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SUMMARY

This paper presents a new fictitious-domain technique for numerically solving elliptic
second-order partial-differential equations (PDEs) in complex geometries. The pro-
posed technique is based on the use of integral collocation schemes and Chebyshev
polynomials. The boundary conditions on the actual boundary are implemented by
means of integration constants. The method works for both Dirichlet and Neumann
boundary conditions. Several test problems are considered to verify the technique.
Numerical results show that the present method yields spectral accuracy for smooth
(analytic) problems.

KEY WORDS: fictitious domains; point collocation techniques; integrated Cheby-
shev polynomials; elliptic problems

1 INTRODUCTION

Solving PDEs in irregularly shaped domains presents a challenge in computational
engineering. Well-known techniques used for handling complex geometries include
coordinate transformations, domain decompositions, meshless discretizations and
fictitious domains. Each technique has some advantages over the others for certain
classes of problems.

Fictitious-domain techniques can be traced back to the early 1950s ([1] and refer-
ences therein). These techniques have been very successful in solving complicated
engineering problems (e.g. [2,3]). The basic idea behind fictitious-domain techniques
is to extend domains of complicated shapes to those of simpler shapes for which the
generation of meshes is simple and well-established efficient numerical solvers can be
applied. Another advantage, when compared with coordinate transformation tech-
niques, is that they are able to retain the PDE in a Cartesian form. It is noted that
the transformation of the governing equation into generalized curvilinear coordinates
that conform with complex boundaries usually introduces an additional error [4]. A
main difficulty here lies in the method employed to take into account the boundary
conditions. Glowinski et al. [5] have presented a family of fictitious-domain tech-
niques which are based on the explicit use of Lagrange multipliers defined on the
actual boundary and associated with the boundary conditions for Dirichlet elliptic
problems. Since then, the Lagrange multiplier/fictitious-domain methods have be-
come increasingly popular. Many further developments and applications have been
reported: for instance, for the solution of the Navier-Stokes equations governing
incompressible viscous flows (e.g. [6,7]), for the fluid/rigid-body interactions (e.g.
[8,3,9]) and for the fluid/flexible-body interactions (e.g. [10]).

Spectral collocation methods/pseudo-spectral methods are global numerical solvers
for PDEs and they are known to be very accurate (cf. [11-15]). The methods use
a set of orthogonal polynomials such as Chebyshev polynomials (very smooth basis
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functions) to represent the approximate solution of the PDE and take the cosine-
type points (the zeros of (1− x2)T ′

N in which N is the degree of the polynomial) as
the grid points (−1 ≤ x ≤ 1). The conversion of the spectral space into the physical
space can be carried out efficiently through a fast Fourier transform. Unlike Galerkin
spectral methods, spectral collocation methods approximate the solution in terms of
nodal variable values. The main advantages of pseudo-spectral methods lie in their
accuracy and economy. For problems whose solutions are smooth (infinitely differ-
entiable), they yield an exponential rate of convergence as the grid is refined or the
order of the approximation N is increased (spectral accuracy). The interpolation
error decreases more rapidly than any power of 1/N [11]. For two-dimensional prob-
lems, it requires that the problem domain be rectangular [−1,−1] × [1, 1], which,
at the beginning, limits the application of pseudo-spectral techniques to problems
defined in simple geometries. There has been a considerable effort put into the de-
velopment of these techniques in complex geometries. A general and popular way to
deal with complex geometries is based on the use of domain decompositions and co-
ordinate transformations. The problem domain is divided into several subdomains,
and each subdomain is mapped onto the reference square. Orszag [16] has presented
a technique for matching approximate solutions over contiguous regions, namely the
patching technique. It requires the approximate solution and its first-order normal
derivative to be continuous at the subdomain interfaces. Given a fixed number of
subdomains, the approximation is still spectral when the grids on subdomains are
refined. The patching technique normally provides an approximate solution that
is C1 function across the internal artificial boundaries. The reader is referred to
the book of Karniadakis and Sherwin [17] for a detailed discussion of multi-domain
spectral methods.

It is well known that integration is a smoothing operator and is more numerically
stable than differentiation. The weak forms associated with finite-element techniques
and the inverse statements associated with boundary-element techniques are derived
from integrating a weighted residual statement by parts once and twice, respectively
(cf. [18]). The integration process reduces the required order of continuity of the
approximate solution. A weak solution satisfies the governing equation in an average
sense. On the other hand, point collocation techniques such as pseudo-spectral and
finite-difference methods are directly based on the strong form of the PDE. The
main advantage of these techniques lies in their simplicity as there is no integration
of the PDE involved. Grids/meshes are only required for the interpolation of the
field variable. The governing equation is satisfied in a pointwise sense.

