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An improved boundary element method for non-linear viscoelastic flow analysis is 
reported. In this method, the domain integral representing the non-linear effects is 
calculated using a more efficient approximating technique. This is achieved by first 
transforming the domain integral into a form that can be approximated by particular 
solutions to the original problem. These particular solutions are in fact expressed as a 
linear combination of radial basis functions, whose coefficients are found by data 
fitting technique. As a result, the numerical computation of the volume integral is 
eliminated and a significant reduction of CPU time is achieved. The routines are tested 
with simple flows and then applied to solve complex three-dimensional direct and 
inverse extrusion problems of polymeric fluids, such as thermoplastic melts. Inverse 
extrusion process, where an extrusion die profile needs to be computed for a given 
profile extrudate, is a very important practical engineering application which is 
successfully analysed by the present method. Relative to a previous BEM 
implementation where the volume integral is computed directly using numerical 
quadratures, a CPU time reduction ranging from 40 to 70% is achieved. © 1997 
Elsevier Science Ltd. 

Keywords: Boundary element method, domain integral transformation, particular 
solution, profile polymer extrusion. 

1 I N T R O D U C T I O N  

Boundary element methods (BEM) have become popular 
techniques for solving boundary value problems in solid 
and fluid mechanics. Many linear problems involving partial 
differential equation (PDE) such as potential flow (the 
Laplace equation), linear elasticity (Navier's equation) 
and viscous creeping flow (the Stokes equation) have been 
solved successfully using BEM. Obviously, for the prob- 
lems involving homogeneous PDE this technique has cer- 
tain advantages over the finite element and the finite 
difference methods because it requires only discretization 
of  the boundary of  the domain, thus reducing the dimension- 
ality of  the problems by one. Unfortunately, this advantage 
is greatly offset in non-linear problems such as viscoelastic 
flows. In these problems, the non-linearities can be formu- 
lated into a body force term and the problem can be solved 
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iteratively. At each stage of  the iterative process, a linear 
problem is solved, with the non-linear terms estimated from 
the results of  the previous iteration. 1-3 The resulting integral 
equations include domain integrals. These integrals are 
usually computed by numerical quadrature techniques 
which require domain discretization. 4"5 However, a draw- 
back of  this procedure is the high demand of  CPU time in 
the computation of  the domain integral, which is about 6 0 -  
65% of the total CPU time required for a three-dimensional 
extrusion problem using a coarse mesh such as MSHI.  
When a fine mesh (such as MSH2) is used, this percentage 
is even higher. When the number of  volume nodes is large 
(for a fine mesh) this procedure is apparently inefficient. 
Moreover, it is inconvenient from the numerical point of  
view, especially near corner points where the stresses are 
infinitely large. 6 

Alternative methods of  calculating the domain integral 
have been used recently in order to make the BEM more 
effective. 6-1° Most of  the proposed techniques that have 
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been used so far belong to either methods of particular 
solutions or methods of transforming domain integrals to 
boundary ones. The concept in both methods is similar in 
principle; the difference is in the way the total solution for 
the problem is obtained. In the former method, particular solu- 
tions satisfying the inhomogeneous PDE are first found, and 
the remainder of the solutions satisfying the homogeneous 
PDE with appropriate boundary conditions, which must be 
adjusted to ensure the correct boundary conditions for the 
total solution, is obtained. Then the total solution is found by 
adding the particular solutions to homogeneous ones. 6'1°' I I In 
the latter method, the divergence theorem or the reciprocity 
theorem is applied instead to convert domain integrals (also 
called pseudo-body forces) into the boundary ones. 7-932 

The functions used to represent the non-homogeneous 
part of the problem could be chosen among a great number 
of approximants. A good choice, however, is important for 
numerical efficiency. Radial basis functions in recent years 
have become popular for multidimensional interpolation. 13. 
Zheng e t  al. 6"14 and Zheng and Phan-Thien 12 showed some 
advantages and successful results of the radial basis func- 
tions in the particular solutions methods, as applied to some 
inhomogeneous potential problems. We also prefer the use 
of radial basis functions in this study. 

