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A B S T R A C T   

Reference evapotranspiration (ETo) is a vital climate parameter affecting plants’ water use. ETo can generate 
large deficits in soil moisture and runoff in different regions and seasons, leading to uncertainties in drought 
warning systems. A novel multivariate variational mode decomposition integrated with a boosted regression tree 
(i.e., MVMD-BRT) is constructed to forecast daily ETo. Firstly, the correlation matrix based on cross-correlation 
was computed to investigate the significant input predictor lags of daily ETo. Secondly, the MVMD technique 
decomposes the significant input lags into signals called intrinsic mode functions (IMFs). Thirdly, the IMFs were 
then employed in the BRT to build the MVMD-BRT model for daily ETo forecasting. A comparative assessment of 
MVMD against multivariate empirical mode decomposition (MEMD) was also performed on the same lines to 
develop the MEMD-BRT model. The MVMD-BRT model is compared against the random forest (RF) and hybrid 
MVMD-RF, MEMD-RF, extreme learning machine (ELM), and hybrid MVMD-ELM, MEMD-ELM, and cascaded 
feedforward neural network (CFNN) along with its hybrid MVMD-CFNN models for two stations in Queensland, 
Australia using a set of goodness-of-fit metrics. The results prove that the MVMD-BRT provide accurate daily ETo 
forecasting against the benchmark models. The MVMD-BRT model yielded the highest accuracy in terms of (WIE 
= 0.9070, NSE = 0.8421, LME = 0.6529, KGE = 0.8792) and (WIE = 0.8966, NSE = 0.8396, LME = 0.6521, KGE 
= 0.8803) for Brisbane and Gympie stations against the comparing models.   

1. Introduction 

The rapid onset drought or flash drought is harmful for crop 

production and the whole agricultural sector and water resources. Flash 
drought occurs in weeks, caused by rapid intensification from near- 
normal soil moisture to drought conditions (IPCC, 2021). There is an 

Abbreviations: ETo, Reference evapotranspiration; MVMD, Multivariate variational mode decomposition; MEMD, Multivariate empirical mode decomposition; 
BRT, Boosted regression tree; ELM, Extreme learning machine; RF, Random forest; CFNN, Cascaded feedforward neural network; AIMFs, Intrinsic mode functions; 
Radn, Solar radiation; WS, Wind speed; RHmin, Minimum relative humidity; RHmax, Maximum relative humidity; Tmin, Minimum temperature; Tmax, Maximum 
temperature; Rain, Rainfall; R, Correlation coefficient; MSE, Mean squared error; RMSE, Root mean squared error; MAE, Mean Absolute error; WIE, Willmott’s Index 
of agreement; NSE, Nash-Scuttle estimator; LME, Legates and MacCabe’s; KGE, Kling-Gupta efficiency; RRMSE, Relative root mean squared percentage error; RMAE, 
Relative mean absolute percentage error; ML, Machine learning; NN, Neural network; MRA, Multi-resolution analysis; EMD, Empirical mode decomposition; VMD, 
Variational mode decomposition. 

* Corresponding authors at: UniSQ College, University of Southern Queensland 4350 QLD, Australia (M. Ali); Canadian Centre for Climate Change and Adaptation, 
University of Prince Edward Island, St Peters, PE, Canada (M. Jamei). 

E-mail addresses: mumtaz.ali@usq.edu.au (M. Ali), M.jamei@shhut.ac.ir (M. Jamei).  

Contents lists available at ScienceDirect 

Ecological Indicators 

journal homepage: www.elsevier.com/locate/ecolind 

https://doi.org/10.1016/j.ecolind.2023.111030 
Received 1 May 2023; Received in revised form 15 September 2023; Accepted 28 September 2023   

mailto:mumtaz.ali@usq.edu.au
mailto:M.jamei@shhut.ac.ir
www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2023.111030
https://doi.org/10.1016/j.ecolind.2023.111030
https://doi.org/10.1016/j.ecolind.2023.111030
http://creativecommons.org/licenses/by/4.0/


Ecological Indicators 155 (2023) 111030

2

increase in agricultural and ecological drought that can be attributed to 
human influence with medium confidence (IPCC, 2013). In addition, 
comparing the highly vulnerable regions with deficient vulnerability 
regions, the human mortality from events such as floods, droughts and 
storms was 15 times higher between 2010 and 2020 (IPCC, 2013). The 
flash drought can occur in Australia in all seasons. All droughts emanate 
from lower-than-normal rainfall and intensify with higher temperatures, 
wind speed and incoming solar radiation. However, during flash 
droughts, with higher temperatures, the evapotranspiration increases. 
Reference evapotranspiration (ETo) is an essential component of 
drought that acts as a conduit for water transfer from the soil, water and 
vegetation surfaces and transpiration from plants into the atmosphere. 
ETo drives the soil moisture, near-surface relative humidity, moisture 
loss from plants, and plant stress, the surface water-energy–momentum 
balance or terrestrial latent heat fluxes (Douville et al., 2021). 

ETo can produce large deficits in soil moisture and runoff in different 
regions and seasons (Douville et al., 2021) and large uncertainties in 
drought early warning systems. The magnitude and intensity of droughts 
cannot be forecasted with precision if the land–atmosphere coupling, i. 
e., evapotranspiration information, is missing (Meng, Evans et al. 2014). 
If the evapotranspiration is not forecasted early enough, it can cause 
extensive damage to the crops, agricultural production, ecosystems, 
ecological damage and the economy. In addition, global warming has 
contributed to increased terrestrial evapotranspiration (medium confi-
dence), and due to increased atmospheric demand, increased evapo-
transpiration has been conjectured for south-western Australia with a 
high confidence level (IPCC, 2021). Hence, it is imperative to develop 
precise forecasting models for evapotranspiration forecasts for drought 
mitigation, water resource management, agricultural sustainability, 
drought and heat waves detection, urban heat islands climate and cloud 
formation (Meng et al., 2014). 

Forecasting ET0 has been a challenge since there is a multitude of 
unresolved critical Earth-System-Science challenges regarding the 
complex nature of ETo (Fisher et al., 2017). For the current application 
purposes, the daily ET0 is largely hindcasted or estimated using the 
adapted Penman-Monteith equation with relative humidity and wind 
speed data and daily solar radiation data as inputs (Webb, 2010). In 
order to know the magnitude of the ET0 at a point in time, the magni-
tudes of other parameters need to be known. This only allows for 
hindcasting, yet for decision support systems and decision-making, the 
knowledge of future ET0 is essential, which the physical models are 
unable to capture properly. As a result, advanced machine learning and 
artificial intelligence models can be used to provide further insights and 
produce accurate forecasts of this importantland–atmosphere coupling 
variable. 

Machine Learning (ML) algorithm provides a more direct and 
effective solution (Granata and Di Nunno, 2021). ETo forecasting with 
machine learning models is the least explored hydrological variable in 
literature and the prediction of ET0 by machine learning was developed 
late. The classical autoregressive integrated moving average (ARIMA) 
(Landeras et al., 2009) and artificial neural network (ANN) (Trajkovic 
et al., 2003, Landeras et al., 2009, Kisi et al., 2015) models were trialled 
primarily. Recently, the classical k-Nearest Neighbor algorithm (KNN) 
(Feng and Tian, 2020) and support vector machine (SVM) (Chia et al., 
2020) were also applied. When comparing ANN with adaptive neuro- 
fuzzy inference system (ANFIS) with grid partition (GP) and ANFIS 
with subtractive clustering (SC) and gene expression programming 
(GEP), Kisi et al. (2015) found that the GEP model provided the worst 
estimates while the overall accuracies of ANN, ANFIS-GP and ANFIS-SC 
models were similar. To get more precise forecasts, advanced modelling 
approaches are necessary. The newer standalone modelling approaches, 
including extreme learning machine (ELM), backpropagation neural 
networks optimized by genetic algorithm (GANN) and wavelet neural 
networks (WNN) models, were applied by Feng et al. (2016) in esti-
mating evapotranspiration in a Southwest China region. They evaluated 
the performances of ELM, GANN and WNN against two temperature- 

based (Hargreaves and modified Hargreaves) models and three 
radiation-based (Makkink, Priestley–Taylor and Ritchie) ETo models. 
The results showed that the proposed models, ELM and GANN models 
recorded better performances with the competing WNN model, and the 
Hargreaves and modified Hargreaves models and the Makkink, Priest-
ley–Taylor and Ritchie models (Feng et al., 2016). In another study, the 
random forest (RF) and gene-expression programming (GEP) methods 
were used by Wang et al. (2019) in estimating ET0 using the data from 
24 weather stations in a karst region of southwest China. They found 
that RF-based models were suitable for water balance research, while 
the GEP-based models were more suited for agricultural irrigation ap-
plications. In another study, the newer approaches namely, the multi-
layer perceptron (MLP), Generalized Regression Neural Network 
(GRNN), ELM, Support Vector Machines (SVM), RF and XGBoost were 
evaluated and the study revealed that ELM was able register better 
performances for ETo estimates (Bellido-Jiménez et al., 2021). 

