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Graphical Abstract: A graphical representation of the classification workflow of noisy heart 

sound (HS). After several pre-processing steps, HS and lung sound (LS) have been acquired fram- 

ing at 3.5sec and are mixed at specific SNRs to yield noisy HS datasets. Next, in the transfor- 

mation phase, 2D input images are generated using four transformation techniques (CQT, CWT, 

STFT and MFCC). Finally, in the classification phase, the 2D images for each category have 

been successively passed to the proposed architecture. An overview of the NRC-Net architecture 

consisting of four stages, i.e., Spatial Feature Extractor Block (SFEB), Holistic Attention Block 

(HAB), Temporal Feature Extractor Block (TFEB), and Terminal Classification Block (TCB) is 

also demonstrated. 
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• To the best of our knowledge, we are the substantial group to propose a robust deep learn- 

ing architecture for the classification of noisy heart sounds and obtain the optimal feature 

transformation method for detecting valvular cardiac abnormalities. 

• To enhance the classification performance of the CVDs screening, we introduced a lightweight 

convolutional recurrent neural network named noise-robust cardio net (NRC-Net) which can 

detect valvular cardiac disorders in the presence of noisy heart sound signals. The proposed 

model comprised spatial and temporal feature extraction blocks, extracting both spatial and 

temporal features from the PCG signal. A holistic attention block has also been integrated 

to enhance computational efficiency and emphasize more relevant features. 

• To extract salient features from the noisy heart sound signal for identifying of various valvu- 

lar heart diseases, a comprehensive study has been conducted exploiting MFCC, CWT, CQT, 

and STFT spectrogram using the VGG16 network. 

• To develop the robust proposed network, the performance of the model has been evaluated 

using a 10-fold cross-validation (CV) technique. As a result, the model outperformed with 

CWT showing the highest classification accuracy of 99.7% on clean data compared to other 

existing works. 

• The proposed model showed superiority over the two well-known state-of-the-art (SOTA) 

networks i.e. VGG16 and MobileNet V2 architecture in terms of performance and compu- 

tational overhead. 
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Abstract 

Objective: Cardiovascular diseases (CVDs) can be effectively treated when detected early, reduc- 

ing mortality rates significantly. Traditionally, phonocardiogram (PCG) signals have been utilized 

for detecting cardiovascular disease due to their cost-effectiveness and simplicity. Nevertheless, 

various environmental and physiological noises frequently affect the PCG signals, compromis- 

ing their essential distinctive characteristics. The prevalence of this issue in overcrowded and 

resource-constrained hospitals can compromise the accuracy of medical diagnoses. Therefore, 

this study aims to discover the optimal transformation method for detecting CVDs using noisy 

heart sound signals and propose a noise robust network to improve the CVDs classification per- 

formance. Methods: For the identification of the optimal transformation method for noisy heart 

sound data mel frequency cepstral coefficients (MFCCs), short-time Fourier transform (STFT), 

constant-Q nonstationary Gabor transform (CQT) and continuous wavelet transform (CWT) has 

been used with VGG16. Furthermore, we propose a novel convolutional recurrent neural network 

(CRNN) architecture called noise robust cardio net (NRC-Net), which is a lightweight model to 

classify mitral regurgitation, aortic stenosis, mitral stenosis, mitral valve prolapse, and normal 

heart sounds using PCG signals contaminated with respiratory and random noises.   An atten- 

tion block is included to extract important temporal and spatial features from the noisy corrupted 

heart sound. Results: The results of this study indicate that,CWT is the optimal transformation 



 

 

method for noisy heart sound signals. When evaluated on the GitHub heart sound dataset, CWT 

demonstrates an accuracy of 95.69% for VGG16, which is 1.95% better than the second-best CQT 

transformation technique. Moreover, our proposed NRC-Net with CWT obtained an accuracy of 

97.4%, which is 1.71% higher than the VGG16.Conclusion: Based on the outcomes illustrated in 

the paper, the proposed model is robust to noisy data and can be used in polyclinics and hospitals 

to detect valvular cardiac diseases accurately. 

