF 14 0.01 
YMF 68 0.05 
MPF 61,551 47.20 
YPF 25,905 19.87 
GRP 12,455 9.55 
NFO 27,895 21.39 

No data 2,364 1.81 
Sub-total 130,394 100 

1,400 - 
2,600 Mossy Forest 

GRM 2,721 2.65 
MMF 6,366 6.19 
YMF 8,200 7.97 
MPF 32,244 31.35 
YPF 33,041 32.12 
GRP 3,674 3.57 
NFO 16,178 15.73 

No data 436 0.42 
Sub-total 102,860 100 

>2,600 Grassland summit 

GRM 113 18.83 
MMF 225 37.50 
YMF 193 32.17 
MPF 4 0.67 
YPF 20 3.33 
GRP 1 0.17 
NFO 44 7.33 

Sub-total 600 100 
Total 258,152 100 
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4.2. The role of satellite imagery in mapping TMF successional stages 

A study in the Philippine’s TMF presents that combining optical, radar, and biophysical data with 
deep learning improved complex LULC classification (Altarez et al., 2023). Another study on the 
use of ML algorithms revealed similar accurate predictions (Chachondhia et al., 2021). The 
effective classification of optical and radar satellite imagery highlights their complementary 
properties, allowing for more precise surface feature recognition. 

Implementing the RF’s feature importance further enhances the classification accuracy. Although 
deep learning's popularity emerges considerably in remote sensing (Ma et al., 2019), ML has 
proven its superiority for image classification over the last decades (Sheykhmousa et al., 2020). 
The successional stages map result of this study is comparable with the Environmental Systems 
Research Institute’s (ESRI) LULC map with an OA of 85% (Karra et al., 2021), and European 
Space Agency (ESA) WorldCover with an OA of 74.4% (Zanaga et al., 2021).  

It was found that elevation significantly influences the classification. The general trend observed 
in increased elevation is a decrease in woody plant vegetation (Bruijnzeel et al., 2011), this changes 
in wood physiology may be attributed to the involvement of other parameters, such as the shift of 
climatic variables. Wallis et al. (2019) found that elevation gradient significantly influences forest 
biomass and productivity.  
Sentinel-2 data provides crucial information on vegetation composition, but its quality is affected 
by atmospheric disturbances. The presence of clouds affects the LAI, fAPAR, and fCover. The 
morphological features of vegetation can be better understood by examining these layers. Muhe & 
Argaw (2022) show that integrating them improves the estimation of forest above-ground biomass 
in a TMF.  

In addition, Sentinel-1 is advantageous over areas with excessive cloud coverage. The SAR's 
sensitivity to surface roughness using GLCM textures provides constant and reliable separation of 
LULC. The GLCM texture generally relates to the structure of the different LULC and 
successional stages (Huang et al., 2014). The application of GLCM textures has proven to be  
effective in LULC assessment, in habitat structure or species richness (Wallis et al., 2017) and 
biomass modeling (Wallis et al., 2019). 

In this study, the top 10 remote sensing variables including, elevation, σ° VH ASM, BSI, fcover, 
σ° VH GLCM variance, fAPAR, σ° VV GLCM correlation, σ° VV homogeneity, σ° VH GLCM 
correlation, and  σ° VH GLCM mean are effective layers for mapping successional stages. Careful 
selection of data layers can leverage the successional stage classification. Our knowledge of the 
dynamics of successional stages can create evidence-based decisions for conserving and managing 
this environment in a sustainable manner. 

4.3. The successional stages in different forest types 

The different vegetation types are significantly influenced by elevation. MPF and YPF generally 
dominate the low elevation, while mossy forests prevail at higher elevations. Mossy forests are 
better adapted to low temperatures and wetter environments (Kappelle, 2004; Bruijnzeel et al., 
2011; Wallis et al., 2019). Changes in pine forest growth are prevalent in the study region. The 
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MPF and YPF areas are significantly easier to access by humans, resulting to their conversion. 
Changes in the mossy forest are also prevalent, evidence by news reports documented the 
conversions to agricultural farms (Lasco, 2022). These disturbances pave the way for changes in 
their ecological makeup  (Balangen et al., 2023). Similar TMFs changes are happening in Malaysia 
(Kumaran et al., 2011), even in other locations across the globe (Crausbay & Martin, 2016). 
Deforestation in the Philippines remains rampant, even in areas that is declared protected under 
law (Apan et al., 2017).  

The result of this study underscores the necessity of protecting and limiting human disturbances 
in the TMFs. Scientific evidence indicates that TMF recovery takes 65–85 years, with 50 years for 
epiphytic plant and flora regeneration (Kappelle, 2004). Therefore, TMF conservation and 
management are necessary. A targeted conservation strategy can be crafted for each forest type. 
These findings have major implications for accomplishing climate change, ecological 
conservation, and sustainable use of natural resources goals like the conservation of biological 
diversity (CBD) and Nationally Determined Contributions (NDC) goals.  

5. Conclusion

Interferometric products have a weak positive correlation with the field canopy height. The use of 
GEDI requires careful consideration for estimating canopy height in TMFs. Combining Sentinel-
1 and Seninel-2 data, and auxiliary variables effectively classify successional stages with an OA 
of 79.56% and a KI of 75.74%. Using RF feature importance improved the model by 5.53% OA 
(i.e., 84.22%) and KI by 6.71% (i.e., 81.19%). This study also found that elevation significantly 
influenced the distribution of forest types. This is because elevation primarily drives the 
environmental condition such as temperature, water, and soil fertility, which significantly affects 
vegetation growth. Mature and young pine forest dominated the lower elevation, while the higher 
areas become dominated by mossy forest, indicating their preference for cooler and wetter 
condition. The presence disturbances observed in different forest types call for the need to pursue 
strong conservation efforts. Evidence-based decision-making is crucial to attaining climate change 
mitigation, ecological conservation, and sustainable resource use goals. This study can be applied 
to TMFs other than the Philippines to better understand this diverse and ecologically significant 
environment. Policymakers can use this study to establish plans for native plants, inhibit invasive 
species, and conserve biodiversity by identifying critical habitats for different species. Future 
research should examine other successional stages factors, and a time series successional stages 
map to account the disturbances and patterns of the vegetation changes. Fine tuning the RF model 
for both regression and classification presents a fundamental improvement for future research. 
Similarly, investigating additional variables to incorporate with GEDI is also recommended. 
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6.3. Summary and links 

 

This study explored the mapping of successional stages in different forest types in 

Benguet province, Philippines. The study also demonstrated the significance of modelling 

canopy height along with other variables to understand the succession levels in the three types 

of vegetation found in the study area. The correlation between InSAR products and field 

canopy height was found to be weak positive (r2 = 0.18). This study confirms that using GEDI 

data in locations with undulating terrain and dense vegetation might result in inaccurate data. 