In many of these studies in predicting ETo, the prediction accuracy is 
still not ideal, mainly due to the limitation of these classical machine 
learning models. The non-linearity, uncertain and stochastic nature of 
the ETo makes it difficult for these models to capture the embedded 
features sufficiently. The forecasting accuracy of the models is severely 
affected if all pertinent features/patterns, such as trends, seasonality, 
cyclic behavior, outliers and abrupt changes in the time series are not 
properly captured. Hence, to unveil and present the embedded features 
within the data series, a multiresolution analysis (MRA) tool becomes 
necessary. To extract the underlying sub-frequencies, sequential 
decomposition is commonly used whereby each input series is decom-
posed one at a time despite having multiple inputs (Prasad et al., 2019b). 
The frequently used methods include Fourier spectra analysis (Soman 
et al., 2015); discrete wavelet transformation (Mallat, 1989, Mallat, 
1998, Nourani et al., 2009, Krishna et al., 2011, Nourani et al., 2014, 
Deo et al., 2016a; Deo et al., 2016b); Empirical Mode Decomposition 
(EMD) (Huang et al., 1998); Ensemble EMD (EEMD) (Wu and Huang, 
2009), complete ensemble EMD with adaptive noise (CEEMDAN) 
(Torres et al., 2011) and improved complete ensemble empirical mode 
decomposition with adaptive noise (ICEEMDAN) (Colominas et al., 
2014). To overcome sequential decomposition and conduct parallel 
decomposition simultaneously on multiple predictor inputs, the varia-
tional mode decomposition (VMD) methods are preferred. VMD, an 
adaptive and non-recursive decomposition tool, can concurrently 
decompose and simultaneously resolve the embedded sub-frequency 
components in multiple input predictors without losing any informa-
tion. In addition, it is purely data dependent and requires minimal 
external involvement during MRA process (Dragomiretskiy and Zosso, 
2014). Consequently, Fu et al. (2021) developed a hybrid model by 
integrating VMD method with the grey wolf optimizer (GWO) algorithm 
and SVM, leading to the VMD-GWO-SVM model. They found that the 
VMD-GWO-SVM model had the best performance in estimating ET 
without regional meteorological monitoring in the southeastern margins 
of the Tengger Desert, China. With the need for better MRA tools, (ur 
Rehman and Aftab, 2019) proposed a cutting-edge MRA tool, i.e., the 
Multivariate variational mode decomposition (MVMD). The MVMD is 
inherently different and superior to VMD, which can only obtain uni-
variate oscillations from a single time series. The MVMD builds on to its 
predecessor (i.e., VMD), having better capability in handling multi-
channel data. The key advantage of MVMD is its ability to directly obtain 
multivariate modulated oscillations from the multivariate input data by 
precisely looking into multidimensional space where the multivariate 
signal resides (Rehman and Aftab, 2019). In addition, the MVMD pre-
serves mode-alignment between similar frequency content across 
multivariate input data, which is essential to glean meaningful joint 
information related to nonstationary multivariate data (Rehman and 
Aftab, 2019). Capitalizing on these benefits, the MVMD has been suc-
cessfully applied for concurrent decomposition MRA in mechanical and 
electrical engineering applications (Gu et al., 2020, Rahul et al., 2021) 
and for underwater acoustic signal predictions (Yang et al., 2020). Yet, 
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this advanced concurrent decomposition MRA tool has not been used for 
energy and wave power applications in particular. 

Until now, MVMD-based concurrent decomposition MRA tools for 
modelling evapotranspiration forecasting problems had never been. In 
addition, another novelty of the paper is the development of a Boosted 
regression tree (BRT) for evapotranspiration forecasting. Literature 
shows that its predecessor, the RF, has been successfully applied. 
However, as mentioned above, the RF-based models for forecasting ETo 
are very few. This study extends the previous one by developing and 
applying the BRT models, a non-parametric algorithm combining 
regression trees with a boosting method (Friedman, 2001). This is 
beneficial since the BRT model does not take any assumptions about 
prior knowledge between the connections of independent and depen-
dent variables (Saha et al., 2021). Yet, the BRT model considers each 
predictor’s effect after accounting for the effects of other predictors. In 
addition, the boosting method utilized by the BRT model assigns weights 
to input data in subsequent trees to ensure that the data poorly modelled 
in previous trees are prioritised to be modelled in the newer trees and 
the sequential process continues. With this boosting approach, the BRT 
model can continuously improve the forecasting accuracy. This paper 
aims to appraise two MRA utilities, including the advanced MVMD and 
Multivariate Empirical Mode Decomposition (MEMD) incorporated into 
forecasting models that include BRT, Cascaded forward neural network 
(CFNN), Extreme Learning Machine (ELM) and Random Forest (RF). 
Integrating the MVMD with BRT led to the development of the MVMD- 
BRT model, while MEMD led to the MEMD-BRT model. The proposed 
MVMD-BRT model is benchmarked with similar MVMD-CFNN, MVMD- 
ELM, MVMD-RF, MEMD-BRT, MEMD-CFNN, MEMD-ELM, MEMD-RF, 
BRT, CFNN, ELM, and RF models. These models are developed based 
on data collected in two varied stations, i.e., Brisbane and Gympie in 
Australia. The research also aims to evaluate the effectiveness of models 
under different climatic conditions of the two sites under study. The next 
section of the paper outlines the study area and data, followed by a brief 
description of the modelling and development approach. Then, the re-
sults are presented with discussions and conclusions. 

2. Materials and methods 

2.1. Study Area and data description 

The acquired meteorological data consisted of the input predictors’ 
daily rainfall (i.e., Rain), minimum temperature (Tmix), maximum 
temperature (Tmax), minimum relative humidity (RHmin), maximum 
relative humidity (RHmax), wind speed (WS), and solar radiation (Radn), 
and reference evapotranspiration (ETo) as the objective/target variable. 
The time-step-interval of the dataset is daily. The Bureau of Meteo-
rology, Australia (Webb, 2010) supplied the dataset for Station 1: 

Brisbane and Station 2: Gympie in Queensland State, Australia. The 
datasets were from 1st January 2009 to 29th May 2022, the most recent 
dataset for these sites. The missing values in the dataset were substituted 
by averaging values of the corresponding daily values to overcome this 
issue. Table 1 describes the summary of each input predictor along with 
the two stations’ objective variable (i.e., ETo). 

Further, the statistical summary in terms of minimum, maximum, 
range, mean, standard deviation, skewness, and kurtosis provides some 
basic analysis of the dataset for both station 1 and station 2 in Table 1. It 
can be noted that the daily ETo has a minimum value of 0.6 and 0.7 for 
station 1 and station 2, respectively. For more details, refer to Table 1. 
Also, Fig. 1 shows the map of the study stations 1 and 2. 

Also, in Fig. 1, the location of the studied stations is specified. 
Further analyses were carried out using the cross-correlation function. 
The relationship between the input predictor variables (i.e., Rain, Tmin, 
Tmax, RHmax, RHmin, WS, Radn) and ETo was investigated to determine 
the correlation between the antecedent time-lagged inputs based on the 
cross-correlation function (CCF). The CCF is used to determine which 
information is more significant to contribute to the ETo forecasting. The 
input variables may be related to past lags of the ETo, and the CCF can 
help identify the lags of the ETo that might be valuable inputs. In other 
words, the goal may be to determine which variable is leading and 
which is lagging. The correlation matrix in Fig. 2 shows the significance 
of each input with daily reference evapotranspiration (ETo) for station 1 
and station 2. The numbers marked with an asterisk represent the sig-
nificant values of the cross-correlation of the inputs. Fig. 2 reveals that 
the one-lag at (t-1) associated with all the input predictors can be more 
effective than the other antecedent lags. 