Keywords: Cardiac auscultation, Convolutional neural networks, Deep learning, Continuous 

wavelet transform, Gabor transform, Heart sound, Lightweight network 
 

 
 

1. Introduction 

Cardiovascular diseases (CVDs), the predominant factor of global mortality, are killing around 

17.9 million human lives annually, representing 2% of global death [1]. Study reveals that devel- 

oping and underdeveloped regions have high prevalence rate to CVD-related morbidity due to the 

lack of proper diagnostic equipment, inadequate facilities and insufficient trained medical profes- 

sionals [2]. Early identification and treatment is essential to reduce the risk factors and unexpected 

consequences of CVDs like untimely death as well as social burdens. The phonocardiogram (PCG) 

signal deciphers the mechanical activity of the heart valves, consisting of two fundamental heart 

sounds, murmurs, and other associated sounds [3] These heart sounds are generated during blood 

flow into the heart containing important information about the functionality and physiological con- 

dition of the cardiovascular system. Thus, an early indication of potential cardiac abnormalities 

using PCG signals is of paramount significance. The PCG signals are reliable, non-invasive, and 

comparatively cost effective in the preliminary screening of CVDs. Hence, it is widely used to ex- 

tract cardiac information from heart sounds and detect abnormalities [4]. In third-world countries, 

especially in underprivileged regions, the scarcity of trained physicians poses a major challenge as 

CVDs interpretation from auscultation as it is highly dependent on physicians’ expertise, experi- 

ence and other personal variables. To mitigate these drawbacks, artificial intelligence (AI)-based 

automatic frameworks are used for the diagnosis and progression management of CVDs [5]. How- 

ever, objective and reliable assessment of CVDs using computerized methods is quite challenging 

nowadays due to the interference of physiological and additive noises with heart auscultation. For 

example, during CVDs screening, the stethoscope captures the breathing sounds along with the 

heart sound, which causes intrinsic spectral overlap among heart and lung sounds, lowering the 

CVDs interpretation performance [6]. Moreover, random noises such as hospital ambient noises 

(phone ringing, door knocking/opening/closing), power line interference, and device variability 
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Figure 1: A graphical representation of the classification workflow of noisy heart sound (HS). After several pre- 

processing steps, HS and lung sound (LS) have been acquired framing at 3.5sec and are mixed at specific SNRs to 

yield noisy HS datasets. Next, in the transformation phase, 2D input images are generated using four transformation 

techniques (CQT, CWT, STFT and MFCC). Finally, in the classification phase, the 2D images for each category have 

been successively passed to the proposed architecture. An overview of the NRC-Net architecture consisting of four 

stages, i.e., Spatial Feature Extractor Block (SFEB), Holistic Attention Block (HAB), Temporal Feature Extractor 

Block (TFEB), and Terminal Classification Block (TCB) is also demonstrated. 

 
can affect the PCG’s quality and even become the reason of performance degradation of the AI- 

based automated screening systems in real-life scenarios [7]. Hence, for the accurate assessment 

of CVDs, the above factors must be addressed carefully while designing a robust auscultation 

method for medical professionals. 

In the era of AI, a considerable amount of work has been done on automatic heart sound 

analysis, and CVD detection has been performed on open-access PCG datasets [8, 9, 10]. Sev- 

eral initiatives have been taken for heart sound abnormality detection using these datasets. In 

most of the cases, time-frequency, and statistical features [11], mel-frequency cepstral coefficients 

(MFCC) [12, 13, 14, 15] and continuous wavelet transform (CWT) [16, 17] based features have 

been used. MFCC and mel -spectrogram are the most common among all these. Machine learning 

(ML)-based classifiers namely k nearest neighbor (kNN) [13], random forest (RF) [11, 12, 13], 

support vector machine (SVM) [13, 18, 19], and multilayer perceptron (MLP) [13, 17, 18, 20] 

have been used for the detection of CVDs. But ML-based algorithms depend on hand-crafted 

features, generating biases in the classification task. On the other hand, deep learning (DL)-based 

methods provide both generalization and high accuracy. DL-based approaches like recurrent neu- 
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ral networks (RNN) [21] and 1D and 2D CNNs [15, 19, 22, 23, 24, 25, 26] have been widely 

utilized for the automated detection of CVDs. 

Furthermore, most of the work emphasizes on binary classification (normal vs. abnormal) 

and does not consider the presence of convolutional or additive noises except [19] that generated 

synthetic data considering some inessential noises using PhysioNet dataset[10] which itself consist 

of several noises (e.g., breathing, stethoscope movement, intestinal activity, peripheral talking, 

etc.) in the recordings and thereby looses the reliability of the classification task . Hence, there 

is a lack of practical considerations and reliability in the automatic detection of CVDs. Besides, 

the classification of CVDs with noisy data goes through the denoising process using conventional 

techniques making the whole classification task more challenging in the real-life scenario as these 

denoising procedures are computationally intensive and require additional memory. 

The main contributions of this paper are: 

• To the best of our knowledge, we are the substantial group to propose a robust deep learn- 

ing architecture for the classification of noisy heart sounds and obtain the optimal feature 

transformation method for detecting valvular cardiac abnormalities. 

• To enhance the classification performance of the CVDs screening, we introduced a lightweight 

convolutional recurrent neural network named noise-robust cardio net (NRC-Net) which can 

detect valvular cardiac disorders in the presence of noisy heart sound signals. The proposed 

model comprised spatial and temporal feature extraction blocks, extracting both spatial and 

temporal features from the PCG signal. A holistic attention block has also been integrated 

to enhance computational efficiency and emphasize more relevant features. 

