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Abstract 

 

 

 

The electroencephalogram (EEG) is a measurement of neuronal activity inside the 

brain over a period of time by placing electrodes on the scalp surface and is used 

extensively in clinical practices and brain researches, such as sleep disorders, 

epileptic seizure, electroconvulsive therapy, transcranial direct current stimulation 

and transcranial magnetic stimulation for the treatment of the long term memory loss 

or memory disorders.    

The computation of EEG for a given dipolar current source in the brain using 

a volume conductor model of the head is known as EEG forward problem, which is 

repeatedly used in EEG source localization. The accuracy of the EEG forward 

problem depends on head geometry and electrical tissue property, such as 

conductivity. The accurate head geometry could be obtained from the magnetic 

resonance imaging; however it is not possible to obtain in vivo tissue conductivity. 

Moreover, different parts of the head have different conductivities even with the 

same tissue. Not only various head tissues show different conductivities or tissue 

inhomogeneity, some of them are also anisotropic, such as the skull and white matter 

(WM) in the brain. The anisotropy ratio is variable due to the fibre structure of the 

WM and the various thickness of skull hard and soft bones. To our knowledge, 

previous work has not extensively investigated the impact of various tissue 

conductivities with the same tissue and various anisotropy ratios on head modelling.  

In this dissertation, we investigate the effects of tissue conductivity on EEG 

in two aspects: inhomogeneous and anisotropic conductivities, and local tissue 

conductivity. For the first aspect, we propose conductivity models, such as 

conductivity ratio approximation, statistical conductivity approximation, fractional 

anisotropy based conductivity approximation, the Monte Carlo method based 

conductivity approximation and stochastic method based conductivity approximation 

models. For the second aspect, we propose a local tissue conductivity model where 

location specific conductivity is used to construct a human head model. We use 
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spherically and realistically shaped head geometries for the head model construction. 

We also investigate the sensitivity of inhomogeneous and anisotropic conductivity on 

EEG computation. 

 The simulated results based on these conductivity models show that the 

inhomogeneous and anisotropic tissue properties affect significantly on EEG. Based 

on our proposed conductivity models, we find an average of 54.19% relative 

difference measure (RDM) with a minimum of 4.04% and a maximum of 171%, and 

an average of  1.64 magnification (MAG) values with a minimum of 0.30 and a 

maximum of 6.95 in comparison with the homogeneous and isotropic conductivity 

based head model. On the other hand, we find an average of 55.16% RDM with a 

minimum of 12% and a maximum of 120%, and 1.18 average MAG values with a 

minimum of 0.22 and a maximum of 2.03 for the local tissue conductivity based 

head model. We also find 0.003 to 0.42 with an average of 0.1 sensitivity index, 

which means 10% mean scalp potential variations if we ignore tissue conductivity 

properties. Therefore, this study concludes that tissue properties are crucial and 

should be accounted in accurate head modelling. 
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Chapter  1  Introduction 

 1 

 

CHAPTER 1           

INTRODUCTION 

 

 

Human brain consists of 10
10

-10
11

 neurons that are closely interconnected to each 

other. The brain receives its input from different senses such as sight, sound, touch 

and taste. These perceived inputs give the brain knowledge of the surrounding 

environment. It has been recognized that electrical interaction between neurons is 

responsible for the transmission of information. As information from these senses 

travels through the brain, it interacts with an enormous number of neurons (10
3
 – 

10
5
), and undergoes progressively more complex processing. In this way, knowledge 

of the environment can be combined with the current „state of mind‟ to produce a set 

of outputs. This output causes movement of the muscles to allow the body to respond 

appropriately to the environment.     

Neuron, the core component of the brain, processes and transmits information 

by electrochemical signalling. More generally, neurons communicate with each other 

via a chemical messenger, such as diffusion of Potassium ions (K
+
), which are 

regulated by the electrical state of neurons. When an area of the brain is activated, 

the electric potential of the neurons within that region is generated (in milliVolt 

amplitude) and changed over time. This electrical activity in the brain, in turn, 

produces an electric field that affects the entire body. The electric potentials within 

this electric field conduct up through the brain tissue, enter the membranes and 

continue on up through the skull to the scalp.  When the electric potentials appear in 

the scalp, it turns into micro Volts in amplitude. Although small in amplitude, this 

field can be detected by placing electrodes on the head surface, and recording the 

electric potential at each electrode. This recording of potentials on the head surface 

using electrodes is known as an electroencephalogram (EEG). EEG provides a 

picture of the neuronal activity of the brain over time. 
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1.1 Electroencephalography and Head Modelling 

 

In order to understand the relationship between EEG and the sources of brain 

activity, the electrical conduction properties within the head is to be modelled 

mathematically. An enormous number of studies have been performed in last few 

decades in developing efficient head modelling techniques [Zhou and Oostendrop 

1992, de Munck and Peters, 1993]. Brain researchers have started head modelling 

from the fundamental concept of a spherical head (single-layered head model) 

[Marin et al 1998, Mosher et al 1999, Muravchik et al 2001]. Then, they progress it 

making three-sphere (brain, skull and scalp) head models. Later on, they have added 

cerebrospinal fluid to the three-layered head model and produced a four-layered 

model. Finally, they are able to make five-layers to N layers head models [Vanrumste 

2002]. As the spherical head model fails to satisfy the actual geometry of a head, 

researchers have discovered a challenging topic to create a realistic head model. 

Even more challenges are posed when realistic conductivities are included in the 

head model construction. Such challenges include: (i) the anatomic construction of  

accurate head geometries of each compartment of the head, (ii) the specification of 

material properties (most of which are inhomogeneous and some are anisotropic), 

(iii) the numerical approximation of the biophysical field equation and (iv) the large-

scale nature of computation. Though researchers have developed anatomically 

accurate head geometries from magnetic resonance imaging (MRI), studied 

conductivities from diffusion tensor MRIs and implemented piecewise numerical 

computation with an excessively large computer to construct a more realistic head 

model, a complete volume conductor model of a human head has not yet been 

accomplished, especially in terms of conductivity [Vanrumste 2002, von Ellenrieder 

et al 2008]. The structure of the human head is too complex to be represented exactly 

by an artificial computer model. This thesis attempts to develop new approaches to 

model a human head using spherical and realistic head geometries based on the head 

tissue properties (conductivity). It is our hope that these additional concepts may 

contribute to the successful head modelling, which can be used in both clinical 

purposes and brain research.  

Among the head tissues, most tissues are inhomogeneous and some are 

anisotropic at a microscopic level. Inhomogeneous means that a tissue has different 

conductivities in different locations regardless of directions. Anisotropy means the 
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conductivity is dependent on the directions. These directions are either in the radial 

or in the tangential. Different tissues have different conductivities; even the same 

tissues at different places have different conductivities [Haueisen et al 1997, Ramon 

et al 2006a, 2006b]. For example, the white matter (WM), gray matter (GM) and 

cerebellum of the brain have different conductivities, the presence of the suture line 

of the skull increases its conductivity in comparison with other non-suture positions, 

and the subcutaneous fat and muscle in the scalp have different conductivities than 

the skin. When the electric currents are obstructed by a high resistance obstruction, 

the currents move in other radial or tangential directions rather than its original 

direction and cause anisotropy. It happens especially in the WM of the brain when 

the electric currents move towards the WM from the GM, and in the skull where 

electric currents move from the brain to the lower hard skull bone, or from the inner 

soft skull bone to the outer hard bone. 

 

1.2 Significance of Head Modelling 

 

The main purpose of head modelling is the solution of the forward problem to 

compute the scalp potentials or EEG originated from the brain. The solution of the 

forward problem is evaluated several times during the solution of the inverse 

problem for the source analysis purposes. Source analysis examines the best location 

of the source which best fits the given scalp potentials. Therefore, the head modelling 

is an essential part of source analysis or source reconstruction procedure. The source 

analysis is extensively used in different presurgical evaluations, clinical research and 

applications [He et al 1999, Vanrumste 2002, Mosconi et al 2006]. The EEG and 

source localization are also used to determine and research on different mental 

disorders, such as dementia, autism and epilepsy.  EEG has become a popular non-

invasive method in all aspects of brain related researches. 

In a clinical setting, the EEG is used for the diagnosis of epilepsy. The EEG 

from an epilepsy patient may have an abnormal amplitude and waveform. For 

patients with partial epilepsy, a focal group of brain cells is responsible for an 

epileptic seizure. A neurologist inspects the EEG and the behaviour of the patients at 

the onset of a seizure to determine the epileptic zone or the source location.  Another 

application area is sleep disorder [Vanrumste 2002, Hallez 2008b]. Different stages 

of sleep phases are mainly determined by the EEG analysis. EEG of a patient 
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complaining from sleeplessness or from fatigue can be recorded and abnormalities in 

the EEG may be found when compared with the EEG obtained from normal sleep. 

The other application area is the evoked potentials. Evoked potentials can be 

generated in the EEG by means of stimulating peripheral nerves. These potentials are 

much smaller in amplitude than the available background EEG. This approach can be 

applied to test the functioning of the peripheral nerves and the integrity of various 

central nervous pathways. 

Head modelling, or the solution of forward problem has been extensively 

used in cognitive science for decades. Recently, a new technique of 

electroconvulsive theory (ECT) is used to eliminate the cognitive side effects by 

passing pulses of approximately 1 ampere into the brain in order to provoke an 

epileptic seizure. ECT stimulates the brain and effects on long-term memory to give 

rise to concerns surrounding its use. ECT is also used as a treatment for severe major 

depression, mania and catatonia which have not responded to other treatment. 

Beside the ECT, transcranial direct current stimulation (tDCS) and 

transcranial magnetic stimulation (TMS) are also used to modulate or excite the 

activity of neurons in the brain. Neurons respond to static electrical fields by altering 

their firing rates. Firing increases when the positive pole or electrode (anode) is 

located near the cell body or dendrites and decrease when the field is reversed. 

Currently tDCS can modulate the function of the spinal cord and of the cerebellum 

and is being studied for the treatment of a number of conditions including major 

depression.  On the other hand, TMS is a noninvasive method to excite the 

elementary unit of the nervous system where weak electric currents are induced in 

the tissue by rapidly changing magnetic fields. This way, brain activity can be 

triggered with minimal discomfort, and the functionality of the circuitry and 

connectivity of the brain can be studied. In the clinic, TMS is used to measure 

activity and function of specific brain circuits in humans. The most robust and 

widely-accepted use is in measuring the connection between the primary motor 

cortex and a muscle. This is most useful in stroke, spinal cord injury, multiple 

sclerosis and motor neuron disease.   

Head modelling establishes an accurate insight into the electrical activity of 

the brain by studying the properties of cerebral and neuronal networks. From the 

above discussion, it is perceived the importance of head modelling. An accurate head 
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modelling is the underneath mechanism to analysis and diagnosis different mental 

disorders, therapies and brain stimulations.      

 

 

1.3 The Originality of this dissertation 

 

The aim of this dissertation is to construct an accurate head model for the solution of 

EEG forward problem. It mainly depends on head geometry and tissue conductivity 

[Vanrumste et al 2000, van Uitert et al 2004, Ramon et al 2006a]. Accurate head 

geometry is obtained from an MRI [Huiskamp et al 1999]. However it is difficult to 

obtain accurate tissue conductivity as it varies from person to person or even same 

person in different situations.  This dissertation focuses on conductivity modelling 

for the construction of a human head and to investigate the effects of conductivity on 

EEG. Several studies [de Munck and Peters 1993, Zhang 1995, Vanrumste et al 

2000, Baillet et al 2001, Mosher et al 1999, von Ellenrieder et al 2006] implement 

head model using homogeneous conductivity. As the conductivities of head tissues 

are inhomogeneous, other studies [Cuffin 1993, Klepfer et al 1997, Marin et al 1998, 

Wen 2000, Nicolas et al 2004] implement head model using inhomogeneous 

conductivity. Later on, it is found that a head model is not accurate unless anisotropic 

conductivity in the WM and skull. Several studies [Marin et al 1998, Anwander et al 

2002, Wolters 2003, Gullmar et al 2006, Wolters et al 2006, Hallez et al 2009] 

implemented head model using constant or fixed anisotropy ratio. However, the 

anisotropy ratio varies in different regions of WM and skull due to anatomical 

structure.  

This dissertation investigates the effects of tissue conductivity on EEG in two 

aspects: (A) inhomogeneous and anisotropic conductivities and (B) local tissue 

conductivity. For the aspect (A), conductivity models (conductivity ratio 

approximation, statistical conductivity approximation, fractional anisotropy based 

conductivity approximation and the Monte Carlo method based conductivity 

approximation) are proposed based on various anisotropy ratios to overcome the 

limitations of fixed anisotropy ratio. This dissertation also investigates the effects of 

local tissue conductivity on EEG implementing conductivity model based on tissue 

position in the head for approach (B). Besides these, an application of head 
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modelling to investigate the effects of Alzheimer‟s disease sourced EEG on 

somatosensory cortex sourced normal EEG is also discussed. 

 

1.4 Organization of the Dissertation 

 

Chapter 2 gives an introduction of the features of a human head and head modelling. 

The Chapter starts with a brief introduction to head anatomy and neurophysiological 

structure and processes behind the neuronal activity generated in the brain. We 

discuss how brain tissue generates electrical potentials, how it propagates to the scalp 

and how EEG is measured. 

 Chapter 3 describes head modelling and the presentation of tissue 

conductivity. In the head modelling, we describe the spherical and realistic head 

models. Some question arises in describing tissue conductivity. First, the question, 

“Why the head tissue conductivities are inhomogeneous and anisotropic?” is 

explained in this Chapter. Then, “How do we tackle these inhomogeneous and 

anisotropic conductivities?” is described. We describe different conductivity models 

to implement inhomogeneous and anisotropic conductivities into a head model. 

 In Chapter 4, we focus on the forward problem and its solution using a finite 

element method. In the beginning of this Chapter, we show how the electric potential 

on the head surface is derived from the neuronal activity using the Maxwell and the 

Poisson equations. We describe how electric current passes from an inner to the outer 

surfaces using the Dirichlet and Newman boundary conditions. We provide an 

algebraic formulation of the EEG forward problem and a series expansion for the 

solution of the EEG forward problem in a multi-layered spherical head.  

In Chapter 5, we discuss our methodology and steps for spherical head model 

construction, and different tools to perform simulation. Then we attempt to answer 

the question “Is there any effect of inhomogeneous and anisotropic tissue 

conductivities on EEG head modelling?” We attempt to answer using the simulated 

results of our proposed conductivity models, such as conductivity ratio 

approximation, statistical conductivity approximation, fractional anisotropy based 

conductivity approximation and the Monte Carlo method based conductivity 

approximation models. We also study the effects of inhomogeneous and anisotropic 

conductivities using a stochastic method based conductivity approximation model.    
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Chapter 6 describes local conductivity study and an EEG analysis on a 

normal source and Alzheimer‟s disease (AD) source. Firstly, we discuss the different 

values of conductivity in a same tissue and the development of local tissue 

conductivity based head model. In the second part of the Chapter, we discuss the 

sources of AD and find the differences in EEG obtained from the normal and AD 

sources. 

 Chapter 7 focuses on the uncertainty and sensitivity of tissue conductivity in 

EEG. In the first part of the Chapter, we describe the way to select the uncertain 

parameter in head modelling and the method to determine the sensitivity indexes. In 

the second part of the Chapter, we describe its effects on EEG and how much it 

would affect mean scalp potentials for both a spherical and a realistic head model.  

 Finally, we summarise our works and findings in Chapter 8. In this 

dissertation, we have successfully developed a series of inhomogeneous and 

anisotropic head models, systematically studied the effects of inhomogeneous and 

anisotropic tissues on EEG computation, investigated the local conductivity problem 

in realistic head modelling and finally we have studied the computation sensitivity of 

the inhomogeneous and anisotropic tissues.  
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CHAPTER 2            

FEATURES OF HUMAN HEAD  

 

 

In order to understand head modelling, the EEG forward problem or EEG source 

analysis, it is important to know the underlying mechanisms of the EEG, the 

mechanisms of the neuronal action potentials, excitatory post synaptic potentials and 

inhibitory post synaptic potential. This Chapter provides a general overview of the 

background for bioelectricity in the human head, gives details of the assumptions to 

construct a head model from a computational perspective.  

 

2.1 Anatomy of Human Head 

 

The human head consists of three main tissues, the scalp, skull and the brain. The 

outer most of the human head is the scalp layer which covers the skull. The most 

remarkable region of the human head is the skull. The skull is a dome shaped hard 

bone layer which protects the brain. The brain, the innermost part of the head, is the 

core of the central nervous system. The gap between the skull and brain is filled with 

a liquid named the cerebrospinal fluid (CSF).  

 

2.1.1 Anatomy of the brain  

The human brain is the centre of the central nervous system. Different regions of the 

brain are designated for different purposes and functions. For example, the frontal 

region of the brain processes languages and the posterior (occipital) region processes 

vision. The main function of the brain is to receive, process and communicate 

information. This processed information can be sent either to other parts of the brain 

or other parts of the body.  The brain is situated inside the skull and is floated with 

CSF. CSF protects the brain from damage or injury. It also provides sufficient 

oxygen and essential substances for the metabolism to sustain the brain tissues and 

give some protection to shock.  Human brain basically consists of three parts [Gray, 

2002]: the brain stem, the cerebellum and the forebrain or cerebrum as shown in 

Figure 2.1 [Purves et al 2004].  
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Figure 2.1 Mid sagittal view of the human brain [Mid sagittal view –online] 

 

The brain stem consists of midbrain, pons and medulla. The diencephalon and 

cerebral hemispheres are collectively known as forebrain, which consists of most of 

the parts of the brain and is responsible for complex tasks such as muscle movement 

and language processing. There are two symmetric hemispheres, the left hemisphere 

and the right hemisphere. Each hemisphere is conventionally divided into four lobes 

named the frontal, parietal, temporal and occipital lobes as shown in Figure 2.2.  The 

frontal lobe involves the ability to recognize future consequences resulting from 

current actions, to choose between good and bad actions (or better and best), override 

and suppress unacceptable social responses, and determine similarities and 

differences between things or events. Therefore, it is involved in higher mental 

functions. The parietal lobe integrates sensory information from different modalities, 

particularly determining spatial sense and navigation. The temporal lobe is involved 

in auditory processing and the processing of semantics in both speech and vision. 

The occipital lobe is involved with visual processing. 
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Figure 2.2 The four lobes of the brain [Four lobes-online].  

 

These hemispheres are connected through several commissures with the 

corpus callosum as the largest fibre bundle. The surface of each hemisphere is 2mm 

to 4mm thick and called cortex or gray matter. The actual brain activity is generated 

in the gray matter. The gray matter at the edge of the brain has a folded structure to 

increase the surface so that the complex connections can be made. It is strongly 

folded into deep groves or valleys called sulci which are surrounded by the ridges 

and gyri. The outer layer is also called the cortex or cortical gray matter. In the gray 

matter, many structures can be identified according to their function in the processing 

of information. An example of such a structure is the hippocampus which is related 

to short term memory (Figure 2.3). The hippocampus has a very complicated folded 

structure. Specific types of epilepsy are related to this structure. In the gray matter 

nerve cells are the generators of the electro-chemical activity. 
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Figure 2.3 Internal structure of the brain as seen in coronal section [Brain structure-online].  

 

The cortex consists of a large number of nerve cells known as pyramidal 

neurons whereas the underlying white matter is composed of nerve fibers connecting 

different parts of the brain. The white matter mainly consists of connections from 

and to different parts of the gray matter. An important connection contained in the 

white matter is the corpus callosum which connects the right and left hemispheres.  

 

2.1.1.1 Anatomy of the neuron 

The human brain consists of about 10
10

 nerve cells or neurons. The shape and size of 

the neurons vary but they possess the same anatomical structure [Vanrumste 2002]. 

The neuron consists of a cell body which is also called soma, the dendrites and an 

axon. In most respects, the structure of neurons is similar to that of other cells 

[Purves et al 2004]. Figure 2.4 shows the structure of a neuron and the signal 

propagation. The cell body processes the incoming signals and decides if a signal has 

to be transmitted to the axon or alternatively inhibit the signal. The dendrites 

originating from the neuronal cell body are specialized in receiving inputs from other 

nerve cells. The number of inputs that a particular neuron receives depends on the 

complexity of its dendritic structure ranging from 1 to 10
5
 [Purves et al 2004]. 

Receiving inputs by dendrites, the cell body processes the inputs and fires an action 
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potential (AP) which propagates through the axon. The axon is a unique extension 

from the soma and is a few hundred micrometers long. The AP is a self-regenerating 

electrical wave that propagates from its point of initiation at the cell body to the 

terminus of the axon. The axon’s terminus is divided into branches which connect to 

other neurons or tissues. The information encoded by AP is passed on to the next 

cell. Therefore, a physiological connection called synapse has to be made [Hallez 

2008b]. The synapse is a specialized interface between two nerve cells. Accordingly, 

axon terminals convey this information to target cells, which include other neurons in 

the brain, spinal cord, muscles and glands throughout the body. These terminals are 

called synaptic endings. Each synaptic ending contains secretory organelles called 

synaptic vesicles. The release of neurotransmitters from synaptic vesicles modifies 

the electric properties of the target cell (postsynaptic cell). The postsynaptic cells are 

activated by virtue of neurotransmitters released by the pre-synaptic cells. Further 

readings on the anatomy of the neuron and the brain can be found in Gray (2002) and  

Purves et al (2004). 

 

Figure 2.4 Structure of a neuron and information transmission  

[Sanei and Chambers, 2007]. 

 

2.1.1.2 Physiology of the neuron 

All cells generate a steady electrochemical potential across their plasma membranes 

(a membrane potential) because of different ionic concentrations inside and outside 

the cell. Neurons use minute fluctuations in this potential to receive, conduct and 

transmit information across other surfaces. The membrane potential of a neuron, 

known as the resting potential, is similar to that of non-excitable cells. In most 

neurons it is about 75 mV, inside negative. Such bioelectric potentials result from the 

selectively permeable nature of the plasma membrane which prevents large 
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molecules, predominantly with negative charges, from leaving the cell.  The cell uses 

K
+ 

for this purpose so that there is a high concentration of potassium within the cell.  

Any activity which causes a change in the distribution of ions across the 

plasma membrane inevitably affects the resting potential -75 mV. The entry into 

neurons of sodium ion (Na
+
) or calcium ion (Ca

+
) causes depolarization of the cell (0 

mV), while an increased chloride influx or increased potassium efflux results in 

reverse polarization to +40 mV. The reverse polarization actually decreases to be less 

polarized or repolarization to -75 mV. Then a hyperpolarization due to extracellular 

environment is happened to -90 mV and depolarization causes to resting potential -

75 mV. Once the cell body has a certain threshold voltage it can initiate APs and it 

will continue to do so. When the AP reaches to the axonal terminals it causes a 

graded depolarization of the pre-synaptic membrane. As a result, neurotransmitters 

are released to change the degree of the next neuron or muscle. Further readings on 

the electrophysiology of a neuron can be found in Bannister (1995) and Gray (2002). 

 

2.1.2 Anatomy of the skull  

 

The skull is the bony structure of the head and is the most impressive region of the 

human head. It supports the face structure, protects the brain from injury, fixing the 

distance between two eyes to make an image on the occipital lobe and fixing the 

position of the ears to help the brain use auditory cues to judge direction and 

distance. The skull is divided into cranium and mandible. The mandible forms the 

lower jaw and holds the lower teeth. A skull, except for the mandible, is cranium. We 

only consider the cranium in this study. Therefore, the skull only means the cranium 

throughout the study unless specified. The adult human skull contains 22 bones. 

Among these bones, eight bones are in the neurocranium and fourteen bones are in 

the splanchnocranium. Bones of the skull are connected together by sutures. A suture 

is a type of fibrous joint which permits very little movement and contributes to 

compliance and elasticity of the skull. Figure 2.5 shows different parts of the skull. 
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Figure 2.5 Different parts of the skull [Skull parts-online]. 

 

 

2.1.3 Anatomy of the scalp  

 

The scalp is the anatomical boundary covering the head, face and neck. It consists of 

skin, connective tissue layer, aponeurosis layer, loose areolar connective tissue layer 

and pericranium layer. The skin is the outermost layer of the scalp from which head 

hair grows and is supplied extensively with blood vessels. The connective tissue 

layer is a thin layer of fat and fibrous tissue which lies beneath the skin. The 

aponeurosis is a layer of dense fibrous tissue which runs from the fronalis muscle 

anteriorly to the occipitals posteriorly. The loose areolar connective tissue layer 

makes the separation between the upper three layers and the pericranium. The 

pericranium is the periosteum of the skull bones. Figure 2.6 shows the cross sectional 

view of the scalp, skull and brain. Figure 2.7 shows some of the muscles in the 

human head. 
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Figure 2.6 A cross sectional view of the scalp, skull and brain [Bannister, 1995]. 

 

Figure 2.7 Head muscles [Head muscles-online]. 

 

2.2 Generation and Collection of EEG 

  

One neuron generates a small amount of electrical activity in the order of femto- 

Ampere. This small amount cannot be picked up by surface electrodes, as the 

electrodes are at distance from the neurons. The source is overwhelmed by other 

electrical activity from neighbouring neuron groups. Consequently, an electrode only 
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detects summed activities of a large number of neurons which are synchronously 

active. When a large group of neurons (approximately 1000) is simultaneously 

active, the electrical activity is large enough to be picked up by the electrodes at the 

surface, thus generating a meaningful EEG signal [Vanrumste 2002, Hallez et al 

2007, Hallez 2008b].  

The electrical activity of the brain has been measured by electrodes 

positioning on different places on the head surface (scalp). These electrode positions 

placed on the scalp need a defacto standard which is unique for research and clinical 

purposes. The international 10-20 electrode system [Oostenveld and Praamstra 2001, 

Patel et al 2008] is used for measuring the electrical activity shown in Figure 2.8.  

 

Figure 2.8 : The 10-20 international electrode system for the placement of electrodes at the 

head surface [Sanei and Chambers, 2007].  

 

There are 27 electrodes in the 10-20 system. However, this number of electrodes is 

inadequate for clinical purposes to obtain a more accurate EEG. As a result, 

additional electrodes are placed in the 10-20 system and termed an ‘extension of 10-

20 system’. Now, 64 or 128 dipoles are used for these clinical purposes. Additional 

electrodes can be added to the standard set-up when a clinical or research application 

demands increased spatial resolution for a particular area of the brain. High-density 

arrays (typically via cap or net) can contain up to 256 electrodes more-or-less evenly 

spaced around the scalp. Since an EEG voltage signal represents a difference 

between the voltages at two electrodes, the display of the EEG may be set up in one 

of several ways. The representation of the EEG channels is referred to as a montage. 
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The montages are: bipolar, referential, average reference and Laplacian montages. 

Figure 2.9 shows an EEG on referential montage. 

 

 

Figure 2.9: EEG on referential montage using Advanced Source Analysis (ASA). 

 

2.3 Electric Features of the Head 

 

It is known [Baillet et al 2001, Vanrumste 2002, Hallez et al 2007] that the 

generators of EEG are the synaptic potentials along the apical dendrites of the 

pyramidal cells which are in the gray matter cortex of the brain. These source 

currents raise the electric fields within the brain, its surrounding tissues and the head 

surface. The measured voltages on the scalp surface are related to the electrical 

activity within the brain via the conductive properties of the intermediary tissues. 