2.2. FAO-56 Penman-Monteith (FAO-PM56) equation 

The reference ETo can be computed by the FAO-PM56 relationship 
(Allen et al., 1998), which is a convenient method in different 
geographic and climatic conditions. The Food and Agricultural Orga-
nization (FAO) proposed the FAO-PM56 method using the following 
equation to calculate the ETo values (Allen et al., 1998). 

ETO =
0.484Δ(Radn − G) + γ(900/(Ta + 273) )U2(es − ea)

Δ + γ(1 + 0.34U2)
(1) 

Here, ET0 is the reference evapotranspiration, Δ represents the slope 
of the saturation vapor pressure 

(
kPa◦ C− 1), Radn represents the net 

solar radiation (MJ/m2/day), G is soil heat flux density (MJ/m2/day) γ 
denotes the psychrometric constant 

(
kPa◦C− 1),T is the daily average 

temperature ( ◦ C),U2 is the mean value of wind speed (m/s), and ea and 
es are the actual and saturation vapor pressure (kPa). 

Table 1 
Geographic coordinates and statistical description of the data at respective stations.   

Statistical index Rain (mm) Tmax (◦C) Tmin (◦C) RHmax (%) RHmin (%) WS (m/s) Radn (W/m2) ETo (mm) 

Station 1: Brisbane Minimum 0 12.6 2.6 27 6 0.21 0.53 0.6 
Maximum 228.4 41.2 28 100 98 7.12 37.1 8.6 
Range 228.4 28.6 25.4 73 92 6.91 36.57 8 
Mean 3.22 26.73 16.71 87.69 46.90 1.65 18.77 3.72 
Std. Deviation 12.39 3.78 4.52 8.22 13.49 0.64 6.59 1.54 
Skewness 8.64 − 0.07 − 0.29 − 1.82 0.10 1.11 0.14 0.32 
Kurtosis 106.02 − 0.36 − 0.81 5.93 0.75 2.87 − 0.57 − 0.91  
Latitude: 27.4705◦S Longitude: 153.0260◦E 

Station 2: Gympie Minimum 0 5 − 1.8 36 4 0 1.13 0.7 
Maximum 239.2 42.4 25.4 992 100 6.14 37.18 9.6 
Range 239.2 37.4 27.2 956 96 6.14 36.05 8.9 
Mean 3.02 27.35 14.21 96.05 46.20 1.51 19.15 3.66 
Std. Deviation 11.02 4.33 5.75 13.63 15.75 0.79 6.45 1.61 
Skewness 8.76 0.12 − 0.48 57.97 0.30 1.03 0.08 0.42 
Kurtosis 117.01 − 0.13 − 0.67 3816.47 0.21 1.55 − 0.53 − 0.67  
Latitude: 26.1836◦S Longitude: 152.6624◦E  
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2.3. Multivariate variational mode decomposition (MVMD) 

The MVMD algorithm is a generic version of the variational mode 
decomposition (VMD) algorithm for multivariate or multichannel data 
sets, which for the first time presented, was developed by (ur Rehman 
and Aftab, 2019). The mechanism of classical VMD, as a univariate non- 
recursive decomposition technique, is decomposing a complex signal 
x(t) into subset of modes (sub-signals) with fixed bandwidth called 
intrinsic mode decomposition (IMF) IMFk(t) and residual component 
(Dragomiretskiy and Zosso, 2013). Research shows that MVMD can 
capture the non-stationary and non-linearity of a multichannel signal 
simultaneously and, compared to bivariate empirical mode decompo-
sition (BEMD), can avoid mixing mode (Gao and Shao, 2022). This pre- 
processing scheme can decompose a subset of signals, including C 
number time series x(t) =

∑K
k=1IMFK(t) = [x1(t); x2(t); x3(t);⋯.; xk(t)]

into predefined K number of multivariate IMFk(t) =

[IMF1(t); IMF2(t); IMF3(t);⋯.; IMFk]. In the aim of optimization of the 
MVMD, the mode number (K) can be selected by minimizing the 
bandwidths summation of the modes as follow (ur Rehman and Aftab, 
2019): 

Minimizing 

{
uk,c
}
, {ψk}

{
∑

k

∑

c
∂t
[
uk,c
+ (t)e− jψk t ]2

2

}

(2) 

Subject to 
∑

k
uk,c(t) = xc(t), c = 1, 2,C (3) 

where uk,c
+ denotes the analytical modulation signal, {ψk} is the set of 

center frequencies, ∂t is the partial derivative operation, 
{
uk,c
}

denotes 
the sets of all the number of modes (K), c is the channel, and k is the 
mode. The above optimization problem can be solved via the alternate 
direction method of multipliers (ADMOM) algorithm in the following 
steps (Gao and Shao, 2022):  

1- Initializing the 
{

û1
k,C

}
,
{

ψ1
k

}
and Γ̂

1
C (4) 

Updating the Mode using the below relationship: 

u
n + 1

kc
(ψ) =

x̂c(ψ) −
∑

i = kûi,c(ψ) + Γc(ψ)
2

1 + 2α(ψ − ψn
k)

2 , c = 1, 2,…,C, k = 1, 2,…,K

(5) 

in which α denotes the parameter of equilibrium associated with the 
needed data loyalty constraint and Γc is the Lagrange multiplier. Also, ̂xc 

and ûi,c denote the Fourier transform of the xc(t) and ui,c, respectively.  

2- Updating the center frequency (ωk) 

ψn+1
k =

∑
c
∫

0ψu n+1
kc (ψ)

2dψ
∑

c
∫

0u n+1
kc ψ2dψ , k = 1, 2,…,K (6)    

3- Updating the Lagrangian multipliers operators. 

Γn+1
c (ψ) = Γn

c(ψ)+ω
(

x̂c(ψ) −
∑

kun+1
k,c (ψ)

)
, c = 1, 2,…,C (7) 

where ω denotes the update parameter.  

4- Repeating steps 2–4 till gaining the convergence. 

2.4. Multivariate empirical mode decomposition (MEMD) 

The empirical mode decomposition (EMD) for the first time was 
proposed by (Huang et al., 1998), which is widely used to forecast 
several engineering ML-based investigations (Ji et al., 2019, Jicheng 
et al., 2021). EMD algorithm, as a data-driven approach, was proposed 
to multiscale decompose the time series x(t) and time–frequency anal-
ysis in a linear framework including intrinsic mode functions (IMFs). 
Basically, EMD decomposition method suffers from the mixing mode in 
high non-linear problem and the ensemble EMD can solve this issue to 
some extent (Rehman and Mandic, 2010). However, both schemes are 
only capable of decompose a univariate signal. Recently, a new self- 
adaptive extension of EMD scheme, namely multivariate EMD 
(MEMD) has been proposed by (Rehman and Mandic, 2010) which can 
simultaneous decompose the multiple signals and solving the mode 
mixing problem employing the white Gaussian noises (Prasad et al., 
2019a). The structure of MEMD to handle the non-linear and non- 
stationary multivariate time series can be mathematically defined as 
(ur Rehman and Aftab, 2019): 

x(t) =
∑l

i=1
Ci(t)+Res(t) (8) 

Fig. 1. Map of the stations.  
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Fig. 2. Correlation matrix based on cross correlation indicates the significance of each input with daily evapotranspiration (ETo) for station 1 and station 2. The (*) 
represents the significant numbers. 
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in which l is the modes number Ci(t) denotes the set of l. 
IMFs{Ci(k)}l

i=1 and Res(t) denotes the monotonic residual. The local 
extrema identification, envelopes creation, and determining a local 
mean in higher dimensions are the significant problem in multivariate 
signals decomposition (Andersson et al., 2017). To solve this problem in 
MEMD technique, projection of the signal across several directions and 
averaging over the resulting envelopes are considered (Andersson et al., 
2017). The MEMD by fixing j = 1,2,⋯, γ direction vectors and create the 
multivariate envelope ej(t) computes the average value of the envelope 
curve based on the following formula (Andersson et al., 2017): 

M(t) =
1
γ

∑t

j=1
ej(t) (9) 

In the next stage, similar to EMD, the detail d(t) = x(t) − M(t) is 
computed. Afterward, the residual Res(t) = x(t) − d(t) are estimated 
after satisfying the stoppage criterion and repeat this process until all 
IMFs have been taken out of the signal (Andersson et al., 2017). 

