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Abstract

Online social network has developed significantly in
recent years. Most of current research has utilized the
property of online social network to spread informa-
tion and ideas. Motivated by applications in social
networks (such as alcohol intervention strategies), a
variation of the dominating set called a positive influ-
ence dominating set (PIDS) has been studied in the
literature. However, the existing work all focused on
greedy algorithms for the PIDS problem with differ-
ent approximation ratios, which are limited to find ap-
proximate solutions to PIDS in large networks. In or-
der to select a minimal PIDS (MPIDS) in large social
networks, we first present a self-stabilizing algorithm
for the MPIDS problem in this paper, which can find
a MPIDS in an arbitrary network graph without any
isolated node. It is assumed that the nodes in the
proposed algorithm have globally unique identifiers,
and the algorithm works under a central daemon. We
further prove that the worst case convergence time of
the algorithm from any arbitrary initial state is O(n2)
steps where n is the number of nodes in the network.

Keywords: Self-stabilizing algorithm, Minimal posi-
tive influence dominating set, Graph algorithm

1 Introduction

1.1 Minimal Positive Influence Dominating
Set Problem

Recently, social networks have received dramatic in-
terest in research and development, partly due to
more and more social networks are built online and
the fast development of Web 2.0 applications, such
as the e-learning research (Wang et al. 2009, Sun &
Wang 2011) and privacy protection (Wang et al. 2005,
Sun et al 2011, Sun et al. 2012). On the other hand,
many different kinds of social networks in our lives
such as friendship networks, telephone call networks,
and academia co-authorship networks can be modeled
by graph structures using vertices and edges. Some
classical graph problems such as domination problems
in social networks have various new applications.

The concept of the positive influence dominating
set (PIDS) was introduced in 2009 by Wang et al.
(2009). PIDS can deal with some social problems,
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such as drinking, smoking and drug related issues. In
a social network which consists of individuals with a
certain type of social problem, people can have both
positive and negative impact on each other, and a per-
son can take and switch among different roles since
they are affected by their peers (Jaccard et al. 2005,
Larimer & Cronce 2007, Standridge et al. 2004). For
example, within the context of the drinking problem,
a person named Mark never drinks and has positive
impact on his direct friends (Barry, etc.), but Mark
might turn into a binge drinker and have negative im-
pact on his neighbors if Barry and other friends are
binge drinkers and vice versa. So, a person can be
an abstainer or a binge drinker. In order to truly
alleviate the main source of the drinking problem, in-
tervention programs are important tools to help com-
bat some of the social problems through disseminated
education and therapy via mail, Internet, or face-to-
face interviews. Ideally, we want to educate all binge
drinkers, since this will reduce the possibility of con-
verted binge drinker being influenced by his binge
drinking friends who are not chosen in the interven-
tion program. On the other hand, due to the budget
limitations, the lower total cost of the education and
therapy program, the better. So, it is impossible to
include all the binge drinkers in the intervention pro-
gram. Therefore, it becomes an important research
problem as to how to choose a subset of individuals
to be part of the program so that the effect of the
intervention program can spread through the whole
group under consideration.

Formally, a social network can be represented as a
graph G = (V,E), where i ∈ V represents a person
(node) in the social network and edge eij ∈ E repre-
sents a relationship between persons i and j. Recall
that D ⊆ V is a positive influence dominating set
(PIDS) (Wang et al. 2009, 2011) such that any node

i in V is dominated by at least ⌈d(i)
2 ⌉ nodes (that is,

i has at least ⌈d(i)
2 ⌉ neighbors) in D where d(i) is the

degree of node i. Note that there are two require-
ments for PIDS: firstly, every node not in D has at
least half of its neighbors in D, secondly every node
in D also has at least half of its neighbors in D. A
PIDS D is minimal (MPIDS) if no proper subset of
D is a PIDS.

For the drinking example remarked earlier, a min-
imal positive influence dominating set (MPIDS) is a
plausible solution since MPIDS can guarantee that
by selecting MPIDS nodes to participate in the in-
tervention program, each individual in the social net-
work has more positive neighbors than negative ones
to ensure that the intervention can result in a globally
positive impact on the entire social network.