For the approximation of a function and its derivatives, it has been found that the
use of integration, instead of conventional differentiation, to construct the radial-
basis-function (RBF) approximations (integral collocation formulation) significantly
improves the accuracy of the RBF scheme especially for evaluating derivative func-
tions [19]. Since the introduction of the integral RBF collocation approach [19,20],
Kansa et al. [21], based on the theoretical result of Madych and Nelson [22], have
concluded that the decreasing rate of convergence for derivative functions caused
by differentiation can be avoided in the integral RBF approach. When applying
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the integral collocation formulation for the solution of differential equations, with
RBFs or Chebyshev polynomials, the constants of integration have been found to
be very useful. They provide an alternative way, which is very effective, for the im-
plementation of multiple boundary conditions [23-25] and also allow a higher-order
smoothness of the approximate solution across the subdomain interfaces [26]. It
will be shown that, in the context of fictitious-domain techniques, the constants of
integration can be utilized for the purpose of imposing the prescribed conditions
on the actual boundary. This work seems to be the first report implementing the
idea of fictitious domain in the context of pseudo-spectral methods; it provides a
new way of handling irregularly shaped domains. Even in the case where domain
decompositions are required, the use of fictitious domains can be seen to be more
straightforward to implement than with the use of coordinate transformations. The
presently proposed approach is underpinned by three main features, namely the
high-order accuracy of the Chebyshev collocation technique, the effective implemen-
tation of boundary conditions of the integral collocation formulation, and the ability
to deal with irregularly shaped domains of the fictitious-domain technique.

An outline of the paper is as follows. In section 2, a brief review of point collocation
formulations is given. The proposed fictitious-domain technique, which is based
on the integral collocation formulation, is described in section 3. The method is
then verified through the solution of several test problems in section 4; these test
examples involve simply-connected domains, multiply-connected domains, multi-
domains, Dirichlet boundary conditions, Neumann boundary conditions and singular
solutions. Section 5 gives some concluding remarks.

2 POINT COLLOCATION FORMULATIONS

The Chebyshev collocation technique consists in approximating the solution with
Chebyshev polynomials, and forcing the differential equation and the boundary con-
ditions to be satisfied exactly at the cosine-type points. The construction of the
Chebyshev approximations representing the approximate solution of the PDE can
be based on differentiation and integration.

2.1 Differential formulation

An approximate function f can be represented by the Chebyshev interpolant of
degree N as follows

f(x) =
N∑

k=0

akTk(x) =
N∑

k=0

ak cos(k arccos(x)), (1)
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where −1 ≤ x ≤ 1, {ak}
N

k=0 are unknown coefficients and {Tk}
N

k=0 are the Cheby-
shev polynomials. Expressions of derivatives of (1) will then be obtained through
differentiation.

At the Gauss-Lobatto (G-L) points,

{xi}
N

i=0 =

{
cos

(
πi

N

)}N

i=0

, (2)

the values of derivatives of f are simply computed by

d̂f

dx
= D(1)f̂ = Df̂ , (3)

d̂2f

dx2
= D(2)f̂ = D2f̂ , (4)

· · · · · · · · · · · ·

d̂pf

dxp
= D(p)f̂ = Dpf̂ , (5)

where the symbol .̂ is used to denote a vector, e.g. f̂ = (f0, f1, · · · , fN)T and
d̂pf

dxp =
(

dpf0

dxp , dpf1

dxp , · · · , dpfN

dxp

)T
, and D(.) are the differentiation matrices. The entries

of D (D(1)) are given by

Dij =
c̄i

c̄j

(−1)i+j

xi − xj

, 0 ≤ i, j ≤ N, i 6= j, (6)

Dii = −
xi

2(1 − x2
i )

, 1 ≤ i ≤ N − 1, (7)

D00 = −DNN =
2N2 + 1

6
, (8)

where c̄0 = c̄N = 2 and c̄i = 1 for i = 1, 2, · · · , N − 1. It is noted that the diagonal
entries of D can also be obtained in the way that represents exactly the derivative
of a constant

Dii = −
N∑

j=0,j 6=i

Dij. (9)

For the case of smooth functions, the Chebyshev approximation scheme is known to
be very accurate (exponential accuracy). The error is O(N−α), where α depends on
the regularity of the function. It should be emphasized that there is a reduction in
accuracy for the approximation of derivative functions; this reduction is an increasing
function of derivative order (cf. [13]).
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2.2 Integral formulation

This formulation uses a truncated Chebyshev series of degree N to represent a
derivative of an unknown function f , e.g.

dpf(x)

dxp
=

N∑

k=0

akTk(x). (10)

Expressions for lower-order derivatives and the function itself are then obtained
through integration as

dp−1f(x)

dxp−1
=

N∑

k=0

akI
(p−1)
k (x) + c1, (11)

dp−2f(x)

dxp−2
=

N∑

k=0

akI
(p−2)
k (x) + c1x + c2, (12)

· · · · · · · · · · · · · · ·

df(x)

dx
=

N∑

k=0

akI
(1)
k (x) + c1

xp−2

(p − 2)!
+ c2

xp−3

(p − 3)!
+ · · · + cp−2x + cp−1, (13)

f(x) =
N∑

k=0

akI
(0)
k (x) + c1

xp−1

(p − 1)!
+ c2

xp−2

(p − 2)!
+ · · · + cp−1x + cp, (14)

where I
(p−1)
k (x) =

∫
Tk(x)dx, I

(p−2)
k (x) =

∫
I

(p−1)
k (x)dx, · · · , I

(0)
k (x) =

∫
I

(1)
k (x)dx,

and c1, c2, · · · , cp are integration constants.

