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ABSTRACT

It has previously been proven that the conditional dissipation rate to transport a Gaussian distribution is equal to the mean dissipation rate
throughout the variables’ space and that only a Gaussian distribution can have a conditional dissipation rate that is only a function of time.
This article extends both proofs to a joint-normal distribution for any number of dimensions.
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Mapping closure (MC)1,2 and, subsequently, multiple mapping
conditioning (MMC)3 rely on the fact that the conditional dissipation
rate for a Gaussian probability density function (pdf) is equal to the
mean dissipation rate and is not a function of the variable comprising
the pdf. It was initially proven that if the conditional dissipation rate is
modeled to be a constant, then a normal probability density function
(pdf) preserves its shape and is always a normal pdf.4 It was subse-
quently proven that if the pdf is Gaussian, then the conditional dissi-
pation rate must be a function of time5–7 and that only a Gaussian pdf
can have a constant dissipation rate.5,6 It has been assumed that the
same behavior can be extended to joint-normal joint-pdfs (jpdfs),
which underpin general applications of MMC. A physical basis for
this assumption is the argument8 that the dissipation rate affects the
small scales of turbulence, while the jpdf affects the large scales of tur-
bulence; therefore, these are uncorrelated. The benefit of this property
is to simplify the modeling of the unknown conditional dissipation of
the mapping variable in MC and MMC, making MMC an appealing
approach. A Gaussian probability density function (pdf) and a joint-
normal joint-pdf (jpdf) can be used to describe the marginal pdf and
jpdf for the velocity components and scalar field in homogeneous
shear flow with a uniform mean scalar gradient,9 while the velocity
and scalar fields in the core of a mixing layer resemble a Gaussian
pdf.10 However, it is rare in practical applications for a field to resem-
ble a joint-normal jpdf. Numerous models for the conditional dissipa-
tion have been devised for the flamelet model11 and conditional
moment closure12 to account for the relevant jpdf not being joint-
normal. Because the conditioning (reference) variable in MMC does
not have to be a physical variable, it is possible to choose its distribu-
tion to be Gaussian. While most modern implementations of MMC
only use a single conditioning variable13–18—for which the property of

the pdf is proven—there are some implementations that use a multi-
dimensional reference variable space.19,20 In this article, the transport
equation for a joint-normal jpdf is solved, thereby proving that the
behavior occurs for any number of dimensions.

Since the focus is on the modeling of the term involving the con-
ditional dissipation rate, the passive variable n is considered. An
important definition is the decay rate of the (co-)variance in homoge-
neous flow,
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where Dij is the molecular diffusivity of variable ni in variable nj and
h/i ¼

Ð
/ð~nÞPð~nÞd~n with Pð~nÞ the jpdf of the variable space~n. The

variable hBiji is commonly called the mean dissipation rate, and
requires modeling in turbulent flows, with models developed from
experimental measurements.

Initially, a single dimension for n is considered—to follow the
proof for a Gaussian pdf5–7—using the homogeneous transport equa-
tion for its pdf,21
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If the pdf is modeled to have a Gaussian distribution,
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where n has a single dimension, then the following derivatives are use-
ful for solving Eq. (3):
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Substituting Eqs. (5), (6) and (9) into Eq. (3) and defining n0 ¼ n� l
yields
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Equation (10) is a linear nonhomogeneous ordinary differential
equation for B. The result BðnÞ ¼ hBi is the particular solution. The
homogeneous solution, following Ref. 5, is

Bðn0Þ ¼ C1 þ C2n
0ð Þexp n02

2r2

� �
: (11)

Applying the symmetry condition @B=@njn0¼0 ¼ 0, it follows that
C2 ¼ 0; to comply with

Ð
BPdn ¼ hBi, it is necessary that C1 ¼ 0.

Therefore, it is proven that the only mathematically viable form
of the conditional dissipation for a Gaussian distribution is the con-
stant value of the mean dissipation.