2.5. Boosted regression tree (BRT) 

The BRT is a non-parametric model which does not presume prior 
information between the input and objective variables (Saha, Arabameri 
et al. 2021), and rather integrates boosting and regression trees 
(Friedman, 2001). The BRT is a type model which improved the per-
formance accuracy by several individual models (Faskari et al., 2022). 
The BRT approach is mainly based on (a) CART regression tree, (b) the 
construction and assimilation of a series of models via boosting pro-
cedure which leads to a more precise and robust model. The BRT method 

solves the problem of the single decision tree’s, which creates just the 
initial tree from the training data while the rest of the data is utilized to 
build the succeeding trees (Elith et al., 2008). Boosting techniques are 
employed to enhance the regression tree’s forecasting ability. It re-
sembles to the model averaging where the averaged results of several 
models are used, except that the boosting operation in a step-by-step 
manner to fit the models to a subset of the training set (Naghibi and 
Pourghasemi, 2015). The efficacy of the BRT is deeply reliant on two 
regularization parameters: (i) the number of additive terms or tress (nt) 
and (ii) learning rate (LR). The LR parameter is used to minimize the 
impact of every single tree in the model which ranges 0.1–––0.0001. The 
smaller LR value leads to a decreased loss function; but, this requires the 
presence of additional tress (nt) to the model (Carty et al., 2015). This 
methodology poses several advantages, including the capacity to assess 
rapidly the large dataset which is less susceptible to overfitting (West-
reich et al., 2010). Fig. 3 demonstrates the framework of the BRT model. 

2.6. Cascaded forward neural network (CFNN) 

The CFNN model, as described by Fahlman and Lebiere (Fahlman 
and Lebiere, 1989), is an artificial neural network (ANN) model variant. 
It employs a parallel information processing system consisting of three 
layers of neurons: input, hidden, and output. CFNN has a similar ar-
chitecture to FFNN, except the input signal is coupled to each concealed 
layer behind it through a weight matrix. The distinction lies in the 
neurons of their hidden layer. A new hidden neuron is added to these 
networks at each successive stage. Each new neuron takes information 
from the input neurons and all previously hidden neurons before exiting 
to the input of each output neuron. In addition to the interactions 

Fig. 3. The structure of the BRT method.  
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between hidden neurons, the input and output neurons are connected 
(Fig. 4). 

Except for the first hidden layer, all hidden layers in CFNN contain at 
least two weight matrices, which are used to regulate the output signal 
of the top layer and the input signal of the network, respectively. This 
topology can provide more degrees of freedom to the training procedure, 
hence enhancing the network’s non-linear mapping capability. The BP 
learning algorithm is used to optimize the weight matrix and bias matrix 
of a CFNN during training. Its objective is to bring the actual output of 
the network as near to the predicted output as possible, as measured by 
the mean square error. Before modeling, the network topology, 
including the number of hidden layers and neurons in each layer, must 
be defined for conventional neural networks such as MLP. Therefore, 
reliable detection of optimal design is frequently difficult and typically 
requires trial and error (Dharma et al., 2017). In the initial step, cascade 
networks are trained using input and output neurons, similar to classical 
networks. Training will terminate if the error is acceptable after a pre-
determined number of repetitions. If not, the model will be re-executed 
at each stage by adding a new neuron and appropriately training the 
network to decrease residual error (Fahlman and Lebiere, 1989). This 
training will continue until the error rate falls below the target threshold 
or the rate of change is slowed (Mohammadi et al., 2021). Fig. 4 depicts 
the topology of the CFNN model. The following is the governing equa-
tion for CFNN: 

OutCFNN(k) = fact

(
∑N

k=0

[
HN(j) × Wj(j, k) + I(i) × Wi(i, k)

]
+ b(k)

)

(10) 

where OutCFNN(k) is the output neuron, Wj(j, k) and Wi(i, k) are the 
vectors of weights, b(k) the bias weight, fact is the activation function, 
I(i)is the input value, and HN(j) is the hidden neuron. 

2.7. Extreme learning Machine (ELM) 

SLFN, also known as a feedforward artificial neural network with a 
single hidden layer, is the most prevalent type of ANN model and holds 
the capacity for universal approximation (Hornik et al., 1989). Training 
the SLFN is the most crucial aspect of the success of ANN models, and a 
great deal of work has been done to improve the SLFN model’s learning 
process. Huang et al. presented ELM, a novel training method for the 
SLFN (Huang et al., 2006). Using the typical backpropagation training 
method, the training process is accomplished by updating weights and 
biases between the input and hidden layers and between the hidden and 
output layers. One of Huang et al. innovative ELM approaches is to split 
the training process into two phases: weights between input neurons and 
biases are generated randomly. In contrast, output weights can be 
analyzed analytically using Moore–Penrose generalized inverse matrix, 
which increases performance and decreases training times for large 
volumes of data (Huang et al., 2011). The ELM has been successfully 

applied in several emerging areas (Ali et al., 2018, Ali and Prasad, 
2019). The numerical expression of a single feed-forward neural 
network (SLFN) is as follows: 

∑L

i=1
Bigi(αixt + βi) = zt, i = 1, 2.⋯,N (11) 

Where L is the number of the hidden node, gi(αixt +βi) is the hidden 
layer output function, αi and βi are hidden node parameters that are 
randomly determined and i = 1, 2, 3, ⋯L. Bi is the weight factor con-
necting the ith hidden nodes and the output node, and zt is ELM model 
output. The weight vector elements are: 

αi = [αi1,αi2,⋯,αin]
T (12) 

The ELM model’s hidden node parameters can be created randomly 
without knowing the training data or repeatedly adjusting the hidden 
layer neurons one by one for the lowest mean square error. The above 
equation can be written concisely: 

H × B = z (13)  

B = [B1,B2,⋯,BL]
T (14)  

z = [z1, z2,⋯, zN ]
T (15)  

H(α1,⋯, αL, x1,⋯, xN , β1,⋯, βL) =

⎡

⎣
g(α1.x1 + β1) ⋯ (αL.x1 + βL)

⋮ ⋱ ⋮
(α1.xN + β1) ⋯ (αL.xN + βL)

⎤

⎦

N×L

(16) 

Examining the above relationships, it can be seen that all parameters 
except the output weight Bi are fixed in the extreme learning machine 
model. Therefore, the goal is to find a solution for the output weight 
vector using linear equation (12). Although, in many cases, H is not a 
square matrix, there is no vector like Bi to apply to Equation (12). The 
conventional method for solving this problem is to find the minimum 
square value of B̂by the following equation: 

min‖z − HB‖ (17) 

The optimal solution with respect to the minimum norm is expressed 
in the following form: 

B = Hz (18) 

His the Moore-Penrose generalized inverse of the H matrix. Since the 
number of training samples is usually greater than the number of hidden 
layer neurons, Equation (15) can be rewritten as follows: 

B̂ =
(
HT H

)− 1HT z (19)  

Fig. 4. Topology of CFNN model.  
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2.8. Random forest (RF) 

Random Forest (RF) is a bagging (bootstrap aggregating) approach 

that creates a large number of regression trees separately created using a 
bootstrap sample of the dataset. Random Forest is one of the ensemble 
machine learning methods (Breiman, 2001). A regression tree divides 
the predictor space into nonoverlapping regions. The locations in the 
tree where the predictor space is partitioned are referred to as nodes, 
and the terminal nodes are called leaves. The collection of trees is known 
as a forest. Random forest is different from previous bagging methods 

because the regression tree is built on a new set of data and a random 
selection of predictors is applied to each node (Breiman, 1996). 

Fig. 5 depicts the architecture of the RF method, where the input 
matrix X contains N samples and M input variables (sample set S = [(xi,

zi), i = 1, 2, ..., N], (X, Z) ∈ RM × R). The bootstrap method is used to 
generate n sample tree sets from the sample set S. At each bootstrap 
sample, one-third of dataset S was utilized as out-of-the-bootstrap (OOB) 
data and the rest as in-bag data. For each sample set, the regression tree 
is modeled. All individual trees in the RF algorithm yield a prediction 
outcome. The ultimate prediction value is derived from the average 
performance of all individual trees. The definition of the prediction error 
is as follows (Liaw and Wiener, 2002): 

MSEOOB =

∑ntree
i=1

(
zi − ẑOOB

i

)2

ntree
(20) 

MSEOOBis the mean square error of the OOB data prediction, ntree 

represents the number of trees, and yi and ẑOOB
i represent the actual 

value of the OOB data and the mean of all OOB forecasts, respectively. 
The RF approach has the highest capacity among ensemble methods for 
addressing classification and regression issues since it combines many 
basic regression trees to maximize prediction (Zaklouta and Stanciu-
lescu, 2012, Ali et al., 2020). 