Unlike conventional differential schemes, the starting point of the integral collocation
scheme can vary in use, depending on the particular application under considera-
tion. In this regard, the concept of scheme order is introduced here. An integral
collocation scheme (ICS) is said to be of pth order, denoted by ICSp, if the scheme
starts with the Chebyshev approximation of the pth-order derivative of f . A differ-
ential collocation scheme can be considered as a special case of ICS by letting p be
zero (ICS0).

The evaluation of (10)-(14) at the G-L points leads to

d̂pf

dxp
= I

(p)
[p] ŝ, (15)

̂dp−1f

dxp−1
= I

(p−1)
[p] ŝ, (16)

· · · · · · · · · (17)

d̂f

dx
= I

(1)
[p] ŝ, (18)

f = I
(0)
[p] ŝ, (19)
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where subscript [.] and superscript (.) are used to indicate the orders of ICS and
derivative function, respectively,

ŝ = (a0, a1, · · · , aN , c1, c2, · · · , cp)
T ,

I
(p)
[p] =




T0(x0), T1(x0), · · · , TN(x0), 0, 0, · · · , 0, 0
T0(x1), T1(x1), · · · , TN(x1), 0, 0, · · · , 0, 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

T0(xN), T1(xN), · · · , TN(xN), 0, 0, · · · , 0, 0


 ,

I
(p−1)
[p] =




I
(p−1)
0 (x0), I

(p−1)
1 (x0), · · · , I

(p−1)
N (x0), 1, 0, · · · , 0, 0

I
(p−1)
0 (x1), I

(p−1)
1 (x1), · · · , I

(p−1)
N (x1), 1, 0, · · · , 0, 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

I
(p−1)
0 (xN), I

(p−1)
1 (xN), · · · , I

(p−1)
N (xN), 1, 0, · · · , 0, 0


 ,

· · · · · · , and

I
(0)
[p] =




I
(0)
0 (x0), I

(0)
1 (x0), · · · , I

(0)
N (x0),

x
p−1

0

(p−1)!
,

x
p−2

0

(p−2)!
, · · · , x0, 1

I
(0)
0 (x1), I

(0)
1 (x1), · · · , I

(0)
N (x1),

x
p−1

1

(p−1)!
,

x
p−2

1

(p−2)!
, · · · , x1, 1

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

I
(0)
0 (xN), I

(0)
1 (xN), · · · , I

(0)
N (xN),

x
p−1

N

(p−1)!
,

x
p−2

N

(p−2)!
, · · · , xN , 1




.

Several advantages of pseudospectral techniques based on integrated basis functions
over those based on differentiated basis functions for solving two-point boundary
value problems have been reported in [27,24]. The present study employs the integral
collocation formulation for the purpose of implementing the boundary conditions in
the context of fictitious-domain pseudopectral techniques.

3 THE PROPOSED FICTITIOUS-DOMAIN TECH-

NIQUE

Consider the approximation of the solution of the differential problem consisting of
the equation

∂2u

∂x2
+

∂2u

∂y2
= b(x, y), (x, y) ∈ Ω, (20)

where u is the field/dependent variable, b is a driving/forcing function, and Ω is an
irregular bounded domain, together with Dirichlet and Neumann boundary condi-
tions on the boundary ∂Ω.

For fictitious-domain techniques/domain embedding methods, a spatial domain of
complicated shape is extended to a simple one, where structured grids/meshes can
be used. It is worth mentioning that the grids are independent of the boundary
definition.
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Figure 1 shows an extension of Ω to a rectangular domain that is discretized using a
tensor product grid formed by the G-L points. The Chebyshev discrete approxima-
tions representing the field variable u and its derivatives are constructed on these
grids; their final forms are written in terms of the values of u at the grid points.
Since the nodal points do not generally lie on the boundary of the actual domain,
special treatments are required to implement the boundary conditions.

The present study attempts to include information on the boundary in the Cheby-
shev approximations. It can be done by using integral collocation schemes. Unlike
conventional differential techniques, the integral collocation approach is capable of
generating new coefficients (i.e. integration constants). This feature allows one to
add some additional equations to the system that converts the spectral space into
the physical space. These extra equations can be used to impose the prescribed con-
ditions on the actual boundary. In what follows, the present method is presented in
detail for two types of boundary conditions, namely Dirichlet and Neumann condi-
tions.

3.1 Dirichlet boundary conditions

Lines aa′, bb′, cc′, dd′ and ee′ in Figure 1 present typical cases for the approximation
of ∂u/∂y and ∂2u/∂y2.

3.1.1 Case 1 - Line ee′:

Along this line, there are no boundary points. The task thus becomes simple, i.e.
simply expressing the values of ∂u/∂y and ∂2u/∂y2 at a grid point in terms of the
nodal values of u along the line. This can be done by applying the ICS0 scheme.
Its Chebyshev expressions are given by (3)-(5).