Combining S-1, S-2, auxiliary variables, and biophysical data effectively classifies 

successional stages with an Overall Accuracy (OA) of 79.56% and a Kappa Index (KI) of 

75.74%. Utilizing the top 10 variables specified by random forest (RF) feature importance 

improved the model with an OA of 84.22% and a KI of 81.19%. It was also determined that 

elevation had the greatest influence on forest types distribution of all the variables subjected to 

modelling. Pine forests, both mature and young, dominated the lower elevations, while mossy 

forests are generally located in higher elevations, indicating their preference for cooler and 

wetter conditions. In addition, this study calls for a strong conservation effort, as the assessment 

found the presence of non-forests and disturbances in all areas. A carbon stock analysis is 

beneficial in understanding the forest dynamics in the study area. Finally, this research can be 

used by policymakers to protect native plants, reduce the spread of invasive species, and 

conserve biodiversity by identifying critical habitats. 

 

A comprehensive analysis of above-ground biomass and carbon density across the three 

vegetation types of Benguet province is presented in the next chapter (Chapter 7). This study 

combines satellite imagery and machine learning techniques to create statistical and spatially 

explicit carbon stock models. 
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CHAPTER 7: PAPER 4 – ABOVE-GROUND CARBON AND 

DENSITY OF THE PHILIPPINE’S TOWERING MOUNTAINS 

 

7.1. Introduction 

 

The discussion on machine learning (ML)-based mapping of successional stages in the 

province of Benguet using Interferometric Synthetic Aperture Radar (InSAR) imagery, the 

Global Ecosystem Dynamics Investigation data (GEDI), Sentinel products, and biophysical 

data was provided in the previous chapter (Chapter 6). In the current chapter, a non-destructive 

estimation of above-ground biomass (AGB) and above-ground carbon (AGC) using Sentinel-

1 (S-1), Sentinel-2 (S-2) and biophysical data with machine learning (ML) is presented. 

Similarly, this article explores various ML applications (i.e., statistical regression, spatially 

explicit model, and feature selection). Another innovation of this article is the allometric 

equation for the dwarf bamboo (Yushania niitakayamensis) that thrives at Mt. Pulag National 

Park's summit. In addition, different ML algorithms in the WEKA statistical software were 

pitted against one another to evaluate their ability to predict AGB. 

 

 

7.2. Published paper 

 

The subsequent page contains the published version of the article in PFG – Journal of 

Photogrammetry, Remote Sensing and Geoinformation Science (Q1 – top 25% in Earth and 

Planetary Sciences field). The journal’s publisher is Springer International Publishing AG. Its 

source normalized impact per publication (SNIP) in 2022 is 1.17 and has an impact factor (IF) 

of 3.2. The journal’s h-index is 29. 



This article cannot be displayed due to copyright restrictions. See the article link in the Related 

Outputs field on the item record for possible access. 

 



Appendix 1. AGB modelling for Yushania niitakayamensis (dwarf bamboo) 

The absence of live specimens and established allometric equations for the dwarf bamboo 

Yushania niitakayamensis in the study area was addressed by creating an alternative allometric 

equation based on the collected data, namely clump basal diameter and height. The absence of live 

specimen collection is attributed to the legal protection measures implemented by the Republic of 

the Philippines, namely Republic Act No. 1586 and DENR-PAMB Resolution No. 24 series of 

2022. These regulations specifically outline the requirement for non-destructive data gathering 

methods inside the study area.  To accomplish the crafting of the allometric equation, 19 samples 

were randomly selected from the study site, and their fresh weight was calculated using the formula 

for the volume of a cylinder (πr2h) multiplied by the specific gravity 0.4g/cm3 and then converted 

to kg. The specific gravity of different bamboo species varies from 0.4 to 0.8 g/cm3 (Wakchaure 

& Kute, 2012), with some species possessing even higher values. Based on this range, the chosen 

value of 0.4 g/cm3 lies within the reported range's lower end and is thus a conservative estimate of 

the specific gravity of dwarf bamboo. The dry weight, in this study interchangeably referred to as 

the pseudo AGB, was calculated as the difference between the fresh weight and the assumed 

moisture content of 80% (Wakchaure & Kute, 2012). However, the validity of this assumption 

may vary depending on the age and species of the bamboo (Wi et al., 2017). Hence, this assumption 

must be used cautiously in future studies.  

Five allometric models were created using height (ht), clump base diameter (cbd), and dry weight, 

including a simple linear regression model and logarithmic transformations in which either one or 

both variables were log-transformed. In addition, a Bayesian linear regression model was created 

to investigate the relationship between the variables in greater depth (Appendix table 1). 

The modeling was performed using the statistical programming language R version 4.2.2. Using 

the lm function, linear regression was performed. Logarithmic models were fitted by transforming 

the variables with the log function and then fitting them with the lm function. In addition, the final 

model was estimated using the log-transformed dependent and independent variables and the 

bayeslm function. 

Appendix table 1. The generated models for Yushania niitakayamensis 
Model Allometric Equation 

Linear regression formula (model 1) AGB (kg) = -16.53 + 0.1 * ht + 0.45 * cbd 

Log height formula (model 2) AGB (kg)= -41.13+ 7.80*LN(Ht) + 0.43* cbd 

Log basal diameter formula (model 3) AGB (kg)= -61.34 + 0.10 * Height + 17.46* LN(cbd) 

Log ht cbd formula (model 4) AGB (kg)= -82.89 + 7.38 * LN(Ht) + 16.80 * LN(cbd) 

Bayesian linear regression (model 5) AGB (kg) = exp(-9.39) * height^0.95 * cbd^1.98 

A scatterplot was created to compare the predicted performance of the five AGB models 

against the pseudo AGB (Appendix figure 1). The dashed line represents the dry weight assumed 

as the pseudo AGB values, and the dots are the predicted values by the models as represented by 

the varying colors. The result indicates that all models could predict the AGB with certain levels 

of accuracy. Model 1, in particular, appears to overpredict the AGB, while models 2 to 5 produced 

a better prediction.  
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Appendix figure 1. Scatter plot showing the AGB prediction of five models vs the pseudo AGB of

Yushania niitakayamensis 

Appendix table 2 compares the five different model predictions of AGB vs. the pseudo value of 

AGB using root mean square error, r coefficient and adjusted r squared as basis. In general, it is 

inferred that model 5 best fits the AGB based on low RMSE and a value of R-squared close to 1. 