• To extract salient features from the noisy heart sound signal for identifying of various valvu- 

lar heart diseases, a comprehensive study has been conducted exploiting MFCC, CWT, CQT, 

and STFT spectrogram using the VGG16 network. 

• To develop the robust proposed network, the performance of the model has been evaluated 

using a 10-fold cross-validation (CV) technique. As a result, the model outperformed with 

CWT showing the highest classification accuracy of 99.7% on clean data compared to other 

existing works. 

• The proposed model showed superiority over the two well-known state-of-the-art (SOTA) 

networks i.e. VGG16 and MobileNet V2 architecture in terms of performance and compu- 

tational overhead. 

The proposed framework for NRC-Net is demonstrated in Figure 1. The rest of this article is 

organized as follows. In section 2 we have elaborated the literature review. Section 3 overviews 

the datasets, pre-processing steps and transformation methods applied in this work. Section 4 

provides a detailed description of the proposed architecture. Section 5 discusses the evaluation 

criteria and experimental results with a comparison with the existing literature. Section 6 explains 

the future directions of the work along with the superiority and drawbacks. Finally, we conclude 

our study in section 7. 
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Table 1: Summary of works carried out on automated detection of heart sounds using GitHub PCG dataset [9]. 

Author Transformation Method Classifier Accuracy% 

Yaseen et al. [9] (2018) Discrete wavelet transform 1. SVM 1. 97.90 

 (DWT) and MFCC 2. DNN 2. 92.10 

  3. kNN 3. 97.40 

M. Alqudah et al. [27] (2019) Instantaneous frequency 1. RF 1. 95.00 

 (Statistical features) 2. kNN 2. 95.00 

M. Alqudah et al. [28] (2020) 1. Full bi-spectrum AOCTNet 1.98.70 

 2. Contour bi-spectrum  2. 97.10 

Ghosh et al. [29] (2020) Spline kernel-based Chirplet 

transform 

1. L1-norm 

2. Sample entropy 

Deep layer kernel sparse 

representation network 

(DLKSRN) 

1. Holdout 

 

 

 
1. 99.23 

 3. Permutation entropy 2. 10-fold CV 2. 99.24 

Oh et al. [30] 2020 - WaveNet 94.00 

Baghel et al. [31] (2020) - 1D CNN 

1. Augmented data 

 
1. 98.60 

  2. Non-augmented data 2.96.23 

Zeng et al. [32] (2021) Tunable Q-factor wavelet 

transform and fast and 

adaptive multivariate empirical 

mode decomposition 

1. Shannon energy envelop (SEE) 

Supervised RBF neural 

networks 

98.48 

Shuvo et al. [33] (2021) - CardioXNet 99.60 

M. Alkhodari et al. [34] (2021) 1D wavelet smoothing CNN-BiLSTM 99.32 

Tiwari et al. [35] (2021) 1. Constant-Q Transform (CQT) ConvNet 1. 94.00 
 2. Variable-Q Transform(VQT)  2. 94.00 
 3. Hybrid Constant-Q Transform(HCQT)  3. 93.00 

 4. MFCC  4. 96.00 

Kobat et al. [36] (2021) Improved 1D binary pattern (IBP) 1.KNN 1. 99.50 

  2.SVM 2. 98.30 

Y. Al-Issa et al. [37] (2022) - Hybrid light CNN-LSTM 

1. Augmented Data 

 
1. 99.87 

  2. Non-augmented Data 2.98.48 

 

 
2. Related Works 

As mentioned earlier, many researchers sought to discriminate various CVDs using PCG 

signals employing ML and DL-based frameworks using publicly available datasets and private 



6  

 

 

datasets. In this section, we summarized an overview of research works in this domain using the 

Github PCG dataset [9] (presented in Table 1). 

It may be noted from the table that, all these works have been conducted on the noise-free 

clean PCG data.The performance of such models will alter in noisy actual real-world scenarios. 

To address this issue, our proposed NRC-Net presents a noise-robust DL-based solution for the 

classification and detection of CVDs. This approach is crucial for developing effective and reliable 

remote healthcare devices that can accurately detect CVDs, especially in areas with limited access 

to healthcare resources is limited. 

 
3. Materials and methods 

In this section, an overview of the datasets, signal pre-processing stages, and different trans- 

formation methods applied in this work are provided. 
 

3.1. Dataset(s) 

The datasets used for this work is explained in this subsection. 