The main purpose of the present work is to extend the 
study of three-dimensional extrusion of viscoelastic 
fluids 535 using the methods of particular solutions. 1° In 
the next section we briefly recall the basic equations govern- 
ing viscoelastic flow problems and their integral equation 
representation, followed by a derivation of the approximate 
pseudo-body force using radial basis functions. Next the 
details of the numerical treatment and solution scheme are 
described, which are validated with some test results involving 
simple flows. The method is then applied to study complex 
three-dimensional direct extrusion and inverse extrusion flows 
of viscoelastic fluids. The efficiency of the method is demon- 
strated by CPU time-saving ranging from 40 to 70%. 

is the upper-convected derivative of the extra stress tensor, 
with L the velocity gradient tensor and L x its transpose. 
With the introduction of the relaxation time, a new dimen- 
sionless group, the Wiessenberg number, arises. It is 
defined as 

Wi= k'~, 

where ~, is a typical shear rate. 
In BEM applications, eqn (1) in conjunction with eqn (2) 

is written as 

o = - pl  + 2~pD + e (4) 

where 2~lpD represents the total (arbitrary) linear part of the 
stress tensor and e the non-linear part. From this equation 
and balance of mass and momentum, we obtain the follow- 
ing integral equation: 

Cij(x)uj(x) = ~nUij* (x, y)tj(y) dI'(y) 

- f~Dt~(x,y)uj(y) dr(y) 

_ JfDeJk(Y ) Ou~(x,y) dfl(y) (5) 
cgx k 

where u is the velocity field, t the traction field, u*(x,y) and 
t*(x,y) are known kernels (Stokeslet and its associated trac- 
tion field, see, for example, Tran-Cong and Phan-Thien 5'15 
and Tran-Cong16). The last integral on the RHS of eqn (5), 
considered as a pseudo-body force, does not introduce any 
unknown. The use of gaussian quadrature formulas to cal- 
culate this integral, however, as mentioned above, could be 
time consuming, and sometimes it is practically impossible 
for studying complex problems such as extrusion process at 
high Wiessenberg numbers, especially at refined mesh. 
Alternatively this domain integral can be calculated 
approximately using particular soulutions, as described in 
the next section. 

2 B O U N D A R Y  I N T E G R A L  F O R M U L A T I O N  

We consider a steady, isothermal flow of viscoelastic fluid 
with a single relaxation time, where the stress tensor can be 
arbitrarily decomposed as: 5 

a= - p l  + 2~TsD + T (1) 

Here p is the hydrostatic pressure which arises due to the 
incompressibility constraint, 1 is the unit tensor, Os is 'sol- 
vent' viscosity, D is rate of strain tensor, r is the extra- 
stress tensor which is governed by a differential constitu- 
tive equation of the type 

X AT ~ - + R = 0  (2) 

in which 3, is the relaxation time, R is model dependent, and 

AT Jr  
-- q- u .Vr  - LT - TL + (3) 

At at 

3 A P P R O X I M A T I O N  O F  T H E  V O L U M E  
I N T E G R A L  

The volume integral in eqn (5) can be converted onto the 
boundary, using the divergence theorem after integrating by 
parts as follows: 

f ou~(x, 
b i = JneJk(y) aXk Y) dfl(y) 

= [aoejk(y)uij(x,y)nk dF(y) 

fDu~.(x, Y) 0ej~(x, y) - Oxk df/(y) 

= J;~iejk(y)uij(x, y)n~ dF(y) + u p (6) 
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Fig. 1. Boundary conditions for Couette flow. V and T are velocity and traction vectors. 

in which u p is defined as 

u p = - ~ u* 'x 
0ej,(x, Y) 

D ij( , y  ) " ~ dfl(y) 

= - J V~(x,y)~j(y) dfl(y) (7) 

where 

1 0ej,(x,  y) (8) 
~PJ(Y)- 2 Oxk 

and 

I'ij(x, y) = 2 u i j ( x  , Y) 

Parton and Perlin 17 have proved that the solution for u p in 
eqn (7) can be found by solving the Navier equations 

( 1 p ~2uP ) 
k, 1 - - S - ~  v v ' u  + = - 2~,(x) (9) # 

Here ~ is the Poisson's  ratio. We will consider the limiting 

case where 1, ---* 1/2 in the final results, since this limit is 
regular. 