3.1.2 Case 2 - Line dd′:

This line and the boundary ∂Ω intersect at two points, namely yb1 and yb2. The first
boundary point yb1 is also a grid node, and hence it is straightforward to implement
ub1. Assume that the second boundary point yb2 does not coincide with any grid
nodes. To impose ub2, one extra equation is needed and hence the ICS1 scheme can
be applied here. The conversion system is formed as follows

(
û

ub2

)
=

[
I

(0)
[1]

B

] (
â
c1

)
= C

(
â
c1

)
, (21)
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where C is the conversion matrix of dimension (Ny+2)×(Ny+2), â =
(
a0, a1, · · · , aNy

)T
,

û =
(
u0, u1, · · · , uNy

)T
, and

B =
[
I

(0)
0 (yb2), I

(0)
1 (yb2), · · · , I

(0)
Ny

(yb2), 1
]

[1]
.

Solving (21) yields (
â
c1

)
= C−1

(
û

ub2

)
. (22)

The values of ∂u/∂y and ∂2u/∂y2 at the grid points are then computed by

∂̂u

∂y
= I

(1)
[1] C

−1

(
û

ub2

)
, (23)

∂̂2u

∂y2
= I

(2)
[1] C

−1

(
û

ub2

)
, (24)

where

I
(2)
[1] =




dT0

dy
(y0),

dT1

dy
(y0), · · · ,

dTNy

dy
(y0), 0

dT0

dy
(y1),

dT1

dy
(y1), · · · ,

dTNy

dy
(y1), 0

· · · · · · · · · · · · · · ·
dT0

dy
(yNy

), dT1

dy
(yNy

), · · · ,
dTNy

dy
(yNy

), 0




.

It is noted that ICS2 is also applicable here. The second integration constant c2 can
be used for the purpose of imposing the governing equation at y = yb1 (also y0).
The conversion system thus becomes




û
∂2ub1

∂y2

ub2


 =

[
I

(0)
[2]

B

] 


â
c1

c2


 = C




â
c1

c2


 , (25)

where C is the matrix of dimension (Ny + 3) × (Ny + 3) and

B =

[
T0(yb1), T1(yb1), · · · , TNy

(yb1), 0, 0

I
(0)
0 (yb2), I

(0)
1 (yb2), · · · , I

(0)
Ny

(yb2), yb2, 1

]

[2]

.

In (25), the value of ∂2ub1/∂y2 is known as it is obtained through (20).

It leads to

∂̂u

∂y
= I

(1)
[2] C

−1




û
∂2ub1

∂y2

ub2


 , (26)

∂̂2u

∂y2
= I

(2)
[2] C

−1




û
∂2ub1

∂y2

ub2


 . (27)
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3.1.3 Case 3 - Line cc′:

There are two boundary points yb1 and yb2, which are also grid nodes. Two schemes
ICS0 and ICS2 can be applied here. For ICS0, the values of derivatives of u with
respect to y are computed using (3)-(5). For ICS2, one can utilize two integration
constants to force the governing equation to be satisfied exactly at the two boundary
points 


û

∂2ub1

∂y2

∂2ub2

∂y2


 =

[
I

(0)
[2]

B

] 


â
c1

c2


 , (28)

where ∂2ub1/∂y2 and ∂2ub2/∂y2 are easily computed using the governing equation,
and

B =

[
T0(yb1), T1(yb1), · · · , TNy

(yb1), 0, 0
T0(yb2), T1(yb2), · · · , TNy

(yb2), 0, 0

]

[2]

.

The remaining steps for obtaining the Chebyshev approximations of ∂u/∂y and
∂2u/∂y2 are similar to previous cases and therefore omitted here for brevity.

3.1.4 Case 4 - Line bb′:

Along this line, there are two boundary points. Assume that they are not grid
points. ICS2 can be employed to impose the two boundary conditions




û
ub1

ub2


 =

[
I

(0)
[2]

B

] 


â
c1

c2


 , (29)

where

B =

[
I

(0)
0 (yb1), I

(0)
1 (yb1), · · · , I

(0)
Ny

(yb1), yb1, 1

I
(0)
0 (yb2), I

(0)
1 (yb2), · · · , I

(0)
Ny

(yb2), yb2, 1

]

[2]

.

3.1.5 Case 5 - Line aa′:

A number of schemes can be applied here. In the following, two typical schemes are
presented.

If the contact point yb is not a grid node, one can use ICS1

(
û
ub

)
=

[
I

(0)
[1]

B

] (
â
c1

)
, (30)

where
B =

[
I

(0)
0 (yb), I

(0)
1 (yb), · · · , I

(0)
Ny

(yb), 1
]
[1]

.
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If the contact point is also a grid node, one can employ ICS0 or ICS2. For the latter,
the conversion system is given by




û
∂ub

∂y
∂2ub

∂y2


 =

[
I

(0)
[2]

B

] 


â
c1

c2


 , (31)

where

B =

[
I

(1)
0 (yb), I

(1)
1 (yb), · · · , I

(1)
Ny

(yb), 1, 0

T0(yb), T1(yb), · · · , TNy
(yb), 0, 0

]

[2]

.

In (31), ∂ub/∂y and ∂2ub/∂y2 are known values, which are derived from using bound-
ary conditions.