The general electrical activity at a given point in time is described by the Poisson’s 

equation. Once the boundary condition functions are specified, a unique solution 

exists. This process is termed the EEG forward problem. To solve this problem, there 

are three aspects: shape, boundary condition and conductivity which can improve the 

accuracy of the solution. These aspects are discussed as follows. 

 The shape of human head is obviously the main parameter that affects the 

potentials on the scalp surface. This means that the more accurate the head geometry, 

the more accurate the solution. Much work has been investigated on the effects of 



Chapter  2  Features of Human Head 

 18 

head geometry on the EEG. The boundary condition can also make contributions to 

the potential distribution. In the boundary condition the entire current passes from 

inner tissue layer to outer tissue layer but no current passes from the outset layer to 

the air. 

  The head tissue conductivity plays a key role in the computation of solving 

the Poisson’s equation. The conductivities of a human head are coarse. At the 

beginning of head modelling, it is assumed that head tissue layers (scalp, skull and 

brain) are homogeneous.  That means a tissue layer consists of the same tissues with 

the same conductivity property.  Later on, it may be found that the tissue layers are 

heterogeneous or inhomogeneous, i.e., a tissue layer consists of several tissues. For 

example, the brain tissue layer consists of GM, WM, cerebellum, blood vessels and 

other tissues. As each tissue has its individual conductivity, the entire tissue layer 

becomes inhomogeneous in its conductive nature. Since the role and relative 

importance of inhomogeneity have been the topics of many different models, many 

algorithms which can deal with inhomogeneity have been developed. Finally, it is 

known that some tissues (skull and WM) show direction dependant conductivity 

either in radial or tangential direction. It is known as anisotropic conductivity. In 

recent years, there have been several methods and algorithms developed to 

implement anisotropic head models. Most of the research assumes that the anisotropy 

ratio (radial:tangential) is constant or homogeneous. However, this ratio is variable 

or inhomogeneous in different parts of the tissue layer. There is no such head model 

that incorporates full tissue conductivity.  Moreover, location specific conductivity to 

different head regions (local conductivity) and an alternate solution to assigning 

accurate conductivity is also an emerging research area.    

 

2.4  Summary  

 

A human head consists of brain, skull and scalp. There are 10
10

 elements or neurons 

in the brain. A neuron contains a cell body, dendrites and axons. Pyramidal cells are 

types of neurons consisting of dendrites located close to the cortical surface. The 

communication between the neighbouring neurons is serviced by neurotransmitters 

that are released in the synaptic cleft. When an excitatory transmitter is injected in 

the cleft, a massive influx of positive charge occurs. Then it starts a redistribution of 
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charge and an extracellular current starts flowing from the cell body. The current 

flow causes an electric field and also a potential field inside the human head, which 

extends to the scalp. The electric potentials measured on the scalp are known as 

EEG.  

 The anatomy of the human head is too complex. The geometry of different 

parts of a head is different. For example, the structure of the skull is totally different 

from the brain or the scalp. Each part of the head consists of several types of tissues, 

which have different properties and functions. It is important to consider more 

realistic head geometry and as many tissue properties as possible to compute an 

accurate EEG.  
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CHAPTER 3           

HUMAN HEAD MODEL AND TISSUE CONDUCTIVITY 

 

 

An accurate head model requires accurate head geometry and head tissue 

conductivity. A spherical head model is constructed on a sphere and a realistic head 

model from magnetic resonance imaging (MRI). An MRI provides accurate head 

geometry of a particular object other than a sphere. It is difficult to measure accurate 

conductivity for the head model development as head tissue conductivity varies from 

place to place. In this Chapter, we introduce spherical and realistic head models 

based on conductivity modelling of head tissues. Section 3.1 describes the human 

head modelling. Different tissues of a head have different conductivities. The 

description of different conductivity values in the skull tissue and other head tissues 

are described in Section 3.2. Section 3.3 reports the surveyed conductivity values for 

this dissertation. Section 3.4 describes the homogeneous conductivity values of 

different head tissues. Tissue inhomogeneity and anisotropy are discussed in Sections 

3.5 and 3.6, respectively. Conductivity models to approximate the conductivity 

values based on inhomogeneous and anisotropic tissue conductivity properties are 

described in Section 3.7. Finally, Section 3.8 summarizes our contribution to 

approximate tissue conductivity values for constructing an accurate head model. 

 

3.1 Human Head Modelling 

 

At the beginning of the head model development, a spherical head model is 

introduced. Later on, it is noticed that the spherical head model is unable to satisfy 

the real geometry of the human head. Therefore, the realistic head model is 

introduced to obtain a more accurate head model.  

 

3.1.1 Spherical head model 

 

The simplest head model of a human head consists of a single sphere of 

homogeneous conductivity. It is noticed that the skull has different conductivity than 
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the scalp or brain. The scalp, skull and brain conductivity ratio as 1: (1/80): 1 

[Geddes and Baker 1967, Rush and Driscoll 1968]. Therefore, a single sphere head 

model is not sufficient to represent the human head and a three-sphered head model 

is introduced. In the three-sphered head model, the outer sphere is the scalp, the 

intermediate sphere is skull and the inner sphere is brain. Later on, the ventricle 

system filled by CSF is considered, and a four-sphered head model is introduced 

[Zhou and Oosterom 1992, de Munck and Peters 1993, Vanrumste 2000].  A five-

sphered model dividing the brain into the GM and WM is seen in the de Munck and 

Peters article (1993) and is used in several studies [Hallez et al 2005a, 2005b, Bashar 

et al 2008a,b,c,d]. We consider each sphere as a layer. In the five-layered head 

model, the innermost layer is WM, then GM, CSF, skull and the outer most layer is 

the scalp. An example of a five-layered head model is shown in Figure 3.1. 

 

Figure 3.1: A five-layered spherical head model. 

 

3.1.2 Realistic head model 

 

In head model development, none of the spherical models provide a close fit to a real 

head as spheres are used to represent either a tissue layer or the entire head. As a 

result, a head model from MRI or Computed tomography (CT) scan becomes popular 

for a realistic head model development. A realistic head model can be developed as 

follows. 

A realistic head model construction starts with tissue segmentation from raw 

MRI. Firstly, non-brain tissues are removed from the MRI using skull stripping. 
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Skull striping is addressed to identify brain and nonbrain voxels in MRI. It is done 

for the precaution to avoid voxel identifying critic as the measured signal intensities 

of brain tissues, such as WM, GM and CSF can overlap with those of other head 

tissues, such as skin, bone, muscle and fat. It is also a three-step procedure: (a) MRI 

processing to smooth non-essential gradients using an anisotropic diffusion filter; (b) 

identifying anatomical boundaries using Marr-Hildreth edge detector; and (c) objects 

identified by a sequence of mathematical morphological operations. Secondly, the 

compensation for image nonuniformity is performed. Nonuniformity is compensated 

due to inhomogeneities in the magnetic fields, magnetic susceptibility variations in 

the scanned subject and other factors. Signal intensities measured at each voxel in an 

ideal MRI acquisition system will vary throughout the volume depending only on the 

tissues presenting at that location. However, MRI shows nonuniform tissue 

intensities in practice. Therefore, tissue labels cannot be reliably assigned to voxels 

and it requires nonuniformity compensation, which is performed by spatially slowly 

varying a multiplicative bias field. The variations of bias fields are estimated by 

fitting a parametric tissue measurement model to the histograms of small 

neighbourhoods.  Thirdly, each voxel is classified according to its tissue type. Each 

voxel intensity-normalized MRI is labelled using maximum a posteriori classifier. 

This classifier combines the partial volume tissue measurement model with a Gibbs 

prior that models the spatial properties of brain tissue. More details can be found in 

other studies [Shattuck et al 2001, Shattuck and Leahy 2002, Shattuck 2005, Dogdas 

et al 2005]. Figure 3.2 shows the brain tissue segmentation from a raw MRI 

[Shattuck 2005]. Finally, scalp and skull are modelled by using various threshold 

operators [Dogdas et al 2005, Lee et al 2009]. Figure 3.3 shows different tissues 

segmenting from an MRI. These segmented head tissues are tessellated to be ready to 

assign conductivities and other forward computing steps. 

 

 

Figure 3.2: Head tissue classification from a raw MRI [BrainSuite2]. 
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Figure 3.3: Sample FEM tetrahedral mesh with tissue classification using BrainSuite2  

[Darvas et al, 2004]. 

 

3.2 Electric Conductivity of Head Tissues 

 

The conductivity is a material property of a tissue. At a macroscopic level, all tissues 

are homogenous and isotropic in the 0-100 Hz bandwidth which is relevant for EEG. 

However, at a microscopic level, the discrete nature of a cell structure says that many 

tissues are inhomogeneous and anisotropic. 

 In 1993, Law (1993) studied on a human skull and reported the resistivity 

(the reciprocal of conductivity) and thickness over the upper surface. His 

measurements are listed in Table 3.1. From this Table, it is obvious that the 

conductivity of a skull tissue varies on location. This means that the human skull 

shows inhomogeneity in conductivity. 

In 1996, Gabriel et al (1996) studied electrical properties of tissues and 

reported various tissue conductivities of the human body. These conductivity values 

are listed in Table 3.2. 
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Table 3.1: Skull resistivity (reciprocal of conductivity).  

Locations Resistivity (Ohm –cm) Width (cm) Distinguishable features 

FPZ 6650 0.52 Frontal crest 

F3 5620 0.62  

F1 7790 0.45  

FZ 8860 0.50  

F2 6780 0.47 Arachnoid pits 

F8 9850 0.37  

T5 8360 0.44  

T3M 21400 0.47 Compact bone 

C3M 7310 0.55  

CZ 3940 0.47 Suture line 

C4M 6330 0.60  

C4 5670 0.62  

T4M 12700 0.46 Compact bone 

T6 7800 0.49  

P3 6580 0.50  

PZ 3540 0.47 Suture line 

P4 9020 0.50  

O1 3520 0.62  

OZ 1360 0.68 Suture line 

O2 8230 0.50 Suture line 

   *Skull width and features are at different places [Law 1993]. The letter „F‟ 

represents frontal, „P‟ represents parietal,  „T‟ represents temporal, „O‟ represents occipital 

lobes. „C‟ represents central and „Z‟ stands for midline identification purposes. The even 

numbered digits represent the right hemisphere and odd numbered are on the left 

hemisphere.   

 

In 1997, Haueisen et al (1997) also studied the resistivity of different tissues 

in a human head. His findings are reported in Table 3.3. From these reported values, 

we also realize that conductivity of different parts of the head are different even in 

the same tissue. For example, the brain has different tissues, such as GM, WM, 

cerebellum, etc and the conductivity of these tissues is different. 
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Table 3.2:  Body tissue conductivity. 

Tissue Conductivity (S/m) 

Bladder  0.2  

Bone -Cancellous  0.07  

Bone -Marrow  0.05  

Cartilage  0.18  

Cerebrospinal Fluid  2.0  

Cornea  0.4  

Fat  0.04  

Gall Bladder Bile  1.4  

Heart  0.1  

Lens  0.25  

Lung -Deflated  0.2  

Muscle  0.35  

Pancreas  0.22  

Small Intestine  0.5  

Stomach  0.5  

Testis  0.4  

Tongue  0.3  

Blood  0.7  

Bone -Cortical  0.02  

Breast  0.06  

Cerebellum  0.1  

Colon  0.1  

Dura  0.5  

White matter  0.06  

Grey Matter  0.1  

Kidney  0.1  

Liver  0.07  

Lung -Inflated  0.08  

Nerve  0.03  

Skin -Wet  0.1  

Spleen  0.1  

Tendon  0.3  

Vitreous Humour  1.5  

Thyroid  0.5  

*Estimation of the conductivity (S/m) of body tissues below 100 Hz at body 

temperature Gabriel et al (1996). 
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Table 3.3 Head tissue resistivity.  

Tissue Mean resistivity (ohm-

cm) 

Lower and upper bound 

(ohm-cm) 

Brain white matter 700 300 and 1050 (±50%) 

Brain gray matter 300 150 and 450 (±50%) 

Spinal cord and cerebellum 650 325 and 975 (±50%) 

Cerebrospinal fluid 65 32.5 and 97.5 (±50%) 

Hard bone 16,000 8,000 and 50,000 

Soft bone 2500 1250 and 3750 (±50%) 

Blood 160 80 and 240 (±50%) 

Muscle 1000 200 and 1800 (±50%) 

Fat 2500 1500 and 5000 

Eye 200 100 and 400 

Scalp 230 115 and 345 (±50%) 

Soft tissue 500 250 and 750 (±50%) 

Internal air 50,000 50,000 and 100,000 

*Head tissue types, isotropic resistivity in and lower and upper bounds Haueisen et 

al (1997). 

 

Though these studies focused on different aspects, all of them drew the 

conclusion that human head tissues are inhomogeneous and show considerable 

conductivity variations.    

 

3.3  Tissue Conductivity used in this Dissertation 

 

From our research, we find that different tissues have different conductivities, even 

the same tissue shows different conductivities based on its position or location. 

Different researchers implement their model using different conductivities [Haueisen 

et al 1997, 2002, Ramon et al 2006a,b]. To make our model consistent with other 

researchers‟ models, we use the conductivities that are reported, implemented or 

surveyed by other researchers. Table 3.4 shows the conductivity values surveyed for 

our head modelling in this dissertation [Bashar et al 2010d]. 
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Table 3.4  Head tissue conductivities used in this dissertation. 

Tissue layer Tissue Mean conductivity (S/m) Reference 

Brain 

GM 0.33 Wolters (2003) 

WM 0.14 Wolters (2003) 

Blood 0.7 Gabriel et al (1996) 

Cerebellum 0.1 Wen (2000) 

Nerve 0.4 Gabriel et al (1996) 

Liquid brain lesion 1.2 Vatta et al (2002) 

Calcified brain 

lesion 

0.0044 Vatta et al (2002) 

CSF CSF 1.0 Gabriel (1996) 

Skull 

Compact bone 0.006 Haueisen et al 1997 

Cancellous bone 0.07 Haueisen et al 1997 

Dura matter 0.5 Gabriel et al (1996) 

Suture lines 0.04 Law (1993) 

Air in sinus cavity 6 x 10
-5

 Awada et al(1996) 

Scalp 
Scalp 0.33 Wolters (2003) 

Wet skin 0.1 Gabriel et al (1996) 

Fat 0.04 Awada et al (1998) 

  

3.4  Homogeneous Tissue Conductivity 

 

Facing up to the above facts and challenges, the estimation of tissue conductivity 

becomes a tough problem. The homogeneous and isotropic conductivities for 

different head models are listed in Table 3.5 [Bashar et al 2008a,b,c,d, 

2010a,b,c,d,e]. In this dissertation, we use homogeneous and isotropic conductivities 

as „homogeneous conductivity‟ everywhere unless otherwise specified.  

 

Table 3.5 Homogeneous and isotropic conductivities used in this dissertation. 

Head model Brain (S/m) CSF (S/m) Skull (S/m) Scalp (S/m) 

4-layer 0.33 1.0 0.0042 0.33 

5-layer GM WM 1.0 0.0042 0.33 

0.33 0.14 

Realistic 0.33 1.0 0.0042 0.33 

 

3.5  Methods to Determine Inhomogeneous Tissue Conductivity  

 

In Section 3.2, we have identified the inhomogeneous property of different tissue 

conductivity and have reported conductivity values for different head tissues. This 
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Section describes different methods of inhomogeneous tissue conductivity 

approximations. 

 

3.5.1  Pseudo conductivity based inhomogeneous conductivity generation 

 

First, we create a vector whose entries are chosen from Gaussian distribution with 

mean zero and variance one. Afterwards, the mean and variance are transferred to 

mean conductivity and the given variance with the following procedure. Let X be a 

vector with mean  and variance 2
, and a new vector X


can be defined as [Wen 

2000]: 

21   XX


 ………………………………………………. (3.1) 

where 1  and  2 are parameters. The mean 


 and variance 2


 of the new vector 

X


 are given by 

21  


 ………………………………………………. (3.2) 

2

1

2  


 …………………………………………………. (3.3) 

Given the mean 


 and variance 2


,  1  and  2  can be determined, and finally the 

conductivity ranges can be decided. 

 

3.5.2  The brain tissue inhomogeneity 

 

In the case of the brain, the majority of the brain is WM and GM. The brain has a 

homogeneous mean conductivity (µ) 0.33 S/m [Geddes and Baker 1967]. We assume 

the conductivity of WM as 0.14 S/m [Wolters 2003] and GM as 0.33 S/m [Wolters 

2003]; the conductivity of other tissues are as 0.1 S/m for cerebellum [Gabriel et al 

1996], 0.7 S/m for blood [Haueisen et al 1997] and 0.35 S/m for nerve [Awada et al 

1998]. We also assume that each of WM and GM accounts for 35% of the brain, 

cerebellum contains 10% and the blood and nerve contain the remaining 10%. Based 

on these assumptions and conductivity values, we can determine the variance (
2
) as: 







1

222 )()(])[(
i

ii xfxxE  ………………………… (3.4) 
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0220.0

)33.035.0(*03.0)33.07.0(*03.0

)33.01.0(*1.0)33.014.0(*35.0)33.033.0(*35.0

22

222







 

Therefore, %151485.0  , that is the standard deviation (SD), 15% of the mean 

conductivity. Substituting the values of µ and 
2 

into Equations (3.1) to (3.3) we 

generate inhomogeneous conductivity for the brain. 

 

3.5.3  The skull tissue inhomogeneity 

 

In the generation of the skull tissue inhomogeneous conductivity, we assume 

different conductivity values at different parts of the skull. Law (1993) measured the 

skull conductivity at 20 different places or regions shown in Table 3.1. We assume 

that these regions are same in size (i.e. each region is 5% of the entire the skull). We 

also assume that the mean skull conductivity (µ) is 0.0180 S/m (from Table 3.1). We 

have converted resistivity in ohm-cm to conductivity S/m by 100/resistivity. 

Therefore, using Equation (3.4) we obtain 







1

222 )()(])[(
i

ii xfxxE        

00019.0

)0180.08230/100(*05.0..................

............)0180.05260/100(*05.0)0180.06650/100(*05.0

2

22







 

 

Therefore, %10141.0  , that is the SD, 1% of the mean conductivity. 

Substituting the values of µ and 
2 

into Equations (3.1) to (3.3), we generate 

inhomogeneous conductivity for the skull. 

 

3.5.4 The scalp tissue inhomogeneity 

 

The scalp consists of five tissue layers, such as the skin, fat and muscle. We find only 

the conductivity values of the skin, fat and muscle. We assume that these tissues 

contain the same region of the scalp or the same width of scalp tissue layer. The 

mean conductivity of the scalp (µ) is 0.33 S/m [Gedds and Baker 1967, Baillet et al 

2001, Hallez et al 2009, Gullmar et al 2010]. Therefore, using Equations (3.1) to 

(3.3) and conductivity values reported in Table 3.3, we obtain the variance of the 

scalp tissue layer as 22210.0 , which also generates a 22% standard deviation. 
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3.6 Methods to Determine Anisotropic Tissue Conductivity  

 

It is widely known that the WM and the skull are anisotropic because of their 

anatomical structure.  

 

3.6.1 White matter anisotropy 

 

Some important structures in the white matter consist of nerve bundles which are 

aligned in parallel to each other [Hallez 2008a, b]. The corpus callosum and anterior 

commissure connect the left and right hemispheres of the brain. The structure of the 

corpus callosum and anterior commissure consists of many parallel nerve bundles. 

Therefore, it becomes highly anisotropic. The internal capsule is another example of 

such a structure, which connects the nerve fibers coming from the centre of the brain 

to regions in the cortical gray matter. The nerve bundles consist of nerve fibres or 

axons (in Figure 3.4). Water and ionized particles can move more easily along the 

nerve bundle than perpendicular to the nerve bundle. The direction of a nerve bundle 

can be estimated by a diffusion tensor magnetic resonance imaging (DT-MRI) 

[Basser 1994]. It is assumed that the conductivity is the highest in the direction in 

which the water diffuses most easily [Tuch 2001]. Different studies [Hallez et al 

2005a, Haueisen et al 2002] have shown that anisotropic conducting compartments 

should be incorporated in volume conductor models of the head whenever possible.  

                    

Figure 3.4 Anisotropic conductivities of white matter.l represents longitudinal and t 

represents transversal conductivity [Hallez et al  2005a]. 

 

When a tissue is assumed to be anisotropic, conductivity is defined either in 

longitudinal (parallel) or in transversal (perpendicular) direction [Sadleir and 
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Argibay, 2007]. The longitudinal conductivity is modelled as ten times higher than 

the transversal conductivity [Marin et al 1998, Wolters 2003, Hallez et al 2005a]. It 

can be expressed as: 

translong  .  …………………………………………… (3.5) 

where  long  is the longitudinal, trans  is the transversal conductivities and   is  the 

conductivity or anisotropy ratio between longitudinal and transversal. To construct 

an anisotropic model, it is important to ensure that the total amount of conductivity 

between isotropic and anisotropic medium is the same. In isotropic conductivity, the 

conductivity in each direction is the same and can be represented by a sphere. An 

anisotropic conductivity is represented by conductivity tensor which is usually 

derived from DT-MRI. In anisotropic conductivity, the conductivity in each direction 

is not same and represented by an ellipsoid. Therefore, the volume of sphere derived 

from the isotropic conductivity and the volume of the ellipsoid derived from the 

anisotropic conductivity tensor would be same. This is represented by Volume 

constraint [Wolters 2003, Gullmar et al 2006, Wolters et al 2006, Li et al 2007, 

Hallez et al 2008b, Bashar et al 2008b, Lee et al 2009] which is proposed by Wolters 

(2003). Moreover, in a fluid system with two types of non-uniformly distributed 

molecules, the molecule concentrations change with time until both concentrations 

have the same value throughout the system. As a result, it is essential to restrict these 

longitudinal and transversal conductivities. The conductivity of two directions would 

be same of the square of the isotropic conductivity which is represented by Wang‟s 

constraint  [Wang et al 2001, Wolters 2003, Wolters et al 2006, Bashar et al 2008b, 

2010a,c] proposed by Wang et al (2001). 

 

3.6.1.1 Volume constraint 

Tissue anisotropic conductivity is commonly derived from a DT-MRI. Diffusion is 

the transportation of water molecules, while conductivity is the transportation of 

charged particles. DT-MRI does not measure conductivity tensor directly but rather 

infers from the diffusion tensors which describe the movement of both water 

molecules and electrically charged particles (ions). To implement conductivity 

tensor, we assume that the same structural features that result in anisotropic mobility 

of water molecules also result in anisotropic conductivity. This assumption can be 

expressed as the eigen vectors of the conductivity tensor, similar to those from water 
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diffusion tensor. However, there are some problems for the conductivity tensor 

reconstruction process as addressed by Zhao et al (2005). One problem is the volume 

of tissues which varies due to several factors, such as age, diseases, environmental 

factors, and personal constitutions [Muravchik and Nehorai 2001, Haueisen et al 

1997]. To overcome this obstacle, Wolters (2003)
 
proposed Volume constraint (VC), 

which restricts the volume of the isotropic conducting sphere to the volume of the 

anisotropic conducting ellipsoid as constants. The VC is defined as [Wolters 2003, 

Hallez et al 2009, Gullmar et al 2010]:  

 
(3.6) 

where iso is the isotropic and homogeneous WM conductivity. Using Equations 

(3.5) and (3.6), we solve long  and trans. Solving these Equations, we compute 

Volume constrained longitudinal )( Vol

long  and transversal )( Vol

trans  conductivities, and 

obtain 65.0Vol

long  S/m and 065.0Vol

tgl  S/m with 14.0iso S/m. Figure 3.5 

shows the relationship of the eigen values (i) of diffusion to the conductivity values 

(i) for the VC.  

 

Figure 3.5: The linear relationship between the eigen values of the diffusion and conductivity 

ellipsoid. The resulting ellipsoid is identical to the diffusion ellipsoid up to an unknown 

scaling factor, which can be derived using the volume constraint with the isotropic 

conductivity sphere of white matter [Hallez 2008b]. 
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3.6.1.2 Wang‟s constraint 

Another problem for the conductivity tensor reconstruction process is the movement 

of water molecules (direction). Water molecules usually move in a direction towards 

the high conductivity.  In white matter the diffusion of water molecules in the 

direction of perpendicular to fiber, is slower than parallel. To stay constant for these 

molecules Wang et al (2001) proposed a constraint method. Wang‟s constraint (WC) 

is defined as, the product of longitudinal and transverse conductivities stay constant 

and is equal to the square of the isotropic conductivity. It is represented as [Wang et 

al 2001, Wolters 2003, Wolters et al 2006, Bashar et al 2008a, 2010a, 2010c]: 

2. isotranslong       ……………………………………. (3.7) 

Figure 3.6 shows relationship between the eigen values of diffusion tensor and 

conductivity values for the Wang‟s constraint. 

  

 
Figure 3.6 The linear relationship between the eigen values of diffusion tensor and 

conductivity values for the Wang‟s constraint. 

 

 

3.6.2 Skull anisotropy 

 

The skull is a hard bone layer between the brain and the outside to protect the brain 

from outside injury. The hard structure acts as a low conductive medium due to the 

high resistance of the hard bone. It has a layered structure (Figure 3.7), which 

consists of 3 layers: a spongiform or soft bone layer between two hard bone layers. 

Blood, Water, and also ionized particles can move easily through the spongiform 

layer, but not through the hard layers [Geddes and Baker 1967, Wolters 2003].  
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Figure 3.7: The anisotropic skull conductivity. t  represents tangential and r represents 

radial conductivity [Hallez et al 2005a].   

 

At the skull the conductivity tangential to the surface is 10 times the 

conductivity perpendicular to the surface [Anwandwer et al 2002, Wolters 2003, 

Nicolas et al 2004]. To model the skull anisotropy we model the tangential 

conductivity as ten times higher than the radial conductivity  

H             rdltgl  . ……………………………………………… (3.8) 

where tgl and rdl present tangential and radial conductivities [Sadleir and Argibay 

2007], respectively, and 10 . 

Similar to the WM, the VC for the skull is defined as [Wolters 2003, Hallez 

et al 2008a,b]: 

32

3

4
)(.

3

4
Skulltglrdl    

………………………………………………… (3.9) 

where Skull  is the skull isotropic conductivity with Skull  = 0.0042 S/m. Using 

Equations (3.8) and (3.9), we solve rdl  and tgl . Solving these Equations, we 

compute Volume constrained radial )( Vol

rdl  and tangential )( Vol

tgl  conductivities, and 

obtain 0009.0Vol

rdl  S/m and 009.0Vol

tgl  S/m, respectively. Similarly, the WC for 

the skull is defined as [Wang et al 2001, Wolters 2003, Wolters et al 2006, Bashar et 

al 2008a]: 

.. 2

Skulltglrdl    ……………………………………… (3.10) 

Using Equations (3.8) and (3.10), we solve rdl  and tgl for WC. Solving these 

Equations, we compute Wang‟s constrained radial )( Wang

rdl  and tangential )( Wang

tgl  

conductivities, and obtain 0001.0Wang

rdl  S/m and 001.0Wang

tgl  S/m, respectively. 