This is consistent with the result shown in appendix figure 1, where most of the predicted values 

of model 5 almost fit along the pseudo AGB values. However, it is also important to remember 

that the models developed in this study were based on proxy values and not the actual AGB 

obtained through the destructive method of generating an allometric equation. Therefore, future 

applications of these models must be approached with extreme caution. It may be necessary to 

conduct additional research to confirm the applicability and dependability of the models for 

predicting AGB in other settings or under different conditions. 

Appendix table 2. Model validation of predicted AGB against the estimated AGB of Yushania 

niitakayamensis using field data 

Model RMSE r coefficient Adjusted r2 

Model 1 143.3376 0.9306 0.85375 

Model 2 0.752 0.9240 0.83125 

Model 3 10.489972 0.8894 0.76375 

Model 4 0.037206 0.8839 0.7525 

Model 5 0.905928 0.9998 0.98875 
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Appendix table 3. The machine learning algorithm tested in this study and its general description based on Frank et 

al., (2016) and at this website: https://weka.sourceforge.io/doc.dev/overview-summary.html 

Algorithm Type Description 

1. Additive

Regression

Meta Enhances the regression base classifier performance. 

2. Alternating model

tree

Trees In a single tree structure, this algorithm provides the predictive power of 

the decision tree ensembles.  

3. Bagging Meta Reduces variance by bagging a classifier. 

4. Decision Stump Trees A simple one-level binary tree builder with missing value handling.  

5. Decision Table
Rules Utilizes best-first search to evaluate feature subsets and perform 

evaluation using cross-validation. 

6. ElasticNet Functions Performs linear regression by using elastic method. 

7. Gaussian Processes
Functions Performs non-linear regression with Bayesian Gaussian process technique 

implementation. 

8. IBk Lazy Implements the simplest lazy learner k-nearest-neighbor classifier.  

9. Isotonic Regression Functions Uses the attributes that came from the lowest squared error. 

10. Iterative Absolute

Error Regression

Meta Uses Schlossmacher’s iteratively reweighted least squares method to fits 

model with minimized absolute error. 

11. K* Lazy Generalizes distance function through transformation.  

12. LeastMedSq
Functions Generated from random subsamples of the data, and uses the lowest 

median squared error as the model. 

13. Linear regression

Functions Performs regression with attribute selection, either greedily or by 

dropping terms based on standardized coefficients until a stopping criteria 

is met.  

14. LWL Lazy An algorithm for locally weighted learning. 

15. M5P Trees A variation of M5. 

16. M5P Rules Rules Acquires regression rules from M5. 

17. Multilayer Perceptron Functions Trained using back propagation and is a type of neural network.  

18. Random Forest
Trees Builds random forests by constructing ensembles of randomized trees 

through bagging.  

19. Random Sub Space
Meta Creates an ensemble classifier that is trained through randomly selected 

attributes as input. 

20. Random Tree
Trees Randomly builds tree through feature selection at each node without 

pruning.  

21. Random Committee Meta Builds ensemble of base classifiers and averages the resulting predictions.  

22. Randomisable

Filtered Classifier

Meta A class designed to execute any classifier on data that has been pre-

processed by an arbitrary filter.   

23. Regression by

Discretization

Meta Discretizes the class attribute into specified number of bins and employs a 

classifier.  

24. RepTree
Trees Optimizes decision or regression tree using information gain/ variance 

and reduced error pruning. 

25. SMOreg Functions Uses the sequential minimal optimization algorithm. 
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Appendix table 4: The machine learning algorithms tested in various predictor categories used in this study, showing the Pearson’s r correlation 

coefficient and RMSE. 

Algorithms 
Biophysical Optical index Optical Radar index 

Radar index with 

elev 
Radar 

r RMSE r RMSE r RMSE r RMSE r RMSE r RMSE 

Additive Regression 0.712 135.807 0.710 140.399 0.677 144.171 0.377 177.633 0.458 170.183 0.471 167.441 
Alternating model tree 0.753 148.011 0.064 2808.629 0.421 231.722 0.149 282.205 0.288 223.822 0.157 250.773 
Bagging 0.753 124.700 0.724 130.927 0.689 138.678 0.301 181.118 0.362 176.426 0.369 176.588 
Decision Stump 0.689 137.113 0.677 140.034 0.703 134.526 0.212 186.828 0.212 186.828 0.317 179.260 
Decision Table 0.696 140.373 0.712 133.741 0.769 121.210 0.267 187.638 0.248 196.567 0.267 187.638 
ElasticNet  0.686 137.804 0.697 135.769 0.678 139.369 0.259 182.852 0.256 182.677 0.286 181.112 
Gaussian Processes  0.619 150.663 0.698 135.864 0.658 142.559 0.268 182.145 0.250 183.063 0.301 180.971 
IBk 0.786 131.591 0.647 174.402 0.567 176.147 0.266 229.533 0.217 242.542 0.094 240.071 
Isotonic Regression 0.716 132.705 0.749 127.108 0.685 138.487 0.165 190.711 0.165 190.711 0.255 183.507 
Iterative Absolute Error 

Regression 
0.693 137.467 0.682 139.676 0.709 135.090 0.202 193.942 0.202 193.942 0.161 203.574 

K* 0.827 107.795 0.669 149.847 0.684 148.189 0.213 224.713 0.328 198.602 0.225 206.045 
LeastMedSq 0.070 220.207 0.106 220.227 0.186 220.091 0.024 220.258 -0.001 220.293 0.015 220.283 
Linear regression 0.684 137.962 0.702 135.829 0.657 143.964 0.187 188.772 0.183 189.287 0.181 188.133 
LWL 0.687 138.530 0.685 138.429 0.718 131.714 0.341 178.874 0.358 177.264 0.448 169.804 
M5P 0.716 132.509 0.718 135.509 0.668 144.879 0.338 178.745 0.295 182.891 0.404 173.403 
M5P Rules 0.713 133.443 0.709 137.856 0.609 161.522 0.347 178.196 0.205 195.351 0.400 174.596 
Multilayer Perceptron 0.685 152.217 0.667 171.316 0.616 175.477 0.295 206.658 0.370 195.672 0.285 194.006 
Random Forest 0.821 108.478 0.709 136.401 0.768 121.460 0.391 175.642 0.460 168.280 0.430 172.922 
Random Sub Space 0.750 124.963 0.711 132.818 0.725 130.206 0.345 177.433 0.417 172.582 0.450 169.784 
Random Tree 0.694 151.048 0.596 179.459 0.629 169.430 0.103 261.783 0.318 208.834 0.232 244.759 
RandomCommittee 0.778 122.860 0.670 150.436 0.750 129.627 0.358 187.043 0.478 170.074 0.397 183.512 
RandomisableFilteredClassifier 0.784 131.586 0.647 170.809 0.641 159.900 0.108 269.431 0.181 240.789 0.215 227.449 
Regression by Discretization 0.716 140.229 0.675 146.134 0.619 161.762 0.146 212.464 0.287 203.572 0.330 194.284 
RepTree 0.683 140.484 0.681 140.052 0.651 145.589 0.235 193.423 0.379 180.757 0.311 184.384 
SMOreg 0.669 146.146 0.708 135.313 0.672 145.178 0.187 200.916 0.183 200.608 0.218 202.795 
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Appendix table 4: Continuation. 