2.9. Model performance evaluation 

Performance evaluation is a crucial element in the creation of a 
model. It involves comparing the estimated values of models with their 
actual values using statistical measurement to see how well the sug-
gested model simulates the actual output. In the current study, the 
forecasting values are compared to the actual values computed by the 
following indices: R (Correlation Coefficient) RMSE (Root Mean Square 
Error), MAE (Mean Absolute Error), WIE (Willmott’s Index of agree-
ment) (Willmott, 1982), NSE (Nash-Scuttle estimator) (McCuen et al., 
2006), LME (Legates and MacCabe’s)(Legates and McCabe, 1999), KGE 

(Kling-Gupta efficiency) (Gupta et al., 2009), RRMSE (Relative root 
mean squared percentage error), and RMAE (Relative mean absolute 
percentage error). The following equations describe the indices: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(ObservedETo,i − ForecastedETo,i)

2

√
√
√
√ (22)   

MAE =
1
N
∑N

i=1

⃒
⃒ObservedETo,i − ForecastedETo,i

⃒
⃒ (24)  

NSE = 1 −
∑N

i=1

(
ObservedETo,i − ForecastedETo,i

)2

∑N
i=1

(
ObservedETo,i − ObservedETo

)2 (25)  

KGE = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(R − 1)2
+ (α − 1)2

+ (β − 1)2
√

(26)  

LME = 1 −

[∑N
i=1

⃒
⃒ForecastedETo,i − ObservedETo,i

⃒
⃒

∑N
i=1

⃒
⃒ObservedETo,i − ObservedETo

⃒
⃒

]

(27)  

RRMSE =
1
N
∑N

i=1

⃒
⃒
⃒
⃒

(
ForecastedETo,i − ObservedETo,i

)

ObservedETo,i

⃒
⃒
⃒
⃒× 100 (28)  

RMAE =
1
N
∑N

i=1

⃒
⃒
⃒
⃒

(
ForecastedETo,i − ObservedETo,i

)

ObservedETo,i

⃒
⃒
⃒
⃒× 100 (29) 

Where ForecastedETo,i is the forecasted evapotranspiration value and 
ObservedETo,iis the actual evapotranspiration value. ForecastedETo is the 
average of the forecasted results. ObservedET is the average of calculated 
values. N denotes the total number of samples collected. Moreover, α 
shows the relative variability of the forecasted and actual values, 
whereas β is the ratio between the forecasted and actual mean values. 
The WIE displays the differences between forecasted and calculated 
means and variances, which reflect sensitivity to outliers in the obser-
vation data and insensitivity to additional and proportional variances 
between expected and calculated values. The value of LME and WIE 
ranges from 0 to + 1, with + 1 being the ideal value. The NSE is used to 
compare model performance (range from − ∞ to + 1), and its best value 
is 1. Regarding this metric, the performance of the model is scored as 
follows: great (NSE > 0.75), good (0.65 < NSE < 0.75), satisfactory 
(0.50 < NSE < 0.65), acceptable (0.40 < NSE < 0.50), and inadequate 

WIE = 1 −
∑N

i=1

(
ObservedETo,i − ForecastedETo,i

)2

∑N
i=1

( ⃒
⃒ObservedETo,i − ObservedETo

⃒
⃒+
⃒
⃒ObservedETo,i − ObservedETo

⃒
⃒
)2 (23)   

R =

∑N
i=1

(
ObservedETo,i − ObservedETo

) (
ForecastedETo,i − ForecastedETo

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(

ObservedETo,i − ObservedETo)
2 ∑

N

i=1

(

ForecastedETo,i − ForecastedETo)
2

√ (21)   
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(NSE < 0.4). KGE fluctuates between − ∞ and 1, and values near to 1 
suggest reliable model predictions. 

3. Model development 

In this study, eight newly hybridized models MVMD-BRT, MVMD- 
CFNN, MVMD-RF, MVMD-ELM, MEMD-BRT, MEMD-CFNN, MEMD-RF, 
and MEMD-ELM were developed in the MATLAB R2019b environment 
to daily ETo forecasting in Brisbane, and Gympie of Australia. All the 
input predictors are the Rain, Tmin, Tmax, RHmin, RHmax, Ws, and Radn, 
and the target variable is the ET0, which all the signals in both stations 
are collected form 01/01/2009 to 25/05/2022. All the models were 
executed using an Intel Core i5-8400, 2.80 GHz CPU series, and 8 GB 
RAM. The workflow of the daily ET0 forecasting in two regions of 
Australia is shown in Fig. 4. Further steps of the model development are 
described in detail as follows: 

Step 1: Determination of lagged-time components 

This step involved determining the correlation between the ante-
cedent time-lagged input data (i.e., Rain, Tmin, Tmax, RHmax, RHmin, Ws, 
and Radn) and ETo using the cross-correlation function (CCF). The re-
sults statistically demonstrated that the one-lag (t-1) associated with all 
the predictors in both stations can be more effective than the other 
antecedent information. 

Decomposition of predictors using the MEMD and MVMD 

This is the primary pre-processing step of the proposed comparative 
hybrid modelling approaches. The MEMD and MVMD decomposition 
techniques are capable of simultaneously decomposing the input pre-
dictors in opposite to the classical EMD and VMD techniques, which are 
necessary to make separate forecasting for each of the IMF or residual 
and finally, all the forecasts are added together (Ali et al., 2020, Jamei 
et al., 2022). The number of modes (IMFs) in this study was optimized 
based on a trial-and-error process. The optimal mode number (K) for 
Brisbane and Gympie stations was obtained equal to ten. All the com-
ponents for each predictor, by taking into account the residual were 
MVMD = 11 (IMFS) and MEMD = 11 (IMFS), and all the subsequences 
for each station (considering 7 predictors) have attained MVMD (7@ 
(11× IMFS + Res) = 77), and MEMD (7@(11× IMFS + Res) = 77). The 
setting parameters of the MVMD and MEMD schemes are summarized in 
Table 2. 

Preparations of models feeding 

The decomposed subsequences (i.e., IMFs and Res) are fed directly 
into the ML models. For this aim, the rate of splitting datasets is 70 % for 
training and 30 % for the testing phase, respectively, to create ETo 
forecasting AI-based models (Fijani et al., 2019). The normalization and 
denormalization procedures for the training and testing sets were also 
adopted to unify the data scale and speed up the convergence of the ML- 
based frameworks. Since the main objective of this research study is to 
explore how the pre-processing procedure affects enhancing the accu-
racy of daily forecasting of the ETo, it is crucial to compare the perfor-
mance of the proposed hybrid models with the counterpart standalone 

Fig. 5. Basic diagram of the RF model.  
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models (CFNN, ELM, BRT, and RF). Therefore, it is necessary to mention 
that for developing the standalone schemes, the normalized antecedent 
information of the predictors on the previous day (t-1) can be used to 
feed the ML methods. 

Tuning machine learning approaches 

one of the most crucial stages in making an ML-based prediction/ 

forecasting model is adjusting the hyperparameters, which significantly 
affects their results and accuracy. There are several approaches to gain 
the optimal setting (hyper) parameters, including traditional trial and 
error procedure (Rehamnia et al., 2020), grid search (Shahsavar et al., 
2021), random search and meta-heuristic algorithm. The current 
research found the best hyperparameters using the grid search meth-
odology with the RMSE as the convergence criterion in the MATLAB 
environment. Details on setting up the parameters during the multi-step 
forecasting of daily ETo are summarized in Table 3. According to 
Table 3, the BRT, as the main model, is a tree-based model, in which 
within the model, the Learn rate value and ensemble strategy (LSBoost) 
are the significant adjustments, whereas, in the ELM and CFNN models, 
the neurons number in the hidden layer are the important hyper pa-
rameters. Also, in the active function, ELM models (hybrid and stand-
alone) are “sigmoidal” and “sine” (Karbasi et al., 2021). In contrast, in 
the CFNN model, the best training algorithm for all the models is 
“Levenberg-Marquadt” (Zhang et al., 2021). Finally, RF model based on 
the Number of trees (ntree = 1000) and Prediction tree (mtry = 2 and 14 
for standalone and hybrid models, respectively) achieved the best re-
sults. Fig. 6 shows the schematic view of the modelling framework 
designed in this work. 

Table 2 
Design parameters of MEMD and MVMD methods involved in decomposing the data into IMFs and residuals for each station.   