From the above discussion, it is obvious that the WM and the skull are 

anisotropic in conductivity. We consider the longitudinal conductivity of the WM 
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and tangential conductivity of the skull as parallel conductivity. On the other hand, 

the transversal conductivity of the WM and the radial conductivity of the skull are 

considered as perpendicular conductivity throughout this dissertation.  

 

3.7 Inhomogeneous and Anisotropic Tissue Conductivity Approximation  

 

From Equation (3.5) we can have the anisotropy ratio  as: 

trans

long




  ................................................................................. 

 

(3.11) 

Several studies [Wolters 2003, Wolters et al 2006, Gullmar et al 2006] assume  as a 

constant with the value of 10 to implement anisotropic conductivity for both the WM 

and skull. In reality,  varies from 1 to 10 [Wolters 2003, Wolters et al 2006, 

Gullmar et al 2006, Li et al 2007] which can be expressed as [Bashar et al 2008b]: 

1::  translong  where  =1 to 10 ....................................... (3.12) 

As the value of  varies, the conductivity is also changed. Figure 3.8 shows different 

conductivity values due to changing   for the WM and the skull tissue layers using 

Volume and Wang‟s constraints.  
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Figure 3.8: Different conductivity values of the skull for different anisotropy ratios:  

(a) WM tissues and (b) skull tissues. 
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To determine the inhomogeneous and anisotropic conductivities, we propose 

different conductivity models. These models are described in the subsequent 

sections. 

 

3.7.1 Conductivity ratio approximation model 

 

In the conductivity ratio approximation (CRA) model, firstly, we generate a vector 

 with all possible anisotropy ratios from 1 to 10. Secondly, we select the 

anisotropy ratio  using random selection where   .  Based on this anisotropy 

ratio  we determine the longitudinal and transverse inhomogeneous conductivities 

by means of Equations (3.5) to (3.7) for the WM. Using Equations (3.8) to (3.10), we 

determine the tangential and radial conductivities for the skull. However, we only 

select those whose values satisfy translong    or rdltgl   . For example, if  is 2, 

then the longitudinal and transverse conductivities are 0.222 S/m and 0.111 S/m, 

respectively. 

 

3.7.2 Statistical conductivity approximation model 

 

Shimony et al (1999) measured diffusion anisotropy in 12 regions of interest in 

human white and gray matters. They showed that the shape of diffusion ellipsoids are 

strongly prolate (“cigar–shaped”), whereas they found gray matter as closely 

isotropic. Gullmar et al (2006) used prolate ellipsoids to represent conductivity 

tensor and found that Rayleigh distribution fits the mean and variance of their 

experimental results which produces a prolate shape. Hallez et al (2008a, 2008b) 

mentioned that an ellipsoid can present anisotropy tensor. Therefore, we assume that 

Rayleigh distribution can generate random numbers that fit the inhomogeneous 

anisotropic conductivities and define as statistical conductivity approximation (SCA) 

model. The probability density function of Rayleigh distribution is defined as
 

[Rayleigh distribution]  

 

                                                                  ……...………………. 

 

(3.13) 

where x is a vector of random variables and  m is the maximum likelihood estimator 

(MLE) of Rayleigh distribution. 
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 The mean, variance and cumulative density function (cdf) of Rayleigh 

distribution are as:  

 

                              ……………………………………………… 

 

(3.14) 

 

                                 …………………………………………….       

 

(3.15) 

 

                              ……………………………………………… 

 

(3.16) 

We select the inverse transform method for random number generation [Rodney
 
et al 

1988]. The following algorithm generates the random numbers which meet Rayleigh 

distribution. Firstly, we determine X = random number generated from uniform 

distribution. We set the mean or homogeneous conductivities according to Table 3.5. 

Then, we determine m based on the Equation (3.14). Finally, we determine the 

random numbers according to Rayleigh distribution by applying the cdf defined in 

the Equation (3.16). We treat these random numbers as longitudinal inhomogeneous 

conductivities. Based on these conductivities, we determine the transverse 

inhomogeneous conductivities by using either Volume or Wang‟s constraint 

where translong   . Using the same algorithm, we can determine the conductivity 

values for the skull tissues. 

 

3.7.3 Fractional anisotropy based inhomogeneous and anisotropic conductivities    

model 

Fractional anisotropy (FA) is a technique to measure the extent of the anisotropy 

property for each voxel (element). Let us suppose that 1, 2, and 3 (123) are 

the three eigenvalues of diffusion tensor matrix and  is the average eigen value. 

Then FA is defined as [Li et al 2006]: 
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FA  ……………………… 

 

The FA is in the range from 0 to 1 [Li et al 2006]. A fully anisotropic tissue has a 

factor FA=1, and an isotropic tissue has a factor FA=0. Figure 3.9 shows FA for the 

WM. 

2


mmean 

2

2

4
var m




2

2

21 m

x

ecdf





(3.17) 



Chapter  3  Human Head Model and Tissue Conductivity 

 38 

 To implement inhomogeneous anisotropy, Li et al (2007)
 
proposed threshold 

controlled FA using step and linear functions. For the homogeneous anisotropic 

model, all elements share the same conductivity ratio (Rlt) between longitudinal and 

transversal conductivities. However, Rlt varies for inhomogeneous anisotropy. Rlt 

reflects the extent of the anisotropy property as the FA does, so we set Rlt as a 

variable of FA. By implementing the Equation (3.17) we establish the relation 

between FA and Rlt as shown in Figure 3.10. Though the values of FA lie between 0 

and 1 [Li  et al 2006], however, we find the values of FA ranging from 0 to 0.9. 

Considering Figure 3.10 and based on literature [Li et al 2007], we define the multi-

steps function stated in Equation (3.18) as [Bashar et al 2008d]: 

 

Figure 3.9: Fractional anisotropy for WM [Hallez et al 2008b]. 

  

Figure 3.10: Conductivity ratio Vs fractional anisotropy (FA). 
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(3.18) 

Using Rlt , we generate longitudinal and transversal inhomogeneous conductivities 

for Volume and Wang‟s constrained WM and skull tissue layers. 

 

3.7.4   The Monte Carlo method based inhomogeneous and anisotropic 

conductivities model 

To construct different radial and tangential conductivities shown in Figure 3.8, we 

implement the Monte Carlo Method [Wittwer 2004] using the following steps: (A) 

generate a set of conductivity values i  using 

SDrandni *()   

where µ and SD  are the mean and standard deviation of restricted conductivities, 

repectively. randn() generates a random number from Normal distribution with µ = 0 

and SD = 1, (B) determine the conductivity values, (C) Prepare histogram to visualise 

the conductivity values and finally, (D) Create a conductivity model y = f(x,), 

where x is head elements and  is the values of conductivity for those elements.   

 In Step 2, we use 



10

1

 cond , in which cond is  restricted conductivity, 

and 
2

1

)( )(
1




P

cond
P

SD


  , in which P=10. For instance, Volume constrained 

radial conductivity of the skull ranges between 0.0009 S/m and 0.0042 S/m shown in 

Figure 3.8.  

For the illustration of this conductivity model, we provide an example of the 

approximation of inhomogeneous anisotropic skull conductivities. The generated 

random numbers for the skull are shown in Figure 3.11. We have generated these 

random numbers for 15 executions and selected the best execution, which best 

satisfies the conductivity ranges. As generated random numbers are out of range for 

certain anisotropic conductivity values as shown in Figure 3.8, we implement 
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conductivity frontier constraint to select the conductivity values from these generated 

random numbers within the given range.  For instance, the radial conductivity values 

of Volume constrained skull lie in the range of 0.0009 S/m to 0.0042 S/m. However, 

the generated random numbers are between -0.0028 and 0.0060, therefore we 

implement frontier constraint to select the conductivity values between the given 

ranges as  0042.00009.0randomVol

rdl    (shown between two vertical lines in 

Figure 3.11). Applying this constraint, we ensure that our computed conductivity 

values satisfy Volume constrained conductivities, and it is also ensured that 

heterogeneous anisotropic conductivity remains mean homogeneous isotropic 

conductivity constant. For example, if radial conductivity of a skull element is 0.015 

S/m, its tangential conductivity is 0.0317 S/m, which is in agreement with Equation 

(3.9). The mean value of radial conductivity is 0.098 S/m and 0.035 S/m is for 

tangential conductivity. As a result, it produces mean conductivity, which is close to 

the homogeneous isotropic conductivity.  

 

 

Figure 3.11: Volume constrained conductivities produced by Monte Carlo method. 

Conductivity analysis using histogram: (a) radial conductivities  

and (b) tangential conductivities. 

 

In a similar way, we implement the inhomogeneous and anisotropic 

conductivities for both the WM and skull layers. To construct a full inhomogeneous 

and anisotropic conductivities profile of a human head, we implement the WM and 

skull inhomogeneous and anisotropic properties with the scalp inhomogeneity in 

addition.  
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3.8 Conclusion and Contribution 

 

In this Chapter, we introduce head tissue conductivity in human head modelling. 

Firstly, we investigate the conductivity (homogeneous) values of different head 

tissues and find that the same tissues at different places have different conductivity 

values. This conductivity property makes a human head an inhomogeneous medium. 

To approximate inhomogeneous tissue conductivity, we use pseudo conductivity 

[Wen 2000] based on Normal distribution. Secondly, we introduce the conductivity 

anisotropy of the WM and skull tissues. Anisotropic conductivity is direction based 

and parallel conductivity is higher than the perpendicular conductivity due to the cell 

or nerve structure and organization. Some studies implement tissue anisotropy 

considering a fixed anisotropy ratio [Wolters 2003, Wolters et al 2006, Gullmar et al 

2006, Hallez et al 2008a, Gullmar et al 2010]. However, the anisotropy ratio is 

variable, such as in the corpus callosum, anterior commissure and internal capsule in 

WM.  We also find that the FA is variable [Hallez 2008b] which causes a variable 

anisotropy ratio [Li et al 2007, Bashar et al 2008d]. In order to implement a variable 

anisotropy ratio, we propose conductivity ratio approximation [Bashar et al 2008b], 

statistical conductivity approximation [Bashar et al 2008b], FA based conductivity 

approximation [Bashar et al 2008d] and Monte Carlo method based conductivity 

approximation models. To make the conductivity consistent between the 

homogeneous and anisotropic tissues, we use Volume and Wang‟s constraints 

[Wolters 2003, Wang et al 2001]. Finally, we combine the concepts of tissue 

inhomogeneity and anisotropy properties to approximate a full accounting of the 

conductivity values of the entire head tissues.  
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CHAPTER 4          

 THE FORWARD PROBLEM AND ITS SOLUTION USING FEM 

 

 

In this Chapter, we derive the differential equations together with the boundary 

conditions to describe the EEG forward problem. The EEG forward problem 

describes the relationship between the primary currents in the brain, which are 

directly driven by the neuronal process and the measured potentials at the head 

surface. We model the head as a volume conductor to solve the EEG forward 

problem. 

There are many methods for solving the forward problem. Among these 

methods, de Munck and Peters (1993) introduced an analytic solution for an 

anisotropic spherical head model. Most other researchers are interested in the 

numerical approximation techniques, such as boundary element method (BEM), 

finite element method (FEM) and finite difference method (FDM), etc. Among these 

numerical methods, we prefer FEM because it is able to treat realistic, heterogeneous 

and anisotropic electric properties to implement an accurate forward computation 

[Marin et al 1998, Wolters 2003, Wolters et al 2006]. In this Chapter, firstly we 

present the physical model based on Maxwell’s equations, the mathematical 

formulation for the primary current sources, and the description of the EEG forward 

problem. Secondly, we present a series expansion formula for the potential 

distribution of a dipolar current source in a multi-layered spherical head model. 

Thirdly, we present the EEG forward problem. Finally, we show the solution of the 

EEG forward problem using the FEM. 

  

4.1 Maxwell’s and Poisson’s Equations 

 

Activation of individual neurons inside the brain gives rise to the flow of electric 

current in the brain. The electric current then passes to the CSF, skull bones, 

muscles, subcutaneous fat and the scalp. The flow of current establishes an electric 

potential field over the head and this potential can be measured using the head 

surface mounted electrodes. The rules covering this succession of events are known 
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as Maxwell’s equations.  The Maxwell equations are the electromagnetic connections 

which connect time-varying electric and magnetic fields so that when there are 

bioelectric fields there are always biomagnetic fields, and vice versa [Malmivuo and 

Plonsey 1995]. These equations dictate the behaviour of electromagnetic fields in 

any type of medium. These equations are as follows [Nunez and Srinivasan 2006]. 

The first kind of spatial rate of change (divergence) of electric field (D) is 

proportional to charge density () and defined as: 

 D.  ………………………………………………………... (4.1) 

 The second kind of spatial rate of change (curl) of electric field (E) is 

proportional to time rate of change of magnetic field B and defined as: 

t




B
E  ……………………………………………………. 

 

 The first kind of spatial rate of change of B is zero and defined as: 

0.  B  ………………………………………………………… (4.3) 

 The second kind of spatial rate of change of magnetic field (H) is 

proportional to the current density (J) plus the time rate of D and defined as: 

t




D
JH  ………………………………………………... 

 

 As biological tissue can be treated as an electrolyte, these equations for a 

liner homogeneous material can be expressed as: 

D = E …………………………………………………………… (4.5) 

HB  ………………………………………………………….. (4.6) 

where  is electric permeability and µ is magnetic permeability. We assume that µ is 

constant over the whole volume and equal to the permeability of vacuum [Wolters 

2003]. Therefore, the Maxwell equations are reduced to  

 D.  ………………………………………………………... (4.7) 

0 E  ………………………………………………………... (4.8) 

0.  B  ………………………………………………………… (4.9) 

JB  ………………………………………………………. (4.10) 

and the electric field can be expressed as a negative gradient of a scalar potential (), 

E  ………………………………………………………... (4.11) 

The current density is generally divided into two parts, the primary current Jp and the 

return current Jr. The Jr can be represented according to the Ohm Law as 

(4.2) 

(4.4) 
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EJ r  ………………………………………………………….. (4.12) 

where  is the conductivity. Then, the current density becomes 

EJJJJ prp  ................................................................... (4.13) 

The J is a three dimensional position-dependent vector field, where the direction of 

the vector indicates the direction of motion of the charges. At one moment in time, 

an active electric source triggers all the fields. Hence, no time delay effects are 

introduced. All fields and currents behave as if they were stationary at each instance 

in time and these conditions are known as Quasi-static conditions. However, they are 

not static because the neural activity changes with time. These changes are slow 

compared to the propagation effects. These quasi-static conditions result in the 

decoupling of the electric and magnetic components, and allow us to view the 

electric components only. In equation form, it can be defined as: 

0.  J ......................................................................................... (4.14) 

Substituting Equation (4.13) to (4.14) we get,                        

0)(.  rp JJ   

pr JJ ..   …………………………………………………. (4.15) 

Substituting Equation (4.12) to (4.15) we get,               

pJE ..    

…………………………………………………. 

(4.16) 

Substituting Equation (4.11) to (4.16) we get,                        

pJ.)(.   …………………………………………... (4.17) 

pJ.)(.     …………………………………………….. (4.18) 

   It is to be noted that pJ. is merely the source density inside the domain. If we 

denote pJ.  as the current per unit volume Iv, then we obtain at Poisson’s 

equation- a mathematical description of a typical bioelectric volume conductor 

problem 

vI )(.    

………………………………………………... 

(4.19) 

Here, Iv is defined within the solution domain . For the special case of a region of 

the head containing no current sources or sinks, then the Equation (4.19) simplifies to 

the Laplace equation as:                           

0)(.   …………………………………………………… (4.20) 

Either the Poisson or the Laplace equation is used to formulate the most 

bioelectric volume conductor models. Then, the fundamental problem becomes 
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finding a technique that will accurately represent the domain, and will also allow the 

solutions of Equation (4.19) or (4.20). The associated boundary conditions depend on 

what type of problem is going to be solved. 

 

4.2 Boundary Conditions 

 

The boundary condition expresses the way to represent the potential or current that 

passes from one tissue layer or compartment to its neighbouring tissue layer or 

compartment. There are two boundary conditions at the interface between two tissue 

layers. Figure 4.1 describes the boundary condition in a sphere.  

 

 

 

  

 

 

Figure 4.1:  Boundary between two compartments. 1 and 2 are conductivities of tissue 

layer 1 and 2, respectively, and the normal vector en is the interface. 

 

In the first condition, all current leaving a tissue layer with conductivity 1 

through the interface must enter the other tissue layer with conductivity 2. This 

process can be stated as [Vanrumste 2002]:       

nn eJeJ .. 21   …………………………………………………. (4.21) 

where en is the normal component on the interface. Equation (4.21) can be stated 

using Equations (4.11) and (4.12) as  

        

  nn ee ..)( 2211    ……………………………………. (4.22) 

However, no current would be passed from the outer tissue layer of the head to the 

air. Therefore the current density at the surface of the head is: 

0.1 neJ  ………………………………………………………. (4.23) 

0.)( 11  ne  

………………………………………………… 

(4.24) 

Equation (4.23) is known as Neumann boundary condition and Equation (4.24) is 

known as the homogeneous Neumann boundary condition [Vanrumste 2002]. 

 
1 

2 1 

2 

en 
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 In the second boundary condition, the potential after crossing the interface is 

continuous. It is stated as: 

21   

…………………………………………………………. 

(4.25) 

This equation is known as the Dirichlet boundary condition. In the Dirichlet 

boundary condition, there is no interface with air and is used for inner tissue layer 

interfaces. 

 

4.3  The Current Source or Dipole Model 

 

The primary currents are due to the movements of ions within the dendrites of the 

large pyramidal cells of activated regions in the cortex. The stimulus induced 

activation of a large number of excitatory synapses of a whole pattern of neurons 

leads to negative current monopoles under the brain surface. It also leads to positive 

monopoles quite closely underneath [Wolters 2003]. Current source (+I0) and current 

sink (-I0) are used to represent an active pyramidal cell at microscopic level [Hallez 

2008b]. They can be modelled as a current dipole shown in Figure 4.2. The position 

parameter r of the dipole is typically chosen half way between the two monopoles. 

A common concept of modelling the primary current distribution Jp on the 

right hand side of Equation (4.18) is the mathematical current dipole. The 

mathematical dipole is an adequate model for the synchronous polarization of a 

cortical surface [de Munck et al 1988, Wolters 2003]. It is stated as [Yan et al 1991, 

Baillet et al 2001, Wolters 2003, von Christine 2008, Lanfer 2007]:  

),(.)( 21 rrMrJp   

………………………………...………… 

(4.26) 

where M is dipole moment,  is Dirac delta function, r1 is the position of the source 

monopole and r2 is the sink monopole. The  is a very strong inhomogeneity that 

leads to problems in numerical calculations using the mathematical current dipole as 

source model [von Christine 2008].  These inhomogeneity problems are solved using 

several models, such as direct method, subtraction method, etc (discussed in Section 

4.8).    
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Figure 4.2: A dipole model. r0 is the location of dipole centre. +I0 is current source and  –I0 is 

the current sink points. d is distance from source to sink and I(r) is current field at a point r. 

  

4.4 The EEG Forward Problem 

 

The solution of the EEG forward problem yields electric potentials on the head 

surface caused by neuronal depolarization and repolarization in the brain, which can 

be represented by a current dipole. The forward problem is solved by means of a 

quasi-static approximation of the Maxwell equation or the Poisson equation (4.19) 

as:  

vI )(.   in …………………………………………… (4.27) 

which describes the potential distribution in the head domain  due to a primary 

current in the brain. A Dirichlet boundary condition is applied in inner boundary 

surfaces I as: 

10   on I  …………………………………………………. (4.28) 

A Neumann boundary condition needs to be applied at the outer surface, o , 

where the medium is contacted with the air as: 

0.  n  on o ……………………………………………………………………… (4.29) 

where n is the outward unit normal.  

Furthermore, the value of the electric potential must be set to a specific value 

at one reference point: 
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0)(  ref   

A forward solution determines the electric potentials for a volume conductor 

with known boundary condition and a given current source configuration. This 

forward problem has been solved by an analytic method and also approximated by 

numerical methods, such as the BEM, FEM and FDM.   

 

4.5 General Algebraic Formulation of the EEG Forward Problem 

 

Let us consider that r is observation point, q is dipole moment and rq is dipole 

source. A dipole magnitude qq  from its orientation q/q which will be 

represented in the spherical coordinate as   , . Let p(r) denote scalp electric 

potential generated by a dipole [Baillet et al 2001]: 

,),,()( qap q  rrr ………………………………………………. (4.30) 

where ),,( qrra is formed as the solution of the forward problem for a dipole with 

unit magnitude and orientation  . Therefore, scalp electric potentials p(r) at N 

sensors are obtained: 
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For the simultaneous activation of multiple dipoles (i= 1 to M) located at rqi 

with moment i  and qi magnitude, we can obtain scalp electric  potentials as: 
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where }),({ iqiA r  is the gain matrix and S is the generalized matrix of the source 

amplitude. Each column of the matrix A relates a dipole to the array of sensor 

measurements and also is known as forward field. For the M sources and T discrete 

time samples, Equation (4.32) can be represented as: 

(4.31) 

(4.32) 
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The corresponding time series for each dipole is the columns of the time series 

matrix S. 

 

4.6  Electric Potential in a Multi-layer Spherical Model 

 

At the beginning of the mathematical solution of the forward problem, a single-

layered spherical head model is considered to obtain the EEG. In this head model the 

entire conducting volume is modelled as a sphere of a constant homogeneous 

conductivity . Brody et al (1973) reviewed earlier formulations and represented a 

generalized expression for this single-sphered model as:  


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, ……………………………… 

 

 
where r is the distance from the centre of the sphere to the observation point, R  is the 

distance from the dipole position to the observation point, and er and eR are unit 

vectors to the observation point from the centre and dipole location, respectively. 

However, it was noticed that the single-layered model is too unrealistic due to the 

variational conductivity of the skull rather than the scalp and brain. Therefore, a 

refinement of the single-sphered model was required and a three-layered spherical 

model was introduced.  

In the three-layered spherical model, the outer sphere represents the scalp, the 

intermediate layer represents the skull and the inner sphere represents the brain. Rush 

and Driscoll (1968) reviewed some of the early solutions to single and homogeneous 

spheres, then presented the solutions for both anisotropic and multi sphere models. 

Berg-Scherg (1994) used a single-sphere model to approximate a three- (four-) 

layered model. In a four-layered model, an additional CSF layer is assumed between 

the skull and the brain. Zhang (1995) reviewed the solutions using different fast 

computation methods than the Berg-Scherg approximation. Mosher et al (1999) 

derived the solution of the forward problem according to the derivation of Zhang. 

(4.33) 

(4.34) 
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Here we present the form of the solution by Zhang (1995) and Mosher with reference 

to the geometry in Figure 4.3.   

 

 

Figure 4.3: The angle between vectors pointing to surface position r and dipole location rq is 

denoted . The angle the dipole q makes with the radial direction at rq is denoted . The 

angle between the plane formed by rq and q, and the plane formed by rq and r is denoted  

[Zhang 1995, Mosher et al 1999]. 

 

The multi-shell case of M spherical shells requires the evaluation of an 

infinite series. The infinite series presentation by Zhang (1995) is as: 

  ,)(cos.sincoscoscos

.
12

4
),;(

1

1

1
2





nnn

n

q

iM

q

M

PPnf

r

r

n

n

r

q
v























qrr
………… 

 

 

where nP  is Legendre polynomial and 1

nP is associated Legendre polynomial and 
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The coefficients m22 and m21 are found in the following equation as:  
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where the conductivities are arranged from the innermost sphere to the outer 

most, M .......,,.........1 , corresponding to the radii of the spheres   

Mrrr  ................21 . More details are found in Zhang (1995). 

 The signed dipole intensity can be represented by its radial component 

cosqqr  and tangential component sinqqt  . The potential can then be 

expressed as the sum of the two potentials [Mosher et al 1999] 

(4.35) 

(4.36) 
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However, it is becoming more apparent that the actual geometry of the head 

with the varying thickness and curvatures of the skull affects the solution [Chauveau 

et al 2003, Cuffin 1993]. So-called realistic head modelling is becoming much more 

common in conjunction with the BEM, FEM or FDM. However, the computational 

requirements for a realistic head model are higher than those for a multi-layer sphere. 

  

4.7 Numerical Solution of the EEG Forward Problem  

 

In order to solve the EEG forward problem, the Poisson equation must be solved to 

compute the unknown potentials on a head surface. For a current source or dipole, 

the solution for the potentials has a singularity at the dipole position. This singularity 

poses numerical difficulties for the solution of the FEM. Moreover, the solution of 

the mathematical dipole using the Dirac delta function also leads inhomogeneity 

(discussed in Section 4.3). These difficulties can be solved in a variety of ways 

which can be categorized into two distinct methods: direct approach and subtraction 

approach. 

 

4.7.1 Direct approach 

 

The direct approach is used to solve the forward problem by directly implementing 

the dipole source as a current source and sink positions infinitesimally close to each 

other. The direct method consists of solving Poisson’s equation (4.27) with the 

Neumann boundary conditions (4.29) and a fixed referential potential [Wolters 

2003]. The direct approach is easy to implement and can provide a more accurate 

solution when the conductive media is inhomogeneous [Awada et al 1997]. 
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4.7.2 Subtraction approach 

 

The subtraction approach is to solve for the difference between the desired potential 

and a potential due to a dipole in an infinite homogeneous medium that corresponds 

to the medium at the dipole location. This approach treats the mathematical dipole 

singularity and is usually used when the region’s conductive media is homogeneous 

[Awada et al 1997]. This approach splits the total potential  [Wolters 2003, von 

Christine 2008] and conductivity  into two parts, the singularity (

, 


)  and the 

correction (
cor

, 
cor

) as : 

cor   …………………………………………………... (4.38) 

cor    …………………………………………………… (4.39) 

The singularity potential 

 is the solution for a dipole in an unbounded 

homogeneous conductor with constant conductivity 

. Therefore, the solution of the 

Poisson’s equation  









pJ.
 …………………………………………………... 

 

can be expressed at any observation point (x) and source position (x0) as: 
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For a homogeneous and anisotropic conductivity, Equation (4.41) becomes 
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As  

 describes the potential in an unbound volume conductor, 

cor
 has to be 

computed to correct the potential with the accurate volume conductor. Substituting 

Equations (4.38) and (4.39) into Equation (4.18) and using Equation (4.40) we obtain 

  corcor  .)(.  in    …………………………. (4.43) 

with the Neumann boundary conditions 

    nn ..   cor  on o ……………………………….. (4.44) 

The right-hand side of Equations (4.43) and (4.44) is now singularity-free because of 

the homogeneity condition: 

0   cor  in .      ……………………………………... (4.45) 

(4.41) 

(4.40) 

(4.42) 
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When solving Equations (4.43) and (4.44) towards 
cor

, the unknown scalar potential 

 can be calculated using the Equation (4.17) or (4.18). 

 

4.7.3 The Finite Element Method 

There are many methods, such as BEM, FEM and FDM to solve the forward 

problem. In this dissertation, we choose the FEM.  A relevant question is why we 

select the FEM. 