Algorithms 
All Predictors Selected features top 5 

Selected features top 

10 

r RMSE r RMSE r RMSE 

Additive Regression 0.678 151.106 0.773 123.324 0.706 137.979 
Alternating model tree 0.571 203.408 0.674 156.003 0.749 152.026 
Bagging 0.771 120.693 0.767 121.742 0.785 117.490 
Decision Stump 0.677 140.034 0.711 133.319 0.670 140.891 
Decision Table 0.636 152.538 0.657 147.780 0.664 144.639 
ElasticNet  0.708 133.469 0.687 137.594 0.708 133.507 
Gaussian Processes  0.705 134.169 0.662 142.102 0.702 134.730 
IBk 0.658 154.402 0.779 130.246 0.761 133.017 
Isotonic Regression 0.749 127.108 0.749 127.108 0.671 143.151 
Iterative Absolute Error Regression 0.682 139.676 0.715 133.656 0.676 140.899 
K* 0.713 142.433 0.832 106.682 0.835 107.335 
LeastMedSq -0.015 220.403 0.059 220.219 0.023 220.318 
Linear regression 0.629 158.256 0.673 140.225 0.698 137.080 
LWL 0.700 135.365 0.697 136.058 0.696 136.045 
M5P 0.746 126.764 0.765 121.864 0.804 112.791 
M5P Rules 0.714 136.903 0.739 129.545 0.757 129.779 
Multilayer Perceptron 0.548 198.032 0.689 151.035 0.763 133.183 
Random Forest 0.786 117.244 0.822 108.226 0.819 108.933 
Random Sub Space 0.726 130.121 0.787 116.823 0.765 121.711 
Random Tree 0.635 166.050 0.752 141.800 0.625 170.481 
RandomCommittee 0.779 119.557 0.824 109.449 0.814 111.049 
RandomisableFilteredClassifier 0.580 181.427 0.756 138.363 0.782 124.949 
Regression by Discretization 0.668 152.245 0.775 130.008 0.759 125.406 
RepTree 0.634 149.801 0.707 137.514 0.681 147.494 
SMOreg 0.674 140.357 0.665 146.631 0.683 139.758 
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Appendix figure 2. The trend of Sentinel-1 VV and VH backscatter for November 2022, December 2022 and January 2023 per sampling plots 
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Appendix figure 3. The trend of LAI, fCover, fAPAR and Elevation per sampling plots 
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7.3. Summary and links 

 

This chapter presented the synergistic approach of ML, S-1, S-2, and other biophysical 

parameters to explore the estimation of AGB and AGC in the province of Benguet, Philippines. 

This research has demonstrated the efficacy of optical and radar satellite imagery, in 

conjunction with ML, to accurately predict AGB and AGC across various vegetation types 

within a tropical montane forest. The combination of the elevation band with other biophysical 

data from S-2 consisting of LAI, fAPAR, and fCover and vegetation indices such as NDVI can 

accurately predict AGB (r = 0.657 to 0.832; RMSE = 106.682 Mgha-1 to 156.03 Mgha-1) and 

circumvent the challenges of TMFs assessment. This study also discussed the importance of 

multi-date S-1, radar vegetation index and elevation in AGB estimation.  

 

A significant contribution of this study lies in its statement that replicating ML 

algorithm models possess challenges. ML models are inherently stochastic, with random inputs 

resulting in variable predictions even with a consistent algorithm across different software 

platforms. In contrast, this stochasticity is important to ML because it maintains the input 

randomness while still employing training samples that may represent the underlying 

variability of data in its natural environment. In addition, random forest (RF) proved its 

effectiveness in selecting important features for AGB. Among all other ML algorithms tested 

for spatially explicit modelling, RF has accurately predicted the study site's AGB (r = 0.962; 

RMSE = 53.980 Mgha-1). The study area's AGC ranges from 0 to 434.94 Mgha-1. Higher-

elevation forests in Benguet were potentially significant for carbon sequestration and forest 

conservation. Evidence from this study suggests that carbon sequestration capacity in these 

carbon-rich locations can be commercialized through REDD+ initiatives. In order to safeguard 

and preserve the province's remaining forests, a strong commitment is required to craft 

conservation and management policies and ensure their implementation. 

 

The last chapter (Chapter 8) synthesizes and explores the core findings of all the 

preceding chapters, conclusions, and the limitations and potential for further study. 
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CHAPTER 8: CONCLUSION 

 

8.1. Introduction 

 

The aim of this study was to evaluate deforestation, successional stages (SS), and 

carbon stocks of a tropical montane forest (TMF) in the Province of Benguet, Philippines using 

Sentinel-1 (S-1), Sentinel-2 (S-2) and biophysical data with machine learning (ML). To achieve 

this goal, the research was divided into three objectives, which were addressed in Chapters 4 

to 7. 

 

The traditional, ML, and deep learning (DL) classifiers and the variable combination of 

S-1, S-2, and biophysical data were tested for deforestation mapping. The SS was assessed 

using InSAR imagery, GEDI data, S-1, S-2, and other biophysical characteristics. This research 

discusses ML's use in feature selection, regression analysis, and spatially explicit modelling. 

The non-destructive assessment of above-ground biomass (AGB) and carbon (AGC) was also 

studied using radar, optical, and biophysical data. This study also compared ML algorithms for 

statistical AGB prediction and spatially modelled its concentration in the province. All 

investigations in this thesis used field observation data from December 2022 to January 2023 

and spaceborne remote sensing (RS) datasets. 

 

Several novel aspects are introduced in this study: First, it examines forest evaluations 

in a TMF that has not been studied extensively because of its difficult terrain and steep slopes. 