Station 1: Brisbane Station 2: Gympie 

Inputs No. of total 
projections 

Stop vector No. of IMFs & 
Residuals 

No. of total 
projections 

Stop vector No. of IMFs & 
Residuals 

tolerance 
values 

threshold   tolerance 
values 

threshold  

MEMD method 
Rain 8 [0.8 0.8] 0.8 11 8 [0.7 0.7] 0.7 11 
Tmax 8 [0.8 0.8] 0.8 11 8 [0.7 0.7] 0.7 11 
Tmin 8 [0.8 0.8] 0.8 11 8 [0.7 0.7] 0.7 11 
RHmax 8 [0.8 0.8] 0.8 11 8 [0.7 0.7] 0.7 11 
RHmin 8 [0.8 0.8] 0.8 11 8 [0.7 0.7] 0.7 11 
WS 8 [0.8 0.8] 0.8 11 8 [0.7 0.7] 0.7 11 
Radn 8 [0.8 0.8] 0.8 11 8 [0.7 0.7] 0.7 11   

Station 1: Brisbane Station 2: Gympie 

α τ DC Init tol k α τ DC Init tol k 

MVMD method 
Rain 2000 0 0 1 1e-7 11 2000 0 0 1 1e-7 11 
Tmax 2000 0 0 1 1e-7 11 2000 0 0 1 1e-7 11 
Tmin 2000 0 0 1 1e-7 11 2000 0 0 1 1e-7 11 
RHmax 2000 0 0 1 1e-7 11 2000 0 0 1 1e-7 11 
RHmin 2000 0 0 1 1e-7 11 2000 0 0 1 1e-7 11 
WS 2000 0 0 1 1e-7 11 2000 0 0 1 1e-7 11 
Radn 2000 0 0 1 1e-7 11 2000 0 0 1 1e-7 11  

Table 3 
Parameter setting for the ML model forecasting of the ETo.  

Stations Models Tuning parameter models 

Brisbane BRT Hybrid and Standalone Structure  
• Learn rate = 0.194, Method = LSBoost,  
• Combine weight = Weighted Sum,  
• Learner name = Tree, 

ELM Hybrid and Standalone Structure  
• Number of hidden neurons = 49; 59,  
• Activation functions = Sigmoidal, 

RF Hybrid and Standalone StructureNumber of trees  
(ntree) = 1000,Prediction tree  
(mtry) = 2; 14, 

CFNN Hybrid Structure: 78-9-1; Standalone Structure: 7-9-1 
Epoch = 12 iterations, Validation checks = 6, 
Mu = 0.001, Training = Levenberg-Marquadt 

Gympie BRT Hybrid and Standalone Structure  
• Learn rate = 0.1940, Method = LSBoost,  
• Combine weight = Weighted Sum,  
• Learner name = Tree, 

ELM Hybrid and Standalone Structure  
• Number of hidden neurons = 40; 49; 50,  
• Activation functions = Sigmoidal; Sine, 

RF Hybrid and Standalone StructureNumber of trees  
(ntree) = 1000,Prediction tree  
(mtry) = 2; 14, 

CFNN Hybrid Structure: 78-9-1; Standalone Structure: 7-9-1 
Epoch = 11 iterations, Validation checks = 6, 
Mu = 0.001, Training = Levenberg-Marquadt 

The training accuracy of the novel MVMD-BRT against benchmarking models for 
both stations has been presented in Table 4 using R and MSE metrics. The 
MVMD-BRT attained the values of (R = 0.9792, MSE = 0.100) for station 1 and 
(R = 0.9802, MSE = 0.105) for station-2 as compared to other models to forecast 
daily ET0. 

Table 4 
Training accuracy of the MVMD-BRT, MVMD-CFNN, MVMD-ELM, MVMD-RF, 
MEMD-BRT, MEMD-CFNN, MEMD-ELM, MEMD-RF, BRT, CFNN, ELM, and RF 
models based on MSE and R metrics.  

Station 1: Brisbane Station 2: Gympie  

MSE R MSE R 

MVMD-RF 0.066 0.9883 0.077 0.9876 
MEMD-RF 0.071 0.9869 0.081 0.9864 
RF 0.151 0.9724 0.169 0.9713 
MVMD-CFNN 0.378 0.9179 0.314 0.9388 
MEMD-CFNN 0.362 0.9224 0.347 0.9320 
CFNN 0.764 0.8245 0.780 0.8397 
MVMD-ELM 0.525 0.8832 0.485 0.9035 
MEMD-ELM 0.494 0.8905 0.574 0.8848 
ELM 0.764 0.8244 0.778 0.8400 
MVMD-BRT 0.100 0.9792 0.105 0.9802 
MEMD-BRT 0.129 0.9730 0.145 0.9727 
BRT 0.459 0.8997 0.472 0.9071  
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4. Application results and analysis 

The proposed data decomposition-based MVMD-BRT is bench-
marked in contrast to the MVMD-CFNN, MVMD-ELM, MVMD-RF, 
MEMD-BRT, MEMD-CFNN, MEMD-ELM, MEMD-RF, BRT, CFNN, ELM, 
and RF models using r, RMSE, MAE, WIE, NSE, LME, KGE, RMAE (%) and 
RRMSE (%) assessment metrics and diagnostic plots to forecast daily 
ETo for Station 1: Brisbane and Station 2: Gympie in the state of 
Queensland, Australia.  

(a) Interpretation via tabular form 

The proposed data decomposition based MVMD-BRT model is better 
than MVMD-CFNN, MVMD-ELM, MVMD-RF, MEMD- BRT, MEMD- 
CFNN, MEMD-ELM, MEMD-RF, BRT, CFNN, ELM, and RF models for 
both stations in terms of highest R and lowest RMSE and MAE errors. For 
Station 1, these metrics are: MVMD-BRT (R = 0.9181; MAE = 0.605 mm; 
RMSE = 0.449 mm), followed by MVMD-CFNN (R = 0.9148; MAE =
0.616 mm; RMSE = 0.448 mm) and MVMD-RF (R = 0.9022; MAE =
0.674 mm; RMSE = 0.501 mm), MEMD-BRT (R = 0.8961; MAE = 0.706 
mm; RMSE = 0.537 mm), MVMD-ELM (R = 0.8833; RMSE = 0.716 mm; 
MAE = 0.548 mm) and so on. Table 5 results show that MVMD-based 
models (i.e., MVMD-BRT, MVMD-CFNN, etc.) perform better than 

Fig. 6. Schematic diagram of the modelling strategy.  
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MEMD-based models in Station 1 to forecast daily ETo. 
For Gympie Station 2, the MVMD-BRT again turned out to be the 

most accurate model by acquiring (R = 0.9109; RMSE = 0.652 mm; 
MAE = 0.464 mm) with MVMD-RF (R = 0.9020; RMSE = 0.692 mm; 
MAE = 0.488 mm) as the second-best model, following by MVMD-ELM 
(R = 0.8907; RMSE = 0.718 mm; MAE = 0.534 mm) and so on. For more 
details, we refer to Table 5, which proves that the MVMD-BRT model is 
reasonably better in forecasting daily ETo as compared to MVMD-CFNN, 
MVMD-ELM, MVMD-RF, MEMD-BRT, MEMD-CFNN, MEMD-ELM, 
MEMD-RF, BRT, CFNN, ELM, and RF models. Table 5 also proves that 
the MVMD significantly improved the performance accuracy of the 
models, especially when hybridized with BRT to construct MVMD-BRT 
models compared to the MEMD-based models. Further, the MVMD- 
BRT model is superior to the standalone counterpart models (i.e., BRT, 
CFNN, RF, and ELM) to forecast daily ETo. Overall, the MVMD-BRT 
model is better for forecasting ETo for Stations 1 and 2. 

The model’s performance was further examined in Table 6 using the 
WIE, NSE, LME, and KGE assessment metrics. The better forecasting ac-
curacy yielded by the MVMD-BRT model for station 1 (WIE = 0.9070, 
NSE = 0.8421, LME = 0.6529, KGE = 0.8792), and station 2 (WIE =

0.8966, NSE = 0.8396, LME = 0.6521, KGE = 0.8803) against the 
benchmark comparing MVMD-CFNN, MVMD-ELM, MVMD-RF, MEMD- 
BRT, MEMD-CFNN, MEMD-ELM, MEMD-RF, BRT, CFNN, ELM, and RF 
models. Here again, the analysis in Table 6 confirmed that the hybrid 
version of MVMD is better in precision than the MEMD-based models 
and standalone counterparts. Based on WIE, NSE, LME and KGE metrics, 
it is apparent that the MVMD-BRT model has improved analytical ca-
pacities to perform accurate forecasts. This is justified by the statement 
that the models documented an NSE ≤ 0.800 are supposed to be ‘un-
satisfactory’. At the same time, NSE ranges between 0.800–––0.900, the 
models are considered ‘fairly good’, and the models registering NSE ≥

0.900 are deemed ‘very satisfactory’ (Shamseldin, 1997). Therefore, 
based on these assessment metrics, the proposed MVMD-BRT model can 
be classified as ‘fairly good and satisfactory’ at both stations in fore-
casting daily ETo. 