To transform eqn (9) into the biharmonic equation we use 
the 'Galerkin '  form of  solution given by 

u p = V V . G  - - 1  V2 G (10) 
2(1 - x,) 

where G is the Galerkin vector (see, for example, Phan- 
Thien and Kim18). Substitution of eqn (10) into eqn (9) 
yields the following equation: 

V2V2G = f (11 ) 

where 

f =  - 2  -~ 0 2 )  
# 

If  a function G satisfying eqn (11) can be found then the 
corresponding u p is determined by eqn (10). Note that 
in this final form of the particular solution, the limit of  
---, 112 is not singular. One way to find G is to approximate f 

X 
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Fig. 2. Boundary conditions for Poiseuille flow. V and T are velocity and traction vectors. 
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Table 1. Max imum differences of velocity and stresses between solutions obtained from the two methods and analytical solutions for 
Couette flow using a coarse mesh MSI-I1 (note that P1 = N T D B E M  and P2 = NTDBEM96)  

Wi % Av .u max I %Ar~,I ma~, %At ~:( m~ I % S AV 
P 1 P2 P 1 P2 P 1 P2 

0.1 0.51 0.50 6.65 6.51 2.48 2.62 40 
0.2 0.55 0.61 5.46 5.56 2.67 2.86 42 
0.3 0.67 0.71 5.26 5.35 3.12 3.27 40 
0.4 0.74 0.81 5.37 5.45 3.55 3.85 43 
0.5 0.93 0.92 6.05 6.25 4.07 4.26 42 
0.6 1.05 1.15 6.35 6.41 5.02 5.2 40 

in terms of radial basis functions if: 

N 

f/(r) = y .  Olin~/(~'n) (13) 
n = ]  

in which i = 1, 2, 3 for three-dimensional problems, N is 
the number of distributed points in the domain and 

I r - r ~ l  
rn = (14) 

where r~, ~n are suitably chosen constants and ~b is a func- 
tion of a single variable] 2. Now eqn (1 l) reduces to, if its 
right-hand side is replaced by a radial basis function (and 
therefore a particular solution is also a radial basis func- 
tion), the following: 

1 O ( ~ 2 O (  1 0 ( ~ 2 0 ~ ) ) )  ~2~\ ~ \ g ~  =~(~) (15) 

When the radial basis function ~b is chosen to be exp( - ~2) 
for three-dimensional problems, a particular solution of eqn 
(15) is given by 

1 ( (  ' ) v/~erf(~) + exp( _ ~2) _ 2 )  

(16) 

The Galerkin vector in (10) corresponding to this particular 
solution will be given by 

N 

Gi(r) -= E 4ffr.)ai (17) 
n = l  

(see Coleman et al. 1° for more details). 
Finally, with the substitution of the derivatives of G i from 

eqns (15), 0 and (17) into eqn (10), the displacement u p can 

be written as 

1 
u p ~- a iq~l  - 1 - p(o~i4~2 + ~,i~,k~k4~3) 

where 

4,~ - q ~ " +  2_4¢ 
r 

(18) 

(19) 

1 
~b 2 ~- -~b' (20) 

F 

1 
~ 3 ~  ' ' -  7~ (21) 

r 

in which ? i = O~'lOx,. 

4 N U M E R I C A L  I M P L E M E N T A T I O N  

A decoupled technique, similar to that reported by Bush 3 is 
implemented here. The procedure for finding the extra- 
stress (the non-linear part) is similar to that of  Tran-Cong 
and Phan-Thien 5 and the details will not be repeated here. 
The new feature of the present method is the way in which 
the domain integral is computed. The data fitting techniques 
will be used instead of numerical quadrature techniques. 

Ifain,  fin and rn in eqns (13), (14), 0 and (17) are known 
from eqns (19)-(21) and (18), the pseudo-body force b in 
eqns (6) and (7) is also determined. In principle, the three 
parameters can be found by using available non-linear data- 
fitting techniques. However the calculation is performed 
only by iteration and therefore such a scheme could be 

Table 2. Max imum differences of  velocity and stresses between solutions obtained from the two methods and analytical solutions for 
Couette flow using a fine mesh MSH2 (note that P1 = N T D B E M  and P2 = NTDBEM96)  

Wi %AY ~(maxl %Ar~(,,a~l %Arx:, ,,ax~ %SAV 
PI P2 PI P2 PI P2 

0.1 0.13 0.14 2.25 2.41 1.48 1.51 55 
0.2 0.19 0.21 1.55 1.70 1.66 1.81 55 
0.3 0.28 0.30 1.86 2.15 2.08 2.12 56 
0.4 0.37 0.39 2.92 3.02 2.25 2.32 58 
0.5 0.41 0.42 3.42 3.61 2.55 2.67 58 
0.6 0.52 0.58 3.55 3.82 2.80 2.93 58 
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Table 3. Maximum differences of velocity and stresses between solutions obtained from the two methods and analytical solutions for 
Poiseuille flow using a coarse mesh MSH1 (note that PI = NTDBEM and P2 = NTDBEM96) 