It is also the first attempt in Southeast Asia to employ InSAR and GEDI to evaluate 

successional stages. The use of ML algorithms for statistical regression to predict AGB is novel 

in TMF research. More so, AGB modelling for TMF and forest research in the Philippines is 

greatly improved by the combination of spatially explicit regression through ML and 

spaceborne RS. The development of an allometric equation for dwarf bamboo in the Mount 

Pulag protected landscape (MPPL) is an important addition to the existing body of knowledge. 

Finally, a DL classification of land use land cover (LULC) has been tested, particularly the U-

Net Convolutional Neural Network (CNN), believed to be the first of its kind in the Philippines.  
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8.2. Summary of findings 

 

The following provides an in-depth summary of the findings of each study that has been 

published in four different Q1 journals: 

 

a. Paper 1 – Spaceborne Satellite Remote Sensing of Tropical Montane Forests: A 

review of applications and future trends 

 

• The number of published TMF studies between 1997 and 2021 grew 

dramatically, with the majority done in the Americas, putting other countries 

behind. These less-studied countries, particularly Asia, Africa and Oceania, are 

under rapid deforestation threat, thereby putting the information of TMF 

dynamics in danger. There is also an information gap about TMF location and 

size in these nations. According to the literature, researchers preferred optical 

sensors with low to medium spatial resolution (85.76%), than SAR (12.70%). 

To acquire the desired result from any inquiry, satellite imaging spatial 

resolution for TMF assessment must be properly chosen. Further, spaceborne 

RS applications to TMF are concentrated in the realm of forestry (42.66%), 

climate science (11.01%), and disaster management (9.63%). Finally, since RS 

technology evolves, TMFs benefit from these for better assessments. The 

continuous rise of artificial intelligence, the Internet of Things (IoT), cloud 

computing, ML and DL, and other statistical and technological tools should also 

be considered to improve TMF research. 

 

b. Paper 2 – Deep Learning U-Net Classification of Sentinel-1 and -2 Fusions 

Effectively Demarcates Tropical Montane Forest’s Deforestation 

 

• Fusion of S-1, S-2, Biophysical data and other auxiliary variables improved land 

use land cover (LULC) analysis. The traditional Maximum Likelihood 

Classifier (MLC) classified satellite imagery adequately in binary categories 

(mean Overall Accuracy (OA) – 95.22% and mean Kappa Index (KI) – 

90.39%). Among the ML methods examined, the RF is robust in LULC 

classification (mean OA – 94.49% and mean KI – 90.39%). With a more 

complex LULC categorization of the imagery, U-Net DL beat the traditional 
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and ML classifiers (mean OA – 86.77% and mean KI – 78.89%). The best 

LULC model recorded a deforested area of 417.93 km2 in the study site from 

2015 to 2022. This study also indicated that forests near human settlements or 

agriculture are more likely to be converted for human use. Remote locations 

without roads or water can face deforestation too. Deforestation is also present 

in high-elevation areas and will occur in any part of the world. Therefore, TMF 

preservation and sustainable management are crucial. Future studies should 

consider ecological succession dynamics in the study area. Finally, 

policymakers and legislators can use this data to create 

Benguet’scomprehensive TMF conservation strategy. 

 

c. Paper 3 – Integrated multi-satellite data and machine learning approach in 

mapping the successional stages of forest types in a tropical montane forest 

 

• The study showed the importance of modelling canopy height and using it with 

other variables to explain SS in the three vegetation types of Benguet province, 

Philippines. InSAR products and field canopy height have a weak positive 

correlation. Incorporating GEDI with InSAR to predict canopy height presents 

less accurate outputs (r = –0.2 to 0.04; RMSE = 12 to 13 m). Further, this study 

shows that GEDI may produce erroneous data in TMF with undulating terrain 

and dense vegetation. SS can be modelled using S-1, S-2, auxiliary variables, 

and biophysical data, generating an Overall Accuracy (OA) of 79.56% and a 

Kappa Index (KI) of 75.74%. Using the top 10 random forest (RF) feature 

importance variables, improved the model by 5.53% OA (84.22%) and 6.71% 

KI (81.19%). Among all the variables considered in the model, it was found that 

elevation had the greatest influence on the forest type distribution. Young and 

mature pine forests dominate Benguet, whereas mossy forests are generally 

found in higher elevations with colder, wetter, and windy microclimate. The 

study also discovered non-forests and disturbances in all locations, necessitating 

a major conservation effort. An assessment of carbon stock may further help to 

understand forest dynamics in the area of study. Lastly, policymakers can use 

this data to safeguard native plants, control invasive species, and maintain 

biodiversity by identifying crucial habitats in the ecosystems. 
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d. Paper 4 – Uncovering the Hidden Carbon Treasures of the Philippine’s Towering 

Mountains: A synergistic exploration using satellite imagery and machine learning 

 

• Optical and radar satellite imagery and ML can accurately predict AGB and 

AGC across TMF vegetation types. The elevation band, LAI, fAPAR, fCover, 

and vegetation indices such as NDVI from S-2 may accurately predict AGB (r 

= 0.657 to 0.832; RMSE = 106.682 Mgha-1 to 156.03 Mgha-1). RF proved to 

be superior in selecting important features for AGB estimation. Of the spatially 

explicit ML methods examined, RF accurately predicted the study site's AGB 

(r = 0.962; RMSE = 53.980 Mgha-1). AGC ranged from 0 to 434.94 Mgha-1 in 

the research area. Forests in higher elevations in Benguet have potential 

significance for carbon sequestration and forest conservation. This study 

implies that REDD+ projects can commercialise carbon sequestration capacity 

in these carbon-rich locations. Conserving and managing the province’s 

remaining forests requires a significant commitment to policy creation and its 

implementation. 

 

 

8.3. Conclusion 

 

The findings of this investigation indicate that deforestation remains an issue in 

Benguet. From 2015-2022, using the fusion of S-1, S-2 and auxiliary variables and U-

Net DL, an area of 417.93 km2 in the study site was deforested. Based on forest 

characterization, it was found that the closer a forest is to human settlement or 

agricultural land, the more susceptible it is to be converted. Additionally, deforestation 

occurs in areas remote from roads and bodies of water. This phenomenon indicates 

that forest degradation occurs in inaccessible areas. Additionally, the study confirms 

that deforestation occurs even at high elevations. This assessment of deforestation was 

conducted predominantly using RS and ML. The fusion of S-1, S-2, auxiliary variables 

including the grey level co-occurrence matrix (GLCM), vegetation indices and 

biophysical data were the best combination for LULC assessment. In terms of 

classifiers, it was determined that traditional MLC is more advantageous for binary 

LULC classification, but RF remains the best among all ML algorithms. Nonetheless, 
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when compared to six (6) LULC categories, the U-Net proved to be superior than 

traditional and ML algorithms. 