 

4.7.3.1 Why do we select FEM? 

The BEM, FEM and FDM are three popular approximation methods for solving the 

forward problem. As discussed earlier that some tissues, such as the skull and the 

WM are anisotropic. BEM can process only the isotropic. The conductivity of the 

head tissue is not homogeneous as the conductivity at different places of the head 

tissue is different, even in the same tissue. BEM is also unable to process the tissue 

inhomogeneity. It only calculates the solution of the forward problem on the 

boundaries between the homogeneous isotropic conducting regions. On the other 

hand, FEM and FDM are able to process anisotropic and inhomogeneous 

conductivity by calculating the entire volume. As a result, FEM and FDM lead to a 

larger number of computational points than the BEM.  

To determine the potential at an arbitrary point, BEM reapplies the Barnard 

formula and numerical integration [Vanrumste 2002]. FEM and FDM determine the 

potential using interpolation of computational points in its vicinity. BEM has limited 

computational efficiency for solving the forward problem due to the cost of matrix 

inversion. It becomes a severe problem for the inverse problem, where a large 

number of forward evaluations are required. As BEM solves the inversion of the 

system matrix directly, it does not require any iterative solver. The FEM or FDM 

solves the forward problem using the inversion to a sparse matrix with the help of 

iterative solvers to speed up its execution. BEM yields smaller errors and consumes 

less computation time but requires more memory [Wang et al 2010].  A summary of 

the comparison among the BEM, FEM and FDM models is reported in Table 4.1. 
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Table 4.1:  Comparison among different methods for solving the forward problem. 

 BEM FEM FDM 

Anisotropy no yes yes 

Inhomogeneity no yes yes 

Positional computational points surface volume volume 

Free choice computational points yes yes no 

System matrix full sparse sparse 

Solvers direct  iterative iterative 

Number of regions small large large 

Errors smaller larger larger 

Memory more less less 

Computation less more more 

 

Finally, we choose the FEM, as it is able to treat arbitrary complex head 

geometries and inhomogeneous and anisotropic conductivities. Now, FEM is widely 

used in different research fields including fluid dynamics, heat transfer problems or 

in structural engineering. FEMs have also been developed by various research groups 

for the electromagnetic field simulations [Baillet et al 2001 and 2004, Wolters 2003, 

Wen 2000]. From now on, the focus will be on the FEM method in this dissertation. 

 

4.7.3.2  Formulation of FEM 

For the solution of the forward problem using FEM, the basic Poisson’s equation is 

transformed into a variational formulation, which is then discretized using a Galerkin 

approach. 

We use the Galerkin approach [Kwon and Bang 2000] to Poisson Equation 

(4.27) with the boundary conditions in Equations (4.28) and (4.29). We then multiply 

the Poisson equation with a test function  and integrate over the volume  

representing the entire head. We obtain 

  ..  
 dId v ……………………………….  

Applying Greens’ first identity for: 

   
 .).(.).(.. ddd  ..  

in combination with the boundary conditions to Equation (4.46), we obtain the ‘weak 

formulation’ of the forward problem as:  

 
 dId v).(.  ……………………………..  

(4.46) 

(4.47) 

(4.48) 
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The entire volume conductor is discretized into small regions called elements 

and the process is known as tessellation. We tessellate the whole domain () into N 

sets of tetrahedral elements. N denotes indexes of the mesh nodes for the finite 

element (FE) computation. In Equation (4.48), Iv represents the source configuration. 

Solving this equation for an ideal dipole would result in a singularity at the position 

of the dipole. We use the direct approach to solve this singularity problem.  

For solving the forward problem using the FEM, we choose the electric 

potential appropriate test functions in the elements and low order polynomials. We 

assume the tetrahedral elements as  

zcycxcce 4321  , ………………………………………. (4.49) 

where ci  are the tetrahedral vertex, and x, y and z are coordinates. As the electric 

potential is continuous throughout the head domain, its approximation has to be 

continuous from one element to another. This continuity condition can be defined 

using local form function or interpolating basis function for an element )(xe

k as: 





n

k

e

kke xux
1

)()(  , ………………………………………….. 
 

where e(x) is unknown element potential, n is the number of nodes in an element, uk 

is node variables. This relation has to be fulfilled for every value combination of 

node variables, so that )(xe

k  meets the Lagrange condition, iki

e

k x  )(  where xi 

is  a node of the element [von Christine  2008, Lanfer 2007]. Then the nodes of all 

elements are numbered consecutively and formed global form or basis function k , 

which is composed of the local form function containing 1 at node k. Therefore, the 

global form function is only non-zero in the elements to which the node k belongs. 

Now, the unknown electric potential in the whole domain can be written as: 





N

k

kku
1

 …………………………………………………………. 
 

We then substitute Equation (4.51) to the quasi-static Equation (4.18). In 

general, the solution of an arbitrary choice of node variables will not be exact, 

therefore a residuum R remains: 





N

k

pkkuR
1

.)(. J .  …………………………….. 
 

(4.50) 

(4.51) 

(4.52) 
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Applying the method of weighted residuals, this R is weighted with the weighting 

function wj. We choose the uk in such a way that the integral of the weighted residuum over 

the whole domain vanishes: 

0


jRwd .  …………………………………………………..  

Following Galerkin’s method, we choose wj equal to the basis function j such that 

jjw  . Substituting this into Equation (4.52) and applying integration by parts we obtain 

 
 

 0..
1

pj

N

i

kk ddu J  .   ………………….. 
 

The occurring surface integral is zero because of the boundary conditions. If we 

assume ku , K


jkd  .  and  


 IJ pd . , we can express 

Equation (4.54) as  

IK  .     ……………………………………………………………. (4.55) 

 

Equation (4.55) produces N equations in N unknown  = [1,….., N]
T
  

N1
. Due 

to the local support of the basis function, each equation consists of only a linear 

combination of k and its adjacent computational points. Hence the system matrix K 

 
NN

 is sparse. I  
N1

 is the source term obtained by integration of the right 

hand side of Equation (4.48). The integrand of K is only non-zero for neighbouring 

nodes (where i and k are nodes of the same finite element). Therefore, this one row 

of K only has as many non-zero entries as a node has neighbours; as a consequence, 

K is sparsely populated with non-zero entries. Thus, FEM formulation leads to 

system equations in which unknowns are the potentials in each node. The elements 

of K and I depend on the geometry of a head model. As K is sparse, symmetric and 

positive definite, it requires an iterative solver to accelerate the rate of convergence 

of iterative solvers. We use preconditioned conjugate gradient as an iterative solver. 

The conjugate gradient (CG) method is an iterative method for the numerical 

solution of a particular system of liner equations, namely those whose matrix is 

symmetric and positive-definite. The CG method can be applied to the sparse 

systems that are too large to be handled by direct methods such as the Cholesky 

decomposition. Solving linear systems resulting from the finite elements shows the 

limits of the CG. Indeed, the spectral condition number of such matrices is too high. 

The technique of the preconditioned CG method consists of introducing a matrix C 

(4.53) 

(4.54) 
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subsidiary. Let ̂ be the exact solution of this system. It happens sometimes that the 

spectral condition number )(K is too high. Preconditionment consists of 

introducing regular matrix C and solving the system: 

IKIK   ˆ)ˆ( 11 CC  …………………………………... (4.56) 

such that the new spectral condition number is smaller for a judicious choice of the 

matrix C.  

 

4.8 Summary  

 

In this Chapter, we introduce the forward problem and its solution. At the beginning 

of this Chapter, we describe a mathematical formulation for the primary current 

source model with the equivalent current source and current sink. For this source 

configuration, we derive the Poisson equation and its boundary conditions. Poisson’s 

equation connects the electrical source with the potential fields it generates. The EEG 

forward problem is to solve the Poisson equation, i.e. it calculates the potential for a 

given source configuration. The generalised algebraic formulation of the forward 

problem is also shown. We show the potential calculation for a multi-layered 

spherical head model and also show how the potential passes from one surface to the 

neighbouring surface by means of the boundary conductions. We then discuss how 

the forward problem is solved using the FEM. As the FEM requires an iterative 

solver, the preconditioned conjugate gradient method is also discussed as an iterative 

solver. 

In the next Chapter, we shall discuss and analyze the effects of obtained 

EEGs from different conductivity based head spherical models. 
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CHAPTER 5           

EFFECTS OF TISSUE CONDUCTIVITY ON HEAD MODELLING 

 

 

In this Chapter, we investigate EEGs from our proposed different conductivity 

models. At the beginning, we introduce our methodology and implementation tools 

to carry out head model construction. Further, we construct a series of human head 

models using inhomogeneous and anisotropic conductivities. We show the effects of 

inhomogeneous and anisotropic tissue conductivities on EEG based on our proposed 

CRA, SCA, FA based and the Monte Carlo based conductivity models. We also 

implement a head model using a stochastic method to study the effects of 

inhomogeneous and anisotropic conductivities on EEG. All these models are 

constructed based on a five-layered spherical head model frame.  

 

5.1  Methodology and Tools 

 

5.1.1 Spherical head model construction 

 

We construct a spherical head model using the following steps: (A) making  spheres; 

(B) performing mesh generation and labelling the mesh elements into surfaces; (C) 

assigning or allocating conductivity; (D) placing sources; (E) putting electrodes or 

sensors on the upper sphere; (F) solving the forward problem using FEM and finally 

(G) storing the computed scalp potentials for each electrode. Figure 5.1 shows the 

diagram of a spherical head model construction. 

 In the first step, we make multiple spheres according to the head model 

structure, such as 3-spheres, 4-spheres and 5-spheres. We perform mesh generation 

to create tetrahedrons for piecewise FEM elements in the second step. Mesh 

generation is performed as follows: (a) creating the surfaces of the spheres, (b) 

generating the vertices of the tetrahedral elements, (c) performing the Delaunay 

triangulation to confirm no vertex resides inside the circumstances of any tetrahedra 

and (d) each tetrahedron is labelled to any compartment which it belongs. We mesh 

these spheres using the Tetgen® package (Si 2004). 
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Figure 5.1: Spherical head model construction.  

 

The third step, conductivity allocation, is the most important and the main focus 

component of this dissertation. We assign either homogeneous isotropic, 

homogeneous anisotropic or inhomogeneous anisotropic conductivities produced 

from our proposed conductivity models to each tetrahedron for the computation of 

the EEG forward problem. We use a scalar value for the homogeneous isotropic 

conductivity and conductivity tensor for anisotropic conductivity. In the fourth step, 

we put source(s) inside the GM of the brain. We implement equivalent current dipole 

configuration [Yan et al 1991, Baillet et al 2001] to the surface of the cortex (radial 

direction) with 1 µA amplitude. We assume that the dipole is in the axial, coronal 

and sagittal planes. A dipole can be decomposed into three orthogonal dipoles along 

the main axes. We, therefore, consider the three orthogonal orientations. These 

orientations are X orientation (along left-right), Y orientation (along back-front) and 

Z orientation (along bottom-top). We choose the orientations for the dipole indicated 

by an azimuth angle  [-,] and an elevation angel  [-/2, /2].  In the fifth 

step, we put electrodes on the upper surface of the scalp sphere. We use 64 electrodes 

to compute the scalp potential excluding a reference electrode. We consider 

referential montage to compute the potentials. We obtain these electrode positions 

from the online package Brainstorm2. We align and register the tessellated head 
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surfaces based on these electrode positions. In the sixth step, we perform the forward 

computation using FEM tool of Brainstorm2 [Brainstorm] to compute the potentials 

on the scalp (EEG). Finally, we get the computed scalp potentials from N points 

where electrodes are located on the upper head surface and save them as EEGs. 

 

5.1.2 Used tools 

 

We mainly use Brainstorm2 [Brainstorm], BrainSuite2 [Shattuck 2005] and 

advanced source analysis (ASA) [ASA] in our work.  

Brainstorm is a free Matlab application dedicated to 

Magnetoencephalography (MEG) and EEG data visualization, processing and 

cortical source estimation. The intention of the developer is to make a comprehensive 

set of tools available to the scientific community involved in MEG/EEG 

experimental research. It is widely used in this purpose for more than five years is 

validated and used by physicians and researchers. [Sylvain et al 2004, Darvas et al 

2004, Pantazis et al 2005]. Brainstorm was recently updated to Brainstorm3. 

However, we use the FEM tool of Brainstorm2. We also use the Tetgen® package 

for mesh generation which is combined with the FEM tool of Brainstorm2. 

BrainSuite is an MRI tool designed for identifying tissue types and surfaces 

in an MRI of the human head. It requires minimal user interaction with the goal of 

completing the entire process of extracting a topologically spherical cortical surface 

from a raw magnetic resonance volume. We use Brainsuite2 as it has been written to 

be compatible with Brainstorm software for the analysis of MEG and EEG data. 

Advanced source analysis ASA  is a software package designed for functional 

brain imaging based on EEG/MEG measurements. Our laboratory purchased the 

ASA from its developer ANT Corporation, in Netherlands. The visualization of the 

computed EEGs to observe the scalp potentials are presented using ASA. We 

perform the EEG visualization by adopting and feeding our computed EEGs to ASA.  
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5.2 Influence of Anisotropic Conductivity 

 

5.2.1 Objective of the study 

 

In the case of the electric fields computation, there are two important aspects: the 

geometry of the head and the conductivities assigned to each region of the geometry. 

This Section investigates the influence of head tissue anisotropy on the head 

modelling for the solution of the EEG forward problem.   

 

5.2.2 Head model construction 

 

We implement a five-layered spherical head model with 8.8cm, 8.5cm, 8.1cm, 7.9cm 

and 6.5cm radii for the scalp, skull, CSF, GM and WM, respectively. We perform the 

tessellation and find approximately 315K elements from 54K nodes. Labelling of 

tetrahedra provides 52519 elements for the scalp, 67403 elements for the skull, 

78846 elements for the CSF, 66665 elements for the GM and 50489 elements for the 

WM. We place six fixed dipoles at a point starting from 2mm outer of WM to 2mm 

below the cortex surface inside the GM with the elevation angles /5.22, /4.67, 

/4.0, /3.86, /3.83 and /3.77 radians with fixed azimuth angle /4. We construct 

the following head models:  

Model A:  head model using homogeneous isotropic conductivity.  

Model B: head model using anisotropic WM conductivity.  

Model C: head model using anisotropic skull conductivity.  

Model D: head model using WM + skull conductivity.  

 

5.2.3 Simulation setup 

 

When a tissue is assumed to be anisotropic, conductivity is defined either in the 

radial or in the tangential direction [Sadleir and Argibay 2007]. We model the 

longitudinal or tangential conductivity as ten times higher than the transverse or 

radial conductivity. It can be stated as: 

rdltgl  .10 ………………………………………………… 
 

(5.1) 
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where tgl and rdl present the tangential and the radial conductivities, respectively. 

For the implementation of anisotropy, we consider conductivity tensor. For example, 

we assume the conductivity tensor for WM as [Wolters 2003, Hallez et al 2005a, 

Gullmar et al 2006, Wolters et al 2006]:  

 

                                                                         …………………… 

 

 

where S is orthogonal matrix of unit length eigenvectors, long  is the parallel 

(longitudinal) eigen values, and trans  is the perpendicular (transverse) eigen values. 

Developing the Models B to D, we implement the VC and WC using anisotropic 

conductivity model. 

The EEG computed from model A is defined as a reference model throughout 

this study unless otherwise specified. EEGs obtained from other models are 

considered as computed models, which are compared to reference EEG. We 

implement these head models using an Intel® dual core 2.0 Ghz processor. A single 

computation for the FEM in this research takes approximately three hours CPU time. 

To quantify the differences between the reference and computed models, we 

use two measurements. The first measurement is relative error () and is defined as 

[Klepfer et al 1997, Li et al 2007]: 

2

2

||||

||||

ref

compref

V

VV 
 …………………………………………… 

 

where Vref  and  Vcomp are reference and computed EEGs, respectively, and ||x||2 is 

norm defined as  



N

i

ixx
1

2

2
, N is the number of electrodes.  is always positive 

and the best value is 0. 

Another measurement is correlation coefficient () and is defined as [Klepfer 

et al 1997, Li et al 2007]: 

22
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where  is always positive and =1 when compref VV  . 
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5.2.4 Simulation results 

 

We compute the scalp potentials assigning 10: translong   in WM tissue. Table 5.1 

shows average  and   values resulted by the comparison between Model A and 

Model B. All of the results are away from the ideal  and   values, 0 and 1, 

respectively. From these results, we find that there are some significant changes on 

EEG produced by homogeneous and anisotropic conductivities based models for 

both constraints from homogeneous isotropic or reference model.  

 

Table 5.1  Average related error () and correlation coefficient () values resulted by 

comparing Models A and B. 

Constraint Conductivity  X orientation Y orientation Z orientation 

Volume 

Longitudinal  42% 43% 64% 

 0.9664 0.98 0.5426 

Transverse  39% 21% 1.51% 

 0.9481 0.97 0.43 

Wang 

Longitudinal  44% 48% 62% 

 0.9643 0.9821 0.5664 

Transverse  31% 22% 50% 

 0.9443 0.9704 0.8409 

 

We also develop another model assigning the anisotropic skull conductivity 

ratio as 10: rdltgl  (Model C). Table 5.2 shows average  and   values resulting 

from this model. From these results, we also understand the effects of skull 

homogeneous anisotropic conductivities on EEG. 

 

Table 5.2.  Average  and  values resulted by comparing Models A and C. 

Constraint Conductivity Error X orientation Y orientation Z orientation 

Volume 

Tangential 

 

 16% 27% 75% 

 0.1984 0.2451 0.5725 

Radial  49% 58% 53% 

 0.7601 0.8268 0.6491 

Wang 

Tangential  20% 25% 57% 

 0.9768 0.9852 0.8162 

Radial  29% 43% 31% 

 0.9382 0.9575 0.8672 

 

 Similar to Tables 5.1 and 5.2, Table 5.3 shows the combined WM and skull 

anisotropy on EEG. We also find their combined effects are also significant. 
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Table 5.3.  Average  and  values resulted by comparing Models A and D. 

Constraint Conductivity Error X orientation Y orientation Z orientation 

Volume 

Parallel  43% 54% 57% 

 0.7523 0.7829 0.5342 

Perpendicular  15% 26% 68% 

 0.2784 0.2551 0.6325 

Wang 

Parallel  27% 45% 36% 

 0.9282 0.9675 0.8922 

Perpendicular  18% 23% 58% 

 0.982 0.9852 0.852 

 

5.2.5 Conclusion 

 

From the above simulated results, we understand that there are significant effects of 

tissue anisotropy on EEG. Different models show different relative error or 

correlation coefficient values, these values are different from the ideal values. 

Similar anisotropy study by different researchers also shows substantial differences 

on obtained EEG from anisotropic conductivity to the isotropic conductivity. When 

combined anisotropic conductivities (WM and skull) are assigned, considerable 

change is noticed in comparison with single tissue layered anisotropy.  This means 

that relative errors or correlation coefficient values are not additive when more than 

one tissue layers are combined. 

 

5.3  Influence of Inhomogeneous and Anisotropic Tissue Conductivities 

 

5.3.1 Objective of the study 

 

In medical applications, the head modelling is suggested to be anisotropic though 

isotropic head modelling is still in use [Juan-Felipe et al 2007]. Several studies 

[Marin et al 1998, Wolters 2003, Hallez et al 2008a, Gullmar et al 2010] implement 

anisotropic models using a constant anisotropy ratio; however, it is established that 

the anisotropy ratio is not constant and varies in the range of 1 to 10. Therefore, a 

complete head model requires a full implementation of variable anisotropic or 

inhomogeneous anisotropic conductivity. We propose to implement an 

inhomogeneous and anisotropic conductivities model and to simulate different head 

models on our proposed conductivity models. 
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5.3.2 Conductivity ratio approximation model 

 

5.3.2.1 Simulation setup 

We use the same head geometry, segmentation and tessellation described in Section 

5.2.2. We model a human head based on inhomogeneous anisotropic conductivities 

generated using conductivity ratio approximation (CRA) model. CRA generates the 

anisotropy ratio randomly between 1 and 10 for each element. Based on this ratio, 

the longitudinal and transverse conductivities are determined by applying Volume 

and Wang’s constraints. In the case of the homogeneous anisotropic model, lt 

(conductivity ratio between longitudinal and transverse conductivities) is constant. 

For example, Wolters et al (2006) and Gullmar et al (2006)
 
used 1, 2, 5 or 10 for the 

value of lt. However, for the inhomogeneous anisotropic case, lt can be 1 to 10.  

CRA generates different values for lt for WM as shown in Figure 5.2(a). Figure 

5.2(c) shows the WM longitudinal and transverse conductivities for VC from the 

values of lt shown in Figure 5.2(a). In a similar way, we generate inhomogeneous 

conductivities for skull using both constraints.  

We place a dipole at 2mm below the cortex surface inside the GM with the 

azimuth and elevation orientations /4 and /5, respectively, and consider X 

orthogonal dipole orientation only. 

Finally, we apply relative difference measure (RDM) and magnification 

(MAG) techniques to analyze the results. RDM and MAG are introduced by Meijis 

et al (1989) as: 
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where comp is computed scalp potentials from the CRA based head model, ref is 

reference scalp potentials obtained from the homogeneous isotropic head model and 

N  is the number of electrodes.  

 

 

                               (a)                                                                            (b) 

        

                               (c)                                                                                  (d) 

Figure 5.2: (a) Value of conductivity ratio (lt) between longitudinal and transverse 

conductivity for each WM element generated by CRA, (b) clear view of (a) from 10
2
 to 10

3
 

WM elements, (c)  longitudinal (long.) and transverse (trans.) conductivity values for each 

WM elements based on lt  of (a) using VC, and (d) clear view of (c) from 10
2
 to 10

3
 WM 

elements [Bashar et al 2008b]. 

 

 

5.3.2.2 Simulated results 

Table 5.4 presents the RDM and MAG values produced by the CRA technique. For 

all the cases, RDM and MAG values are far from the ideal values, 0 and 1, 

respectively. This indicates a strong effect of WM inhomogeneous anisotropy on 

EEG. While we implement inhomogeneous anisotropy, different conductivities 

rather than homogeneous isotropy are assigned. Therefore, electrical potentials vary 

long. 

trans. 
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from the reference model. Volume constrained long and Wang’s constrained trans are 

more affected by inhomogeneous anisotropy. We find that the Volume constrained 

long has higher values and Wang’s constrained trans has lower values. These two 

conductivity values are far away from the homogeneous isotropic conductivity (0.14 

S/m). For instance, when lt = 10, the value of long  and trans are 0.65 S/m and 0.044 

S/m for Volume and Wang’s constraints, respectively. In comparison with the 

homogeneous anisotropic model, inhomogeneous anisotropic models produce less 

MAG error. In our experiment, we consider lt = 10 for the homogeneous anisotropic 

model. As our inhomogeneous anisotropic model is generated by different 

conductivity ratios (1 to 10) shown in Figure 5.2(a), it therefore produces greater 

magnitudes than the reference model. As a result, it becomes closer to homogeneous 

anisotropic model. Here, the MAG is 1.58 between reference and homogeneous 

anisotropic models. The longitudinal conductivities for both constraints are more 

affected by homogeneous isotropy than homogeneous anisotropy (comparing 

columns 5 and 6 with columns 3 and 4 for longitudinal conductivities). However, 

transverse conductivities are more affected by homogeneous anisotropy than 

homogeneous isotropy as shown in rows 4 and 5 in Table 5.4.  

 

Table 5.4: RDM and MAG values between reference and computed models for WM.  

 Conductivity homo_iso vs 

inho_aniso 

homo_aniso vs 

inho_aniso 

RDM MAG RDM MAG 

Volume 

constraint 

Longitudinal 27.60% 1.4384 6.47% 0.9023 

Transverse 28.21% 0.9104 42.06% 0.9518 

Wang’s  

constraint 

Longitudinal 19.16% 1.2637 6.11% 0.79 

Transverse 32.90% 0.8923 45.15% 0.9329 

 * homogeneous isotropic (homo_iso) and inhomogeneous anisotropic (inho_aniso) models, 

and homogeneous anisotropic(homo_aniso) and inho_aniso models for the WM calculated by either 

VC or WC conductivities. 

 

By a similar approach, we obtain different RDM and MAG values for 

inhomogeneous and anisotropic skull and combined WM and skull conductivity 

models reported in Table 5.5 and Table 5.6, respectively. Analyzing these results, it 

is also apparent that the effects of inhomogeneous and anisotropic conductivities 

show some significant effects on EEG. 
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Table 5.5: RDM and MAG values between reference and computed models for skull.  

 Conductivity homo_iso vs 

inho_aniso 

homo_aniso vs 

inho_aniso 

RDM MAG RDM MAG 

Volume 

constraint 

Tangential 32.15% 1.4931 12.41% 0.8615 

Radial 38.11% 0.8204 49.22% 0.9314 

Wang’s  

constraint 

Tangential 22.16% 1.337 13.11% 0.754 

Radial 33.92% 0.8422 47.12% 0.9128 

* homogeneous isotropic (homo_iso) and inhomogeneous anisotropic (inho_aniso) 

models, and homogeneous anisotropic (homo_aniso) and inho_aniso models for the skull 

calculated by either VC or WC conductivities. 

 

Table 5.6: RDM and MAG values between reference and computed models for WM and 

skull together. 

 Conductivity homo_iso vs 

inho_aniso 

homo_aniso vs 

inho_aniso 

RDM MAG RDM MAG 

Volume 

constraint 

Parallel 29.40% 1.3381 8.42% 0.9129 

Perpendicular 27.25% 0.9304 43.02% 0.9181 

Wang’s  

constraint 

Parallel 17.12% 1.3637 7.15% 0.719 

Perpendicular 33.10% 0.8721 41.12% 0.9222 

 * homogeneous isotropic (homo_iso) and inhomogeneous anisotropic (inho_aniso) models, 

and homogeneous anisotropic (homo_aniso) and inho_aniso models for the WM and skull calculated 

by either VC or WC conductivities. 

 

 

5.3.2.3  Conclusion 

In this study, we apply the conductivity ratio approximation model to assign the 

different conductivity ratios for the construction of the inhomogeneous anisotropic 

head model. The preliminary results show that EEG is affected by the 

inhomogeneous anisotropic conductivities in the both models generated by the 

Volume and Wang’s constraints.  

 

5.3.3 Statistical conductivity approximation model 

 

This subsection also shows the effects of inhomogeneous and anisotropic tissue 

conductivities on EEG forward computation with a statistical conductivity 

approximation (SCA) model. The SCA determines the random numbers using 

Rayleigh distribution, which we consider as longitudinal (tangential) conductivities. 

Later on, we generate transverse (radial) conductivities according to Volume and 

Wang’s constraints. 
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5.3.3.1 Simulation setup 

Figure 5.3 shows the conductivity ratio (Figure 5.3(a)) and conductivities for Volume 

constrained WM using SCA (Figure 5.3(c)).  

 Based on the same head geometry, source configuration and position, and 

electrode positions stated in Section 5.2.2, we compute the EEG forward solution. 