Wi %Avx(max) %ATxx(max) %AT"xz(max ) %SAV 
P1 P2 P1 P2 P1 P2 

0.1 1.43 1.54 1.10 1.05 1.81 2.01 41 
0.2 1.42 1.50 1.05 1.06 1.85 2.2 42 
0.3 1.30 1.43 1.02 1.06 1.80 2.3 42 
0.4 1.10 1.05 1.04 1.05 1.90 2.3 43 
0.5 1.00 0.92 1.02 1.04 1.85 2.1 43 
0.6 0.85 0.71 1.00 1.02 1.85 2.1 43 

time consuming. Alternatively we can use linear data-fitting 
techniques by choosing/3, and rn apriori and leave o~in to be 
determined. Zheng e t  al. 6"14 and Coleman et al.~° obtained 
good results following this approach. Recommendations for 
/3~ and r ,  are also given. In this work rn are chosen to be 
suitably distributed points in the domain (here we use the 
points resulted from a typical FE-type discretization). The 
/3n for each point are chosen to be the average distance from 
its immediate neighbours multiplied by a weighting factor, 
and the weighting factor can vary in a range from 0.5 to 2.0 
by numerical experiments. ~° In order to obtain accurate 
solutions, i3~ (or the weighting factor) must be carefully 
chosen. This matter will be discussed in the next section. 

To find oti, one can use either a collocation method or a 
least-square fitting method. Both of  those methods result in 
a set of  linear algebraic equations in which c~i, are unknown. 
The use of the gaussian distribution as the basis functions 
makes the system matrix effectively sparse, for which either 
the Gauss elimination (GE) or an iterative solution method 
can be used, such as the conjugate gradient method 
(CGM) 19 which has been known to be more efficient for 
large systems. The results shown in the next section were 
obtained with both GE and CGM methods. The differences 
in the results by the two methods are in the range of  0 .01-  
0.05%, which must be due to the iterative nature of  the 
CGM method. 

5 N U M E R I C A L  R E S U L T S  

5.1 Test  prob lems  

In this section we show some test results obtained from the 
procedure described above. The code was tested in some 
simple flows (Couette and Poiseuille flows) for which 

analytical solutions are known. The pseudo-body force 
was calculated using gaussian quadrature formulas; 5 the 
same procedure is adopted here. For each problem a 
coarse mesh, MSH1 (with 73 boundary nodes and 79 
domain nodes) and a fine mesh, MSH2 (with 709 boundary 
nodes and 1549 domain nodes) were used. 

Couette and Poiseulle flows of  an upper-convected Max- 
well fluid are used to test the program. The boundary con- 
ditions for the two flows are illustrated in Figs 1 and 2. The 
velocity and stress fields are obtained analytically by sol- 
ving the field equations with appropriate boundary con- 
ditions. 21 Field variables are non-dimensionalized 
according to 

t~ t X'---- X_, u'----U, 7"' 7" 
-----~' a -------U 7 - -  

a 

where t is time, x is the position vector, u is the velocity 
vector, r is the extra stress tensor and ~ is the viscosity. X is 
the fluid relaxation time, a is a typical length and U is a 
typical flow speed. Then, for Couette flow, the velocity 
field v and stress field 7 are given as 

V ~  [! t/p 

, 7 ~ 

L2wi%~ 10 
For Poiseuille flow, we have 

V =  

~h 2 
~ - ~ ( 1  - z 2) 

0 

0 

[ 2~pWiz 2 0 - z %  

0 0 

L - Z~p 0 0 

In these formulas 5' denotes shear rate, Wi = ~,'i' is the 

Table 4. Maximum differences of velocity and stresses between solutions obtained from the two methods and analytical solutions for 
Poiseuille flow using a fine mesh MSH2 (note that P1 = NTDBEM and P2 = NTDBEM96) 

Wi %Avx(max) °~AT"xx(max ) °~mTxz(max ) %SAV 
P1 P2 PI P2 PI P2 

0.1 0.83 0.92 0.23 0.23 0.65 0.59 55 
0.2 0.80 0.83 0.26 0.25 0.69 0.63 55 
0.3 0.78 0.75 0.25 0.26 0.71 0.65 56 
0.4 0.74 0.67 0.27 0.28 0.71 0.66 56 
0.5 0.60 0.58 0.30 0.31 0.73 0.66 56 
0.6 0.58 0.41 0.31 0.30 0.81 0.67 56 
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Fig. 3. A refined mesh MSH2 for a square die. 