The values of ∂u/∂x and ∂2u/∂x2 at the grid points along horizontal lines can be
computed in a similar fashion.

The Chebyshev approximations of derivatives at a grid point are expressed in terms
of the nodal values of u along the grid lines that goes through that point. It should
be emphasized that they already contain information about the boundary of Ω
(i.e. locations and boundary values). As with finite-difference and finite-element
techniques, one will gather these approximations together to form the global matrices
for the discretization of the PDE. This task is relatively simple since the grid used
here is regular. By collocating the governing equation at the grid points and then
deleting rows corresponding to points that lie on the boundary, a square system of
algebraic equations is obtained, which is solved for the approximate solution.

3.2 Neumann boundary conditions

In the context of Cartesian-grid-based collocation methods, Neumann boundary
conditions are known to be more difficult to implement than Dirichlet boundary
conditions. It is particularly acute for the case of non-rectangular boundaries.
Viswanathan [28] has proposed constructing a finite-difference approximation at
a grid point that lies adjacent to the curved boundary by taking into account the
rate of change of the normal gradient of the field variable along the boundary. In
the work of Thuraisamy [29,30], the normal derivative at a boundary point was ap-
proximated using two lines that intersect at that point and make angles of π/4 on
either side of the local normal direction. Recently, Sanmigue-Rojas et al. [31] have
reported a technique for generating a non-uniform Cartesian grid in which all the
boundary points are regular nodes of the grid.

In the present technique, like Dirichlet boundary conditions, Neumann boundary
conditions are also imposed through the transformation of the spectral space into
the physical space. The implementation also takes the advantage of fictitious do-
mains and Chebyshev polynomials. A computational domain is now rectangular
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(fictitious domains) and the spectral approximations are defined everywhere in the
domain (Chebyshev polynomials). Hence, one can easily derive highly accurate ap-
proximations of ∂u/∂x and ∂u/∂y at any point in the fictitious domain, where in
general a boundary point is not a grid node, from the grid values.

Assume that the side CD (Figure 1) is specified with a Neumann boundary condition.
Consider line dd′. This line and the boundary ∂Ω intersect at two points, namely
(xb1, yb1) and (xb2, yb2) with xb1 = xb2, which have Dirichlet and Neumann boundary
conditions, respectively. In the following discussion, attention will be given to the
implementation of the latter.

Using ICS2, the conversion system can be formed as



û
∂2ub1

∂y2

∂ub2

∂y


 =

[
I

(0)
[2]

B

] 


â
c1

c2


 , (32)

where

B =

[
T0(yb1), T1(yb1), · · · , TNy

(yb1), 0, 0

I
(1)
0 (yb2), I

(1)
1 (yb2), · · · , I

(1)
Ny

(yb2), 1, 0

]

[2]

.

Vectors of values of ∂u/∂y and ∂2u/∂y2 become

∂̂u

∂y
= I

(1)
[2] C

−1




û
∂2ub1

∂y2

∂ub2

∂y


 , (33)

∂̂2u

∂y2
= I

(2)
[2] C

−1




û
∂2ub1

∂y2

∂ub2

∂y


 . (34)

The problem here is that the value of ∂ub2/∂y on the right-hand side of (33) and
(34) is not known. The method thus requires some additional manipulations. Those
Neumann conditions along the boundary CD are taken into account by replacing
∂ub2/∂y with

1

ny

(
∂ub2

∂n
− nx

∂ub2

∂x

)
, (35)

where nx and ny are the x− and y−components of the unit vector normal to the
boundary. The term ∂ub2/∂x in (35) is still unknown; however, one can express it
in terms of the grid values of u. Since line dd′ passes through one of the G-L points
{xi}

Nx

i=0 (e.g. xb2 = xp), this derivative value can be easily computed as

∂ub2

∂x
= D(1)(p, :)ûs, (36)

where D(1)(p, :) is the pth row of the differentiation matrix D(1) (the entries of D(1)

are defined by (6)-(8)), and

ûs = (u(x0, yb2), u(x1, yb2), · · · , u(xNx
, yb2))

T . (37)
12



Each component of ûs is computed from the interpolation of the nodal point function
u along the line that runs parallel to the y axis and goes through that point

u(xi, yb2) =
[
T0(yb2), T1(yb2), · · · , TNy

(yb2)
] [

D(0)
]−1

û, (38)

where
û =

(
u(xi, y0), u(xi, y1), · · · , u(xi, yNy

)
)T

and
[
D(0)

]−1
is the inverse of D(0)

D
(0)
ij = Tj(xi),

[
D(0)

]−1

ij
=

2

Ny

1

c̄i

1

c̄j

Ti(xj),

with 0 ≤ i, j ≤ Ny.

It can be seen that the values of derivatives of u with respect to y ((33) and (34))
are written in terms of nodal variable values, and they take account of derivative
boundary conditions.

Similarly, one can construct the Chebyshev approximations for ∂u/∂x and ∂2u/∂x2

at the grid points along horizontal lines, which cross the boundary CD, in terms of
the grid values of u.