A clear difference in the precision is being examined and computed 
in Tables 5 and 6. However, an essential limitation of these metrics is 
their deficits in comparing the models at geographically diverse loca-
tions, whereby the relative error metrics are the best choice. The relative 
error metrics in percentage (Table 7) confirmed that the MVMD-BRT 
model acquired the lowest RRMSE (%) against MVMD-CFNN, MVMD- 
ELM, MVMD-RF, MEMD-BRT, MEMD-CFNN, MEMD-ELM, MEMD-RF, 

Table 5 
Testing performance of the MVMD-BRT against MVMD-CFNN, MVMD-ELM, MVMD-RF, MEMD-BRT, MEMD-CFNN, MEMD-ELM, MEMD-RF, BRT, CFNN, ELM, and RF 
models using R, RMSE (mm), and MAE (mm). The 30% data was used to test the models.  

Station 1 Station 2  

R RMSE (mm) MAE (mm) R RMSE MAE 

MVMD-RF 0.9022 0.674 0.501 0.9020 0.692 0.488 
MEMD-RF 0.8693 0.792 0.609 0.8764 0.835 0.648 
RF 0.8217 0.868 0.633 0.8289 0.884 0.619 
MVMD-CFNN 0.9148 0.615 0.448 0.7888 1.100 0.534 
MEMD-CFNN 0.6735 1.532 1.186 0.2109 7.785 5.957 
CFNN 0.8235 0.864 0.630 0.4599 2.150 0.672 
MVMD-ELM 0.8833 0.716 0.548 0.8907 0.718 0.534 
MEMD-ELM 0.8016 1.009 0.793 0.7375 1.277 1.032 
ELM 0.8249 0.860 0.625 0.8296 0.882 0.621 
MVMD-BRT 0.9181 0.605 0.449 0.9109 0.652 0.464 
MEMD-BRT 0.8961 0.706 0.537 0.8642 0.799 0.596 
BRT 0.7972 0.921 0.657 0.8169 0.912 0.634  

Table 6 
The performance of MVMD-BRT vs. benchmarking comparing models based on WIE, NSE, LME, and KGE assessment metrics. Note that the best model is boldfaced 
(black). The 30% data was used to test the models.  

Station 1 Station 2  

WIE NSE LME KGE WIE NSE LME KGE 

MVMD-RF 0.8710 0.8038 0.6121 0.7793 0.8733 0.8081 0.6336 0.8017 
MEMD-RF 0.7933 0.7294 0.5291 0.6900 0.7753 0.7206 0.5134 0.6412 
RF 0.7911 0.6744 0.5105 0.7339 0.7956 0.6865 0.5356 0.7450 
MVMD-CFNN 0.9048 0.8366 0.6534 0.8898 0.7530 0.5146 0.5990 0.7591 
MEMD-CFNN 0.2409 − 0.0137 0.0825 0.5938 − 0.2346 –23.3174 − 3.4703 − 1.9120 
CFNN 0.7872 0.6781 0.5122 0.7466 0.4040 − 0.8546 0.4959 0.2699 
MVMD-ELM 0.8587 0.7788 0.5763 0.8208 0.8759 0.7930 0.5993 0.8495 
MEMD-ELM 0.8066 0.5601 0.3861 0.7871 0.5414 0.3454 0.2254 0.6931 
ELM 0.7949 0.6804 0.5165 0.7512 0.7966 0.6879 0.5337 0.7523 
MVMD-BRT 0.9070 0.8421 0.6529 0.8792 0.8966 0.8296 0.6521 0.8803 
MEMD-BRT 0.8495 0.7851 0.5848 0.8251 0.8335 0.7439 0.5525 0.8274 
BRT 0.7735 0.6334 0.4917 0.7392 0.7888 0.6666 0.5241 0.7551  

Table 7 
Geographic comparison of the accuracy of the MVMD-BRT against MVMD- 
CFNN, MVMD-ELM, MVMD-RF, MEMD-BRT, MEMD-CFNN, MEMD-ELM, 
MEMD-RF, BRT, CFNN, ELM, and RF models based on RRMSE (%) and RMAE 
(%). Note that the best model is boldfaced (black). The 30% data was used to test 
the models.  

Station 1 Station 2  

RRMSE % RMAE % RRMSE % RMAE % 

MVMD-RF 18.30 16.30 19.34 16.53 
MEMD-RF 21.49 21.11 23.33 23.29 
RF 23.57 20.65 24.72 20.71 
MVMD-CFNN 16.70 14.02 30.75 17.04 
MEMD-CFNN 41.59 42.56 217.66 209.90 
CFNN 23.44 21.13 60.11 22.08 
MVMD-ELM 19.43 17.82 20.08 17.85 
MEMD-ELM 27.40 25.95 35.71 38.40 
ELM 23.36 20.68 24.66 20.91 
MVMD-BRT 16.42 13.73 18.22 14.91 
MEMD-BRT 19.15 18.05 22.34 19.94 
BRT 25.01 21.32 25.49 21.00  
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Fig. 7. Scatter chart between the forecasted and calculated ETo using MVMD-BRT and benchmark comparing models.  
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BRT, CFNN, ELM, and RF models for Station 1 and Station 2. More 
precisely, the RRMSE (%) and RMAE (%) when comparing the MVMD- 
BRT model with the least accurate counterpart, MEMD-CFNN, in the 
grouping [MVMD-BRT: MEMD-CFNN] were as follows: Station 1: 
[16.42 %, 13.73 %: 41.59 %, 42.56 %]; and Station 2: [18.22 %, 14.91 

%: 217.66 %, 209.90 %]. Overall, the standalone RF, CFNN, ELM, BRT 
and hybrid models MEMD-RF, MEMD-CFNN, MEMD-ELM etc., appeared 
to have lower forecasting accuracy. Therefore, the RRMSE (%) and 
RMAE (%) depict that the MVMD-BRT model accomplished the highest 
accuracy for Station 1, followed by Station 2. 

Fig. 8. Boxplot of the calculated and forecasted ETo generated by the MVMD-BRT vs. MVMD-CFNN, MVMD-ELM, MVMD-RF, MEMD-BRT, MEMD-CFNN, MEMD- 
ELM, MEMD-RF, BRT, CFNN, ELM, and RF models. Here the IQR represents the interquartile range. 
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Fig. 9. Empirical cumulative distribution function (ECDF) of the forecasted and calculated ETo generated by the MVMD-BRT vs. other benchmarking models for each 
station. The Average |FE| indicates the average forecasting errors between calculated and forecasted ETo. 
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(b) Analysis via diagnostic plots and graphs 

The scatter plots between the daily forecasted and calculated/actual 
ETo using MVMD-BRT and benchmarking models (i.e., MVMD-CFNN, 
MVMD-ELM, MVMD-RF, MEMD-BRT, MEMD-CFNN, MEMD-ELM, 
MEMD-RF, BRT, CFNN, ELM, and RF) is presented in Fig. 7. For station 
1, the forecasted and calculated ETo for MVMD-BRT (yellow colour) 
with R = 0.9180 appeared to be the best model among all the other 
models. Similarly, for station 2, the MVMD-BRT model shows a 

reasonable degree of accuracy (R = 0.9189), followed by MVMD-RF 
(green colour), MVMD-ELM (blue colour), MEMD-BRT (pink colour) 
and so on. This again proves the MVMD-based hybrid (i.e., MVMD-BRT) 
is better in forecasting daily ET0 as MVMD indeed enhances the fore-
casting capabilities by overcoming the non-linearity and non- 
stationarity issues in the data, which is also following Table 5, 6, and 
7. Thus, for both station 1 and station 1, MVMD-BRT shows a higher 
precision accuracy than the benchmark comparing models. 