3.1.1. Heart sound dataset 

The PCG dataset used in this work comprises 5 classes: mitral regurgitation (MR), aortic 

stenosis (AS), mitral stenosis (MS), mitral valve prolapse (MVP), and normal (N) [9]. There are 

1000 audio files available in the database, with each signal in this dataset consisting of 3 complete 

cardiac cycles of noise-free heart sound sampled at 8KHz. 

3.1.2. Lung sound dataset 

The International Conference on Biomedical Health Informatics (ICBHI) 2017, a benchmark 

dataset of lung auscultation sounds that is publicly available was used in this work. The dataset 

was accumulated by 2 research groups from Greece and Portugal, containing a total recording of 

5.5 hours, sampled at 4KHz, 14KHz, and 44.1KHz with annotated respiratory cycles from 126 

patients with 920 recordings [38]. 

3.2. Data prepossessing 

This subsection presents the major steps involved in data preprocessing. 
 

3.2.1. PCG signal preparation 

The PCG signals have been filtered with a bandpass filter at 50Hz-800Hz and resampled at 

2000Hz [39]. The variation in the length of the heart sound files restrains them from being used in 

any classification algorithm. Data framing is used to solve this irregular length issue. Each signal 

is converted into a 3.5sec signal with the padding method proposed in [40]. 

3.2.2. Lung sound preparation 

The frequency range of the lung sound signals is 50 Hz-2500 Hz [41]. Hence, the lung sounds 

are filtered by leveraging Butterworth bandpass filter of order 6. Subsequently, all the signals are 

resampled to 2000Hz to ensure consistency and normalized to the range [-1,1]. 
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Figure 2: Waveform of (a) clean heart sound (normal), and (b) the same sound corrupted by lung sounds. 

 
3.2.3. Noisy heart sound signal preparation 

A noisy PCG dataset is used to investigate the noise-robustness of our proposed network. The 

heart sound samples in this dataset are corrupted by incorporating both lung sound and AWGN to 

form two noisy datasets (see Figure 2). In each PCG sample, the lung sound and AWGN noise are 

added at signal-to-noise ratios (SNRs) at different levels (0dB, 5dB, 10dB, and 15dB). 

3.3. Transformation methods 

In this study, we have used CWT, CQT, STFT, and MFCCs to transform the one-dimensional 

PCG signal into the images with a resolution of 224 x 224 pixels. 

3.3.1. Continuous wavelet transform (CWT) 

CWT is a mathematical method that decomposes a signal with finite energy, x(t), into an 

orthonormal basis of wavelets, which consists of the mother wavelet, g(t) as well as the dilated 

and scaled versions of it [42]. The mathematical expression of CWT can be formulated as shown 

in Eqn. (1): 

Z(a, b) = 

∫ 

x(t) ∗ g(t)( 
t − a 

) (1) 

where a denotes the scale factor and b is the time location. Low-frequency and high-frequency 

information are demonstrated by larger and smaller scale values, respectively [43]. The scalogram 

is the squared modulus of the CWT’s coefficient Z [44]. For this work, we have utilized Morse 

analytic wavelet as the mother wavelet to decompose the heart sound samples into the wavelet 

domain, with the symmetry parameter and time-bandwidth product of 3 and 60, respectively [45]. 

The maximum and minimum scales are automatically ascertained by exploiting 10 voices per 

octave, depending on the wavelet’s energy range in frequency and time. 

3.3.2. Mel frequency cepstral coeflcients (MFCCs) 

MFCC is a highly efficient method for extracting a wide range of features obtained through a 

cosine transformation process. These consine transformations of the real logarithmic short-term 
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energy spectrum demonstrated on a mel-frequency scale into a set of cepstrum coefficients [46]. 

The relation between the frequency, f, and the mel-frequency, m is defined by Eqn (2): 

m = 2595 log (1 + 
   f 

) (2) 
700 

In this work, with a 30 ms hamming window and a step size of 10 ms, we have run overlapping 

sliding windows over all the heart sound samples to extract the coefficient. Then, we stacked all 

the co-efficient to generate MFCC plot of each heart sound sample. 

3.3.3. Short-time Fourier transform (STFT) 

An STFT algorithm conserves information in the spectro-temporal domains. It is one of the 

most widely used and reliable methods for extracting features from a 1D acoustic sample [47]. 

The STFT is calculated by Eqn (3) 

S TFT (τ, w) = 

∫ 

ya(t)Wa(t − τ)e(− jwt)dt (3) 

where Wa(t) is denoted as window function and ya(t) is the signal to be transformed. We used 

STFT with a Han window length of 128 and a hop length of 64 on all of the heart sound samples 

to generate an STFT spectrogram. It (spectrogram) is a demonstration of a 1D signal in the time 

and frequency domain that represents high-frequency and low-frequency components [48]. 