 

 The assessment of SS provides a fundamental understanding of TMF’s dynamics, 

which is geared towards its preservation and monitoring of degradation and regeneration. The 

study found that mature and young pine forests dominate the lower elevations, and mossy 

forests dominate the higher elevations. Pine forest growth has changed dramatically in the 

studied region, which is attributable to its accessibility. News reports additionally reveal 

changes in mossy forests. The presence of non-forests and disturbances emphasizes the need 

to preserve the remaining forests and reduce human disturbances. According to available 

literature, TMF recovery takes 65–85 years, and epiphytic plants and other flora regenerate in 

50 years. ML-based SS assessment demonstrated that S-1, S-2, auxiliary variables, and 

biophysical data work successfully for SS mapping. This study shows that InSAR products 

have a weak positive correlation with field canopy height and that coherence improves its 

accuracy. The findings further support the literature that GEDI was unsuitable for canopy 

height modelling in heavily vegetated mountainous locations. However, RF improves SS 

mapping by finding the ten most important features that significantly influence the model. This 

study also showed that elevation greatly affected the province's forest types. This condition 

happens because temperature, moisture, and soil quality influenced by elevation, positively 

affect plant development. 

 

The AGB of the study site was calculated using a non-destructive field observation 

method. Results showed that the mean AGB in pine forest is 284.75 Mgha-1, 380.33 Mgha-1 in 

mossy forest, and in the grassland summit is 39.93 Mgha-1. This study discovered that the mean 

AGB of 251.79 Mgha-1 in the entire province is 17% higher than the literature-reported AGB 

in 2000. The mean AGC was calculated to be 118.341 Mgha-1, which is comparable to what 

has been found in the majority of published papers. Despite the steep elevation of the study 

site, the results indicate that the area contains significant amounts of carbon. Thus, indicating 

the province as potential target for conservation, and a good sign to incentivize its carbon 

sequestration through REDD+ interventions. The biophysical data derived from S-2 

comprising of LAI, fAPAR, fCover, the vegetation index NDVI and elevation accurately 

predicted AGB through RF. Unfortunately, using multi-date S-1, radar vegetation index, and 

S-1-derived auxiliary variables shows weak correlation with field AGB. It was further found 



 

159 

that the RF, among other ML algorithms, proved to be superior in feature selection, statistical 

regression and spatially explicit modelling of carbon stock.  

 

In general, this research highlights the value of SAR and optical imagery. These two 

types of RS technology are gaining prominence in TMF evaluations. Using RS technology to 

circumvent the harshness of TMF when conducting field assessments emphasizes the crucial 

need to utilize and develop them. Also, the potential of ML in enhancing LULC analysis, 

deforestation mapping, SS modelling, and AGB and AGC estimation has been demonstrated 

by the effective implementation of ML and DL techniques such as RF and U-Net. The results 

of this research have implications for environmental policy on a global level. Deforestation, 

for instance, may have universal causes. The conditions that lead to it may be the same 

everywhere. Given the global scope of deforestation, it is crucial that forests be protected. The 

identified disturbances in the study area call for intensified conservation efforts. Protecting 

important habitats and controlling the damage caused by invasive species are both crucial. 

Information presented in this thesis can be used by policymakers in the Philippines and other 

regions with similar forest types to guide land use planning and establish policies that 

encourage sustainable resource management and conservation initiatives. 

 

The findings of this study advance our understanding of TMFs, and it provides valuable 

information for lawmakers and authorities. Ultimately, this study underscores the importance 

of the continued and shared responsibility of safeguarding the remaining forests for future 

generations. 

 

 

8.4. Recommendation 

 

This study highlights the critical importance of studying the Benguet's TMF. The 

research in this thesis must be refined and improved to better our understanding and craft 

suitable TMF conservation and management strategies. The following are suggested areas for 

further study: 

 

• For the deforestation and LULC study, the reliance on selected GLCM textures 

potentially affected analysis result. There is a need to explore adding other GLCM 

textures in the analysis in the future to test their influence on improving the 
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assessment. The use of other optical sensors, such as those provided by commercial 

satellites (e.g., IKONOS, QuickBird, SPOT, etc.), could be explored. Likewise, the 

utility of other SAR satellites (ALOS-PALSAR, NovaSAR, etc.) with longer 

wavelengths should also be considered. The LULC classification results may also 

benefit from the use of other vegetation indices that highly correspond to forest 

analysis. Further, other DL classifiers or CNN types (ResNet, PSPNet and 

DeepLabV3) can be pitted against each other to test their effectiveness in LULC 

assessment. Finally, future research is strongly encouraged to take seasonal 

variation into account.  

 

• The diverse nature of the factors that affect TMF ecological succession calls for an 

in-depth investigation into the SS in future studies. The age of the trees, soil 

qualities, microclimate, and biodiversity indicators might all be analysed 

thoroughly to shed light on their role in SS. Adding a time-series SS map to the 

TMF would also be beneficial for recognising temporal trends and disturbances in 

the study area. Finally, using state-of-the-art technology like Light Detection and 

Ranging (LiDAR) could provide insights into the in-depth structural dimension of 

TMFs that is important for ecological succession. The use of hyperspectral imagery 

could also improve the spectral dimensions requirement for studying SS.  

 

• Future research should develop species-specific allometric models for mossy forest 

trees and dwarf bamboo to enhance carbon estimation accuracy. To evaluate the 

carbon sequestration interventions in Benguet's TMF, carbon stock should be 

monitored throughout time. Additional biophysical data (such as soil fertility) and 

study plots should be examined for better correlational studies. The AGB estimation 

can be improved using LiDAR data, which matches vegetation structural 

components. SAR data with longer wavelengths (S-, L-, and P-bands) and 

hyperspectral optical imaging should be tried to improve biomass and carbon stock 

estimates. Including below-ground biomass (BGB) is also recommended for future 

study to account for the total carbon stock of the study area.  
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APPENDIX A: FIELD PLOTS AND DATA 

 

Appendix Table 1. Sampling plots and field collected forest data 

 