Weissenberg number, X is the relaxation time and c~ is the 
pressure gradient in the direction of the flow (for Poiseuille 
flow only). 

To simplify the test problems we choose in these 
examples y = l ,  ~p = 1, c~ = 1, h = 1 and U =  1. The 
values of /3~ in eqn (14) are chosen via the weighting 
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Fig. 4. Rate of convergence (Wiw = 0.225). Note that a CM of 
O(10 -3 ) is achieved in about five iterations. 
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Fig. 5. Swell ratios as a function of Wiw: (a) across OA; and 
(b) across OB (see Fig. 3.) 

factor, which is 1.0. Although the weighting factor can be 
chosen in the range from 0.5 to 2.0, it is found that the 
accuracy of  the solution is sensitive to the choice of this 
parameter. The best value is in the range of  0.9-1.1 for 
Couette and Poiseuille flows. Similar influence of the 
weighting factor is found in studies by Coleman et aL l° 
and Jackson 2°. To confirm the accuracy of the programs, 
studies are carried out with different values of  Wi. For 
each value of  Wi the convergence measure, which is less 
than 10 -6 , is obtained after two to three iterations for 
Couette flow and four to six iterations for Poiseulle flow. 
The convergence measure (CM) is defined by 

1 

(u7 - u7 
C M =  I, I i=1 

1 (22) 

where ui is the / -veloci ty  component at a node, N is the total 
number of nodes, n is the iteration number. Tables 1 -4  
show the maximum differences in percentage between ana- 
lytical solutions and those obtained by NTDBEM and 
NTDBEM96. The times that can be saved by using the 
new routine (in comparison with the old one) are also pre- 
sented in the last column of  these tables. 

The agreement of  the results obtained from Tran-Cong 
and Phan-Thien'  s 5 implementation (NTDBEM) and the cur- 
rent implementation (NTDBEM96) confirms the correct- 
ness of  the current procedure and a considerable saving of  
CPU time is obtained with the current implementation. 
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Table 5. Die shape relative to a required square extrudate as a function of Wi in percentage (note that the data for NTDBEM are 
from Tran-Cong and Phan-Thien 15) 

Wi Across OB Across OA 

W/w 

NTDBEM NTDBEM96 NTDBEM NTDBEM96 

0.05 0.1124 - 19.3 - 19.0 + 1.9 + 1.7 
0.10 0.2248 - 21.0 - 20.5 + 0.8 + 0.5 
0.15 0.3372 - 23.8 - 23.4 - 1.3 - 1.8 

5.2 Extrusion problems 

In this section we show some results of  study of  extrusion of  
MPTT fluid through a square die. The results are compared 
with those obtained by Tran-Cong and Phan-Thien 5'~5 for a 
coarse mesh MSH1 (with 166 boundary nodes and 349 
volume nodes discretization). The boundary conditions are 
as follows. At the die inlet, a Newtonian velocity profile is 
prescribed and the flow is al lowed to develop downstream 
before reaching the die exit. The free surface of  the extru- 
date downstream from the die exit is traction-free. A no-slip 
condition is assumed on the die walls. Extrudate swell is the 
principal phenomenon under investigation here. For 
geometry other than circular or planar, ' swell ing ratio'  is 
not uniquely defined. In the present problem, a typical ratio 
of  the distance from the centreline to the extrudate surface 
over the corresponding distance from the centreline to the 
die surface is defined as the local swelling ratio. For  the 
square die, two typical ratios are reported here. One is 
measured along OA and the other is along OB as shown in 
Fig. 3. 

We also use Wiw (the Weissenberg number based on a 
wall shear rate at a point far upstream, Wiw -~ 2.25 Wi for a 
square die) for convenience. With a refined mesh MSH2 
(with 544 boundary nodes and 1794 domain nodes) shown 
in Fig. 3 it is difficult to carry on the analysis with 
NTDBEM because of  high demand of  CPU time (it takes 
from 15-20  h to finish one iteration on a Silicon Graphics 
Indigo2 machine with a MIPS R4400 CPU and 128 Mbytes 
of  RAM).  The program NTDBEM96,  with the new routine 
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Fig. 6. Numerical solution 'S' for Couette flow (Wi = 0.1) as a 
function of weighting factor. Note that the solutions are taken at 

the node labelled as A in Fig. 1. 