In the domination problems, finding a PIDS of
minimum size is APX-hard (Wang et al. 2011). APX-
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hardness of PIDS means that if NP ̸= P , then
PIDS has no PTAS (polynomial-time approximation
scheme). Some greedy approximation algorithms
have been proposed (Wang et al. 2009, 2011), which
are all limited to find approximate solutions to pos-
itive influence dominating sets (PIDS) in large so-
cial networks. If we can obtain a smaller size solu-
tion to the PIDS, it might save the total cost of an
intervention and education program while satisfying
positively dominating the whole group. Moreover, it
might offer considerable benefit to both the economy
and society. In this paper, we present a self-stabilizing
algorithm for finding a minimal PIDS (MPIDS) in
general networks.

1.2 Dijkstra’s Central Daemon Model

Self-stabilization is an optimistic fault tolerance ap-
proach for distributed systems. It was introduced
by Dijkstra (Dijkstra 1974, Dijkstra & van Gasteren
1986). According to his work, a self-stabilizing sys-
tem is guaranteed to reach a correct state, in a finite
time, regardless of its initial state (Dolev 2000). Thus,
a self-stabilizing system can recover from any tran-
sient fault without any external intervention. Self-
stabilization is also a non-masking approach, since
after the occurrence of a transient fault, the system
exhibits temporarily disrupted behavior for a certain
period of time.

A fundamental idea of self-stabilizing algorithms is
that the distributed system may be started from an
arbitrary global state. After finite time the system
reaches a correct global state, called a legitimate or
stable state. An algorithm is self-stabilizing if the fol-
lowing two properties hold: convergence and closure.
That is, when the system executes the algorithm,

(i) for any initial illegitimate state it reaches a legit-
imate state after a finite number of node moves
(convergence), and

(ii) for any legitimate state and for any move allowed
by that state, the next state is a legitimate state
(closure).

The convergence property ensures that, start-
ing from any incorrect state, the distributed system
reaches a correct state. The closure property ensures
that, after convergence, the system remains in the set
of correct states.

Recently, some self-stabilizing algorithms for dom-
inating sets, independent sets, colorings, and match-
ings in graphs have been developed (Hedetniemi et al.
2003, Goddard et al. 2008, Hedetniemi et al. 2003,
Manne et al. 2007). In a self-stabilizing algorithm,
each node maintains its local variables, and can make
decisions based on the knowledge of its neighbors’
states. A node changes its local state by making a
move (a change of local state). The algorithm is a
set of rules of the form “if P (i) then M”, where P (i)
is a predicate and M is a move. A node i becomes
privileged if P (i) is true. When a node becomes privi-
leged, it may execute the corresponding move. A cen-
tral daemon selects, among all privileged nodes, the
next node to move. If two or more nodes are privi-
leged, one cannot predict which node will move next.
In this paper, We assume the model in which no two
nodes move simultaneously. Another popular sched-
uler is the distributed daemon, which selects a subset
of the system processes to execute an atomic step at
the same time. Thus if a system is self-stabilizing
under the distributed daemon model, then it is self-
stabilizing under the central daemon model. The con-

verse, however, is not true. Multiple protocols ex-
ist (Nesterenko & Arora 1999, Beauquier et al. 2002,
Goddard et al. 2003) that provide such a scheduler.

The topology of a distributed system can be rep-
resented as an undirected graph G = (V,E) (called
the system’s communication graph), where the nodes
represent the processes and the edges represent the
interconnections between the processes. As remarked
earlier, throughout this paper, we denote by n the
number of nodes ( |V | = n), and by m the num-
ber of edges (|E| = m) in the graph G. Let i ∈ V
be a node; then N(i), its open neighborhood, denotes
the set of nodes to which i is adjacent. Every node
j ∈ N(i) is called a neighbor of node i. We denote by
d(i) the number of neighbors of node i, or its degree
(d(i) = |N(i)|). Throughout this paper we assume G
is connected and n > 1.

1.3 Main Results and the Organization of the
Rest of the Paper

In this paper, we are interested in a minimal positive
influence dominating set (MPIDS) raised from some
social problems. We believe the following to be our
contributions in this paper.