Vegetation 

Type 

Plot 

Number 
Plot code Longitude Latitude Elevation 

Canopy 

cover 

P
in

e 
F

o
re

st
 

1 P1 120.61355 16.39725 1505 93.76 

2 P2 120.6136167 16.3952 1504 75.04 

3 P3 120.6136333 16.39467 1486 83.36 

4 P4 120.6076833 16.39837 1459 0 

5 P5 120.6197667 16.41396 1508 84.4 

6 P6 120.61925 16.41407 1508 35.52 

7 P7 120.6187333 16.4149 1505 90.64 

8 P8 120.62455 16.3698 1380 96.1 

9 P9 120.6255333 16.36973 1310 79.98 

10 P10 120.6149833 16.36877 1366 88.56 

11 P11 120.618 16.36705 1400 79.98 

12 P12 120.6172667 16.36352 1357 72.96 

13 P13 120.6173333 16.36283 1360 81.02 

14 P14 120.6171167 16.36068 1332 67.24 

15 P15 120.6160833 16.36128 1341 87 

16 P16 120.6168333 16.3616 1343 84.34 

17 P17 120.6164333 16.36203 1330 81.02 

18 P18 120.6218833 16.3666 1415 72.18 

19 P19 120.6224 16.36858 1415 86.64 

20 P20 120.61975 16.4285 1657 69.32 

21 P21 120.6192833 16.42833 1651 57.62 

22 P22 120.61865 16.42848 1651 69.58 

23 P23 120.6184333 16.42792 1633 71.4 

24 P24 120.6170333 16.42795 1629 46.44 

25 P25 120.6165333 16.42722 1614 56.58 

26 P26 120.61565 16.42858 1615 67.69 

27 P27 120.6135833 16.42667 1567 75.3 

28 P28 120.6110833 16.42788 1531 79.46 

29 P29 120.61185 16.42618 1530 79.2 

30 P30 120.5998 16.40145 1448 91.16 

31 P31 120.5993167 16.40177 1442 84.93 

32 P32 120.5996667 16.40217 1448 86.74 

33 P33 120.6008 16.40207 1499 74 

34 P34 120.60165 16.39958 1365 0 

35 P35 120.6018167 16.39885 1356 0 

36 P36 120.6081333 16.36442 1168 71.14 
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Appendix Table 1. Sampling plots and field collected forest data (continuation)  
 

       

Vegetation 

Type 

Plot 

Number 
Plot code Longitude Latitude Elevation 

Canopy 

cover 

P
in

e 
F

o
re

st
 

37 P37 120.6097167 16.36465 1192 62.56 

38 P38 120.6111667 16.36423 1213 67.5 

39 P39 120.61425 16.38562 1398 64.92 

40 P40 120.6149667 16.38503 1381 65.42 

41 P41 120.6162333 16.3853 1383 66.72 

42 P42 120.6741833 16.36512 798 66.97 

43 P43 120.63985 16.36795 1178 46.7 

44 P44 120.6407667 16.36707 1166 75 

45 P45 120.6415833 16.36667 1144 70.88 

46 P46 120.6431833 16.36577 1146 76.6 

47 P47 120.6447 16.36402 1145 84.62 

48 P48 120.6448667 16.36333 1132 76.08 

49 P49 120.6491333 16.31822 1674 66.2 

50 P50 120.64875 16.31615 1677 64.64 

51 P51 120.6490333 16.31708 1675 53.46 

52 P52 120.6487 16.31535 1668 50.34 

53 P53 120.648 16.31425 1697 57.36 

54 P54 120.64865 16.31147 1720 0 

55 P55 120.6474333 16.30723 1800 0 

56 P56 120.64775 16.30598 1787 11.34 

57 P57 120.6461 16.305 1757 0 

58 P58 120.6457333 16.30392 1752 66.2 

59 P59 120.6432833 16.30285 1746 62.04 

60 P60 120.6404667 16.29997 1746 0 

61 P61 120.6389667 16.2988 1777 0 

62 P62 120.6343 16.2853 1730 50.34 

63 P63 120.6353833 16.2843 1660 19.46 

64 P64 120.6362167 16.28383 1599 70.1 

65 P65 120.6368167 16.28355 1544 75.04 

M
o
ss

y
 F

o
re

st
 

66 M1 120.8780333 16.68003 2319 0 

67 M2 120.8782667 16.68055 2330 93.76 

68 M3 120.8964833 16.68163 2395 93.76 

69 M4 120.8800683 16.68187 2411 88.56 

70 M5 120.8805333 16.68222 2437 92.72 

71 M6 120.8809667 16.68263 2454 96.88 

72 M7 120.87545 16.68002 2300 0 

73 M8 120.8877167 16.6677 2431 0 

74 M9 120.8879667 16.66785 2431 0 

75 M10 120.8885167 16.66755 2431 87 

76 M11 120.8893833 16.6672 2398 78.94 

77 M12 120.8871333 16.66763 2427 84.92 
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Appendix Table 1. Sampling plots and field collected forest data (continuation) 

       

Vegetation 

Type 

Plot 

Number 
Plot code Longitude Latitude Elevation 

Canopy 

cover 

Mossy 

Forest 
78 M13 120.8863667 16.66765 2436 63.08 

G
ra

ss
la

n
d

 S
u

m
m

it
 

79 G1 120.8987783 16.59785 2931 78.68 

80 G2 120.89885 16.59793 2928 92.72 

81 G3 120.8989 16.59808 2928 94.8 

82 G4 120.8988833 16.59815 2926 95.84 

83 G5 120.8992333 16.59807 2912 87.52 

84 G6 120.8995333 16.59735 2800 96.88 

85 G7 120.9000167 16.59812 2869 100 

86 G8 120.9003333 16.5981 2867 64.64 

87 G9 120.90175 16.59725 2835 93.76 

88 G10 120.9058333 16.59718 2843 88.56 

89 G11 120.9031833 16.5954 2854 100 

90 G12 120.9043 16.5946 2842 62.56 

91 G13 120.9054667 16.59313 2808 100 

92 G14 120.59215 16.90687 2779 79.2 

93 G15 120.9085167 16.58988 2774 93.76 

94 G16 120.90755 16.5911 2762 95.84 

95 G17 120.9091 16.58875 2727 100 

96 G18 120.9083 16.58712 2730 41.76 

O
th

er
 L

a
n

d
 U

se
 a

n
d

 L
a
n

d
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97 W1 120.7439261 16.4625 803.627 0 