3.3.4. Constant-Q nonstationary Gabor transform (CQT) 

A spectro-temporal representation known as the CQT, has geometrically spaced frequency bins 

and uniform Q-factors (ratios of center frequencies to bandwidths) across all bins. Since the CQT 

is essentially a wavelet transform, the frequency resolution is higher for low frequencies and the 

temporal resolution is higher for high frequencies [49]. We set the number of bins per octave to 12 

with a Hann window size of 128 and hop length of 64 to generate a logarithmic STFT spectrogram 

scale for each heart sound samples. 

 
4. Proposed lightweight CRNN architecture 

The proposed NRC-Net architecture has been developed, by integrating three novel feature ex- 

traction stages for extracting spatial and temporal salient features from the generated input image 

to classify PCG signals effectively. The first stage consists of a regular deep CNN-based spatial 

initial feature extractor block (SFEB) for extracting abstract feature representations from the input 

image. The second stage contains the holistic attention block (HAB) for emphasizing the conspic- 

uous features through channel, spatial and pixel-wise re-calibration and generalization. Finally, in 

the third stage, the temporal feature extractor block (TFEB) has a single long short-term memory 

(LSTM) layer to acquire the temporal representations. All the extracted features are then fed to 

the terminal classification block (TCB) consisting of fully connected layers which are followed by 

the softmax layer to attain the final class prediction. The detailed discussion of different architec- 

tural blocks and sub-modules of the proposed NRC-Net (The high-level network architecture is 

portrayed in Figure 1) is given below. 
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Figure 3: Architecture of spatial feature extractor block (SFEB). 

 

4.1. Spatial feature extractor block (SFEB) 

The first stage of the NRC-Net is implemented through the SFEB with six consecutive convo- 

lutional layers. First, the 3-channel 224 x 224 images are fed into the input layer and passed to 

the first convolutional layer for further processing. Then, using varying filters and kernel sizes, the 

convolutional layers convolved the input with 2D kernels for generating abstract feature maps. 

A batch normalization layer follows a convolutional layer for stabilizing and speeding up the 

training process and a max-pooling layer for attaining a translation-invariance effect with reduced 

network parameters and overfitting. In all the convolutional layers, rectified linear unit (ReLU) 

is used to introduce non-linearity and attenuate the vanishing gradient issue while ensuring faster 

convergence by avoiding neuron saturation [50], which is defined as f(y) = max(0, y). Next, the 

output of this SFEB is fed into the HAB for learning more robust information from the intermediate 

feature representations. Finally, With the hyperparameter tuning, the hidden state is chosen. (see 

Figure 3). 
 

Figure 4: Architecture of holistic attention block (HAB). 
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4.2. Holistic attention block (HAB) 

The fundamental component of HAB comprises a squeeze layer with a 1x1 convolution layer 

and an expanded layer that incorporates parallel convolution layers of sizes 1x1 and 3x3, followed 

by two successive convolutional layers [51]. In the subsequent expanding layer, a concatenation 

operation merges these two convolution layers. Once the squeeze layer produces the output, it 

goes through an excitation layer that trains itself to emphasize important features. As a result, 

the squeeze layer diminishes the depth of feature maps, thereby enhancing the proposed models’ 

computational efficiency, and making it suitable for environments with limited resources, including 

mobile and embedded devices (see Figure 4). 

4.3. Temporal feature extractor block (TFEB) 

The TFEB block is formed using two parallel LSTM layers concatenated together. The main 

motivation for constructing this block is to simultaneously utilize multiple parallel LSTM units 

to process diverse temporal cues of varying resolutions in the reshaped extracted features of the 

HAB [52]. LSTM units with recurrent hidden states can handle sequential inputs and retain tempo- 

ral features that get eliminated in feedforward neural network structures like CNN, which consider 

all inputs independent of one another. In NRC-Net, we have used two consecutive TFEBs with 

64 and 32 hidden layers. With the help of hyperparameter tuning, the hidden state is chosen (see 

Figure 5). 
 

Figure 5: Architecture of temporal feature extractor block (TFEB). 

 
 

4.4. Terminal classification block (TCB) 

The TCB is formed using the fully connected and softmax layers fed by the TFEB. First, 

the extracted feature vector is flattened and fed into 5 fully connected layers, afterward with an 

output layer with the probability nodes for each class. Next, the softmax function calculates each 

probability value, which generates a vector with values in the range [0, 1] and denotes a categorical 

probability distribution over the five classes. To minimize the over-fitting, dropout regularization 

has been employed following each fully connected layer (see Figure 6). 
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Figure 6: Architecture of terminal classification block (TCB). 

 
5. Experimental results 

The evaluation criteria used and results obtained using our proposed model are presented in 

the following subsections. 