1. We present a self-stabilizing algorithm for find-
ing a minimal positive influence dominating set
(MPIDS) in an arbitrary connected network
graph under a central daemon.

2. We further prove that the worst case convergence
time of the algorithm from any arbitrary initial
state is O(n2) steps where n is the number of
nodes in the network.

To the best of our knowledge, this is the first work
using a self-stabilizing algorithm to find a MPIDS.
The rest of this paper is organized as follows. Section
2 presents related work. Section 3 presents a self-
stabilization algorithm and an illustration for finding
a MPIDS. Section 4 analyzes the complexity of the
algorithm. Section 5 discusses the algorithm compar-
ison. Section 6 concludes the paper and discusses the
future work.

2 Related Work

Graph algorithms have natural applications in net-
works and distributed systems, since a distributed
system can be modeled with an undirected graph.
Dominating Set and related problems are considered
to be of central importance in combinatorial opti-
mization and have been the object of much research.
Due to the publication of Dijkstra’s pioneering pa-
per, some self-stabilizing algorithms for graph prob-
lems have been proposed in the literature, such as the
self-stabilizing algorithms for dominating sets (Gair-
ing & Johnson 2003), independent sets and matchings
in graphs (Goddard et al. 2008, Hedetniemi et al.
2003). Due to the NP-complete of domination prob-
lems (Garey et al. 1979), researchers have developed
some self-stabilizing algorithms for finding minimal
dominating sets.

Since any maximal independent set in a graph
is a minimal dominating set in that graph, a self-
stabilizing algorithm for the maximal independent set
problem can be viewed as a self-stabilizing algorithm
for the minimal dominating set problem. Hedetniemi
et al. (2003) presented two uniform algorithms (a
distributed algorithm is said to be uniform if all of
the individual processes run the same code) for the
dominating set (DS) and the minimal dominating set
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(MDS) problems. The algorithms all work for any
connected graph and assume a central daemon. God-
dard et al. (2008) proposed another uniform algo-
rithm for finding a minimal dominating set (MDS) in
an arbitrary graph under a distributed daemon.

On the other hand, some self-stabilized algorithms
have been proposed in the multiple domination case.
In a graph G(V,E), a set of nodes D ⊆ V is called
a k-dominating set if each node not in D is adjacent
to at least k nodes in D. When the positive integer
k = 1, it is a question of single domination.

Kamei and Kakugawa (2003) presented two self-
stabilizing algorithms for the minimal k -dominating
set (MKDS) problem in a tree. The first uniform al-
gorithm works under a central daemon and the second
algorithm works under a distributed daemon. Huang
et al. (2007, 2008) presented two self-stabilizing al-
gorithms to find a minimal 2-dominating set (M2DS)
under a distributed daemon (Huang et al. 2007) and
a central daemon (Huang et al. 2008) respectively in
an arbitrary graph.

However, there is no algorithm for the MKDS
problem in arbitrary graphs that works under a dis-
tributed daemon. The proposed algorithms for the
minimal k-dominating set (MKDS) either work for
trees (Kamei & Kakugawa 2004) or find a minimal
2-dominating set (Huang et al. 2007, 2008). For a
more detailed discussion of self-stabilizing algorithms
for dominating sets, see a survey (Guellati & Khed-
douci 2010).

Positive influence dominating set (PIDS) which
has application in social networks can be considered
as a special case of multiple domination, introduced
by Wang et al. (2009). Wang et al. (2009) proposed a
greedy approximation PIDS selection algorithm and
analyzed its effect on a real online social network
data set through simulations. Wang et al. (2011)
also proved the PIDS problem is APX-hard and de-
veloped another greedy approximation algorithm and
analyzed its approximation ratio.

All of these proposed algorithms can only find ap-
proximate solutions to PIDS in large social networks.
On the other hand, none of these algorithms for the
PIDS problem are self-stabilizing. In order to obtain
a minimal PIDS (MPIDS), in this paper, we first pro-
pose a new self-stabilization algorithm for computing
a MPIDS in a general network and analyze the time
complexity of the proposed algorithm.