An apparent discrepancy in efficiency of the MVMD-BRT model 

Fig. 10. Forecasted and calculated ETo generated by the MVMD-BRT vs. MVMD-CFNN, MVMD-ELM, MVMD-RF, MEMD-BRT, MEMD-CFNN, MEMD-ELM, MEMD-RF, 
BRT, CFNN, ELM, and RF models using histogram frequency distribution plot. 
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Fig. 11. Taylor diagram of the daily forecasted and calculated ETo generated by the MVMD-BRT vs. the benchmarking models.  
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based on the boxplots in Fig. 8 expresses that the distribution calculated 
against forecasted ETo yielded by MVMD-CFNN, MVMD-ELM, MVMD- 
RF, MEMD-BRT, MEMD-CFNN, MEMD-ELM, MEMD-RF, BRT, CFNN, 
ELM, and RF comparing models for station 1 and station 2 were 
dispersed exhibiting outliers. However, the boxplot distribution of the 
MVMD-BRT model has a very accurate and consistent representation of 
the forecasted and calculated ETo along with the interquartile range IQR 
values = 2.3 (forecasted) and 2.5 (calculated) as compared to MVMD- 
CFNN, MVMD-ELM, MVMD-RF, MEMD-BRT, MEMD-CFNN, MEMD- 
ELM, MEMD-RF, BRT, CFNN, ELM, and RF models. Similarly, the box-
plot distribution Alease appeared more accurate with MVMD-BRT (IQR 
= 2.5-forecasted, 2.6-calculated) ETo than other models. Thus, the 
boxplots (Fig. 8) confirm the improved forecasting accuracy of the 
MVMD-BRT model compared to the benchmarking counterparts. 

The empirical cumulative distribution function (ECDF) of forecasted 
and calculated ETo maps in Fig. 9 represents the model’s performance 
and the average forecasting errors, i.e., Average |FE| between estimated 
and forecasted ETo. For both stations 1 and 2, the ECDF distribution of 
MVMD-BRT demonstrated a very close profile against MVMD-CFNN, 
MVMD-ELM, MVMD-RF, MEMD-BRT, MEMD-CFNN, MEMD-ELM, 
MEMD-RF, BRT, CFNN, ELM, and RF comparing models. The MVMD- 
BRT also produces a lower Average |FE| = 0.448 for Brisbane and 
0.463 for Gympie stations compared to other models. Therefore, the 
ECDF plots (Fig. 9) further validate and verify the MVMD-BRT model’s 
precise performance to forecast daily ET0 in station 1 and station 2. 

The histogram frequency distribution diagram in Fig. 10 plots the 
residual errors between the forecasted and calculated ETo using the 
MVMD-BRT model against the MVMD-CFNN, MVMD-ELM, MVMD-RF, 
MEMD-BRT, MEMD-CFNN, MEMD-ELM, MEMD-RF, BRT, CFNN, ELM, 
and RF comparing models for both stations 1 and 2. Frequency distri-
bution of residuals for MVMD-BRT were in a smaller error bracket 
varying between 0 and 2 mm with 97 % (at bin 1) and 3 %(at bin 2) 
frequency in station 1 while 95 % and 5 % for station 2 to forecast daily 
ETo. Fig. 10 yet again endorses the proposed MVMD-BRT model’s 
overall efficiency. 

A Taylor diagram provides an orderly, systematic and comprehen-
sive examination of the models’ forecasting ability in a broader spec-
trum (Xu et al., 2016). Fig. 11 portrays a more quantifiable and 
convincing link between the forecasted and calculated ETo based on 
correlation coefficient and standard deviation values. It is astonishingly 
proven that the MVMD-BRT model was lying close to the estimated ETo 
data, suggesting the forecasting accuracy was noticeably better at both 
stations. In contrast, the CFNN and MEMD-CFNN models were parting in 
a far-off corner, confirming poor performance. For more details on other 
comparing models, refer to the Fig. 11, which affirms that the MVMD- 
BRT is reasonably accurate to forecast daily ETo as compared to 
MVMD-ELM, MVMD-RF, MEMD-BRT, MEMD-CFNN, MEMD-ELM, 
MEMD-RF, BRT, ELM, and RF models. 

5. Further discussion 

In this research, the proposed hybrid MVMD-BRT model has been 
developed to forecast daily ETo at station 1: Brisbane and station 2: 
Gympie in Queensland, Australia. The forecasting efficiency of the 
newly developed MVMD-BRT model is compared against MVMD-ELM, 
MVMD-RF, MEMD-BRT, MEMD-CFNN, MEMD-ELM, MEMD-RF, BRT, 
ELM, and RF models, which confirms its superiority to forecast daily 
ETo, thus proving that the MVMD-BRT is a well-designed data intelligent 
model. The result of MVMD-BRT confirmed that the approach was 
effective in decomposing the input predictors by the MVMD process, 
boosting the BRT model’s forecasting precision. 

The novel MVMD-BRT model was an efficient approach to forecast 
daily ETo using some standard good-of-fitness metrics and diagnostic 
plots, but some recommendations can be considered in the future. Here, 
only the historical meteorological input data were employed to design 
the MVMD-BRT model; however, the satellite-derived time-series 

predictors can be applied that can significantly enhance the forecasting 
ability of MVM-BRT. Thus, another approach based on satellite-derived 
data could be a potential strategy to include more physical data to 
forecast daily ETo. 

AI-based data-driven models are turned out to be powerful tools. 
However, some limitations of their black-box nature also restrict their 
ability. The black box characterization is hard to understand and vali-
date complex relationships if the predictor data is in a learning activity. 
So, integrating ML with NWP models can be an emerging area of interest 
for the research community. Moreover, the MVMD-BRT model can be 
optimized by hybridizing Bayesian Model Averaging (Sloughter et al., 
2010) and bootstrapping techniques (Tiwari and Chatterjee, 2011) to 
enhance the forecasting capability. 

Furthermore, the MVMD helps to enhance the accuracy of the BRT 
model as it has a great capacity to simultaneously capture the non- 
stationary and non-linearity in multivariate data by overcoming the 
mode mixing issues (Gao and Shao, 2022) as compared to MEMD 
(Rehman and Mandic, 2010). The MVMD helps solve the problem of 
adaptive selection of mode parameters using scale segmentation. 
Moreover, the MVMD is advantageous for dealing with the input data’s 
multivariate oscillatory nature. The MVMD offers mode separability and 
avoids any predefined wavelet filter bank boundaries. The MVMD em-
ploys multivariate modulated oscillations based on a joint or common 
frequency component among all input data channels. The results proved 
that the MVMD-based hybrid models (especially MVMD-BRT) perform 
exceptionally well in forecasting daily ETo compared to the MEMD based 
hybrid version (see Tables 5 and 6). 

A newly designed MVMD-BRT model is helpful in forecasting daily 
reference evapotranspiration (ETo) at stations 1: Brisbane and station 2: 
Gympie compared to other benchmarking models. Based on the ob-
tained goodness-of-fitness metrics, it is established that MVMD-BRT 
could be a viable AI model in hydrological sciences. It can provide 
helpful information to the Govt on water resource management to 
design better crop strategies, climate change scenarios, and hydrology. 

6. Conclusion 

This paper aims to design a multivariate variational mode decom-
position integrated with a boosted regression tree model (i.e., MVMD- 
BRT) to forecast daily evapotranspiration (ETo). Another vital novelty 
aspect is comparing the MVMD pre-processing data decomposition 
method with multivariate empirical model decomposition (MEMD). The 
results confirm that the MVMD-based hybrid models, especially MVMD- 
BRT, are significantly better in forecasting the daily ETo for both Bris-
bane and Gympie stations than the MEMD-based hybrid version of the 
models. Further, the MVMD-BRT model also provides better precision 
against the standalone version of the BRT, RF, CFNN, and ELM models 
where several assessment indicators such as R, MAE, RMSE, EWI, ENS, 
KGE, RRMSE and RMAE were used to measure the performance of 
MVMD-BRT against all comparing models. 

The MVMD-BRT approach established in this study was innovative 
by presenting the MVMD method hybridized with the BRT model, which 
significantly improves the predictive performance and handles the non- 
stationarity and non-linearity caused by the stochasticity and chaotic 
nature of the meteorological drivers. Further, a comparison between 
MVMD vs. MEMD was presented for the first time in a study to establish 
and prove that the MVMD-based hybrid models are outstanding in 
forecasting. To broaden the scope, a future work can be directed to 
implement the proposed hybrid MVMD-BRT model in other areas of 
research interest, such as environment and energy, hydrology, agricul-
ture, etc., that will surely help the Government and other stake holders 
to better cope with energy issues, climate change situations, and agri-
culture crop optimizations. 
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