We also model a homogeneous, an isotropic, and an inhomogeneous anisotropic 

conductivities based head. We analyze the obtained EEGs using the RDM and MAG 

mentioned in Equations (5.5) and (5.6), respectively. 

 

 

  (a)      (b) 

          

                                   (c)                                                                                     (d)                      

Figure 5.3: (a) Value of lt (conductivity ratio) between longitudinal and transverse 

conductivity for each WM element generated by SCA, (b) clear view of (a) from 10
2
 to 

10
3
 WM elements, (c) longitudinal and transverse conductivity values for each WM 

elements based on lt of (a) using Volume constraint, and (d) clear view of (c) from 10
2
 

to 10
3
 WM elements (Bashar et al 2008b). 

 

 

 

long. 

trans. 
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5.3.3.2 Simulation results 

Table 5.7 presents the RDM and MAG values produced by the SCA conductivity 

model for WM. The RDM values are between 5.09% to 36.44% and MAG values are 

in the range of 0.82 to 1.30. For all the cases, RDM and MAG values are far from the 

ideal values 0 and 1, respectively. These results indicate that the effects of WM 

inhomogeneous anisotropy on EEG are significant. Similarly, Table 5.8 represents 

the RDM and MAG values obtained from the inhomogeneous and anisotropic skull 

conductivity model while Table 5.9 is from combined model of WM and skull 

conductivities. From Tables 5.7, 5.8 and 5.9 we find that skull is more affected by 

inhomogeneous and anisotropic conductivities. Analyzing these results, it is apparent 

that inhomogeneous and anisotropic tissue conductivities have significant effects on 

EEG. 

 
    Table 5.7: RDM and MAG values using SCA for the WM. 

Constraint Conductivity homo_iso vs 

inho_aniso 

homo_aniso vs 

inho_aniso 

RDM MAG RDM MAG 

Volume  Longitudinal 19.91% 1.3056 5.09% 0.8235 

Transverse 24.55% 0.9458 39.38% 0.9888 

Wang 
Longitudinal 15.24% 1.2402 5.67% 0.9133 

Transverse 18.61% 0.8471 36.44% 0.8856 
*RDM and MAG values between homogeneous isotropic (homo_iso) and inhomogeneous 

anisotropic (inho_aniso), and homogeneous anisotropic (homo_aniso) and inho_aniso models  using 

SCA for the WM  computed by either Volume or Wang’s constraint conductivities (Bashar, 2008b). 

 

Table 5.8: RDM and MAG values using SCA for the skull.  

Constraint Conductivity homo_iso vs 

inho_aniso 

homo_aniso vs 

inho_aniso 

RDM MAG RDM MAG 

Volume  Tangential 22.41% 1.335 12.09% 0.8213 

Radial 26.59% 0.9381 42.31% 0.968 

Wang 
Tangential 17.42% 1.3104 9.25% 0.8991 

Radial 19.17% 0.8144 39.36% 0.8450 

 

Table 5.9: RDM and MAG values using SCA for the WM and skull together.   

Constraint Conductivity homo_iso vs 

inho_aniso 

homo_aniso vs 

inho_aniso 

RDM MAG RDM MAG 

Volume Parallel 25.32% 1.532 14.44% 0.8111 

Perpendicular 28.51% 0.9211 45.36% 0.9362 

Wang 
Parallel 19.11% 1.4510 12.21% 0.8594 

Perpendicular 21.14% 0.7142 43.12% 0.8125 
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5.3.3.3 Conclusion 

In this Section we have studied the effects of tissue inhomogeneity and anisotropy on 

EEG using SCA model. Though SCA is based on statistical assumptions of different 

conductivities within the given ranges for VC and WC, the simulated results confirm 

that tissue inhomogeneity and anisotropy have significant effects on EEG.  

 

5.3.4 Fractional anisotropy based conductivity model 

 

Fractional anisotropy (FA) is used to measure the anisotropy property for each voxel. 

FA varies between 0 and 1 to represent anisotropy. With the changing of FA values, 

the conductivity or anisotropy ratio also varies. Li et al (2007) proposed two levels of 

conductivity ratios. We suppose that only two levels are not sufficient and propose 

four different levels of conductivity ratios. Based on these ratios, we determine the 

radial and tangential conductivities. We also investigate the effects of 

inhomogeneous anisotropic conductivities on EEG forward computation using FA 

based conductivity model. 

  

5.3.4.1 Head model construction and simulation 

We implement a five-layered spherical head model with 9.2cm, 8.4cm, 8.0cm, 7.6cm 

and 5.0cm radii for the scalp, skull, CSF, GM and WM, respectively. The mesh 

generation produces 112K tetrahedral elements from 19K nodes where 19397 

elements for scalp, 24563 for skull, 21379 for CSF, 20674 for GM and 26841 

elements for the WM. For the homogeneous isotropic model, we assign the mean 

conductivity to each tissue layer. However, we assign the conductivities produced by 

multi-steps FA function to individual elements of WM and skull having other tissue 

layers isotropic for the implementation of an inhomogeneous anisotropic head model. 

We assume the dipole located in axial, coronal and sagittal planes with the azimuth 

angle /4 and elevation angle /5 having the 1µA magnitude. Finally, we apply 

RDM and MAG techniques to analyze the results.  

 

5.3.4.2  Simulations and  results 

To study the influence of inhomogeneous anisotropic WM and skull tissue 

conductivities, we carry out four independent experiments. Firstly, we compute an 

EEG from the reference model. Secondly, we compute an EEG from FA based 
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conductivity model where inhomogeneous anisotropic conductivities are assigned to 

WM while other tissue layers are homogeneous and isotropic. Thirdly, we measure 

an EEG by assigning inhomogeneous anisotropic conductivities to skull while other 

layers are homogeneous and isotropic. Finally, we compute EEG by assigning the 

WM and skull inhomogeneous anisotropic conductivities together keeping other 

layers homogeneous and isotropic.  

           Table 5.10 shows the RDM and MAG errors caused by the inhomogeneous 

anisotropic WM conductivities generated using the Volume constraint. We find that 

the RDM (1.59% ~ 18.87%) and MAG (0.95 ~ 1.12) values are far from their ideal 

values, 0 and 1, respectively. These results indicate that WM inhomogeneous 

anisotropy affects the scalp EEG strongly. The longitudinal inhomogeneous 

conductivities produce fewer errors than those of transversal conductivities. 

Therefore, WM transversal inhomogeneous conductivities effects are more on EEG 

than longitudinal inhomogeneous conductivity.  

Table 5.10: RDM and MAG values generated by inhomogeneous anisotropic WM 

conductivities 

Conductivity Dipole orientation RDM MAG 

 

Longitudinal 

X 4.04% 1.02 

Y 5.91% 1.12 

Z 4.21% 1.03 

 

Transversal 

X 18.87% 1.07 

Y 1.59% 0.97 

Z 7.3% 0.95 
 

 Table 5.11 presents the RDM and MAG errors due to inhomogeneous 

and anisotropic skull conductivities.  Here, we find the RDM values ranging from 

4.37% to 17.19% and MAG values are between 0.84 and 1.11. Therefore, the effects 

of inhomogeneous anisotropic skull tissue conductivities on EEG are significant. 

Radial inhomogeneous conductivities produce more errors than tangential 

inhomogeneous conductivities. These results are consistent with other studies [Wen 

2000, Wolters 2003, Wolters et al 2006].  

Table 5.12 shows the RDM and MAG errors generated by combining the 

inhomogeneous anisotropic WM and skull tissue conductivities. The parallel 

conductivities produce 1.23% to 5.9% RDM and 0.95 to 1.01 MAG errors while the 

perpendicular conductivities produce 7.03% to 20.39% RDM and 1.04 to 1.09 MAG 
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errors. Therefore, it is significant that the combination of inhomogeneous anisotropic 

WM and skull conductivities have some combined effects on EEG.  

Table 5.11: RDM and MAG values generated by inhomogeneous anisotropic skull 

conductivities 

Conductivity Dipole 

orientation 

RDM MAG 

 

Radial 

X 17.19% 0.89 

Y 7.93% 0.84 

Z 7.17% 0.96 

 

Tangential 

X 8.18% 1.09 

Y 4.37% 1.11 

Z 4.64% 1.03 

 

Table 5.12: RDM and MAG values generated by inhomogeneous anisotropic WM and skull 

conductivities. 

Conductivity Dipole orientation RDM MAG 

 

Parallel 

X 5.9% 0.95 

Y 1.23% 1.01 

Z 4.48% 0.99 

 

Perpendicular 

X 20.39% 1.09 

Y 8.96% 1.08 

Z 7.03% 1.04 

 

5.3.4.3 Conclusion 

We have investigated the influence of WM and skull inhomogeneous anisotropic 

tissue conductivities using FA on EEG forward computing using a spherical head 

model. We have implemented the multi-steps FA to generate anisotropic 

conductivity and various anisotropy ratios to generate inhomogeneity. From our 

simulated results, we find that there are significant effects of WM and skull 

inhomogeneous anisotropic tissue conductivities either solely or combined on EEG. 

We also find that inhomogeneous and anisotropic conductivities produce fewer 

errors than the homogeneous isotropic conductivity. 

 

5.3.5  The Monte Carlo method based conductivity model 

 

This subsection shows the effects of inhomogeneous and anisotropic tissue 

conductivities generated using the Monte Carlo method based conductivity model on 

EEG forward computation. 
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5.3.5.1 Simulation 

We carry out this simulation, based on the head geometry, segmentation, tessellation 

and electrode positions are similar to other head model frames described in 5.2.2. We 

construct a heterogeneous anisotropic head models by assigning the Monte Carlo 

method based conductivity model. This model generates inhomogeneous and 

anisotropic conductivities using mean, standard deviation and Normal distribution 

based random numbers. These random numbers are selected using the Volume and 

Wang’s constraint and are considered as inhomogeneous and anisotropic 

conductivities. We place 104 dipoles inside the brain. We analyze the obtained EEGs 

by means of the RDM and MAG values. 

 

5.3.5.2 Simulation results 

Table 5.13 shows the RDM and MAG values produced by WM inhomogeneous 

anisotropic conductivities. These errors are between the homogeneous isotropic 

(reference head model) and the heterogeneous anisotropic model. Incorporating 

inhomogeneous anisotropic WM conductivities, we find substantial RDM and MAG 

errors, which are different from their ideal values. Therefore, these results also 

demonstrate that the effects of inhomogeneous anisotropic WM conductivity on EEG 

are significant. 

 

Table 5.13: Average RDM and MAG errors for the WM inhomogeneous and anisotropic 

conductivities for the orthogonal dipole orientations of X, Y and Z. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.14 shows the resulting average RDM and MAG errors from the skull 

inhomogeneous anisotropy conductivities. This conductivity model leads to the 

highest average RDM errors of 145%, 169%, and 171% for X, Y and Z orientations, 

Constraint Conductivity Error 

(avg) 

X Y Z 

 Volume 

Tangential 
RDM 128% 123% 128% 

MAG 2.29 0.30 0.25 

Radial 
RDM 143% 102% 94% 

MAG 4.88 1.06 1.24 

Wang 

Tangential 
RDM 143% 92% 92% 

MAG 1.79 0.69 0.64 

Radial 
RDM 109% 65% 76% 

MAG 4.33 1.30 0.92 
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respectively. The lowest average errors for these orientations are 119%, 49% and 

59%, respectively. On the other hand, the highest average MAG errors are 6.95, 1.75 

and 1.95 while the lowest average MAG errors are 1.94, 0.27 and 0.18 for different 

orientations, respectively. In comparison with Volume and Wang’s constraints, we 

observe that the Volume constraint produces larger errors than Wang’s constraint. In 

most of the cases, the MAG values produced by different radial conductivities are 

larger than those by different tangential conductivities. Similarly, Table 5.15 shows 

the average RDM and MAG values from combined WM and skull inhomogeneous 

anisotropic conductivities. From Tables 5.14 and 5.15, we understand the effects of 

inhomogeneous and anisotropic conductivities on EEG are non-negligible. 

 

Table 5.14: Average RDM and MAG errors for the skull inhomogeneous and anisotropic 

conductivities for the orthogonal dipole orientations of X, Y and Z. 
 

Constraint Conductivity Error (avg) X Y Z 

Volume 

Tangential 
RDM 124% 169% 171% 

MAG 2.76 0.36 0.18 

Radial 
RDM 145% 73% 89% 

MAG 6.95 1.75 1.95 

Wang 

Tangential 
RDM 119% 131% 124% 

MAG 1.96 0.27 0.24 

Radial 
RDM 125% 49% 59% 

MAG 1.94 1.2 0.62 

 

 
Table 5.15: Average RDM and MAG errors for the WM and skull inhomogeneous and 

anisotropic conductivities for the orthogonal dipole orientations of X, Y and Z. 
 

Constraint Conductivity Error (avg) X Y Z 

Volume 

Tangential 
RDM 132% 158% 164% 

MAG 2.61 0.49 0.48 

Radial 
RDM 129% 63% 93% 

MAG 5.98 1.44 1.91 

Wang 

Tangential 
RDM 128% 111% 117% 

MAG 1.39 0.46 0.33 

Radial 
RDM 108% 38% 43% 

MAG 1.34 1.02 0.81 

 

 

5.3.5.3 Conclusion 

In this study, we investigate the effects of inhomogeneous anisotropic conductivities 

on the scalp potentials. We develop different head models by assigning the 

inhomogeneous and anisotropic conductivities to WM, skull, and both the WM and 

the skull while other tissue layers are homogeneous and isotropic. We then compute 
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a forward computation for 104 dipoles using the finite element method. This study 

shows that including inhomogeneous anisotropic conductivity results in the 

maximum of 171% RDM and the maximum of 0.24 MAG values when comparing 

with the homogeneous isotropic model.  

 

5.3.6 Effects of conductivity variations on EEG 

 

5.3.6.1 Objective of the study 

Conductivity varies from person to person or in different situations. More clearly, 

conductivity depends on blood cells, especially red cells or blood circulation. It is 

found that conductivity usually varies in ± 50% of its mean value [Haueisen et al 

1997]. In this study, we investigate the effects of conductivity variation ranging from 

10% to 100% mean anisotropic conductivity on EEG.  

 

5.3.6.2 Head model construction 

We also implement a different head model (Bashar 2008a) with the radii of 9.2cm for 

scalp, 8.4cm for skull, 8.0cm for CSF, 7.6cm for GM and 3.0cm for WM. The mesh 

generation produces 93K tetrahedral elements from 16K nodes. There are 24845, 

27510, 23775, 16322 and 588 elements for different tissue layers, respectively. For 

the inhomogeneous anisotropic case, inhomogeneous anisotropic conductivities are 

assigned to individual elements. We perform a forward computation for a fixed 

current source with the azimuth angle /4 and elevation angle /5. Then RDM and 

MAG values are computed to analyze the results. We conduct these computations 

using an Intel® dual core 2.0 Ghz processor. It takes approximately 18 minutes to 

carry out each computation. 

 

5.3.6.3  Simulation setting and computing 

Shimony (1999) showed that the shape of diffusion ellipsoids are strongly prolate 

(“cigar –shaped”) whereas they found gray matter as closely isotropic. It is also 

found that the PDF of Rayleigh distribution follows the cigar shape. Therefore, we 

assume the conductivities of the elements follow Rayleigh distribution: 
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                                  ,    …………………………………………..                          

 

where  is conductivity and m is maximum likelihood estimator. The curve of PDF 

depends on m which measures the spread of the distribution as shown in Figure 5.4. 

 

Figure 5.4: Probability density function of Rayleigh distribution [Rayleigh distribution 

 

 For the smaller values of m, the curve produces the highest peak and sharp 

slopes. Thus, it means that the conductivities of the elements within the tissue are 

centred on the mean. For larger values of m the curve produces less peak and spread 

slopes.   Therefore, changing m corresponds to exploring the inhomogeneity. In this 

study, we assume that m=0 expresses the conductivities of the elements within a 

tissue centred on the mean value for homogeneous isotropic model. Alternatively, 

increasing the value of m, the conductivities of the elements are more widely spread 

for inhomogeneous anisotropic model. 

Based on our assumption in Equation (5.7), a set of random data can be 

derived for a tissue type, from the limited data available in the literature [Bashar et al 

2008a]. Then, we determine the anisotropic inhomogeneous conductivity values for 

WM and skull elements by using the SCA technique. Based on the SCA method and 

varying m from 10% to 100%, we determine different inhomogeneous anisotropic 

conductivities. Figure 5.5 plots anisotropic conductivity values for the WM and skull 

when m=0.1 × mean and m=1.0 × mean. 
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(a)  longitudinal conductivity (m = 0.1  mean)     (b) longitudinal conductivity (m= 0.1  mean) 

                
    (c) transverse conductivity (m = 0.1 mean)                  (d) transverse conductivity (m = 1.0 mean) 

                  
    (e) radial conductivity (m = 0.1 mean)                            (f) radial conductivity (m = 1.0 mean) 

                     
    (g) tangential conductivity (m = 0.1 mean)                   (h) tangential conductivity (m = 1.0 mean) 

 
Figure 5.5: Inhomogeneous anisotropic conductivities produced by SCA. (a)–(d) WM 

elements and (e)-(h) skull elements. 

 

For this study, we carry out two types of experiments. Firstly, we compute 

the scalp electric potentials using tissue mean conductivity for isotropic 
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homogeneous case. Secondly, we calculate the electric potentials using the 

conductivities produced by SCA with varying m for inhomogeneous anisotropic case. 

Table 5.16 shows the RDM and MAG values for longitudinal conductivities. The 

RDM and MAG measurements show the effects of changes in inhomogeneity. For all 

the cases, The RDM and MAG values are away from their ideal values. As a result, 

we find that there are certain effects of anisotropic inhomogeneity on isotropic 

homogeneity. When m is increased from 0.1 × mean to 1.0  mean, the RDM values 

are about 7.5% and MAG values are between 1.40 and 2.49, increasing gradually. 

When m < 0.5 × mean the MAG values are less than 2; however,  it increases more 

than 2 for m >0.5 × mean. Thus, we find that the local variations in the conductivity 

within elements have certain effects on electrical potential distribution. For skull 

elements, RDM ( 3.8 % and 2.2%) and MAG (0.9266 and 0.9483) values of 0.1  

mean and 0.2  mean for skull elements differ from ideal values; however, the other 

RDM and MAG values are very close to ideal values. Thus, we observe that there is 

a very low effect of skull anisotropy inhomogeneity on EEG in this simulation. 

Finally, we find the combination of WM and skull anisotropy inhomogeneity has 

similar effects like WM anisotropy inhomogeneity on EEG. 

Table 5.17 shows the RDM and MAG measurements for various values m 

produced by transverse conductivities. The RDM values are between 7.8% and 7.5%, 

and the MAG values are between 1.06 and 1.27, close to ideal values. The RDM 

values are non-negligible while MAG values are close to ideal values. Thus we 

understand that transverse conductivities are affected by inhomogeneity but not as 

strongly as longitudinal conductivities. For the skull elements, all the RDM and 

MAG values are very close to ideal values. For the combination of WM and skull 

elements, we find similar results to WM elements. 

 

Table 5.16: RDM and MAG values produced by longitudinal conductivities. 

 WM elements Skull elements WM + skull elements 

m RDM MAG RDM MAG RDM MAG 

0.1  mean 7.5 % 1.4066 3.8% 0.9266 5.4% 1.2295 

0.2  mean 7.5 % 1.6143 2.2 % 0.9483 5.6% 1.4809 

0.3  mean 7.5 % 1.7452 0.0% 0.9993 7.5% 1.7436 

0.5  mean 7.4 % 2.0089 0.0% 0.9999 7.4% 2.0089 

0.7  mean 7.4% 2.1928 0.0% 1.0003 7.4% 2.1937 

1.0  mean 7.4 % 2.4861 0.0% 1.0008 7.4% 2.4800 
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Table 5.17: RDM and MAG values produced by transverse conductivities. 

 WM elements Skull elements WM + skull elements 

m RDM MAG RDM MAG RDM MAG 

0.1  mean 7.8 % 1.0626 0.0% 0.9970 7.9% 1.0578 

0.2  mean 7.5 % 1.1963 0.0% 0.9982 7.5% 1.1929 

0.3  mean 7.7 % 1.2321 0.0% 1.0 7.9% 1.2331 

0.5  mean 7.5 % 1.2652 0.0% 1.0 7.5% 1.2656 

0.7  mean 7.5% 1.2688 0.0% 0.9999 7.5% 1.2667 

1.0  mean 7.5 % 1.2580 0.0% 0.9998 7.5% 1.2576 

 

5.3.6.4 Conclusion 

This study demonstrates the effects of conductivity variations for the implementation 

of the WM and skull anisotropic inhomogeneity on EEG. This inhomogeneity within 

a tissue is based on the variations of mean conductivity values ranging from 10% to 

100%. This study finds that there are 7.4% to 7.8% RDM and 0.92 to 2.48 MAG 

values for conductivity variations. This study also confirms that neglecting tissue 

anisotropic inhomogeneity and variations of mean conductivity would cause an 

inaccurate computation. 

 

5.3.7  Implementation of inhomogeneous anisotropic conductivities using a 

stochastic FEM 

 

5.3.7.1 Objective of the study 

Computational EEG models include many input parameters, such as the geometric 

discretization of different head tissue layers or compartments, the conductivities of 

the tissues, and the representation of electric sources.  In the case of the forward 

problem, tissue conductivity is an example of an input parameter which is very 

difficult to accurately obtain because of its inhomogeneous and anisotropic 

properties. Therefore, a full accounting of tissue inhomogeneity and anisotropy for 

all the tissues in the human head has yet to be performed.    

This sub-section uses a spherical head model with stochastic FEM (SFEM) to 

investigate the magnitude of EEG for analyzing the effects of inhomogeneity and 

anisotropy of the head tissues. To implement SFEM, we employ a stochastic 

Galerkin method [Geneser et al 2008, Bashar et al 2010a] to solve polynomial chaos 

representation of the stochastic system. This method represents a stochastic process 

via orthogonal polynomials of random variables using Karhunen-Loeve expansion 

(Bashar et al 2010a]. We apply the stochastic Galerkin method to the EEG forward 
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problem. This method has been successfully applied to tackle the uncertainty issue of 

the electrocardiographic forward problem [Geneser et al 2008] and other stochastic 

magnetic field problems [Enokizono et al 1987].  

 

5.3.7.3 Simulation setup 

Under the assumptions of Karhunen-Loeve expansion and stochastic Galerkin 

method, we define the conductivity values as [Bashar et al 2010a]: 

)()(ˆ)()(ˆ)()(ˆ);( 221100 


xxxx  ……………….  

where );( 


x  is uniformly distributed on the interval )](),([ xbxa  for each element. 

Intervals for anisotropic tissue conductivities are selected to follow the Volume 

constraint and Wang’s constraint. For example, the value of longitudinal 

conductivity for Volume constrained WM is 0.14 S/m for isotropic or 1:1 anisotropy 

ratio and 0.65 S/m for 1:10 anisotropy ratio. In this case, we select a(x) and b(x) in 

such a way that the obtained values are within the range of [0.14 0.65]. We derive the 

scalp conductivity interval from the scalp inhomogeneous study, described in Section 

3.5.4. We also assume the first term, middle term and last term of equation (5.8) for 

three inhomogeneous head tissue compartments, WM, skull and scalp, respectively. 

For analyzing individual tissue compartments, we use the corresponding conductivity 

term while putting zero value to other conductivity terms. For example, we use the 

first term ( 0


) of equation (5.8) to analyze WM tissue compartment by putting 

0ˆˆ
21  .  

We place six fixed dipoles at a starting point from 2mm outer of WM to 2mm 

below the cortex surface inside the GM with the elevation angles /5.22, /4.67, 

/4.0, /3.86, /3.83 and /3.77 radians with fixed azimuth angle /4.  

In the case of FEM or deterministic FEM, we employ homogeneous isotropic 

conductivity. However, in the case of SFEM, we use 50% uniform interval (0.5 times 

to 1.5 times of the mean conductivity value) conductivity values for inhomogeneous 

tissue compartment. Moreover, we employ constraints to restrict the conductivities 

for anisotropic tissue compartments.   

Finally, we compute the potentials on the scalp (EEG). Based on the 

computed potentials, we select our EEG data from N points where EEG electrodes 

are located. We perform forward computation for six different models:  

(5.8) 
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Model A:  EEG using FEM (deterministic FEM).  

Model B and C: EEG using SFEM for WM and skull tissue layers, 

respectively.  

Model D: EEG using SFEM for both WM and skull tissue layers. 

Model E: EEG using SFEM for inhomogeneous scalp conductivities.  

Model F: EEG for a complete inhomogeneous anisotropic head model 

combining Model D and Model E together. 

The EEG computed from model A is defined as a reference model. However, 

EEGs obtained from other models are considered as computed models. To quantify 

the differences between the reference and computed models, we use two 

measurements: relative error () and correlation coefficient () defined in equations 

(5.3) and (5.4), respectively. 

 

5.3.7.4 Simulation results 

We compare the EEG obtained from the model A with other computed models for X, 

Y and Z orthogonal dipole orientations.  

 

Model B: WM tissue conductivity 

 Figure 5.6 shows the resulting average  and  for longitudinal and transversal 

conductivities on either Volume or Wang’s constrained WM from six different 

dipoles. In Figure 5.6, V represents Volume constraint, W represents Wang’s 

constraint, and long and trans represent longitudinal and transversal conductivities, 

respectively. For example, Vlong presents a computed head model based on the 

longitudinal conductivity for the Volume constrained WM. Due to the variations of 

conductivities, computed EEGs and the reference EEG are not identical, and as a 

consequence, we obtain different average values of  and  for three X, Y and Z 

orientations. We observe that there are some effects of inhomogeneous anisotropic 

WM tissue properties on EEG. From the obtained results, we find that the average 

values of   range from 31% to 72% and  values are between 0.47 and 0.98.  
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(a) (b) 
Figure 5.6: Effects of inhomogeneous anisotropic WM conductivity on EEG: (a) relative 

errors () values (in percentage) and (b) correlation coefficient () values. 

  

For Wang’s constrained WM, it obtains 37% to 54% and between 0.96 and 

0.63 average values for  and  respectively. These average values for Wang’s 

constraint are between 19% and 47% for  and from 0.97 to 0.70 for . Therefore, we 

conclude that constrained inhomogeneous anisotropic WM has both relative residual 

and coefficient correlation effects on EEG.  To analyze dipole eccentricities, we 

model the dipoles from 2mm outer the WM surface to 2mm inner the cortex. As a 

result, dipole eccentricity starts from 0.76 and finishes to 0.87. Dipole eccentricity is 

the ratio between the dipole position from the centre of the sphere and the radius of 

outer surface [Marin et al 1998, Wang and He 1998]. We compared the scalp 

potentials generated by reference (Vref) and computed (Vcomp) head models varying 

the dipole eccentricities. We find that the results are virtually insensitive to dipole 

eccentricity. 