The general solution for multiple passive scalars is now derived
by considering the homogeneous transport equation for the jpdf,
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where~n is the vector containing the n dimensions of nk,~l is the vector
of means, andR is the covariance matrix with elements Rij ¼ r2

ij.
If the jpdf is modeled to have a joint-normal distribution,
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where jRj is the determinant of R; then, the form of Eq. (12) is
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By definition,8 the conditional dissipation rate Bij only directly affects
the evolution of the covariance r2

ij, so, for the purposes of determining
the form of Bij, Eq. (14) can be solved without considering the summa-
tions. A useful definition is the fluctuations of each variable,

n0i ¼ ni � li ! dni ¼ dn0i: (15)

To solve Eq. (14) using Eq. (13) for any dimension, the general
form of R�1 is required,

R�1 � 1
jRj

~R; (16)

where ~R is the adjugate matrix for R. Let Mij be a “minor” matrix of
R, with Mij constructed by removing row i and column j from R.
Therefore, the elements of the cofactor matrix C are

Cij � ð�1ÞiþjjMijj; (17)

and the adjugate matrix is

~R ¼ CT ; (18)

~R ij ¼ ð�1ÞiþjjMjij: (19)

It follows that
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X
m
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qkr;lm ¼
0 ; signðr � kÞ ¼ signðm� lÞ;

1 ; signðr � kÞ 6¼ signðm� lÞ;

8<
: (24)

jMij;klj � jMij;lkj � jMji;lkj � jMji;klj; (25)

where the sub-minor matrix Mik;jl is practically missing both rows i
and k from R as well as both columns j and l, but by definition is miss-
ing row i and column j from Mkl . If k¼ i and/or l¼ j, then
jMik;jlj ¼ 0. If n¼ 2, k 6¼ i, and l 6¼ j, then, jMik;jlj ¼ ð�1Þkþl ; this
property can be determined by direct substitution into Eq. (14) of the
well-known formula for R�1 for rank 2 matrices—which takes the
form of Eq. (16).

Physics of Fluids LETTER scitation.org/journal/phf

Phys. Fluids 35, 041703 (2023); doi: 10.1063/5.0142876 35, 041703-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


The general formulas for the necessary derivatives are as follows:
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Substituting into Eq. (14) yields
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Equation (30) has the same form as Eq. (10). To obtain the particular solution, it will now be proven that the portion of the coefficients within
f�g for the first and final terms in Eq. (30) are identical. Due to the symmetry of R; jMijj ¼ jMjij, which means that the terms not involving n0 are
identical. For the remaining terms from each side, the symmetry of jRj is applied, and then the rhs is converted to minor matrixes, so that it is
required to prove:
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Compiling terms from the start and end of Eq. (31), what remains is to prove

8k;ljMikjjMjlj � jMijjjMklj þ ð�1Þqil;jk jRjjMil;jkj ¼ 0: (32)

All the matrices are expanded to sub-minor matrices as a common basis (in a two-step process because of the rank of R and to compile terms into
a double-summation),X
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Because, by definition,

ð�1Þqij;klþqij;mr jMij;kljjMij;mr j � ð�1Þqij;lrþqij;mk jMij;lr jjMij;mkj

¼ ð�1Þqij;krþqij;lm jMij;kr jjMij;lmj; (34)

all the terms in Eq. (33) cancel irrespective of the number of dimen-
sions n, the value of n, and the choice of indices, so it is proven that
the particular solution is Bijð~nÞ ¼ hBiji. The homogeneous solution to
Eq. (30) is

Bij ¼ C1 þ C2n
0
i þ C3n

0
j

� 

exp

P
k

P
l
~Rkln0kn

0
l

2jRj

 !
: (35)

Just like Eq. (11), the homogeneous solution must be zero.
Therefore, every conditional (cross-)dissipation rate must be the mean
(cross-)dissipation rate for joint-normal jpdfs of any dimension.
Furthermore, because Eq. (12) yields the solution that the Fourier
transform of a joint-normal jpdf is the initial value of the joint-normal
jpdf’s Fourier transform multiplied by the exponential in Eq. (35), the
proof that only a Gaussian pdf can have a constant dissipation rate5

can be directly used to prove that only a joint-normal jpdf can have a
constant (cross-)dissipation rate.
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