3 Self-Stabilizing Positive Influence Domina-
tion Algorithm

3.1 Formal Definition of the Problem

Let G = (V,E) be a simple connected undirected
graph. Assume now that for each node i ∈ V , the
set N(i) represents its open neighborhood, denotes
the set of nodes to which i is adjacent. d(i) repre-
sents the number of neighbors of node i, or its degree
(d(i) = |N(i)|). Our algorithm requires that every
node has a unique ID. Sometimes i interchangeably
denotes a node or the node’s ID. Assume there is
a total ordering on the IDs. Assume further that
each node has a target integer h(i) ≤ N(i), where

h(i) = ⌈d(i)
2 ⌉ indicates that any node i ∈ V is dom-

inated by at least ⌈d(i)
2 ⌉ nodes in N(i). Given these

assumptions we seek a MPIDS D ⊆ V in which, for
all i ∈ V ,

|N(i) ∩D| ≥ h(i) (1)

Note that in the case of total domination (a set
D ⊆ V is said to be total dominating if every i ∈ V
is adjacent to at least a member of D), the h(i) in
inequality (1) is precisely uniformly one.

In our algorithm, each node i has two variables: a
set of pointers P (i) and a boolean flag x(i). If P (i) =
{j}, then we say that i points to j, written i → j. We
allow P (i) to contain i and its cardinality is bounded
by h(i). Each node also has a boolean flag x(i). At
any given time, we will denote with D the current set
of nodes i with x(i) = true.

At a given time, assume |N(i) ∩ D| = k ≤ h(i).
Then since h(i) ≤ |N(i)|, there at least h(i)−k mem-
bers in N(i)−D.

Definition 1 Let Mi denote the unique set of those
h(i)− k nodes in N(i)−D having the smallest IDs.

Note this set depends on N(i) and D.

Definition 2 A set of pointers Q(i) is designed as
follows:

Q(i) =

{
(D ∩N(i)) ∪Mi if |N(i) ∩D| = k ≤ h(i)

∅ if |N(i) ∩D| > h(i).

(2)

Note that the value Q(i) can be computed by i (i.e.,
it uses only local information).

Definition 3 The boolean condition y(i) is defined to
be true if and only if a neighbor of i points to it.

3.2 Proposed Algorithm

The Algorithm 1 consists of one rule (R1) is shown
below. In Algorithm 1 each node i has a boolean
variable x(i) indicating membership in the set D that
we are trying to construct. The value x(i) = true
indicates that i ∈ D, while the value x(i) = false
indicates that i /∈ D. The boolean condition y(i) is
defined to be true if and only if a neighbor of i points
to it. P (i) is a set of pointers. Q(i) is counted by
equation (2). Thus, a node i is privileged if x(i) ̸= y(i)
or P (i) ̸= Q(i). If R1 executes, then it sets x(i) =
y(i) and P (i) = Q(i). An example to illustrate the
execution of Algorithm 1 is shown in Fig. 1.

Input: A graph G = (V,E), ∀i ∈ V , a boolean
flag x(i) and a set of pointers P (i)
Output: D = {i ∈ V |x(i) = true}
R1: if x(i) ̸= y(i) ∨ P (i) ̸= Q(i)

then x(i) = y(i) ∧ P (i) = Q(i)

Algorithm 1: Finding Minimal Positive Influ-
ence Dominating Set

It is obvious that the system is in a legitimate
configuration if and only if no node in the system is
privileged. The following lemma clarifies that in any
legitimate configuration, a minimal positive influence
dominating set (MPIDS) D = {i ∈ V |x(i) = true}
can be identified.

Lemma 1 If Algorithm 1 stabilizes then D = {i ∈
V |x(i) = true} is a minimal positive influence domi-
nating set (MPIDS) satisfying inequality (1).