98 W2 120.7435844 16.47068 803.6364 0 

99 W3 120.7461299 16.48719 803.6693 0 

100 W4 120.7598651 16.48124 803.7266 0 

101 W5 120.6928911 16.20089 266.3456 0 

102 W6 120.6984255 16.218 277.8372 0 

103 W7 120.6985284 16.23408 304.6121 0 

104 W8 120.6763716 16.23448 667.9511 0 

105 W9 120.6647411 16.23928 665.1603 0 

106 W10 120.5948173 16.4106 1483.814 0 

107 W10 120.6594355 16.4002 884.6638 0 

108 W11 120.6189992 16.6282 549.4838 0 

109 W12 120.7664468 16.89733 725.0009 0 

110 W13 120.8231566 16.73217 1399.635 0 

111 W14 120.8894565 16.66763 2438.485 0 

112 W15 120.8741807 16.67789 2321.13 0 

113 W16 120.8734726 16.67922 2327.867 0 

114 W17 120.8855978 16.66742 2473.414 0 

115 W18 120.8851645 16.66856 2479.467 0 

116 W19 120.6777665 16.63714 1272.777 0 

117 BS1 120.6854992 16.23878 513.4929 0 
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Appendix Table 1. Sampling plots and field collected forest data (continuation) 

       

Vegetation 

Type 

Plot 

Number 
Plot code Longitude Latitude Elevation 

Canopy 

cover 

O
th

er
 L
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d
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n
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n

d
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v
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118 BS2 120.6861555 16.24754 796.939 0 

119 BS3 120.7271666 16.29174 818.382 0 

120 BS4 120.7522716 16.35257 1188.591 0 

121 BS5 120.6849896 16.3432 1085.43 0 

122 BS6 120.7690672 16.44172 1164.433 0 

123 BS7 120.8470343 16.51698 1136.996 0 

124 BS8 120.7652085 16.58406 1910.588 0 

125 BS9 120.8213018 16.57687 980.8034 0 

126 BS10 120.8272901 16.59326 1234.35 0 

127 BS11 120.8130592 16.67014 1373.236 0 

128 BS12 120.820024 16.68553 1421.909 0 

129 BS13 120.7730649 16.79309 1439.875 0 

130 BS14 120.7743264 16.80819 1418.147 0 

131 BS15 120.785017 16.85052 1214.265 0 

132 BS17 120.7757504 16.85995 950.3339 0 

133 BS18 120.7193358 16.90397 1277.053 0 

134 BS19 120.7301197 16.89426 759.9238 0 

135 BS20 120.6511568 16.85845 996.8363 0 

136 BS21 120.7579657 16.81797 1152.612 0 

137 BS22 120.6493361 16.79446 1288.986 0 

138 BS23 120.6970866 16.74989 1755.087 0 

139 BS24 120.6387499 16.7152 1541.854 0 

140 BS25 120.6776846 16.63353 1306.098 0 

141 BS26 120.636194 16.62214 1137.634 0 

142 BS27 120.5776024 16.59208 1225.525 0 

143 BS28 120.6815041 16.51487 1365.684 0 

144 BS29 120.6896162 16.51101 1765.472 0 

145 BS30 120.6823997 16.47122 1451.653 0 

146 BS31 120.5097564 16.50987 935.6754 0 

147 BS32 120.5381535 16.42074 891.966 0 

148 BS33 120.5349931 16.38116 1330.354 0 

149 BS34 120.6054345 16.29291 935.2983 0 

150 BS35 120.6206268 16.26616 1772.778 0 

151 BU1 120.5992686 16.40884 1533.447 0 

152 BU2 120.6030021 16.40373 1530.273 0 

153 BU3 120.6215075 16.38071 1425.515 0 

154 BU4 120.6306038 16.36739 1356.554 0 

155 BU5 120.6200128 16.36131 1434.909 0 

156 BU6 120.5906535 16.28911 565.8144 0 

157 BU7 120.5682756 16.38273 1642.461 0 

158 BU8 120.5778344 16.37185 1494.149 0 
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Appendix Table 1. Sampling plots and field collected forest data (continuation) 

       

Vegetation 

Type 

Plot 

Number 
Plot code Longitude Latitude Elevation 

Canopy 

cover 
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th

er
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159 BU9 120.5687373 16.37425 1594.766 0 

160 BU10 120.7276137 16.38701 670.1323 0 

161 BU11 120.7303443 16.39482 595.7079 0 

162 BU12 120.6547709 16.32548 1557.587 0 

163 BU13 120.6618821 16.33827 1520.122 0 

164 BU14 120.6770965 16.36017 788.2064 0 

165 BU15 120.7420295 16.5757 1957.15 0 

166 BU16 120.8386489 16.6227 1231.91 0 

167 BU17 120.8321676 16.64021 1370.197 0 

168 BU18 120.8504437 16.67274 2000.233 0 

169 BU19 120.8271476 16.71973 1438.857 0 

170 BU20 120.8685303 16.73835 1884.49 0 

171 BU21 120.8652193 16.74346 1919.451 0 

172 BU22 120.804952 16.75487 2157.995 0 

173 BU23 120.8194516 16.79217 1859.624 0 

174 BU24 120.8207195 16.8033 1841.828 0 

175 BU25 120.8173936 16.82326 1531.691 0 

176 BU26 120.7948167 16.8384 1493.819 0 

177 BU27 120.7886646 16.84588 1375.22 0 

178 BU28 120.7797686 16.86779 1216.737 0 

179 BU29 120.7528544 16.86885 1181.221 0 

180 BU30 120.6614668 16.79168 1190.257 0 

181 BU31 120.6661761 16.76394 1636.653 0 

182 BU32 120.6563179 16.69708 1259.218 0 

183 BU33 120.6239052 16.57456 1188.622 0 

184 BU35 120.6197433 16.53047 951.4916 0 

*Plot code: P – Pine Forest, M – Mossy Forest, G – Grassland, W – Waterbody, BS- Bare 

Soil, BU – Built-up Area 
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APPENDIX B: DATA SHEET 

 

Appendix B.1. Field plot data sheet for pine and mossy forest 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B.2. Field plot data sheet for grassland summit 
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Appendix B.2. Field plot data sheet for grassland summit 
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APPENDIX C: PHOTO DOCUMENTATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix Figure C.1 Field work at Mt Tabeyoc with the monitoring staff from MPPL PMO 

sub-station 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix Figure C.2 The field survey team at Ambulalacao lake in Ballay, Kabayan, Benguet 
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Appendix Figure C.3 Dwarf bamboo (Yushania niitakayamensis) found at the summit of 

Mount Pulag, elevation is 2,926 meters 
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Appendix Figure C.4 The field survey team ascending to the summit of Mt Pulag 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix Figure C.5 A pine forest inside the Philippine Military Academy in Baguio City 

 

 

 

 

 

 

 

 



 

182 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix Figure C.6 Layouting of a survey plot in one of the selected sites in Baguio City 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix Figure C.7 Converted pine forest into a water crest agricultural farm in Camp 8, 

Baguio City 
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