The proposed technique imposes the boundary conditions prior to the assembly
process. For Dirichlet boundary conditions, the approximation of derivatives at a
grid point involves the grid values along the lines that go through that point, while
for Neumann boundary conditions, it involves all the grid values.

4 NUMERICAL RESULTS

The accuracy of an approximation scheme is measured by means of the discrete
relative L2 error of the solution defined as

Ne =

√∑M−1
i=0 (ue(xi, yi) − u(xi, yi))

2

√∑M−1
i=0 (ue(xi, yi))

2
, (39)

where M is the number of test points, and ue and u are the exact and computed
solutions, respectively. The proposed technique is verified through the solution of
Poisson equations. The error (39) is computed at the interior points of the actual
domain. It is assumed that a driving function b can be extended along the grid
lines to a fictitious part of the domain in a smooth manner. This is achievable and
such an extension can be constructed explicitly ([32] and references therein). Several
smooth and singular test problems are considered. For the former, an exact solution
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to the problem is chosen in advance, and the appropriate boundary conditions (u or
∂u/∂n) and function b are then derived from the exact solution. Examples chosen
involve single domains, multi-domains, Dirichlet boundary conditions and Neumann
boundary conditions. We also look at an example of a singular solution.

Before considering the solution of PDEs in the following examples, the integral
collocation formulation for fictitious domains is first tested with the case of function
interpolations. Consider a function f = sin(πx) with −1 ≤ x ≤ 1. Apart from the
values of f at the G-L points, other information on f is also given. Three examples
corresponding to cases of lines bb′, aa′ and cc′ are considered. Extra information is
given at xb1 = −1/3 and/or xb2 = 1/3 which do not coincide with any grid points.
The ICS2 scheme is employed here to evaluate the grid values of derivatives of f .
Table 1 shows that an exponential rate of convergence is achieved for all examples.
Another example, where the integral and differential collocation approaches use the
same sets of collocation points, is also studied. The values of df/dx and d2f/dx2

(extra information) are given at x = 0 and the discretizations are chosen such that
x = 0 is a grid point. Figure 2 shows that the integral approach yields a higher degree
of accuracy than the differential approach. It is noted that the latter does not take
account of extra information in the process of determining expansion coefficients (its
nodal derivative values are simply computed using (3)-(5)).

4.1 Example 1 (Simply-connected domain)

Consider a simply-connected domain as shown in Figure 1. Here, points A, B,
C, D and E are chosen to be (−1/2,−1), (3/4,−1), (3/4, 0), (0, 1) and (−1/2, 1),
respectively, and the centre and radius of the arc EA are taken as (1/4,0) and 5/4.
As mentioned earlier, the driving function and boundary conditions are provided by
the exact solution. This example uses

ue(x, y) =
1

π2
sin(πx) sin(πy), (40)

from which it is easy to deduce the driving function

b(x, y) = −2 sin(πx) sin(πy). (41)

Dirichlet boundary conditions, obtained from (40), are specified on the boundary.
The problem domain is embedded in a regular quadrilateral of 2 × 2 centred at the
origin. Figure 3 shows the plot of u over the extended domain.

There are two versions to be employed here. The first version uses ICS0, ICS1
and ICS2. At the boundary grid-points, only the boundary conditions are imposed.
In the second version, ICS0 and ICS2 are employed. This version forces both the
boundary conditions and the governing equation to be satisfied at the boundary
grid-points. Numerical results show that the two versions yield spectral accuracy
and they have similar degrees of accuracy. Unlike the case of rectangular domains
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[25], satisfaction of the governing equation at the boundary grid-points here does
not result in a significant improvement in accuracy. Table 2 presents errors Ne(u)
obtained by the second version.

4.2 Example 2 (domain with holes)

This problem takes the exact solution and driving function as

ue(x, y) = sin(2πx) cosh(2y) − cos(2πx) sinh(2y), (42)

b(x, y) = 4(1 − π2) [sin(2πx) cosh(2y) − cos(2πx) sinh(2y)] . (43)

A domain with several holes is employed (Figure 4). The domain and the square hole
are chosen as [−1,−1] × [1, 1] and [1/10,−9/10] × [9/10,−1/10], respectively. The
circular hole has its centre at (-1/2,1/2) and a radius of 2/5. Dirichlet boundary
conditions, obtained from (42), are specified along the boundaries. Figure 4 also
shows the variation of the function u over this extended domain.

The ICS2 scheme is employed to solve the problem. Results concerning Ne(u) are
given in Table 3, which indicate that the approximate solution converges exponen-
tially to the exact solution as the grid is refined.

4.3 Example 3 (Neumann boundary condition)

Consider an irregularly shaped domain as shown in Figure 5. The edge CD takes a
Neumann boundary condition, while the others are specified with Dirichlet boundary
conditions. Positions of points A, B, C, D, E and F are (0,-1), (-1,1), (1,0), (0,1),
(-1,1) and (-1,0), respectively. EF is an arc centered at (-1,-1). The exact solution
and driving function used here are given below

ue(x, y) = x [sin(2x) cosh(2y) − cos(2x) sinh(2y)] , (44)

b(x, y) = 4 [cos(2x) cosh(2y) + sin(2x) sinh(2y)] . (45)

The variation of ue over the extended domain defined by [−1,−1] × [1, 1] is also
shown in Figure 5. Discretizations are carried out using ICS0 and ICS2. The former
is applied for lines AB, BC, DE and EF. Table 4 shows that the proposed fictitious-
domain technique yields an exponential rate of convergence when the grid is refined.