 

Model C: skull tissue conductivity 

For the case of inhomogeneous anisotropic skull conductivities analysis for both 

constraints, Figure 5.7 shows the resulting average  and  errors where rad and tan 

represent the radial and the tangential conductivities, respectively. For example, Vtan 

represents a head model constructed by assigning tangential conductivity for the 

Volume constrained skull compartment. From the obtained results, we realize that 

inhomogeneous anisotropic conductivities on constrained skull have 19% to 96% 

average relative effects on EEG in our experimental cases. To analyze the dipole 

eccentricities for the skull compartment, we find the same results; namely, the results 

are virtually insensitive to dipole eccentricity.   
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                               (a) 

 

                             (b) 

Figure 5.7: Effects of inhomogeneous anisotropic skull conductivity on EEG: (a) relative 

errors () values (in percentage) and (b) correlation coefficient () values. 

 

Model D: WM + skull tissue conductivity 

Figure 5.8 shows the effects of including tissue properties for both the WM and the 

skull compartments applying either the Volume or the Wang’s constraint where par 

and per represent the parallel and the perpendicular conductivities, respectively. 

Incorporating parallel conductivities (longitudinal for the WM and tangential for the 

skull) generates an average of 35% to 57% and 34% to 48%  for Volume and 

Wang’s constraints, respectively. The same conductivities generate an average of 

0.98 to 0.59 and 0.98 to 0.69 values for   values, for both compartments, 

respectively. Similarly, incorporating perpendicular conductivities (transversal for 

WM and radial for skull) generates 22% to 65% average  and 0.97 to 0.57 average 

correlation coefficient values for Volume constrained compartments, 28% to 65%  

and 0.95 to 0.56 correlation coefficient values for Wang’s constrained compartments. 

In most of the cases, Model D generates smaller differences than Model B or Model 

C, as Model B is more affected by parallel conductivity and Model C is more 

affected by perpendicular conductivity.  
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(a) 

 

(b) 

Figure 5.8: Effects of inhomogeneous anisotropic WM and skull conductivities together on 

EEG: (a) relative errors () values (in percentage) and (b) correlation coefficient () values. 

 

Model E: scalp tissue conductivity 

Table 5.18 shows average effects of incorporating scalp inhomogeneous conductivity 

for different sources. The average relative errors are in the ranges from 21% to 37% 

and average correlation coefficient values are between 0.96 and 0.82. Therefore, we 

find that scalp tissue inhomogeneity affects EEG.  

 

Table 5.18: Effects of inhomogeneous scalp tissue conductivity on EEG:  

 X orientation Y orientation Z orientation 

Relative error () 27.21% 21.28% 37.57% 

Correlation coefficient () 0.9312 0.9683 0.8274 

 

Model F: Complete head tissue conductivity 

Effects of including inhomogeneous and anisotropic head tissue properties are shown 

in Figure 5.9. Analyzing average  and   values for different EEGs from six dipoles, 

we find that average  ranges between 35% and 57% for the parallel conductivity 

using the Volume constraint, and its average values vary from 32% to 48% for the 

Wang’s constraint. Similarly, the average values of  are between 0.59 and 0.98 for 

the Volume constraint, and those values are from 0.69 to 0.98 for the Wang’s 

constraint conductivity.  

  Including tissue inhomogeneous and anisotropic properties into a complete 

head model construction, we observe that it results in an average of 45.5% relative 

errors and 0.78 for  values which are very close to model D. Analyzing the 

variations of conductivities for different tissue layers, it is observed that the 
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combined effect of conductivities is not additive, and thus cannot be predicted by the 

individual behaviour of each tissue layer.  

 

                                   (a)                                                           

 

                                    (b) 

Figure 5.9: Effects of inhomogeneous anisotropic head model on EEG: (a) relative errors () 

values (in percentage) and (b) correlation coefficient () values. 

 

Figure 5.10 shows the topographic visualization of the obtained EEGs to 

observe the differences of the scalp potentials from different forward computations 

by varying the conductivities. We make visualization of the scalp potentials by 

adopting and feeding our obtained EEGs to the ASA. Figure 5.10 shows the obtained 

scalp potentials from the first dipole (elevation angles /5.22 and azimuth angle /4) 

in the back-front view of a head. To reduce the space, we only represent the scalp 

potentials from the head models (A) and (D). We observe that the potential 

distributions are different. This has happened due to the assigned conductivity. 

Different head models are constructed from different conductivity models which 

affect the forward computation and in turn, the scalp potentials. We easily 

understand that including inhomogeneous anisotropic tissue properties significantly 

affect the EEG. Figure 5.10(a) shows the scalp potentials generated by the reference 

Model A. Figures 5.10(b) to 5.10(e) show scalp potentials for different conductivities 

of Model (D). Visualizing other computed Figures (not included here), we observe 

that conductivity variations result in the variations of scalp potentials.  
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 (a)               (b)                              (c)                          (d)                   (e) 

Figure 5.10:  Topographic visualization of the scalp electrode potentials. (a) head model (A) 

and head model (D): (b) from the parallel Volume constraint, (c) from the parallel Wang’s 

constraint, (d) from the perpendicular Volume constraint and (e) from the perpendicular 

Wang’s constraint conductivity for the first dipole (elevation angles /5.22 and azimuth 

angle /4). 

 

5.3.7.5 Conclusion 

Comparing the stochastic model to the homogeneous isotropic model (Section 5.2) 

for WM, we find that these models generate fewer errors in most of the cases. We 

find that only limited errors, such as (70%) generated by the stochastic model is 

higher than the homogeneous isotropic model (64%), however, most errors are less. 

Apparently, this implemented stochastic method based conductivity model results in 

fewer errors than those most commonly used models in the literature. 

The obtained EEG using the stochastic model is compared to homogeneous 

isotropic models (Section 5.2) for the skull and found that homogeneous isotropic 

model generates larger error. For instance, 49%, 58% and 53% for   and 0.76, 0.83 

and 0.65 values of  for X, Y and Z orientations, respectively, are results by this 

model for Volume constrained radial conductivity. However, the stochastic model 

generates 39%, 40% and 55% for   and 0.87, 0.94 and 0.60    values, respectively. 

The  values obtained from the stochastic computed model are closer to the ideal 

value 1. In one instance, stochastic model shows 2% higher error (55%) than this 

model (53%) while other errors are less. Therefore, we can envisage that our 

achievements on inhomogeneous anisotropic constrained skull tissue layer result in 

less errors compared to another anisotropic model. 

 

5.4 Conclusion and Contribution 

 

It is a prominent goal to construct an accurate head model which would include 

object specific head geometry from MRI and in vivo conductivity. However, it is 

impossible to obtain subject specific in vivo conductivity. For example, the skull 



Chapter  5  Effects of Tissue Conductivity on Head Modelling 

 88 

anisotropy also depends on skull bone thickness which is also variable and varies 

from person to person. As the thickness of the skull bone varies, the anisotropy ratio 

and conductivities also change. Considering all this information, we propose 

different conductivity models (CRA, SCA, FA based and the Monte Carlo method 

based conductivity model) to implement inhomogeneous and variable anisotropy 

ratio based head models. 

Using CRA, we find 6.47% to 47% RDM and 0.71 to 1.49 MAG values. SCA 

produces 5.09% to 43.12% RDM and 0.71 to 1.53 MAG values. Similarly, FA shows 

4.04% to 20.39% RDM and 0.84 to 1.11 MAG values, and the Monte Carlo method 

produces 38% to 171% RDM and 0.30 to 6.95 MAG values. On the other hand, the 

stochastic method based model shows 18% to 95% RE and 0.37 to 0.99 CC values. 

Conductivity variations also show 7.4% to 7.8% RDM and 0.92 to 2.48 MAG values. 

Analyzing these simulated results, we find that there are some non negligible effects 

of inhomogeneous anisotropic conductivities on EEG and the inhomogeneous 

conductivity variations also have an effect on EEG. We also compare the effects of 

inhomogeneous anisotropic conductivities from various anisotropy ratios, which 

produce fewer errors than the fixed or homogeneous anisotropic conductivity in most 

of the cases in our simulation. Therefore, this study concludes that the inclusion of 

inhomogeneous anisotropic conductivities is necessary to construct a more accurate 

head model for EEG forward computation.  
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CHAPTER 6     

ADVANCED STUDY 

 

 

Variations of conductivity in the intervening medium between the sources of the 

electric fields and the measurement points (electrodes positions) affect the behaviour 

of the electric fields; consequently, influencing the EEG and source localization. 

Therefore, local variations in the conductivity within tissues should be accounted for 

in head modelling. In the first part, we introduce local tissue conductivity and show 

its effects on EEG. In the second part of this Chapter, an application of head 

modelling is described by means of EEG analysis from normal and Alzheimer’s 

disease (AD) sources. 

  

6.1  Local Tissue Conductivity 

 

6.1.1 Aims of this study  

 

The aim of this Section is to investigate the effects of local tissue conductivity (LTC) 

on head modelling for the computation of EEG. We implement the LTC based head 

model by assigning the tissue conductivity based on their locations. We compare the 

EEG obtained from the LTC based head model, with the EEG from the 

homogeneous head model for the same sources. Finally, we analyze the results by 

means of two statistical measurements, RDM and MAG.    

 

6.1.2  Introduction 

 

Though most literature assumes the homogeneous conductivity for each head tissue 

layer, however, the conductivity of different parts of each head tissue layer is 

different in reality. For example, the presence of suture lines increases the skull 

conductivity and the absence of cancellous bone decreases the skull conductivity 

[Law 1993]. Similarly, the complex composition of GM, WM, blood, nerve, 

cerebellum in the brain [Ramon et al 2006a,b, Haueisen et al 1997] causes different 
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conductivities in a brain tissue layer and the presence of thick subcutaneous fat 

beneath the skin causes different conductivities in a scalp tissue layer [Petrofsky 

2008]. Thus, the inclusion of accurate tissue conductivity in the appropriate location 

(local tissue conductivity) into a head model should be effective in obtaining a more 

accurate head model. 

Awada et al (1998) studied conductivity uncertainties by assigning lower and 

higher conductivity values of GM, WM, CSF, skull, fat and muscle for analyzing 

source localizing errors in 1998. Their experiments resulted in a maximum 2cm 

source location error. In 2000, Ferree et al (2000) studied regional head tissue 

conductivities based on the conductivity of the brain, CSF, skull and scalp tissues. 

Vatta et al (2002a, b) accounted liquid and calcified brain lesion with various 

conductivities for source localization in 2002. They found 1.7cm source localization 

errors and conclude that brain lesions should be accounted for, for accurate head 

modelling. Ramon et al (2006a,b) investigated the influence of head models on EEG 

source localization using eleven different types of tissue. They emphasized mainly 

the scalp tissue layer (scalp, fat, muscle, eye socket and soft tissue) and the brain 

tissue layer (WM, GM and cerebellum). They used only skull hard and soft bone 

layers without concern for suture lines and other tissues.  They concluded that the 

complexity of head models influences the scalp potentials and source localization. 

On the other hand, Ni et al (2008) studied only skull conductivity inhomogeneity 

considering compact bone, spongiform bone, lambdoid and coronal sutures without 

concern for the scalp and brain conductivity inhomogeneity.  They found 45.38% 

maximum correlation errors for inhomogeneous skull conductivity. Therefore, it is 

obvious that a full accounting for all of the head tissues is required to be investigated, 

for accuracy in head modelling. 

Several studies have been performed to investigate the effects of 

heterogeneous or non-uniform conductivity in the head on the EEG forward problem 

[Ary et al 1981, Ramon et al 2004a,b, Haueisen et al 2000, Haueisen et al 2002, 

Bashar et al 2008b] and inverse problem [Ramon et al 2006a,b, Awada et al 1998, 

Vatta et al 2002a, Ferree  et al 2000, Ni et al 2008 , Ollikainen et al 1999] using 

either spherical or realistic head models. The true fact of the improvement of the 

head model is the inclusion of more accurate conductivity of the head tissues. For 

this reason, the spherical head model improves from a single sphere to three-spheres, 

four-spheres, five-spheres and N-spheres.   Therefore, a question arises; does this 
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phenomenon mean that the human head can be modeled using N-spheres with 

different conductivity?  If the conductivity in the N-spheres model is wrongly 

assigned, then how would it affect an EEG? We attempt to answer these questions by 

means of local tissue conductivity. 

 

6.1.3 Local tissue conductivity based head model I 

 

6.1.3.1 Spherical head model construction 

Three-layered spherical head model [Marin et al 1998, Bin He et al 1999] and four-

layered spherical head model [Wen 2000, Wen and Li 2006] are considered with 

different radii for different tissue layers. We consider r1 = 8.7cm, r2 = 9.2cm and r3 = 

10.0cm for the outer radii of the brain, skull and scalp, respectively, for a three-

layered model. For a four-layered model, we consider r1 = 7.9cm, r2 = 8.1cm, r3 = 

8.5cm and r4 = 8.8cm for the radius of the brain, CSF, skull and scalp, respectively. 

For head modelling, we implement LTC in the following way. 

 The brain tissue layer consists of GM, WM, blood vessels, cerebellum, nerve 

and other tissues. These tissues comprise the brain. For example, the GM is found in 

left / right (L/R) accumbens, Amygdala, L/R amygdala anterior, L/R Caudate, L/R 

Cerebral cortex, L/R hippocampus, L/R pallidum, L/R putamen, L/R thalamus and 

L/R ventral [Makis et al  2008]. Haueisen et al (2002) and Ramon et al (2004a,b, 

2006a,b) implemented the brain model using GM, WM, spinal cord and cerebellum. 

However, accurate head model construction requires accounting for brain lesion 

[Bruno et al 2001, Vatta et al 2002a,b], which is filled either with calcium or liquid. 

It is variable in shape and position. Based on the literature and anatomical structure 

we approximate the brain tissue layer into GM, WM, cerebellum, blood vessels, 

nerves or neurons, calcified brain lesion and liquid brain lesion.  We consider GM 

and WM as the maximum tissues of the brain and the cerebellum with 4.0cm 

diameter. The area of the cerebellum is approximately 14cm
2
. We set a calcified and 

a liquid lesion in the brain. The area of these brain lesions are approximately 3.56cm
2
 

each. 

For the creation of a skull layer, Ni et al (2008) accounted three bony layers 

and two suture lines (coronal and lambdoid). We approximate the skull tissue layer 

into three layers: upper cortical (hard), inner cancellous (soft) and lower cortical 

(hard) bone. The thickness of these bone layers is non uniform. For the sake of 



Chapter  6  Advanced Study 

 92 

simplicity during computer simulation, we consider only the non uniform skull with 

fixed thickness. For example, in the case of a three-layered head model, we consider 

0.1cm thickness for the compact bone layers, 0.3cm thickness for the cancellous 

bone layer and the total thickness of the skull is 0.5cm (8.7cm to 9.2cm). We 

consider 18 sutures into the triple layer skull. Two cavities with 0.3cm diameter are 

also considered. These cavities are in variable shapes, filled with air and usually stay 

in random positions.  

In the construction of the scalp tissue layer, Haueisen et al (2002) and Ramon 

et al (2004a,b, 2006a,b) implemented muscle, fat, eye socket, scalp and soft tissue. 

Muscle is contractile usually found in the forehead and neck regions. Soft tissue is 

beneath the lower jaw [Ramon et al 2006a]. In the approximation of the scalp tissue 

layer, we do not concern ourselves with muscle, eye socket and soft bone because we 

consider only the upper part of the head where most of the electrodes reside. In lieu 

of these tissues, we consider wet skin tissues because of using liquid gel to contact 

electrodes on the head surface during EEG recording. We assume 65 equally spaced 

electrodes with 20mm diameter each. The fat layer is beneath the skin or scalp layer. 

The scalp and fat layers are assumed equal in thickness. For example, each layer is 

0.4cm thickness combining the total scalp thickness (0.8cm) for the three-layered 

model. Based on these assumptions, we approximate local tissue conductivity as 

shown in Figure 6.1 for the three-layered model.               

                                

Figure 6.1: Simplified local tissue conductivity based three-layered spherical head model 

showing different tissues [Bashar et al 2010d]. 
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Figure 6.2 shows an example of the local tissue conductivity approximation 

for the scalp tissue layer for the same model. X axis of Figure 6.2 represents 77535 

scalp elements and Y axis represents scalp, wet skin and fat conductivities. 
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Figure 6.2: Local scalp tissue conductivity approximation. The conductivity for scalp (skin) 

is 0.33 S/m, wet skin (place of electrodes) is 0.1 S/m and fat is 0.04 S/m 

 [Bashar et al 2010d]. 

 

To investigate how it would affect an EEG if the conductivity is wrongly 

specified, we perform ± 2%, ± 4% and ±6% alterations of principal tissues. We are 

motivated for this study for two reasons. Positional variation of brain and CSF may 

have happened because of subject’s position. MRI data is usually collected while the 

subject is in a supine position; however EEG data is collected while the subject is in 

sitting position [Ramon et al 2006a]. As a consequence, there might positional 

changes between the brain and CSF. The other reason is that if a tissue is damaged 

due to stroke, it will be filled eventually by CSF [Ramon et al 2006b]. We fill the 

altered brain tissues by CSF. For the skull and scalp’s principal tissue variations, we 

fill these with other non principal tissues. To implement this, we alter the size of the 

principal tissue(s) restricting the size of the tissue layer. For example, we decrease 

the number of tissues of WM and GM by 2%, and fill by CSF. Therefore, the total 

size of the brain or total number of brain elements remains constant. It is to be noted 

that we only add one more CSF layer to construct the four-layered model. We 

consider CSF as a homogeneous tissue layer. 

 

6.1.3.2 Realistic head model construction 

A realistic head model construction is similar to the spherical head model 

construction except an inputted MRI and its segmentation. We follow the following 
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steps: (A) input an MRI; (B) segment the MRI and classify its tissues, and the other 

steps are identical to the (B) to (G) steps of the spherical head model construction 

described in Section 5.1.1. Figure 6.3 shows the block diagram of a realistic head 

model construction. 

 

Figure 6.3 A realistic head model construction. 

For the realistic head model construction, we use T1 weighted MRI image of 

149  188  148 (x, y, z) dimensions and 1.00  1.00  100 (x, y, z) resolutions 

having 8MB in disk size from the World Wide Web of BrainSuite2. The head tissue 

segmentation is carried out using the tool BrainSuite2. Firstly, non-brain tissues are 

removed from the MRI using a combination of anisotropic diffusion filtering, Marr-

Hildreth egde detection and mathematical morphology [Shattuck et al 2001, 2002, 

2005, Dogdas et al 2005]. Secondly, each voxel is classified according to its tissue 

type by combining the partial volume tissue model with a Gibbs spatial prior to 

produce a classifier, which encourages continuous regions of similar tissue types 

[Shattuck et al 2001]. Finally, skull and scalp modelling is performed using threshold 

parameters. We then perform mesh generation and other head model construction 

procedures similar to the spherical head model construction. We manually further 

divided each of the tissue layers into different tissues to assign LTC with the same 

concept of the three-layered model construction. 

In order to assign local conductivity, we approximate the tissues according to 

the description of the spherical head model sub-section. We also compute tissue 
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variations (± 2%, ± 4% and ±6%) and construct head models in the similar method as 

stated above.  

 

6.1.3.3 Conductivity assignment 

Firstly, we assign a homogeneous constant conductivity for each tissue layer. We use 

brain = 0.33 S/m, skull = 0.0042 S/m and scalp = 0.33 S/m for a reference model of a 

three-layered spherical head model. We incorporate only CSF = 1.0 S/m in addition 

to other tissue layers of the three-layered model for either a four-layered spherical 

head model or for a realistic head model. We address these models as reference 

models for the corresponding head geometry.   

Secondly, we assign LTC to the brain, skull and scalp tissues. In some 

computations, we assign LTC to a single tissue layer, such as the brain, skull and 

scalp or sometimes, we assign to multiple tissue layers, for example brain + skull, 

brain + scalp, skull + scalp and brain + skull + scalp.  We address these models as the 

LTC models.  Any head models, except the reference model, are considered as 

computed models. Therefore, an LTC model is also a computed model. We assign 

the local conductivities obtaining from different studies listed in Table 3.4, Chapter 

3.  

Thirdly, we assign the LTC to each tissue for the brain, skull and scalp layers; 

however we vary the locations of tissues by implementing ± 2%, ± 4% and ±6% 

principal tissue variations. We address these models as element variation models, 

which are also computed models. 

 

6.1.3.4 Simulations 

We construct finite element head mesh using the Tetgen® package as a bundle with 

FEM tool from BrainStorm2 online package. The FEM mesh of a three-layered 

model consists of 332K tetrahedral elements from 32K nodes. This head geometry is 

used to compute scalp potentials for a three-layered reference head model. We also 

implement LTC and element variation models with a constant number of total head 

elements in the three-layered model.  Similarly, a four-layered spherical head model 

is meshed into 275K tetrahedral elements from 48K nodes. A four-layered reference 

head model is constructed where homogeneous conductivity to each tissue layer is 

assigned. For a realistic head model construction, an MRI is tessellated into 101K 
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brain tissues from 17K nodes by means of the same Tetgen® software. This head 

geometry is used for the realistic reference head model [Bashar et al 2010c,d,e]. 

 We implement the forward computation using FEM based on an equivalent 

current dipole method with 1µA magnitude assuming the dipoles are in the 

somatosensory cortex (SC) and thalamus. To obtain scalp potentials, 65 electrodes 

(including the reference electrode) residing at different positions on the head surface 

are used. These obtained potentials are used for further analysis. The simulations are 

carried out as follows: 

1. To study the effects of local conductivity on EEG forward computation, we 

compute scalp potentials by assigning the LTC to a head tissue layer or 

multiple tissue layers while conductivities in remaining tissue layers are 

constant. 

2. To study how it would affect an EEG if conductivity is wrongly assigned, we 

compute scalp potentials by assigning the LTC using element variation 

models.  

For comparison of the computed scalp potentials we use RDM and MAG errors. 

 

6.1.3.5 Simulation results 

Three-layered spherical head model 

These simulations are conducted with the SC and thalamic dipoles. Figure 6.4 shows 

the RDM and MAG errors caused by local conductivity assignment to individual or 

collective head tissue layers for LTC based models. The experimental results 

demonstrate that assigning local conductivity results in higher changes in potentials 

which cause RDM and MAG errors. Individual scalp local conductivity results in 

fewer RDM (0.93 for the SC and 0.84 for the thalamic sources) errors and the brain 

local conductivity causes higher RDM errors (1.46 for the SC and close to 1.46 for 

the thalamic sources). The scalp local conductivity results in fewer MAG errors for 

both sources. Combining the brain and skull’s local conductivities cause higher 

MAG errors.  Though these errors do not present collective errors, but it shows 

significant changes on scalp potentials. It is also found that the thalamic sources 

generate less RDM and MAG errors than those of the SC sources.  

Implementing element variation models by changing the number of principal 

elements for different head tissue layers and assigning the LTC, we also obtain 

significant scalp potentials differences. We compare these models with unvarying 
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head geometry and a homogeneous constant conductivity based model for both 

sources. The results of this comparison are shown in Table 6.1 in terms of RDM and 

MAG errors for different head tissue layers. The simulated results shown in Table 

6.1 demonstrate that there are substantial effects of tissue element variations on scalp 

potentials. By implementing brain element variations (BEV) we obtain 1.09 average 

RDM and 2.64 average MAG errors. BEV produces the maximum 1.23 RDM and 

4.07 MAG errors. With the changing of these principal elements, the conductivity of 

the entire brain layer is also changed. As a consequence, these changed 

conductivities affect the forward computation to compute scalp potentials, which 

result in RDM and MAG errors.  
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Figure 6.4: (a) RDM and (b) MAG from assigning local conductivity to different layers in a 

three-layered spherical head model using the SC and the thalamic dipoles. In the above 

figures, label Br, Sk and Sc represent brain, skull and scalp, respectively. 

 

 

Table 6.1: Effects of conductivity variations in three-layered spherical head model. 

Tissue layer Source Error -6% -4% -2% +2% +4% +6% 

Brain 

SC 
RDM 1.12 1.2 1.16 1.23 1.13 0.82 

MAG 1.51 2.95 3.4 2.57 4.07 2.24 

Thalamic 
RDM 0.95 1.18 1.14 1.22 1.09 0.77 

MAG 1.28 2.61 3.00 2.28 3.4 2.11 

Skull 

SC 
RDM 1.06 0.97 0.91 1.05 1.04 1.06 

MAG 2.83 2.72 1.99 2.72 2.06 2.47 

Thalamic 
RDM 1.02 0.93 0.84 1.0 0.97 1.02 

MAG 2.73 2.63 1.95 2.63 1.98 2.37 

Scalp 

SC 
RDM 0.79 0.88 0.85 0.97 1.15 1.41 

MAG 2.39 2.98 2.83 2.45 2.55 2.95 

Thalamic 
RDM 0.74 0.84 0.80 0.89 1.07 1.35 

MAG 2.19 2.68 2.58 2.33 2.41 2.51 
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In a similar way, we implement skull element variations (SEV) and scalp 

element variations (SCEV). In SEV, we obtain 0.99 and 2.43 average RDM and 

MAG errors, respectively. RDM errors lie between 0.84 and 1.06, and MAG errors 

range from 1.95 to 2.83. Mean RDM and MAG errors for SCEV are found as 0.98 

and 2.58, respectively. The minimum RDM (0.74) is found in -6% variations for the 

thalamic source and the maximum value (1.41) is found in -4% variations for the 

somatosensory cortex source. Thalamic sourced -6% variations produce a minimum 

MAG while SC sourced +6% variations produce a maximum MAG value. In all of 

the element variations cases, it is apparent that the SC sourced scalp potentials 

generate higher RDM and MAG errors than those of the thalamic sources. 

 

Four-layered spherical head model 

Effects of including local conductivity in either a head tissue layer or collective head 

tissue layers are shown in Figure 6.5 in terms of RDM and MAG errors. These errors 

are from both the SC and thalamic sources. Models including single or multiple local 

conductivity layers incur significant changes in scalp potentials compared to those 

that incorporate homogeneous constant conductivity for the corresponding tissue 

layers. From these results, it is demonstrated that incorporating local conductivity 

into the brain and skull layers incurs maximum RDM and MAG errors for both 

sources.  
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Figure 6.5: (a) RDM and (b) MAG from assigning local conductivity to different layers in a 

four-layered spherical head model using the somatosensory cortex and the thalamic dipoles. 

In the above figures, label Br, Sk and Sc represent the brain, skull and scalp, respectively. 
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In order to compute the effects of element variations for the four-layered 

model, we consider only the brain, skull and scalp tissue layers. In this research, we 

consider CSF as a highly conductive homogeneous medium. Element variations in 

the four-layered model produce substantial changes in scalp potentials. Table 6.2 

shows RDM and MAG errors incorporating element variations for both sources. 

BEV results in an average of 1.33 RDM and 2.51 MAG errors, SEV results in an 

average of 0.09 RDM and 1.03 MAG, and SCEV causes an average of 0.08 RDM 

and 1.06 MAG errors. In BEV, the minimum RDM is found in -2% variations for the 

thalamic source and the maximum RDM is found in +6% variations for the SC 

source. However, negative element variations (-2%, -4% and -6%) produce similar 

1.71 MAG values for the thalamic source. The maximum MAG value (5.64) is found 

in +6% variations for the SC source. In SEV, we find the minimal changes in overall 

potentials resulting in low RDM and MAG errors. These errors are close to their 

ideal values of 0 and 1, respectively. It produces the maximum of 11% RDM and 

1.06 MAG errors. The MAG values produced by the thalamic source are less 

sensitive than those of the SC source. In SCEV, the maximum RDM and MAG 

values are 0.10 and 1.08, respectively. Similar to BEV and SEV, SCEV is also more 

sensitive for the SC source than the thalamic source. Analyzing all element variations 

(BEV, SEV and SCEV), the simulation results demonstrate that the effect of element 

variations is non negligible and element variations in brain tissue layer cause a very 

high impact on EEG.   