for the approximation of  the domain integral, gives the solu- 
tions in a relatively short time. Fig. 4 shows the rate of  
convergence of  the extrusion analysis with Wiw = 0.225 
using both NTDBEM and NTDBEM96.  The swelling 
ratio as a function of  Wiw is presented in Fig. 5. As can be 
seen from the figure, the results differ by less than 1.0% 
(MSH1) and 0.3% (MSH2). Note that with the finer mesh 
used here (MSH2) we stop the simulation using NTDBEM 
(i.e. the old implementation) after the first three Wis values 
because of  high CPU demand. With the present improved 
implementation (NTDBEM96),  we could continue the 
simulation at a much lower cost. However,  we encounter 
a problem of  convergence. It appears that the problem fails 
to converge at a lower Wi number when a finer mesh is used. 
For example,  with MSH1, NTDBEM96 converges up to 
Wiw = 1.01 and only up to Wiw = 0.68 with MSH2. This 
is a separate issue which will be further investigated. 

The weighting factor in this problem is chosen to be 0.6 
which is the mid-point  of  the best range of  0 .55-0.75 found 
experimentally for the extrusion problem. The time required 
to finish every iteration by both programs is recorded. The 
CPU time which the new routine can save is 5 5 - 6 0 %  for the 
coarse mesh MSH1 and 6 3 - 7 0 %  for the fine mesh MSH2. 
From results of  the test problems (Tables 1 -4)  and the 
extrusion problems it is found that relatively more time 
(i.e. higher percentage) is saved as meshes are refined, 
which is advantageous. 

Table 5 shows some indicative results obtained by using 
the same procedure for an inverse problem (the results are in 
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Fig. 7. Numerical solution 'S' for Poiseuille flow (Wi = 0.1) as a 
function of weighting factor. Note that the solutions are taken at 

the node labeled as B in Fig. 2. 
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comparison with those obtained by Tran-Cong ~6 and Tran- 
Cong and Phan-Thien 15 using quadrature formulas). In this 
problem it is required to compute the die geometry that will 
produce a given extrudate geometry (square cross-section in 
this case). This is a typical engineering problem which is 
still largely solved by trial and error experimentation. Given 
that the extrudate geometry is fixed (in contrast to the direct 
extrusion problem), the values shown in Table 5 are 
measures of the computed die geometry relative to the 
extrudate. Negative values indicate that the required die is 
smaller than the extrudate which is consistent with the die 
swell phenomenon, especially at higher Wi numbers. At 
lower Wi numbers when the material behaviour is close to 
Newtonian, we observe some local contraction of the extru- 
date as indicated by the positive values shown in the table. 
The time saving in this problem is almost the same as in the 
direct extrusion problem. 

5.3 The choice of  the weighting factor 

As mentioned earlier, the choice of the weighting factor is a 
difficult problem which is determined by appropriate 
numerical experiments. We note the following: 

1. For each type of problems, the range of optimal 
values for the factor seems to be independent of the 
mesh used (we have used geometrically similar 
meshes and with varied degree of refinement; 
meshes with different aspect ratios were also used). 

2. The ranges of optimal value for the factor for differ- 
ent types of problems do not overlap and hence it is 
not possible to establish a 'universal' range experi- 
mentally.However, we suggest that for each type of 

problem, we might be able to establish a valid range 
for the weighting factor for subsequent routine ana- 
lyses. The basis for this idea is shown in Figs 6 -8  
where it can be seen that approximately correct solu- 
tions correspond to a 'flat' region in the plot of 
numerical solutions vs weighting factor. Furthermore, 
it appears that this region is the neighbourhood of the 
extremum of the numerical solutions with respect to 
the weighting factor. The optimum value for the 
weighting factor can then be chosen to be roughly 
in the middle of this 'flat' region, which has been 
done in this study. 

6 CONCLUDING REMARKS 

Routine engineering analysis of three-dimensional polymer 
extrusion process, especially the inverse process where a die 
geometry is to be computed for a given extrudate profile, is 
practically very important in reducing the high cost 
involved (trial and error die manufacturing and long lead- 
time). Direct BEMs have been successfully applied to this 
kind of analysis. S'15'16 However, more efficient techniques 
are required, and provided here in this work, in order to 
analyse larger problems. The results reported here show 
that the efficiency of the method has been significantly 
improved. More importantly, efficiency gain is greater for 
larger problems. This work has demonstrated that larger 
practical plastic extrusion analyses can be done on desktop 
machine (a Silicon Graphics Indigo2 with a MIPS R4400 
CPU and 128 Mbytes of RAM was used in this work). 
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