4.4 Example 4 (domain decomposition)

The use of domain decompositions is necessary to deal with complicated/large-scale
engineering problems. The purpose of giving this example here is to investigate
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whether the rapid convergence of the solution with respect to grid refinement is
preserved when the proposed fictitious-domain technique is employed in conjunction
with domain decompositions.

Consider a Dirichlet problem with the domain of interest being composed of 2 oc-
tagons of unit inradius (Figure 6). The exact solution and driving function are

ue(x, y) = cos
(π

2
x
)

sinh(y), (46)

b(x, y) =

[
1 −

(π

2

)2
]

cos
(π

2
x
)

sinh(y). (47)

The present multi-domain scheme is based on the substructuring technique (cf. [33]).
The problem domain is divided into two non-overlapping subdomains (Figure 6).
The solution procedure consists of two stages. In the first stage, one deals with the
interface solution, while the second stage involves finding the solution of subdomains.
Each subdomain is embedded in the reference square domain, and ICS0 and ICS2
are employed to discretize the governing equation. Continuity of the function u and
its normal derivative is imposed pointwise along the interface. Results obtained are
displayed in Table 5, showing that the fictitious-multidomain technique also provides
a very fast convergence as the grids on subdomains are refined.

4.5 Example 5 (singular solution)

This example is concerned with the case of singular solutions. A non-rectangular
domain with curved and straight boundaries is considered here (Figure 7). The
curve is an arc having its centre at (-1,-1) and a radius of 2. The present singularity
of the solution is due to incompatibility of the differential equation (∇2u = 1) with
the boundary conditions (u=0) at the lower left corner (mild singularity). The
approximate solution u is represented by means of ICS1. Table 6 shows the values
of u at point (0,0). Since the exact solution is not known, the values of u obtained
with coarse grids are compared with the value of u with the fine grid (25×25). Like
conventional pseudospectral techniques, in this case (singular solution), the proposed
technique is capable of yielding an algebraic convergence rate only. However, it can
be seen that the obtained convergence rate is fast, up to O(h8.7).

We have also employed a finite-element method (FEM) to solve this problem. The
present FEM results (Table 7) were obtained using the PDE tool in MATLAB. To
have the solution converged to 5 significant digits, the FEM requires a mesh that
is finer than that of 69,120 linear triangular elements and 34,849 nodes. It is noted
that the present technique is able to provide a solution with 9 significant digits
using a relatively coarse grid of 19 × 19 (361 nodal points) (CPU time < 1 sec,
Pentium 4–2.4GHz, MATLAB environment). Thus, it appears that the proposed
technique is more efficient than the FEM. However, for a solution with low regularity
(strong singularity), the accuracy of the Chebyshev approximations deteriorates and
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there is no significant advantage over low-order approximation methods. In such a
circumstance, a suitable treatment of the singularities is needed in order to obtain a
high level of accuracy. This issue has been dealt with and reported in the literature,
see, e.g., [14].

5 CONCLUDING REMARKS

This paper reports a new global fictitious-domain/integral-collocation method for
the numerical solution of second-order elliptic PDEs in irregularly shaped domains.
The construction of the Chebyshev approximations representing the dependent vari-
able and its derivatives is based on integration rather than conventional differenti-
ation. Information about the actual boundary is taken into account through the
transformation of the spectral space into the physical space. Different types of do-
mains (simply-connected domains, multiply-connected domains and multi-domains)
and of boundary conditions (Dirichlet and Neumann boundary conditions) are con-
sidered. Numerical results obtained show that, for smooth (analytic) solutions, the
technique yields an exponential rate of convergence as the grid is refined. With this
very high order accuracy (comparing with second-order accuracy of the Lagrange-
multiplier-based fictitious-domain technique), the present technique is particularly
attractive for solving problems where high accuracy is required.
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Table 1: f = sin(πx), −1 ≤ x ≤ 1: Relative L2 errors of df/dx and d2f/dx2 by the
integral collocation approach. Apart from nodal function values, extra information
given at xb1 = −1/3 and/or xb2 = 1/3, which do not coincide with any grid points,
is also imposed. An exponential rate of convergence is achieved for all cases.