Proof: Suppose that D satisfies inequality (1). By
contradiction suppose that for some i, |N(i) ∩ D| <
h(i). Then Mi ̸= ∅, and since the system is stable
there is a node j of i′s neighbor such that j ∈ Q(i) =
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P (i) and j /∈ D, then y(j) is true but x(j) is false,
a contradiction, so D is a PIDS. We now claim D is
minimal as well. Suppose there exists a subset D′ ⊂
D is a PIDS. For some node j ∈ D − D′, there is a
node i ∈ N(j) that points to it. That means P (i) =
{..., j} ̸= ∅. Since no node in the system is privileged,
we have P (i) = Q(i), and we must have |N(i)∩D| =
h(i) according to the equation (2). Thus, the removal
of j from D will leave |N(i)∩D| < h(i) and D is not
a PIDS. So the PIDS D is minimal.

3.3 An Illustration

The example in Fig. 1 illustrates the execution of
Algorithm 1. Note that in each configuration, the
shaded nodes represent nodes in D (x-value is true).
The privileged node selected by the central daemon
according to Algorithm 1 to make a move or reset the
value of P (i).

In the first subgraph of Fig. 1, we set x(1) =
x(3) = true, other nodes’ x-values are false, that
means D = {1, 3}. P (1) = P (2) = P (4) = P (5) =
{1}, P (3) = P (6) = {3}, just as the arrows point
in the first subgraph. According to the definition
of Algorithm 1, after a serials of moves, the system
reaches a legitimate state. As the last subgraph of
Fig. 1 shows, which is a legitimate configuration, we
can see a minimal positive influence dominating set
D = {1, 2, 3, 4} can be identified (the shaded nodes).

4 The Stabilization Time of Algorithm 1

In this section, we show the convergence of Algorithm
1. We say that node i invites node j (with j = i
allowed) if at some time |N(i) ∩ D| < h(i), j ∈ Mi,
j executes a move. For a node to join D, it must be
pointed to from an initial state or be invited.

Definition 4 A move is an in-move if it causes x(i)
to become true, thereby causing a node i to enter D.

Lemma 2 Let i be a node and suppose that between
two moves t and t′, there is no in-move by any node
k > i. Then during this move interval node i can
make at most two in-moves.

Proof: If i is never invited during this interval, then
once i leaves D, it cannot re-join. The first in-move
made by i may have been because a neighbor node
happened to initially point to i. The second in-move
made by i must be by invitation. So suppose i is in-
vited by node j, allowing i to make an in-move. Once
i enters D it must remain there if j continues pointing
to it. And this is ensured, provided |N(j)∩D| ≤ h(j)
throughout. Suppose during the move interval from t
to t’, |N(j)∩D| = k. Nodes having IDs larger than i
do not move during this period, but the smaller nodes
can. during the move interval from t to t’, i is among
the h(j) − k smallest nodes in N(j) − D. Even if
all nodes smaller than i were to enter D, we would
still have |N(j) ∩ D| ≤ h(j). It follows that j will
remain pointing to i throughout, and i will remain
in D. Hence, x(i) can make at most two in-moves
during this move interval.

We now show our algorithm stabilizes. Observe
that if D remains the same, then every node can ex-
ecute at most once (to correct its pointer). So it suf-
fices to show that D changes at most a finite number
of times.

Theorem 1 Algorithm 1 always stabilizes, and
finds a minimal positive influence dominating set
(MPIDS).

Proof: In light of Lemma 1 we see that if Algo-
rithm 1 is stabilizing it always finds a minimal posi-
tive influence dominating set (MPIDS). We need only
prove stabilization. It suffices to show that every node
makes only a finite number of in-moves. By Lemma
2, node n, which has largest ID, makes at most two
in-moves. During each of the move intervals from t
to t′, the pointer set P (i) makes a finite number of
moves since it only use the information of its neigh-
bors. when node n is not making an in-move, using
Lemma 2 again, node n − 1 makes at most a finite
number of moves. It is easy to show this argument
can be repeated, showing that each node can make
only finitely many in-moves during the intervals in
which larger nodes are inactive.

We provide a correctness proof and a computation
of the worst case stabilization time for Algorithm 1.

Theorem 2 Algorithm 1 produces a minimal positive
influence dominating set (MPIDS) and stabilizes in
O(n2) steps.