5.1. Evaluation criteria 

The accuracy, sensitivity, and specificity evaluation matrices are used to assess the model’s 

performance. [53] The ratio of the correct predictions of model to the total predictions is defined 

as accuracy and it can be calculated by Eqn. (4). 

Accuracy =
 TP + TN 

 

TP + FP + TN + FN 

 
(4) 

Sensitivity, also known as recall is the ratio of true observations that are classified correctly to all 

the observations in that class. It can be calculated by Eqn. (5). 

S ensitivity =
 TP 

 

TP + FN 

 
(5) 

Specificity is defined as negative observations made by a model that is correct to all other negative 

observations and can be evaluated by Eqn. (6). 

S peci f icity =
 TN 

 

TN + FP 

 
(6) 

where true positive, true negative, false positive, and false negative are denoted as TP, TN, FP, and 

FN respectively. 
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Table 2: Details of hyperparameters used for the models. 
 

Hyper-parameters Values 

Training data shape 4000, 224, 224, 3 

Test data shape 5 (200, 224, 224, 3) 

Batch size 16 

Learning rate 0.0001 

Epoch 60 

Optimizer Adam 

Loss function Categorical-cross entropy 
 

 

Figure 7: A schematic representation of K-fold CV when K = 10. The initial training dataset contains 4000 samples 

and is randomly divided into K separate sets. In each iteration of the process, K-1 of these sets is used to train a model 

(highlighted in light orange), while the remaining set is employed for validation (highlighted in pink). This process is 

repeated K times, covering all possible combinations of validation sets. The final evaluation of the model is conducted 

on 1000 samples at each SNR level, as represented by the blue gradient. 

 
The models utilized in this work are created using Keras and TensorFlow 2.0 and trained using 
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an Intel Xeon 3.8GHz CPU, 256 GB RAM, and an Nvidia Quadro 6000 GPU with 24 GB VRAM. 

80% and 20% of the total samples for each SNR level were respectively allocated to the training 

and testing sets. Furthermore, the model was validated using a 10-fold CV approach, with 10% of 

the training data held out for validation in each fold(detailed representations are shown in 7). Once 

the validation process was completed, the best-performing model was chosen and applied to the 

testing set for inference.The details of hyperparameters used for the proposed model are shown in 

Table 2. 

5.2. Results 

5.2.1. Performance on the baseline model 

In this study, the baseline network, i.e., the VGG16 model’s performance, is investigated 

for different spectral transformation techniques. Table 3 illustrates the classification accuracy of 

VGG16 model for CWT, CQT, MFCC, and STFT spectrograms using different SNRs with lung 

sound as noise. From this table, it can be seen that CQT and CWT performed better than MFCC 

and STFT spectrograms. The performance of the baseline model is comparable with CQT and 

CWT when the SNR is higher. The accuracy of the model for CWT with clean data is 99.5%. The 

average accuracy for CWT with noisy heart sound is 95.69%. There is a decrease in accuracy as 

the SNR decreases. On the other hand, despite achieving 99.14% accuracy for CQT with clean 
 

Figure 8: Confusion matrices for the (a) proposed model with CWT(b) VGG16. 

 

data, its performance rapidly declines as the heart sound signal becomes noisier. For example, with 

CQT, the average accuracy of all noise levels for the baseline model is 93.69% which is 1.95% 

lower than CWT. Similarly, the average accuracy obtained with the noisy signal’s STFT spectro- 

gram and MFCC is 2% and 10% lower than CWT, respectively. The confusion matrix obtained 

for the VGG16 model with CWT and clean data is shown in Figure 8(b). 
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5.3. Classification performance of the proposed framework 

 

Table 3: Comparison of accuracy(%) for VGG16 model with different transformation techniques. 

SNR CWT CQT Spectogram MFCC 

0 dB 92.50 87.52 82.44 73.80 

5 dB 95.02 91.40 92.40 78.00 

10 dB 95.42 94.57 97.43 89.00 

15 dB 96.01 96.12 97.89 92.50 

Clean data 99.50 99.14 98.28 95.00 

 
To improve the performance of heart sound classification, we have proposed NRC-Net archi- 

tecture in this work. Table 4 displays the results of 10-fold CV for this proposed architecture. 

During this process, the entire dataset was divided into ten folds, with one-fold used for valida- 

tion. The remaining folds used for training in each iteration (see Figure 7). The proposed network 

achieved almost perfect validation accuracy on the GitHub dataset through 10-fold CV. Further- 

more, our model has yielded high sensitivity and specificity scores to support its generalization 

ability. Additionally, Figure 10(a) illustrated the rapid convergence of the model, with training 

accuracy reaching 100% and validation accuracy reaching 99.7% within 60 epochs. 

Further comparison was performed between our proposed network and the two SOTA archi- 

tectures, VGG16 and MobileNet V2, in terms of parameters. 