N (fb1, fb2) (dfb1/dx, d2fb1/dx2) (d2fb1/dx2, d2fb2/dx2)
Ne(df/dx) Ne(d

2f/dx2) Ne(df/dx) Ne(d
2f/dx2) Ne(df/dx) Ne(d

2f/dx2)
4 8.8460e-02 7.0451e-01 1.5343e-01 1.0797e+00 1.0419e-01 7.9100e-01
6 4.5988e-03 5.5131e-02 6.7822e-03 7.6128e-02 4.1839e-03 5.1067e-02
8 1.3393e-04 2.4939e-03 2.0038e-04 3.5285e-03 8.0820e-05 1.5281e-03
10 2.5850e-06 6.9033e-05 4.0471e-06 1.0215e-04 4.0866e-06 1.0173e-04
12 3.5690e-08 1.2885e-06 5.7271e-08 1.9513e-06 3.9559e-08 1.4085e-06
14 3.7087e-10 1.7326e-08 5.7189e-10 2.5296e-08 3.7210e-10 1.7376e-08
16 3.0199e-12 1.7638e-10 4.5415e-12 2.5175e-10 2.7687e-12 1.6322e-10
18 2.4876e-14 1.6541e-12 3.0433e-14 1.7612e-12 1.4664e-14 4.0458e-13
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Table 2: Example 1: Relative L2 errors of the solution u. An exponential rate of
convergence is achieved.

Nx × Ny Ne(u)
4 × 4 7.2627e-02
6 × 6 2.2341e-03
8 × 8 3.5313e-05

10 × 10 1.4536e-06
12 × 12 2.4660e-08
14 × 14 8.4682e-10
16 × 16 3.6123e-12
18 × 18 2.2815e-13
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Table 3: Example 2: Relative L2 errors of the solution u. An exponential rate of
convergence is achieved.

Nx × Ny Ne(u)
6 × 6 3.1388e-01
8 × 8 1.5516e-02

10 × 10 7.9954e-04
12 × 12 3.2827e-05
14 × 14 7.8000e-06
16 × 16 2.5851e-08
18 × 18 5.5654e-10
20 × 20 9.4352e-12
22 × 22 1.6256e-13
24 × 24 6.6625e-14
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Table 4: Example 3: Relative L2 errors of the solution u. An exponential rate of
convergence is achieved.

Nx × Ny Ne(u)
3 × 3 5.1493e-01
5 × 5 4.2323e-03
7 × 7 9.5121e-05
9 × 9 8.8346e-06

11 × 11 1.9794e-08
13 × 13 7.2909e-11
15 × 15 5.6142e-12
17 × 17 2.2127e-13

23



Table 5: Example 4: Relative L2 errors of the solution u. An exponential rate of
convergence is achieved.

Nx × Ny/subdomain Ne(u)
3 × 3 1.4926e-003
5 × 5 7.7614e-005
7 × 7 4.0172e-007
9 × 9 1.6790e-009

11 × 11 4.5440e-012
13 × 13 1.1983e-013
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Table 6: Example 5: Computed values of u at point (0,0). For singular problems,
the proposed method, like conventional pseudospectral methods, is only capable of
yielding an algebraic rate of convergence. The values of u(0, 0) obtained with coarse
grids are compared with the value of u(0, 0) with the fine grid (25 × 25).

Nx × Ny u |u − u25×25|
5 × 5 -0.2047754128 3.4e-004
7 × 7 -0.2044510201 2.4e-005
9 × 9 -0.2044239912 2.8e-006

11 × 11 -0.2044278480 9.7e-007
13 × 13 -0.2044267185 1.5e-007
15 × 15 -0.2044268922 1.9e-008
17 × 17 -0.2044268784 6.1e-009
19 × 19 -0.2044268720 2.2e-010
25 × 25 -0.2044268722

O(h8.7)
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Table 7: Example 5: Computed values of u at point (0,0) by FEM. The linear-FEM
results are obtained using the PDE toolbox in MATLAB.

No of nodes No of △ elements u
154 270 -0.2025125196
577 1080 -0.2037602559
2233 4320 -0.2043066030
8785 17280 -0.2044072175
34849 69120 -0.2044199008
138817 276480 -0.2044248592
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Figure 1: Extended domain. An irregular domain is embedded in a rectangular
domain which is then discretized using a tensor product grid. Lines aa′, bb′, cc′, dd′

and ee′ present typical cases for the approximation of derivatives of the field variable
with respect to y.

27



10
−2

10
−1

10
0

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Differential
Integral

h

N
e
(d

2
f
/d

x
2
)

Figure 2: f = sin(πx), −1 ≤ x ≤ 1: Relative L2 errors (Ne) of d2f/dx2. The integral
approximation scheme takes into account not only the nodal function values but also
the values of df/dx and d2f/dx2 at x = 0. Since the discretizations used here are
chosen such that x = 0 is a grid point, the integral and differential formulations use
the same grids. The former yields a higher level of accuracy than the latter. It is
noted that h is the average spacing defined as h = 2/N .
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Figure 3: Example 1: Exact solution.
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Figure 4: Example 2 (Dirichlet problem): A domain with holes and exact solution.
The mark + is used to denote interior points of the actual domain Ω.
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Figure 5: Example 3: Extended domain and exact solution. The side CD is specified
with a Neumann boundary condition. The mark + is used to denote interior points
of the actual domain Ω.
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Figure 6: Example 4 (Dirichlet problem): Extended subdomains and exact solution.
The problem domain is divided into 2 subdomains.

32



u = 0

u = 0

u = 0

∇2u = 1

Figure 7: Example 5 (singular problem): Extended domain. The mark + is used to
denote interior points of the actual domain Ω.
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