Proof: From Lemma 1 and Theorem 1, we see that
Algorithm 1 produces a MPIDS. We need only prove
Algorithm 1 stabilizes in O(n2) steps. By Lemma
2, each node will change its x-value at most twice.
Therefore, there can be at most 2n changes of x-value
on all nodes in all the time. If there is no change in
x-value of any node in a time-step, then the time-step
involves only changes in P (i)-values. The change in
a P (i)-value is determined only by Q(i)-values. Since
we are working with the central daemon, there cannot
be two consecutive time-steps without a change in x-
value or P (i)-value. Therefore, there can be at most
⌈∆
2 ⌉n changes of P (i)-value on all nodes in all the

time (where ∆ is the maximum degree of G). So, the
upper bound of the execution time is (⌈∆

2 ⌉+2)n time-
steps. Considering the graph G is a simple undirected
graph, therefore, the stabilization time of Algorithm
1 is O(n2) steps.

5 Algorithm Comparison

In this section we respectively present and discuss the
existing self-stabilizing algorithms and greedy algo-
rithms for dominating sets. We also compare our al-
gorithm with them.

Hedetniemi et al. (2003) presented two uniform
algorithms for the dominating set (DS) and the mini-
mal dominating set (MDS) problems. The algorithms
work for any connected graph. The main idea of the
first algorithm is to partition the set of nodes into
two disjoint sets, such that each set is dominating.
The algorithm for the dominating set (DS) problem
stabilizes in linear time (O(n) steps) under a central
daemon. The second algorithm calculates a MDS.
The main idea of this algorithm is that it allows a
node to join the set S, if it has no neighbor in S. On
the other hand, a node that is already a member of
S, and has a neighbor that is also a member of S,
will leave the set if all its neighbors are not point-
ing to it. Thus, after stabilization the set S will be
a MDS. The algorithm for the minimal dominating
set (MDS) problem stabilizes in O(n2) steps under a
central daemon.

Recently, Goddard et al. (2008) proposed another
uniform self-stabilizing algorithm for finding a mini-
mal dominating set (MDS) in an arbitrary graph un-
der a distributed daemon. The main idea of their
algorithm is that it uses a boolean variable to deter-
mine whether a node is a member of the MDS or not,
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Figure 1: An Example to illustrate the execution of Algorithm 1.
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Table 1: Algorithms for dominating set
Reference Output Required topology Self-stabilizing Daemon Complexity
Hedetniemi et al. (2003)-1 DS Arbitrary Yes Central O(n) steps
Hedetniemi et al. (2003)-2 MDS Arbitrary Yes Central O(n2) steps
Goddard et al. (2008) MDS Arbitrary Yes Distributed O(n) steps
Kamei & Kakugawa (2003)-1 MKDS Tree Yes Central O(n2) steps
Kamei & Kakugawa (2003)-2 MKDS Tree Yes Distributed O(n2) steps
Huang et al. (2007) M2DS Arbitrary Yes Distributed
Huang et al. (2008) M2DS Arbitrary Yes Central O(n) steps
Wang et al. (2009) PIDS Arbitrary Greedy
Wang et al. (2011) PIDS Arbitrary Greedy H(δ) AR
This paper MPIDS Arbitrary Yes Central O(n2) steps

and an integer to count a node’s neighbors that are
members of the MDS. The algorithm allows an un-
dominated node that has smaller identifier than any
undominated neighbor to join the set under construc-
tion. On the other hand, a node leaves this latter set
if it is not the unique dominator of itself nor any of
its neighbors. The algorithm stabilizes in O(n) steps.

On the other hand, some self-stabilizing algo-
rithms have been proposed in the k-domination case.
Kamei and Kakugawa (2003) presented two uniform
algorithms for the minimal k-dominating set (MKDS)
problem in a tree. The first algorithm allows a node
to join the set under construction S if it has fewer
than k neighbors in S, and to leave the set S if it
has more than k neighbors in S. The first algorithm
works for a central daemon. Based on this idea, in the
second algorithm, a node having more than k neigh-
bors in the set under construction S will first make a
request to leave S, and then leaves the set S only if
its identifier is the smallest among all the neighbors
requesting to leave S. So, after stabilization the set
S will become a minimal k-dominating set (MKDS).
The second algorithm works under a distribute dae-
mon. The time complexity of the two algorithms are
both O(n2) steps.