 

Table 6.2: Effects of conductivity variations in four-layered spherical head model. 

Tissue layer Source Error -6% -4% -2% +2% +4% +6% 

Brain 

SC 
RDM 1.45 1.45 1.45 1.45 1.35 1.49 

MAG 2.34 2.35 2.32 2.34 3.18 5.64 

Thalamic 
RDM 1.22 1.23 1.21 1.22 1.22 1.23 

MAG 1.71 1.71 1.71 1.73 2.48 2.58 

Skull 

SC 
RDM 0.10 0.10 0.11 0.09 0.9 0.08 

MAG 1.05 1.05 1.05 1.06 1.06 1.06 

Thalamic 
RDM 0.10 0.10 0.10 0.09 0.09 0.08 

MAG 1.0 1.0 1.0 1.01 1.01 1.01 

Scalp 

SC 
RDM 0.10 0.09 0.07 0.08 0.07 0.07 

MAG 1.07 1.07 1.08 1.08 1.08 1.08 

Thalamic 
RDM 0.10 0.09 0.07 0.08 0.07 0.07 

MAG 1.03 1.03 1.04 1.04 1.05 1.05 
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Realistic head model 

Figure 6.6 shows RDM and MAG errors for the realistic head model similar to those 

shown in Figures 6.4 and 6.5 for spherical head models. Simulation results 

demonstrate that assigning local conductivity incurs significant changes in the scalp 

potentials that cause RDM and MAG errors. Incorporating local conductivity into the 

brain tissue layer causes higher RDM errors. Associating local conductivity into 

multiple tissue layers results in similar RDM values. However, a single brain tissue 

layer incurs fewer MAG errors in comparison to other collective local conductivities 

assigned into multiple tissue layers, such as brain + skull (Br+Sk), brain + scalp 

(Br+sc) and brain + skull + scalp (Br+Sk+Sc). From Figure 6.6, it is apparent that the 

SC sourced scalp potential values are higher than those of the thalamic sources in 

most of the cases. 
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Figure 6.6: (a) RDM and (b) MAG from assigning the local conductivity to different layers 

in the realistic head model for both dipoles. Labels are similar to Figure 6.3. 

 

Table 6.3 shows RDM and MAG values produced by element variations for 

realistic head models. BEV produces the mean RDM and MAG errors as 1.93 and 

1.64, with the minimums of 1.92 and 0.76, and the maximums of 1.95 and 2.79, 

respectively.  The minimum MAG error is found in -4% element variations for the 

thalamic source and the maximum RDM value is found in +6% element variations 

for the SC source. Zero percent mean RDM error and 0.99 mean MAG errors are 

found for SEV, which are almost the same as their ideal values of 0 and 1, 

respectively. The results demonstrate that there is no significant change using skull 

element variations. SCEV causes an average of 0.15 RDM and 1.25 MAG errors. 

The minimum RDM is found in +6% element variations for both sources and the 
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maximum value is found in +6% element variations for the SC source. The minimum 

MAG value (1.19) is found in -4% element variations for the thalamic source. 

Analyzing these results from the experiment, we find that BEV has a strong effect, 

SEV has less effect on scalp potentials and the SC source is more sensitive than the 

thalamic source. 

 

Table 6.3: Effects of element variations assigning local conductivity in realistic head model. 

Tissue layer Source Error -6% -4% -2% +2% +4% +6% 

Brain 

SC 
RDM 1.93 1.93 1.93 1.92 1.93 1.93 

MAG 2.75 2.74 2.04 1.94 2.11 2.79 

Thalamic 
RDM 1.95 1.95 1.94 1.94 1.94 1.95 

MAG 0.77 0.76 1.04 0.95 1.06 0.81 

Skull 

SC 
RDM 0.0 0.00 0.00 0.01 0.01 0.01 

MAG 0.99 1.00 0.99 0.99 0.99 0.99 

Thalamic 
RDM 0.00 0.00 0.00 0.00 0.01 0.00 

MAG 0.99 1.0 0.99 0.99 0.99 0.99 

Scalp 

SC 
RDM 0.14 0.16 0.15 0.14 0.16 0.12 

MAG 1.21 1.2 1.22 1.30 1.28 1.34 

Thalamic 
RDM 0.13 0.15 0.15 0.14 0.16 0.12 

MAG 1.2 1.19 1.21 1.29 1.27 1.33 

 

6.1.4 Local tissue conductivity based head model II 

 

6.1.4.1 Head models construction 

In this head model construction, we assign the same local tissue conductivity as 

described above for the brain, but we further develop the conductivity assignment 

method to the skull and scalp.  

For the assignment of the skull LTC, we consider the local tissues and their 

conductivity according to the literature [Law 1993].  Law estimated skull 

conductivity on twenty different positions using a 10-20 electrode system and 

reported that skull resistivity varies due to its anatomical structure, such as non-

uniform thickness of hard and soft bones, presence of suture lines, etc. Table 6.4 

shows the skull conductivity obtained from reported skull resistivity by Law. T3M, 

C3M, C4M and T4M are not found in the 10-20 electrode system. Therefore, we 

assume that these places are shown by T3, C3, C4 and T4, respectively in the 10-20 

electrode system.  
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Table 6.4: Skull conductivity, width and features at different places [Law 1993].  

Locations Conductivity (S/m) Width (cm) Distinguishable 

FPZ 0.01504 0.52 Frontal crest 

F3 0.01779 0.62  

F1 0.01284 0.45  

FZ 0.01129 0.50  

F2 0.01475 0.47 Arachnoid pits 

F8 0.01015 0.37  

T5 0.01196 0.44  

T3M 0.00467 0.47 Compact bone 

C3M 0.01368 0.55  

CZ 0.02538 0.47 Suture line 

C4M 0.01580 0.60  

C4 0.01764 0.62  

T4M 0.00787 0.46 Compact bone 

T6 0.01282 0.49  

P3 0.01520 0.50  

PZ 0.02825 0.47 Suture line 

P4 0.01109 0.50  

O1 0.02841 0.62  

OZ 0.07353 0.68 Suture line 

O2 0.01215 0.50 Suture line 

*The letter ‘F’ represents frontal, ‘P’ represents parietal,  ‘T’ represents temporal, ‘O’ 

represents occipital lobes. ‘C’ represents for central and ‘Z’ stands for midline identification purposes. 

The even numbered digits represent right hemisphere and odd numbered are on left hemisphere.   

 

There are 18 suture lines in the human head but five suture lines are mostly 

visible on the head surface [Gray 2002, Law 1993]. The suture lines on the skull 

surface are the lambdoid suture, medial sagittal suture, coronal suture, metopic suture 

and squamous or temporal suture [Gray 2002, Law 1993].  Law (1993) also reported 

the resistivity of four suture lines. Another medial sagittal suture line is on the central 

region Pz to Fz of the Inion and Nasion. Therefore, we do not consider the 

conductivity of suture lines individually. In the case of the scalp tissue layer, the skin 

and the fat are only considered. 

 

6.1.4.2 Simulation and results 

We also construct the head models as our previous study for different source 

positions. These positions are: (A) single dipole in somatosensory cortex, (B) 200 

dipoles in the entire brain and (C) a cortical dipole layer [Wang and He 1998, Aoki et 

al 2006, Hori and He 2007].  
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For the dipole position A, we compare the scalp potentials between the 

reference and computed head models generated by the same dipole position in the 

somatosensory cortex. It is found that there are the value of 12% in RDM and 1.14 in 

MAG errors when we incorporate local tissue conductivity.  

For dipole position B, the scalp potentials are computed by residing 200 

dipoles in the entire brain region for both head models. We do not follow any order 

to place the dipoles. We place 50 dipoles in the cortex, 10 dipoles are in the vicinity 

of each calcified and liquid brain lesions, 50 are in the thalamus, and the remaining 

80 dipoles are scattered between cortex and thalamus. The RDM and MAG errors for 

each dipole are computed and finally, the average RDM and MAG errors are 

calculated.  From the simulated results, it is found that average RDM is 14% and 

average MAG is 0.2660. We separately compute an average of RDM and MAG 

errors produced by the dipoles in the vicinity of each lesion. It shows that the dipoles 

in the vicinity of calcified brain lesion results in an average of 19% RDM and 0.89 

MAG errors. On the other hand, the dipoles in the vicinity of brain lesion results in 

an average of 9% RDM and 0.94 MAG errors. 

For the simulation of dipole position C, we compute the scalp potentials 

generated by a cortical dipole layer (CDL) where 500 dipoles are placed at 4mm 

beneath the brain to CSF boundary. Similar to the simulation for dipole position B, 

we compute the RDM and MAG errors for each dipole and then make its average. 

We find that incorporation of LTC incurs an average of 50% RDM ranging between 

13% and 78%. On the other hand, we find an average of 0.56 MAG errors with the 

minimum 0.7580 and maximum 1.14.     

We also compute the RDM and MAG errors by making the dipole bunches 

(DB) from the dipoles of the CDL. To make the DB, we assume the dipoles in the 

corresponding lobe. For example, we make frontal DB by assuming all dipoles that 

are in the frontal lobe.  Similarly, we make parietal DB, temporal DB and Occipital 

DB. Our simulation results show that parietal DB produces fewer RDM and MAG 

errors and Occipital DB generate higher RDM and MAG errors.  

 

6.1.4.3 Discussion  

Conductivity plays a vital role in the computation of EEG forward problem that have 

an effect on scalp potentials. For example, in the case of skull, the homogeneous 

conductivity is 0.0042 S/m in the reference model. However, the conductivity values 
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of the frontal, parietal, occipital and temporal regions of the skull are different 

(shown in Table 6.4) in the LTC based head model. Similarly, the brain and the scalp 

have different conductivities.  The results in this study demonstrate that the effects of 

local tissue conductivity on the computation of scalp potentials are significant. 

 Dipole position also affects the scalp potentials. We find that the thalamic 

sources result in relatively fewer scalp potential variations than those by the cortical 

dipolar sources. The currents from a deeper source spread inside the brain and reach 

to the scalp electrodes through a larger portion of low conductive skull. However, a 

superficial source residing on the cortex beneath the skull layer allows close contact 

to scalp electrodes. As a result, a superficial source results in substantial variations in 

electrode potentials. Dipoles in the vicinity of the lesions cause significant changes in 

scalp potentials [Awada et al 1998, Bruno et al 2002]. Our LTC based head model 

also shows a result consistent with other literature.   

The dipoles of the CDL are surrounded at 4mm below the brain boundary for 

all the brain regions. The gap between the dipoles and the scalp electrodes are filled 

by high conductive CSF, low conductive skull and scalp. The conductivity of the 

skull is highly dependent on the thickness of skull, presence of suture lines and 

absence of soft bone. Similarly, the scalp conductivity also depends on the muscle 

layer and subcutaneous fat layer. The muscle is usually found in the left and right 

temporal and occipital regions [Gray 2002]. There is a high resistance from 

subcutaneous fat. The thickness of fat layer is non uniform. With a thick 

subcutaneous fat layer in people who are overweight, this subcutaneous resistivity 

would be higher than that seen in thin people. The thicker the fat layer, the greater 

the resistance. The thickness of the subcutaneous fat layer is directly related to the 

loss on the scalp potentials [Petrofsky 2008]. As a result, dipoles of the CDL 

generate very different scalp potentials.  

The conductivity in the parietal region of the skull is lower than the 

conductivity of occipital region (shown in Table 6.4). It is logical that the RDM and 

MAG errors generated by parietal DB would be higher than those of occipital DB. 

However, the presence of subcutaneous fat layer causes a great difference in scalp 

potentials. The conductivity of fat is eight times lower than the scalp conductivity. 

Another region is source and electrode distance. There are only limited electrodes on 

the occipital region and most dipoles are on the parietal and frontal regions of the 

scalp. The distance between the dipoles in the occipital DB and electrodes on frontal 
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region of the scalp are high. As a result, current from occipital DB spreads into the 

brain and passes a greater area of skull to the scalp electrodes. On the other hand, 

there is no thick fat layer in the parietal region and the sources are close to the 

electrodes. Therefore, the dipoles in the parietal DB cause less error.  

 

6.2 EEG analysis on Alzheimer’s disease sources 

 

6.2.1 Aims of this study 

 

In this study, we aim to show: (A) the feasibility to improve the neurological 

evaluation and study more precisely the EEGs from normal source (in somatosensory 

cortex) and Alzhemier’s disease sources (in hippocampus), (B) a preliminary 

quantitative estimation of errors due to varying sources and (C) the variations of 

EEG due to different brain tissue distortion levels to address the effects of different 

levels of dementia.   

 

6.2.2  Introduction 

 

Alzhemier’s disease (AD) [Kloppel et al 2008, Mosconi et al 2006, Chetelat et al 

2008] is one of the challenging research areas for brain scientists for decades. AD is 

a neurodegenerative disorder which alters the structure and function of brain. 

Therefore, it is important to detect AD as early as possible because treatment may be 

most effective if introduced earlier. In practice, the diagnosis of AD is largely based 

on clinical history and different examinations supported by neuropsychological 

evidence of the pattern of cognitive impairments [Kloppel et al 2008]. However, in 

reality, only fifty percentage of probable AD is detected in the primary case.  

 The reason for, and progression of AD is not well understood so far. 

Primarily, some investigation indicates that the disease is associated with plaques 

and tangles in the brain. Plaques are extracellular deposits of amyloid in the GM of 

the brain. The plaques are flexible in shape and size, but are on the average of 50µm. 

The population of people with plaques almost linearly increases after the age of 60. 

Tangles are formed by a kind of protein known as tau causing it to aggregate in an 

insoluble form. Based on the aggregation of proteins into GM tissues of brain, 

dementia (caused by AD) is characterized into four classes: predementia, early 
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dementia, moderate dementia and advanced dementia. Predementia, the first 

symptoms of AD are often mistaken as related to aging or stress. Early dementia 

leads to difficulties with language, executive functions or movements and perception.  

These symptoms are more prominent than memory problems. Speech difficulties 

become evident due to an inability to recall vocabulary, which leads to frequent 

incorrect word substitutions in moderate dementia. Advanced dementia is the last 

step of this neurological disorder. 

To develop prevention treatment for AD, it is necessary to identify early 

biological markers for AD prediction. The best recognized in vivo markers of AD are 

measures of brain structure and function as obtained with neuroimaging. Structural 

imaging with either CT or T1 weighted MRI allows brain atrophy to be assessed in in 

vivo [Baron et al 2001]. Different studies [Baron et al 2001, Smith and Jobst, 1996]
 

in the early stages of AD have consistently reported that, the first brain region to be 

affected by atrophy is the medial temporal lobe, which comprises the hippocampus 

proper, the parahippocampal gyrus and the amygdala. The study by Chupi et al 

(2007) is also consistent regarding the sources of AD. They performed the 

segmentation of hippocampus and amygdala for constrained region deformation by 

AD. EEG has an important role in the evaluation of certain neurological disorders 

based on their criteria.  

Most studies [Patel et al 2008, Polikar et al 2007]
 
analyse event related 

potentials (ERPs) of EEG recorded from different candidates and controls, to 

diagnose early detection of AD. Topographic maps of the spectral power of EEG 

provide information that helps differentiating neurological disorders for various 

neurological cases. Other studies [Kloppel et al 2008, Chetelat et al 2008] perform 

MRI segmentation scanned from candidates and controls, to show the changes of 

GM inside the brain to diagnose AD and to understand its severity. 

 

6.2.3 Methods 

 

We use the same head model with same number of tessellated elements illustrated in 

the previous sections. However, we use different sources. 
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6.2.3.1  Finite element conductivity 

The tetrahedra or elements of head tissues are labelled according to their 

compartment memberships. The following isotropic conductivities [Awada et al 

1997, Haueisen et al 1997, Gullmar et al 2006] are assigned to brain (brain) = 

0.33S/m, CSF (CSF) = 1.0 S/m, skull (skull) = 0.0042 S/ and scalp (scalp) = 0.33 

S/m. AD is caused from the deposition of unsaturated tau protein in brain tissues. We 

assume that tau protein consumes fat resistivity. Haueisen et al (1997) measured 

resistivity of human head tissues and found 2500 cm mean value with 1500 cm 

lower bound and 5000 cm upper bound values for fat tissues. Awada et al
 
(1997) 

accounted 0.02 S/m and 0.05 S/m conductivity values for fat tissues. Therefore, we 

assign 0.04 S/m mean conductivity values for the AD regions (distorted brain 

tissues). 

    

6.2.3.2   Source Modelling 

The dipole located at SC in the parietal lobe is addressed as a normal source and AD 

sources are addressed by the dipole positioned in right amygdala (RA) and left 

amygdala (LA) in hippocampus of medial temporal lobe. Figure 6.7 shows different 

parts of brain.  

 

Figure 6.7: The brain is viewed from the outer side and front with the hippocampus and 

amygdala [Amygdala]. 

 

Figure 6.8 shows an example of dipole location for RA source in MRI. We 

choose the dipole situated in SC as a reference dipole. By surveying different studies 

[Baron et al 2001, Smith and Jobst, 1996] we find that the source of AD resides in 

the hippocampus. Therefore, we choose to set other sources either in RA or LA to 

investigate how it would affect an EEG. We consider the dipole located in axial, 
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coronal and sagittal planes with magnitude of 1 µA using equivalent current dipole 

method. 

 

                       

Figure 6.8:  Location of one of the AD sources in RA by the cross hairs in different views. 

 

6.2.3.3   Simulation and results 

The realistic head model is from the same MRI and methods in our previous study 

with the sources in SC, RA and LA locations. We assign homogeneous isotropic 

conductivity to each tissue. We also developed other four realistic head models with 

5%, 10%, 15% and 20% distorted brain elements, respectively. The head model from 

the homogeneous isotropic conductivity without distorted brain elements is defined 

as a reference head model while other models are computed models. 

 We first compare the scalp potentials obtained from two AD sources (RA and 

LA) to those of normal (SC) sourced EEG. We find that RA and LA sourced 

potentials result in 61.97% to 197.12% RDM errors, and 0.21 to 0.07 MAG errors, 

respectively. Analyzing these errors, we find that the scalp potentials originated from 

AD sources differ from the SC source and also exhibit less scalp potentials. 

Figure 6.9 shows RDM and MAG errors where scalp potentials of computed 

head models are from different brain tissue distortion levels (BTDLs). These 

comparisons are made with the reference model from the same source of the 

computed models. For instance, we compare the EEGs obtained from 5% BTDL for 

the SC source as computed model to the EEGs obtained from the reference model for 

the same SC source. Similarly, we perform the same computations for other BTDLs. 

RDM errors are between 10% and 28% and MAG errors are in the range of 0.98 to 

1.09. RA sourced BTDLs show higher RDM and SC sourced BTDLs show higher 
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MAG errors. We find that 10% distortion level is more sensitive than other BTDLs 

in both RDM and MAG respects. 

  

         (a)                                                                       (b) 

Figure 6.9: RDM (a) and MAG (b) errors from different brain tissue distortion levels on 

source to source basis. 

 

Figure 6.10 shows RDM and MAG errors where the computed models are 

from the AD sources and reference model from the SC source. In Figure 6.10, 

normal represents a model without any brain tissue distortion. RA shows 59% to 

61% RDM and 0.21 to 0.23 MAG errors, while 197% RDM and 0.076 to 0.08 MAG 

errors are shown by LA sourced EEG. We observe that RA generates less RDM and 

MAG errors than LA. 
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           (a)                                                                     (b) 

Figure 6.10: RDM (a) and MAG (b) errors from RA and LA sourced without and with 

different brain tissue distortion levels to SC sourced normal EEG. 

 

Figure 6.11 shows the contour map of scalp potentials resulted from different 

realistic head models. Analyzing the contour maps, we find that the scalp potentials 

generated by various brain distortion levels are different from the reference model 

and vary from each other significantly. 
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 (a)    (b)                       (c)                         (d)                 (e) 

Figure 6.11: Contour view of scalp potentials obtained from somatosensory cortex (a) 

reference model, (b) five percent, (c) ten percent, (d) fifteen percent and  

(e) twenty percent brain tissue distortions. 

 

6.2.3.4 Discussion  

In this study, we observe the significant changes on scalp potentials by means of 

RDM and MAG in the forward computation for the sources in the AD region. We 

also implement 5%, 10%, 15% and 20% brain tissue distortions to address different 

stages of dementia, such as predementia, early dementia, moderate dementia and 

advanced dementia, respectively. We find the minimum of 10% RDM and 0.99 

MAG values, and the maximum of 27% RDM and 1.09 MAG values for different 

brain tissue distortions. 

 Comparing the EEGs obtained from AD sourced to SC sourced EEG, we find 

the differences of scalp potentials due to the changing of the sources. Similarly, 

different levels of brain tissue distortion also cause substantial potential changes. In 

most of the cases, MAG errors generated by the SC source for different brain 

distortion levels show higher values than those of AD sourced EEG (Figure 6.9(b)). 

The reason is the position of sources. When a source is closer to the cortex, the 

distance between the source and the sensor is shorter. Therefore, more potential is 

measured on the sensor than the source at the deeper brain region.  We also 

implement two different AD sources in the right amygdala and left amygdala to show 

the changing of EEGs in order to source position.  

 Visualization of scalp potentials (shown in Figure 6.11) is carried out based 

on our obtained results. A head model with electrodes is shown in Figure 6.12. 

Though all electrodes are not visible, electrodes are addressed by different names 

with ‘F’ for frontal lobe, ‘P’ for parietal lobe, ‘O’ for occipital lobe and ‘T’ for 

temporal lobe. Combining the concepts of electrode positions and scalp potentials, it 

is apparent that the electrodes in the source region are more sensitive to the 
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electrodes in other regions. When the source is placed in the somatosensory cortex, it 

spreads the potentials to its nearest electrodes positioned in the central parietal 

region. Therefore, the electrodes that are in parietal and temporal show more 

potential when the dipole is in the hippocampus. 

 

Figure 6.12: Electrode positions (left ear-Nasion – right ear). Odd numbers with electrode 

names indicate left hemisphere, even numbers with electrode names indicate right 

hemisphere. 

 

In summary, we find that scalp potentials generated from AD sources differ 

and produce less values than a normal source. Different brain distortion levels also 

cause substantial potential changes. It is also found that the electrodes positioned in 

the source regions are more sensitive than other electrodes.  

 

6.3 Conclusion 

 

In this Chapter, we discuss the local tissue conductivity based head model and an 

application of head modelling on EEG analysis of Alzheimer’s disease sources. In 

the first part, we construct LTC based head models where we assign the tissue 

conductivities based on their position or location. Analyzing several simulations, we 

find that it is important to assign LTC for an accurate head model. We find that the 

incorrect assignment of brain tissue conductivity causes substantial effects on scalp 

potentials while the skull produces negligible effects in this study. We also 

implement LTC based on different skull conductivities at different places. In both 

head models, we find substantial changes on EEG and the importance of using LTC. 
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Therefore, we conclude that accurate modelling requires LTC. In the second part of 

this Chapter, we discuss the EEGs originated from the normal source (somatosensory 

cortex) and the Alzheimer’s disease sources (left and right amygdala). We also 

analyze different levels of dementia which causes storing atrophy in the brain cell, in 

turn, causes brain tissue distortion. We find that EEGs obtained from AD sources are 

different from normal sources, and the electrodes residing in parietal and temporal 

lobes are more sensitive than other electrodes for AD sourced EEG.  
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CHAPTER 7                

SENSITIVITY ANALYSIS 

 

 

This study is to investigate the effects of conductivity uncertainty on scalp potentials 

and to analyze its sensitivity, towards better understanding and representing a human 

head in EEG. In particular, we focus our attention on: how conductivity uncertainty 

in either tangential or radial direction affects an EEG and how much mean scalp 

potential varies by assigning these conductivities.  

We implement a stochastic finite element method based on anisotropic and 

inhomogeneous conductivity properties for head model construction. We perturb the 

uncertain conductivity and compute the EEG. We analyze the conductivity 

uncertainty on output EEG by means of relative errors and correlation coefficients. 

Finally, we determine the sensitivity indexes by means of probabilistic sensitivity 

analysis. 

 

7.1 Head Model Construction 

  

We implement a five-layered spherical head model with 8.8cm, 8.5cm, 8.1cm, 7.9cm 

and 6.5cm radii for the scalp, skull, CSF, GM and WM, respectively. We also 

consider a realistic head model obtained from a T1 weighted MRI. Similar head 

models from our previous studies are used in this study. However, the conductivity 

approximations are different. 

 

7.2 Uncertain Conductivity Approximation  

 

Uncertainty analysis determines the uncertainty in outputs as a consequence of 

uncertain inputs. It is formed by means of the following Steps [Glavaski, 1998]: (A) 

identification of uncertain input parameters, (B) definition of the minimum and 

maximum uncertain ranges of the parameter, (C) specification of probability density 

function over these ranges and (D) generation of random data using the probability 

density function for input parameters to perform the simulation.  
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The output of an EEG forward problem is computed from known head 

geometry, electrical conductivity of the tissues and a current source. The input 

parameter, electrical conductivity, substantially affects the output of an EEG forward 

problem. It varies from person to person, and even spatially within a tissue. 

Therefore, it creates uncertainty in the EEG forward problem. We use conductivity 

as an uncertain input parameter (Step A of uncertainty analysis).  

To define the minimum and the maximum uncertainty ranges (Step B of 

uncertainty analysis), we consider tissue anisotropy and inhomogeneous properties. 

Among the head tissues, the WM and the skull show anisotropic conductivity in 

longitudinal (tangential) and transversal (radial) directions. The anisotropy ratio (ar) 

between longitudinal and transversal directions varies from place to place between 1 

and 10 [Marin et al 1998, Wolters 2003]. To construct an anisotropic model, we 

consider Volume and Wang’s constraints.  

The variations of ar cause the variation of conductivities. For example, when 

ar =1 in the Volume constraint, longitudinal conductivity ( Vol

long ) and transversal 

conductivity ( Vol

trans ) values for the WM are both 0.14 S/m. When ar =10, these 

values are 0.65 S/m and 0.065 S/m, respectively. These lower and upper conductivity 

values are assumed as the conductivity uncertainty ranges. Similarly, we determine 

the minimum and the maximum uncertainty values for the skull conductivity. 

We also consider the scalp as an inhomogeneous conductor for its 

complicated anatomical structure. We assume the scalp conductivity uncertainty 

ranges between 0.16 S/m to 0.5 S/m (more details are found in Wen (2000)).  

As the conductivity changes from place to place of a head, or even in a same 

tissue, a randomness or stochastic process is required to present such conductivities. 