 
Table 4: Ten-fold CV scores obtained for the proposed model. 

 

Fold Accuracy(%) Sensitivity(%) Specificity(%) 
1 99.75 100 100 

2 100 100 100 

3 100 99.9 99.87 

4 100 100 100 

5 100 99.79 99.86 

6 99.75 99.73 99.88 

7 100 100 100 

8 100 99.85 99.82 

9 99.75 99.78 99.98 

10 100 100 100 

Avg. 99.924 99.923 99.941 
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Figure 9: Performance comparison with different transformation methods: (a) CWT, (b) CQT, (c) Spectogram, and 

(d) MFCC. 

 
Figure 9 illustrates the accuracy of the models on different noise levels. The MobileNet V2 

obtained the lowest accuracy with different noise levels. The accuracy of MobileNet V2 for CWT 

is 99.4% on the clean test data, while both VGG16 and the proposed model showed remarkable 

results, exceeding 99.5% with CWT. This indicates that both models can achieve a high level of 

accuracy when evaluated using clean test data. However, our proposed model exhibited slight im- 

proved in performance with the VGG16 architecture in this case (see Figure 9). However, when 

the level of noise is increased, the difference in performance between the models becomes more 

apparent. The proposed model demonstrated superior performance in all scenarios, compared to 

the VGG16 and MobileNet V2 models. This superiority can be attributed to the improved capa- 

bility of the proposed model in extracting relevant features from the noisy data. In the proposed 

model, we used a squeeze-excitation block that can adaptively reconfigure the weights and sup- 

press irrelevant features, thus providing attention. Hence significantly assisting the learning of 

important features form the noisy heart sounds. Moreover, the proposed model integrated with 

the parallel LSTM layers can capture pseudo-periodic temporal features of the heart signals which 

assist the classification of different valvular diseases which is crucial in identifying the normal 

class. Figure 8(a) depicts the confusion matrix of the proposed CWT model with clean data. 
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Figure 10: Accuracy vs. epoch curves obtained for: (a) proposed network, (b) VGG16, and (c) MobileNet V2 during 

training and testing. 

 
5.4. Performance on the AWGN 

Additive white Gaussian noise (AWGN) is a widely employed type of noise in various research 

studies to exhibit noise robustness of deep learning models [54, 55].Consequently, to demonstrate 

our proposed model’s superiority and noise robustness, an experiment is conducted using a heart 

sound dataset corrupted with AWGN. Figure 11 shows the performance of the models on the 

CWT data for different noise levels. As expected, the proposed model outperformed the other 

two models for all noise levels. When the noise level is set to 0 dB, the accuracy of the proposed 

network was 51%, surpassing the accuracy of 47% achieved by the VGG16 model. This trend 

is observed across all noise levels, proving that the proposed model outperformed the baseline 

model. 
 

 
Figure 11: Performance comparison of different models with CWT on AWGN. 
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6. Discussion 

6.1. Comparison with state-of-the-art (SOTA) techniques 

In this study, we have identified heart conditions using the proposed NRC-Net and other estab- 

lished deep learning models utilizing different transformation techniques in the presence of noise. 

The models were trained and evaluated on the GitHub dataset. Table 5 compared the suggested 

model’s performance metrics with the SOTA methods. All the articles mentioned in Table 5 uti- 

lized the GitHub PCG database. It is clear from the table that NRC-Net, despite training on a noisy 

dataset, obtained promising performance compared to the existing works. None of the previous 

studies were conducted on a noisy heart sound signal. Therefore, only the results obtained from 

the clean noise free data have been compared. Authors in [9] used a SVM and RF-based classifiers 

[27] and reported the accuracies of 97.90% and 94.80% respectively. With its superior feature ex- 

traction capability, the proposed model has acquired an overall accuracy of 97.4%, which is 2.6% 

higher than both of these works. On the contrary, the accuracy of the proposed network on the 

clean noise free data is 99.70% which is 1.22% and 0.10% higher than [37] and [33], respectively. 

Our model obtained a sensitivity and specificity of 99.58% and 99.66% , which is 1.6% and 1.2% 

higher than [37], respectively. 

 
Table 5: Comparison of NRC-Net with existing works using GitHub PCG dataset [9]. 