Huang et al. (2007) presented a self-stabilizing al-
gorithm to find a minimal 2-dominating set (M2DS)
in an arbitrary graph. The algorithm assumes glob-
ally unique identifiers for the nodes and works under
a distributed daemon. The algorithm allows a node
to join the set under construction if it is dominated by
fewer than two nodes and none of its neighbors hav-
ing smaller identifier is in the same situation. Also,
a node may leave the set under construction if it is
dominated by more than two nodes, and all of its
neighbors are either in the set under construction or
dominated by more than two nodes.

Huang et al. (2008) presented another self-
stabilizing algorithm for finding a minimal 2-
dominating set (M2DS) in an arbitrary graph. The
algorithm allows a node to join the set under con-
struction S if it has fewer than 2 neighbors in S, and
to leave the set S if it has more than 2 neighbors in
S. The algorithm works under a central daemon, with
liner time complexity.

Wang et al. (2009) introduced the notion of pos-
itive influence dominating set (PIDS) and proposed
a greedy approximation PIDS selection algorithm in
2009. They revealed that approximately 60% of the
whole group under consideration needs to be chosen
into the PIDS to achieve the goal that every indi-
vidual in the community has more positive neighbors
than negative neighbors. They also presented another
greedy approximation algorithm and gave theoretical
analysis about its approximation ratio (AR) in 2011
(Wang et al. 2011). The authors proved that PIDS
is APX-hard and proposed a greedy PIDS selection
algorithm with an approximation ratio of H(δ) where

H is the harmonic function and δ is the maximum
vertex degree of the graph representing a social net-
work.

In order to select a small size of positive influ-
ence dominating set (PIDS) in large social networks,
we present a uniform algorithm for finding a mini-
mal PIDS that works in arbitrary graphs. We assume
globally unique identifiers for the nodes and a central
daemon. The algorithm uses a mechanism of point-
ers to show that a node i will point to its neighbors
having the smallest identifiers if i has less than h(i)
neighbors in the set under construction D. On the
other hand, if a node i has more than h(i) neighbors
in the set D then P (i) will point to emptyset; oth-
erwise P (i) will point to its unique neighbors that
are members of the set D. The algorithm allows a
node to join the set D if some neighbor is pointing to
it, and to leave the set D otherwise. So after stabi-
lization, the set D will become a MPIDS. The time
complexity of our algorithm in any arbitrary graphs
is O(n2) steps. To the best of our knowledge, this is
the first work using a self-stabilizing algorithm to find
a MPIDS, which can find an exact solution for PIDS
(minimal).

The algorithms we compared in this section are
summarized in Table 1. As we can see, the basic
ideas of the first six algorithms are self-stabilizing,
and the algorithms for the PIDS problem are greedy.
Our algorithm is the first work using a self-stabilizing
approach to discuss the MPIDS problem.

6 Conclusions and Future work

In this paper, we have proposed a self-stabilizing dis-
tributed algorithm to find a minimal positive influ-
ence dominating set (MPIDS) which arises from some
social problems in social networks; Algorithm 1 can
be used for an arbitrary connected graph. All pre-
viously known algorithms are approximate greedy al-
gorithms. We have also shown the stabilization time
of Algorithm 1 with O(n2) steps under a central dae-
mon. We briefly discuss how the ideas can be further
generalized.

One may obtain self-stabilizing algorithms for
other domination problems. For weighted domina-
tion, each node i has an allowable range of values
{(0, 1, ..., b(i)} (in the previous section b(i) was uni-
formly 1) and is assigned a weight w(i). Each node
has a target t(i) for the sum

∑
j∈N(i) w(j). We want

a minimal assignment of values that satisfy the con-
straints. A primitive way to achieve this is to provide
each node with b(i) flags each with separate ID. It
is more efficient though to provide each node with
a counter X(i) limited to the range and an array of
weights P (i) that counts how many times the node
points to each neighbor.
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We can also extend these ideas even further to
other graph dominations such as weak, strong and
optional domination (Haynes et al. 1998). It can also
be altered to allow a node to have weights in a range
{−b′(i), ..., b(i)} and so handle minus domination.
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