We use a known PDF to determine the randomness. For specifying the PDF we 

consider Gaussian PDF with physically constrained to be non-negative and non-zero 

(Step C of uncertainty analysis). Table 7.1 shows the uncertain head tissue layers, 

their mean conductivities, uncertain conductivity ranges and PDF used in this study. 
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Table 7.1: The uncertain parameter (conductivity) and its ranges used in this study for the 

head model construction. 

Tissue 

layer 

Constant/mean 

conductivity 

Conductivity 

uncertainty ranges 

(S/m) 

Direction Constraint PDF 

WM 0.14 (S/m) 

0.14-0.65 longitudinal 
Volume 

Gaussian 
0.14-0.065 transversal 

0.14-0.44 longitudinal 
Wang 

0.14-0.044 transversal 

 

 

skull 

 

 

0.0042 (S/m) 

0.0042-0.009 tangential 
Volume  

Gaussian
 0.0042-0.0009 radial 

0.0042-0.013 tangential 
Wang 

0.0042-0.001 radial 

scalp 0.33 (S/m) 0.16-0.50 - - Gaussian 
 

In the generation of random numbers as uncertain conductivities for an 

uncertain tissue layer (Step D of uncertainty analysis), we consider a stochastic 

conductivity tensor );( 


x , where Volumex  and 


 presents polynomial random 

variables. A stochastic process [Geneser et al 2008, Bashar et al 2010c] for different 

head tissue layers is implemented by different random variable vectors. To represent 

the independent and uncorrelated random variables, we use Karhunen-Loeve 

expansion. According to this expansion, we define the random numbers for the 

conductivity values as: 

)()(ˆ)()(ˆ);( 00 


ii xxx  ,  …………………………. (7.1) 

where );( 


x  is randomly distributed on the interval )](),([ xbxa  for each point of 

the Volume, where a(x) and b(x) are the conductivity uncertainty ranges as shown in 

Table 7.1, and 2/))()(()(ˆ)(ˆ
0 xbxaxx i  . We set )(ˆ

0 x to the isotropic 

homogeneous or mean conductivity. We then set )(ˆ xi to a nonzero value for the 

uncertain head tissue layers we are interested in, and set )(ˆ xi to zero for each of the 

remaining layers. 

 

7.3 Sensitivity Parameter Definition 

 

The aim of sensitivity analysis of a model is to quantify how a model output depends 

on its input parameters. It assists in determining which input parameters affect the 

model output the most or the least. Sensitivity and uncertainty analysis procedure can 

be either local or global. Let us assume such a model as )(xfy  , where x is a vector 
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of input variables x = (x1, x2, ………, xm) and y is the model output. We consider a 

baseline estimate xo for x to know how the true output y changes from the baseline 

output )( 00 xfy  . We use homogeneous conductivity as the baseline or reference 

conductivity. The homogeneous conductivity values of WM, GM and scalp are 0.33 

S/m, 0.14 S/m and 0.33 S/m, respectively. Two assumptions for the skull 

homogeneous conductivity are common. In the first assumption, the mean 

conductivity of the skull is 0.0042 S/m [Geddes and Baker 1967, Liang and Wang 

2009, Aarabi et al 2009, Chauveau et al 2008, Roche-Labarbe et al 2008] according 

to 1:)80/1(:1:: brainskullscalp  . In another assumption, the conductivity value is 

0.0220 S/m [Oostendorp et al 2000, Lai et al 2005, Zhang et al 2006] with the ratio 

of 1:)15/1(:1:: brainskullscalp  . We consider both of these assumptions in this 

study. Similarly, the mean conductivity of CSF is considered as 1.0 S/m [Geddes and 

Baker 1967]. Moreover, it is also assumed 1.79 S/m in room temperature [Windel et 

al 2008, Baumann et al 1997]. As a result, we consider two sets of base lines or 

reference conductivities as shown in Table 7.2. 

 

Table 7.2: Homogeneous conductivity values for different tissue layers for the construction 

of the reference head models. 

 Scalp (S/m) Skull (S/m) CSF (S/m) GM (S/m) WM (S/m) 

Conductivity set  A 0.33 0.0042 1.0 0.33 0.14 

Conductivity set  B 0.33 0.022 1.79 0.33 0.14 

 

The local sensitivity is limited on input x because one input is varied but 

other inputs are constant. On the other hand, global sensitivity analysis considers 

more substantial changes in the input x and can be assumed as Y = f(X), where X is 

unknown inputs and Y is output.  The probabilistic sensitivity analysis can be 

represented in terms of a decomposition of the function f(.) into main effects and 

interactions [Oakley and O’Hagan 2004]: 





kji

mkjikji

ji

jiji

m

i

ii zzzxzYEfy ),(.............)()()()()( ,....2,1,,,,,,

1

xxxx ..... 
 

 

where           ),()|()( YExYExz iii   

                      ),()()()|()( ,,, YExzxzYEz jjiijijiji  xx  

),()()()()()()()|()( ,,,,,,,,,,,, YExzxzxzzzzYEz kkjjiikjkjkikijijikjikjikji  xxxxx

 

(7.2) 
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and so on. We refer )( ii xz as the main effect of ix , to )( ,, jijiz x as the first-order 

interaction between ix and jx .  

 

7.4 Implementation and Experimentation 

 

For both the spherical and realistic head models development, we use isotropic 

homogeneous, anisotropic inhomogeneous and uncertain conductivities. Scalar 

conductivity value is used to represent isotropic homogeneous conductivity. We 

assign isotropic and homogeneous conductivity for different tissue layers shown in 

Table 7.2 (Conductivity sets A and B) for the construction of baseline or reference 

head models. To represent anisotropic conductivity for the WM and skull 

conductivity tensor is used. Then we assign the uncertain conductivities to tissue 

layers for the construction of the conductivity perturbed model.   

We use five-layered spherical and realistic models with the same tessellation 

and number of elements as used in the previous studies. We compute EEGs from 24 

fixed dipoles at different places inside the GM assuming 1µA magnitude of each 

dipole. We implement two relative difference measurement techniques to analyze the 

relative changes between the reference and computed models. These measurements 

are relative error () and correlation coefficient () values.  

 In order to quantify sensitivity indexes mentioned in equation (7.2), we 

consider  )(xfy for different sources and )|( ixYE  as the obtained  for 

assigning the uncertain (perturbed) conductivity for xi tissue layers. We compute E(Y) 

from the base line conductivities.  

 

7.5 Experimental Results  

 

7.5.1 Results in the spherical head model 

 

Figure 7.1 shows the mean relative error (m) and mean correlation coefficient (m) 

values from different dipole depths comparing with reference model A or B. In 

Figure 7.1, long represents the longitudinal and trans represents the transversal 

conductivities with V for Volume constraint and W for Wang’s constraint. When 

comparing with reference model A (solid lines in Figures 7.1a and 7.1b), the m 
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ranges between 24% and 31% producing an average of 28%. The m ranges between 

0.92 and 0.97 with an average of 0.95. The transversal conductivities generate higher 

m  and m values than those of the longitudinal conductivities. Wang’s constrained 

transversal conductivities produce higher m and longitudinal conductivities generate 

fewer m  values.  
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(a) (b) 

Figure 7.1: WM conductivity uncertainty: (a) mean relative errors (m) and (b) mean 

correlation coefficient (m) values generated by incorporating WM conductivity uncertainty. 

RefA and RefB represent the Reference Models A and B, respectively. long represents the 

longitudinal and trans represents the transversal conductivities with V for Volume constraint 

and W for Wang’s constraint. 

 

When comparing with reference model B (dash lines in Figures 7.1a and 

7.1b), the m  ranges between 18% and 28% producing an average of 23% and m 

ranges between 0.94 and 1.0 with an average of 0.97. The results also show that 

Wang’s constrained transversal and longitudinal conductivities generate higher m 

and fewer m values, respectively. Therefore, in analyzing the uncertainties for 

various constrained WM conductivities in different directions, it is found that the 

EEG forward modelling is more affected by the Volume constrained transversal 

conductivities in most of the cases in our study. 

Table 7.3 shows the  values generated by one dipolar source in the GM at 

various depths making different dipole eccentricities (Marin et al 1998, Wang and 

He 1998]. The results are obtained when comparing to reference model A. From the 

obtained results, it is found that the  values are less when the dipole is closer to the 

origin. However, it produces more  values when the dipole is close to the cortex. 

We also compute the  values between the WM perturbed models and the reference 

model B for different dipole eccentricities and find the insensitive results. 
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Table 7.3: Relative error % ( ) values produced by the white matter conductivity 

perturbations for different dipole eccentricities.  

Conduc

-tivity 

Dipole eccentricities 

0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 

LongV 31.42 31.44 31.46 31.48 31.50 31.52 31.54 31.56 31.58 31.60 31.62 

LongW 22.32 22.34 22.36 22.37 22.39 22.41 22.43 22.45 22.47 22.49 22.51 

TransV 26.11 26.12 26.12 26.12 26.12 26.12 26.12 26.12 26.12 26.12 26.12 

TransW 24.69 24.69 24.70 24.71 24.72 24.72 24.73 24.73 24.74 24.74 24.75 

* Long represents the longitudinal and Trans represents the transversal conductivities with V  for 

Volume constraint and W for Wang’s constraint. 

 

The m  and m values for the skull perturbed conductivity models in 

comparison with either reference model A or B are shown in Figure 7.2. tan 

represents the tangential and rad represents the radial conductivities while other 

symbols and notations used in Figure 7.2 are identical to Figure 7.1. Comparing with 

both of the reference head models, the Volume constrained radial conductivity model 

generates fewer and the Wang’s constrained radial conductivity generates the larger 

m  errors. On the other hand, Wang’s constrained tangential produces fewer and 

Wang’s constrained radial produces the higher m errors. Therefore, we understand 

that incorporating the skull conductivity uncertainty generates substantial scalp 

potentials variation between the reference and computed models. Analyzing these 

results, we find that the radial conductivity affects the scalp potentials more than 

those of the tangential conductivities in most of the cases in our study. 
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(a) (b) 

Figure 7.2: Skull conductivity uncertainty: (a) mean relative errors (m) and (b) mean 

correlation coefficient (m) values generated by incorporating skull conductivity uncertainty. 

RefA or RefB stands for either reference model A or B. tan represents the tangential and rad 

represents the radial conductivities with V for Volume constraint and W for Wang’s 

constraint. 
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Incorporating the scalp conductivity uncertainty, we find 25% m and 0.95 

m  values when comparing with reference model A. If we compare with reference 

model B, we find 28% m and 0.98 m  values. Therefore, it is apparent that the 

scalp conductivity perturbation has non-negligible effects on the output of EEG 

forward computation.  

The sensitivity indexes based on equation (7.2) are shown in Table 7.4 for the 

reference model A. In Table 7.4 x1, x2 and x3 represent the conductivities of the WM, 

the skull and the scalp, respectively. x1,2  represents the combined conductivities of 

the WM and skull. Similarly, the other combination represents the corresponding 

tissue layer’s combined conductivities. )( ii xz  represents the main effect of ix . The 

parallel direction is assumed for the longitudinal direction of the WM conductivities 

and the tangential direction of the skull conductivities. On the other hand, the 

perpendicular direction stands for the transversal and radial directed conductivities 

for the WM and skull, respectively. In Table 7.4 it is observed that each 

inhomogeneous tissue layer causes the variation of the mean scalp potentials. 

Anisotropic and inhomogeneous WM conductivity generates an average of 30.5% 

mean scalp potentials, the skull generates an average of 37.5% mean scalp potentials 

and the scalp generates 28% variations. The combined conductivity produces 

relatively less mean scalp potentials as the output scalp potentials are not additive to 

more tissue layers. Wang’s constrained WM and skull conductivities generate the 

highest mean scalp potential variations. Combined anisotropic and inhomogeneous 

tissue conductivity properties generate the maximum 42% mean potential variation. 

We also compute the sensitivity indexes by the comparison with the reference model 

B. We find similar results with a small amount of variation in values. To avoid a 

duplicate table, we do not report it.  

  

Table 7.4: Sensitivity indexes for different conductivities in the spherical head model 

compared with the reference model A. 

Direction Constraints z1(x1) z2(x2) z3(x3) z1,2(x1,2) z1,3(x1,3) z2,3(x2,3) z1,2,3(x1,2,3) 

Parallel 
Volume 0.33 0.26 

0.28 
-0.33 -0.33 -0.35 0.42 

Wang 0.29 0.35 -0.17 -0.28 -0.23 0.25 

Perpendi

cular 

Volume 0.30 0.25 
0.28 

-0.12 -0.29 -0.25 0.09 

Wang 0.29 0.64 -0.40 -0.29 -0.63 0.35 
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7.5.2 Results in the realistic head model 

 

For the realistic head model, we use similar approaches and conductivity perturbed 

models to compute the scalp potentials for the reference and the computed models. 

We consider the brain tissue layer with homogeneous conductivity 0.33 S/m 

assuming the WM and GM are in the brain. We also consider the skull layer as 

anisotropic and inhomogeneous, and the scalp is inhomogeneous. Figure 7.3 shows 

the m and m  values caused by the skull conductivity perturbation. We find that 

the m  is 20% and 21.5% when comparing with the reference model A and model B, 

separately. Similarly, it shows identical m  values when comparing to reference 

model A but it shows 0.94 m  when comparing to the reference model B (Figure 

7.3(b)). The relative errors and CC values are almost identical for different 

conductivity models because the conductivities assigned to the perturbed models are 

not sufficient to substantially change the output.  By analyzing the results, it is 

apparent that the skull conductivity perturbation has significant effects on m  values 

and smearing effects on m  values. All the perturbed models show similar affects on 

the scalp potentials. 
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Figure 7.3: The scalp conductivity uncertainty: (a) mean relative errors (m) and (b) mean 

correlation coefficient (m) values. RefA or RefB stands for either reference model A or B. 

tan represents the tangential and rad represents the radial conductivities with V for Volume 

constraint and W for Wang’s constraint. 

 

For the scalp conductivity perturbation, we find 20% m and 0.98 m  values 

comparing with reference model A. When compared with reference model B, we 

find 41% m and 0.85 m values. Therefore, it is obvious that the scalp conductivity 

uncertainty causes the differences in the output EEG. 
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Table 7.5 shows the sensitivity indexes generated by the realistic head model 

compared with the reference model A, where x1 and x2 represent the conductivities of 

the skull and the scalp. We find that the sensitivity of the skull has negligible effects 

on the output EEG; however the scalp has a strong effect on the output. We also find 

similar results with very small variations compared with the reference model B.  

 

Table 7.5: Sensitivity indexes for different conductivities in realistic head model compared 

with the reference model A. 

Direction Constraints z1(x1) z2(x2) z1,2(x1,2) 

Tangential Volume 0.003 0.25 -0.003 

Wang 0.003 -0.003 

Radial Volume 0.003 0.25 -0.003 

Wang 0.004 -0.004 

 

 

7.6 Discussion and Conclusion 

 

The presented results show that the deeper dipolar source results in relatively fewer 

scalp potential variations than those from the superficial dipolar source. The currents 

from a deeper source spread inside the gray matter and reach to the scalp electrodes 

through a larger portion of low conductive skull. However, a superficial source 

residing on the cortex beneath the skull layer allows close contact to scalp electrodes. 

As a result, a superficial source results in substantial variations in electrode 

potentials. Therefore, it is important to represent skull conductivity accurately to get 

a better EEG. The results show that the skull conductivity uncertainty causes the 

maximum 63% mean relative differences for the spherical head model (shown in 

Figure 7.2a). The anatomical structure of the skull is more complex than other tissue 

layers. The hard and soft bone layers of the skull make it as an anisotropic conductor. 

In other parts, such as calvarium, suture lines make it an inhomogeneous tissue layer. 

The conductivities of these parts are also different. As a result, the computed scalp 

potentials are affected. Our experimental results find that the radial directional 

conductivity is more sensitive than the tangentially directed conductivity. Among the 

tissue layers, the scalp layer individually shows 28% mean potential differences in 

the spherical and 35% differences in the realistic head models. Similarly, for the WM 
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in the brain, our results demonstrate that WM has significant sensitivity indexes for 

anisotropic and inhomogeneous cases (Table 7.4). 

We have investigated the uncertainty and sensitivity of spherical and realistic 

head models based on their tissue conductivity properties. We developed a 

conductivity model with respect to the tissue anisotropic and inhomogeneous 

properties. We analyze the effects of tissue conductivity uncertainty on EEG forward 

head computation by means of two relative statistical measurements. We quantify the 

sensitivity indexes for different tissue layers and their combined effects by means of 

probabilistic sensitivity analysis. The results demonstrate that the conductivity 

uncertainty causes significant potential changes on scalp electrodes. Among the 

tissues, white matter in the transversal direction, skull in the radial direction and the 

scalp are more sensitive. These tissue layers cause substantial mean potential 

changes on the output EEG. 
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CHAPTER 8          

CONCLUSION 

 

  

The electrical activity inside the brain is measured on the head surface by an EEG. 

The EEG becomes an important diagnostic tool for clinical purposes to analyze 

mental disorders or brain functions. The accuracy of the human head model partly 

depends on the head tissue conductivity. Tissue conductivity varies in different parts 

of the head, even in the same tissue layer. Some tissue layers are inhomogeneous and 

some are anisotropic. This dissertation studies human head modelling based on 

inhomogeneous and anisotropic head tissue conductivities and local tissue 

conductivity. 

 

8.1 Main Contributions 

 

The anatomical and physiological structure of a human head is too complex to be 

modelled exactly. Brain scientists have been devoted to developing an anatomically 

sound artificial or realistic head model for decades. This study is part of the 

modelling work. Head modelling depends mainly on head geometry and head tissue 

conductivity. Head geometry from magnetic resonance imaging is commonly used 

for the development of a subject specific head model. However the conductivity 

allocation to the head tissues is still the challenging problem to the brain researcher. 

This study focuses on the conductivity aspects of the head model. The major 

contributions of this study are: (A) we have successfully developed a series of 

inhomogeneous and anisotropic head models, (B) systematically studied the effects 

of inhomogeneous and anisotropic tissues on EEG computation, (C) investigated the 

local conductivity problem in realistic head modelling and (D) finally, sensitivities 

computations are studied based on tissue conductivity properties.  
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8.1.1 A series of head model construction on inhomogeneous and anisotropic 

tissue conductivities 

 

In the homogeneous model, it is assumed that each tissue layer consists of the same 

tissue. However, it is realized that head tissues are not homogeneous.  For example, 

the scalp tissue layer consists of subcutaneous fat and muscle tissues. Each tissue has 

its own conductivity. Therefore, head model development requires knowledge of the 

tissue inhomogeneity. When electric current passes through CSF to skull, the 

direction of current is obstructed due to lower conductive compact bone and the 

direction is changed to either radial or tangential. A similar situation happens when 

currents flows from GM to WM in the brain. These directional movements of current 

lead to anisotropy and it happens due to their anatomical structure.  

Existing head models are based on fixed or constant anisotropy ratio. In 

reality, different parts of the WM and skull have different anisotropy ratios. We 

propose conductivity models on various anisotropy ratios to implement tissue 

inhomogeneity and anisotropy. The main focus of these conductivity models is to 

determine inhomogeneous and anisotropic conductivities. To implement these 

inhomogeneous and anisotropic conductivities, our proposed conductivity models are 

conductivity ratio approximation, statistical conductivity approximation, the Monte 

Carlo method based, and fractional anisotropy based conductivity models. These 

conductivity models implement separate statistical study. We propose conductivity 

ratio approximation and fractional anisotropy based conductivity models on various 

anisotropy ratios. The statistical conductivity approximation model is based on the 

Rayleigh distribution, and the Monte Carlo method based conductivity model is 

based on Normal distribution to determine the inhomogeneous and anisotropic 

conductivities. All proposed models are also on the Volume and Wang’s constraints 

to restrict the conductivities between homogeneous isotropic, and inhomogeneous 

and anisotropic media. We develop a series of head models using our proposed 

conductivity models to investigate its effect on EEG. Analyzing a series of 

simulations, we find an average of 36.43% RDM and 1.12 MAG values for the 

conductivity ratio approximation model. An average of 21.49% RDM and 1.12 MAG 

values are found for the statistical conductivity approximation model. Similarly, an 

average of 7.61% RDM and 1.101 MAG values are found for the fractional 

anisotropy based conductivity models, and the Monte Carlo method based 
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conductivity models generate the 109% average RDM and 1.62 average MAG 

values.   

 

8.1.2 Systematically studied the effects of inhomogeneous and anisotropic tissues 

on EEG computation 

 

All molecules and ions in the body fluids are in random molecular motion due to 

thermal energy. A result of this motion is the process by which the matter is 

transported from one part of the system to another. Analogy, random motion of 

molecule is the reason for conductivity variation or inhomogeneous. Due to the 

variation of conductivity, it is difficult to obtain accurate conductivity for each 

subject. It also happens in an anisotropic medium. For example, anisotropy ratio is 

inhomogeneous in the entire brain, and the thickness of the spongiosum skull bone is 

non uniform through which liquid or blood passes. 

We implement a stochastic method based head model for the randomness of 

conductivity properties. The purpose of this model is also to investigate the effects of 

inhomogeneous and anisotropic conductivities on EEG. We implement this model 

using stochastic FEM and determine the random numbers as the inhomogeneous and 

anisotropic conductivities using the Karhunen-Loeve expansion, and Volume and 

Wang’s constraints. Analyzing simulation results, we find that incorporating 

inhomogeneous and anisotropic conductivities incurs 22% to 68% average relative 

differences, and 0.99 to 0.52 correlation coefficient values. 

 

8.1.3 Local tissue conductivity on head modelling 

 

The ultimate goal of the development of the realistic head model is to model a real 

head exactly. To make a more accurate head model, we propose a local tissue 

conductivity based head model. In this head model, we allocate conductivity to each 

head tissue based on their position in the head tissue layer. For example, the presence 

of suture lines increases the skull conductivity and the absence of cancellous bone 

decreases the skull conductivity. Similarly, the complex composition of GM, WM, 

blood and cerebellum in the brain causes different conductivities in a brain tissue 

layer, and the presence of thick subcutaneous fat beneath the skin causes different 
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conductivities in a scalp tissue layer. Therefore, we attempt to assign accurate 

conductivity to the head tissues based on the tissue location.  

We model three- and four-layered spherical, and a realistic human head on 

local tissue conductivity where conductivities are allocated according to the tissue 

position. We compare the EEGs obtained from our local tissue conductivity based 

head model and homogeneous head model and find the maximum 1.4 RDM and 2.6 

MAG values for the spherical head model, and the maximum 1.8 RDM and 3.85 

MAG values for the realistic head model. 

 

8.1.4 Computation of sensitivity indexes for inhomogeneous and anisotropic 

conductivity 

 

Inhomogeneous and anisotropic conductivity properties are known. However, many 

studies neglect these properties. It is necessary to understand what effects would 

occur if these properties were neglected. 

We analyze the sensitivity indexes on our stochastic method based spherical 

and realistic head models. We find that conductivity uncertainty produces 18% to 

65% average relative errors, and 0.99 to 0.67 average correlation coefficient values 

for our five-layered spherical head model. In our realistic head model, these values 

are from 20% to 41% average relative errors, and 1 to 0.85 average correlation 

coefficient values. Analyzing the sensitivity indexes, we find the maximum 42% 

mean scalp potential variations for the spherical head, and maximum 25% mean 

scalp potential variations for the realistic head. 

 

8.2 Future Work 

 

Though the inhomogeneous and anisotropic or local tissue conductivity based head 

models developed in this dissertation would assist to create more realistic head 

models, there are still many things to explore to improve this approach and to 

enhance the models. We consider the following improvement would be of benefit in 

addition to this research. 
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8.2.1 The model improvement 

 

The model can be improved in both ways for either geometry or conductivity. In this 

dissertation, we use common head models on the spherical and the realistic 

geometry. As the head geometry also plays an important role in the accuracy of the 

EEG forward and inverse problems, it is important to individually determine object-

related head models. 

 To develop and implement different methods for the head modelling on 

inhomogeneous and anisotropic tissue conductivities, we use different methods to 

obtain random numbers either for the anisotropy ratio or conductivity value. 

However, it would be of great scientific benefit if it were possible to obtain an 

accurate anisotropy ratio. For example, the corpus callosum, anterior commissure 

have higher anisotropy ratios than other parts of the WM. The thickness of the hard 

and soft bone layers vary in different skull areas. 

 

8.2.2 Segmentation 

 

The anatomical boundaries represented in this study for structuring different tissues 

should be manageable for blood vessels and nerves. It may require extra care in 

segmentation if generic segmentation fails (if done manually) or a specific detection 

and segmentation technique (if done automatically). We anticipate that the rapid 

progress in MRI is very likely to provide better in vivo estimations of cell boundaries 

within a tissue layer. In this dissertation, we do not consider the lower part of the 

head because there are limited electrodes used in this region. This is the reason we do 

not include the eye socket, muscle and soft tissues in the scalp layer construction. 

However, if we collect data from forehead electrodes or the lower part of the head 

electrodes, we would consider including these tissues. 

 

8.2.3 Conductivity 

 

A major unknown parameter of a head model is the absolute value of the tissue 

conductivity. Great efforts have been taken in measuring, determining or computing 

the conductivity of different head tissues. However, a large inter-patient variability 

on tissue conductivity exists. Diffusion-weighted MRI are used to determine the 
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conductivity values for the WM assuming the diffusion of water is liner to the 

diffusion of electric particles. For the skull, Law (1993) measured conductivity in 20 

different positions by filling the skull with saline water. The skull conductivity is 

dependent on the thickness of various skull bones, the amount of blood flow in the 

soft bone and the presence of the suture lines. The live skull conductivity values are 

between 0.00076 and 0.0115 S/m (0.76 mS/m to 11.5 mS/m) for four different skull 

samples. However, no complete in vivo skull conductivity values for different 

regions are found. Moreover, conductivity varies from person to person, or even for 

the same person at different ages, situation and conditions. Therefore, more 

investigations are required to determine the in vivo conductivity and the necessity of 

using object specific conductivity on head modelling.  

 This dissertation considers Rayleigh distribution for statistical conductivity 

approximation model and Normal distribution for Monte Carlo simulation models. 

Poisson distribution may also be able to generate random numbers which can also be 

treated as inhomogeneous and anisotropic conductivities.   

 

8.3 Summary  

 

This dissertation deals with human head modelling based on tissue conductivity 

using spherical and realistic geometries. Head tissue conductivity is modelled in two 

approaches: inhomogeneous and anisotropic tissue conductivities and local tissue 

conductivity. This dissertation covers the following major topics. Firstly, we 

introduce conductivity ratio approximation, statistical conductivity approximation, 

fractional anisotropy based and the Monte Carlo method based conductivity models 

to implement inhomogeneous and anisotropic tissue conductivities. Secondly, we 

show the effects of tissue inhomogeneity and anisotropy on scalp potentials using 

these conductivity models. We also investigate the effects of inhomogeneous and 

anisotropic conductivities on EEG using stochastic method. Thirdly, we introduce 

the local tissue conductivity based head model and investigate its effects on EEG. 

We also investigate the effects of tissue or element variations due to positional 

variations of local conductivity assignment or subject’s supine position. Fourthly, we 

analyze normal sourced and Alzheimer’s disease sourced EEGs with different levels 

of dementia and finally, we show the effects of conductivity uncertainty and 

sensitivity indexes.     
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