Classifier Transformation 

Technique 

Noise 

consideration 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

SVM [9] MFCC + DWT No 97.90 98.20 99.40 

RF [27] Spectogram No 94.80 94.78 - 

DLKSRN [29] Chirplet Transform No 99.24 - - 

Composite classifier [28] Bispectrum No 98.33 98.33 - 

CNN [31] - No 98.60 - - 

WaveNet [30] - No 94.00 92.50 98.10 

CNN-BiLSTM [34] - No 99.32 98.30 99.58 

CardioXNet [33] - No 99.60 99.52  

CNN + LSTM [37] - No 98.48 98.52 99.58 

NRC-Net CWT No 99.70 99.58 99.60 

(Proposed network) CWT Yes 97.40 98.10 98.90 

 
6.2. Comparison of computational performance of the network 

Due to limitations in processing and storage space for weights of the filters and parameters, 

embedded devices are unsuitable for deploying certain models [56]. As a result, computation- 

ally intensive training is typically outsourced to cloud computing platforms, which require higher 

RAM [57]. To address these challenges, lightweight CNN models have become popular among 

researchers due to their compact size, faster performance, and comparable accuracy to larger deep 

learning networks. Table 6 depicts the number of parameters for all three models. The proposed 

model requires fewer parameters than the VGG16 and MobileNet V2 architecture while persisting 

in better accuracy performance. Moreover, the proposed model’s inference time is lower, making 

it a lightweight network and computationally less expensive as it extracts features more efficiently. 
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Table 6: Number of parameters used in different models. 
 

Architecture Number of Parameters Inference Time (sec) 

VGG16 14,840,133 0.003049 

MobileNet V2 2,571,589 0.002738 

NRC-Net 1,958,909 0.002693 

 
 

The major advantages of the proposed system are as follows: 

• Several transformation techniques were evaluated to identify the best transformation tech- 

nique for cardiac abnormality identification. 

• Proposed NRC-Net used a combination of temporal and spatial feature extractors enabling 

the system to learn from both types of features. This approach is developed to amplify the 

overall learning and performance of the system by utilizing relevant features. 

• Generated model incorporates a squeeze and excitation architecture that allows a more 

streamlined parameter count than other networks such as VGG16 or MobileNet V2. Using 

this architecture, the model can be designed to be lightweight and more efficiently deploy- 

able on edge devices. This approach is expected to enhance the model’s overall practicality 

and accessibility. 

• The most comprehensive study of the PCG signal under the influence of noise and obtaining 

high classification 

• Despite utilizing fewer parameters than traditional models the proposed architecture achieved 

superior performance compared to the SOTA methods even when operating in noisy envi- 

ronment. 

The disadvantages of the proposed system are as follows: 

• Employed a two-dimensional feature representation that introduces additional complexity. 

• Influence of hospital ambient noise was not considered. 

• Due to the lack of a noisy HS dataset we could not validate our proposed system on inher- 

ently noisy signals. 

In this article, we evaluated the proposed model’s performance in classifying heart sound corrupted 

with lung sound noise and AWGN. The generated model is designed to provide the highest accu- 

racy despite a lightweight architecture that reduces computational complexity and hence lower 

latency. In the future, we aim to investigate the network’s performance in the presence of hos- 

pital ambient noise and reconfigure the NRC-Net to accomplish the same task by exploiting raw 

1D heart sound data. This will allow us to integrate our proposed NRC-Net with digital stetho- 

scopes or handheld devices powered by cloud server connection in the context of 5G e-health to 

perform automatic heart condition classification and predict different CVDs accurately. Utilizing 
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our pre-trained network in real-time has the potential to aid medical practitioners in making di- 

agnostic decisions, ultimately leading to substantial benefits for remote e-health services powered 

by 5G technology. Furthermore, we aim to evaluate the explainability of our proposed model to 

develop a transparent and interpretable end-to-end system for cardiac anomaly detection without 

any potential biases. For this purpose, we intend to use gradient-weighted class activation mapping 

(GradCAM) because the GradCAM method strives to maintain the CNN model’s interpretability 

while preserving the complexity [58]. 

 
7. Conclusion 

In this work, we introduced a lightweight DL-based framework to detect heart conditions at an 

early stage to address the concern related to premature mortality due to various valvular diseases. 

We evaluated different transformation techniques for identifying heart conditions in noisy heart 

sound conditions using the VGG16 model. We found that CWT performed the best compared 

to other transformation techniques, with an overall accuracy of 95.69% uisng VGG16 architec- 

ture. This is nearly a 2% improvement more than the second-best CQT transformation technique. 

Furthermore, our proposed NRC-Net model improved the classification performance of CWT and 

other transformation methods and outperformed VGG16 and MobileNet V2. The proposed model 

demonstrated a 1.84% and 4.33% improvement in overall accuracy with CWT over VGG16 and 

MobileNet V2, respectively. The evaluation was conducted by including lung sound noise and 

AWGN. The proposed model showed promising performance compared to the existing works us- 

ing all evaluation criteria, even in the presence of noise. We feel that our proposed system can 

automatically classify CVDs based on heart auscultations, which could be used in real-world clin- 

ical scenarios in third-world countries. 
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