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A B S T R A C T

Accurate differentiation of Alzheimer’s disease (AD), frontotemporal dementia (FTD), and healthy control (HC) 
is critical for early diagnosis and intervention of brain disorders. This study introduces a deep learning frame
work that leverages electroencephalography (EEG)-derived multiband functional connectivity (FC) features. 
Multiband Morlet wavelet mutual information (MMMIFC) was utilized to generate high-resolution FC matrices 
across 1–20 Hz, which were subsequently processed by a 3D convolutional neural network (3D-CNN) based on a 
modified VGG architecture. The proposed model achieved classification accuracies of 90.77 % for AD vs HC and 
90.38 % for FTD vs HC, with sensitivity and specificity of 88.89 % and 93.10 % for AD vs HC, and 86.96 % and 
93.10 % for FTD vs HC, respectively. Beyond classification performance, the analysis identified distinct EEG- 
based biomarkers within the default mode network. In AD analysis, global efficiency, diffusion efficiency, and 
clustering coefficient were consistently reduced in the delta and theta bands, reflecting disrupted low-frequency 
network integration and the theta band presents the most prominent group differences between AD and HC. In 
FTD analysis, graph theory metrics were also reduced in the delta and theta bands, with the delta band showing 
the most pronounced group differences compared to HC.

1. Introduction

Alzheimer’s disease (AD) is the most prevalent neurodegenerative 
disorder worldwide, affecting millions of individuals and accounting for 
most dementia cases [1,2]. Characterized by progressive cognitive 
decline, especially memory impairment, AD is associated with neuronal 
loss and abnormal accumulation of β-amyloid plaques and neurofibril
lary tangles in the brain. Despite advances in neuroimaging and cere
brospinal fluid biomarkers, early and non-invasive diagnosis remains a 
significant clinical challenge [3]. Electroencephalography (EEG), as a 
low-cost and accessible neurophysiological tool, has shown promise in 
detecting AD related brain changes and monitoring disease progression 
through alterations in neural oscillations and connectivity patterns [4].

Frontotemporal dementia (FTD) represents a clinically and patho
logically heterogeneous group of neurodegenerative disorders primarily 

affecting the frontal and temporal lobes, leading to prominent changes 
in behaviour, language, and executive function [5,6]. The pathological 
hallmarks of FTD differ substantially from those of AD, involving distinct 
proteinopathies and neurodegenerative processes [7]. Diagnosis of FTD 
relies heavily on clinical assessment complemented by neuroimaging 
and, in some cases, neuropathological confirmation, with a notable lack 
of specific biomarkers for early detection [8]. While EEG studies in FTD 
are relatively limited, emerging evidence suggests that analyses of EEG 
functional connectivity (FC) may uncover disease-specific neural 
network disruptions relevant to FTD pathology [9].

EEG signals are inherently non-stationary and exhibit rich spectral- 
temporal dynamics. Time-frequency analysis techniques, such as 
short-time Fourier transform (STFT), wavelets transform, and empirical 
mode decomposition (EMD), have been widely employed to decompose 
EEG signals into temporally localized frequency components. These 
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approaches enable detailed examination of brain rhythms across ca
nonical frequency bands with delta, theta, alpha, beta, and gamma 
bands which are known to be affected in various neurological disorders. 
Time-frequency analysis has been widely applied in studying neurode
generative diseases such as AD and FTD. Compared to healthy control 
(HC) subjects, both AD and FTD patients exhibit notable differences in 
brain oscillatory activity across various frequency bands, reflecting 
underlying pathological changes [10,11]. However, most existing ap
proaches adopt relatively coarse frequency ranges, which may overlook 
subtle disease-related oscillatory alterations. Such coarse segmentation 
can mask narrow-band abnormalities that are critical for differentiating 
between disease phenotypes or stages. Higher-resolution frequency 
analysis has the potential to reveal fine-grained changes in specific 
sub-bands that are otherwise averaged out, capturing early pathological 
signatures and enabling more precise mapping of disease-related neural 
dynamics. This makes time–frequency analysis a valuable tool for 
characterizing disease-related alterations in brain dynamics, particu
larly when coupled with methods capable of leveraging multi-band in
formation for diagnostic purposes.

Complex brain network analysis provides a comprehensive frame
work for studying the organization of brain by modelling it as a network 
of nodes and edges, where nodes represent brain regions or electrodes, 
and edges denote the interactions between them [12]. FC analysis and 
effective connectivity (EC) analysis have been widely employed to 
explore the neural substrates of cognitive processes and to identify dis
ruptions associated with neurodegenerative diseases such as AD and 
FTD [13,14]. Alterations in the Default Mode Network (DMN) have been 
consistently reported in both AD and FTD, with disruptions in key hubs 
such as the posterior cingulate cortex, medial prefrontal cortex, and 
inferior parietal lobule linked to cognitive decline [15,16]. Although the 
present study focuses on whole-brain FC patterns, the proposed frame
work enables post-hoc interpretability analyses that can localize such 
network-level alterations, including DMN connectivity changes, thereby 
facilitating mechanistic insights into disease-specific network 
dysfunctions.

Artificial intelligence techniques have become increasingly vital in 
the analysis of EEG data, particularly for the early detection and clas
sification of neurodegenerative diseases. Machine learning (ML) and 
deep learning (DL) methods enable the extraction of complex patterns 
from high-dimensional EEG signals, facilitating improved diagnostic 
accuracy beyond traditional clinical assessments [17,18]. These ap
proaches leverage automated feature learning, reducing reliance on 
handcrafted features and enabling the integration of temporal, spectral, 
and spatial information inherent in EEG recordings [18]. In this study, a 
multi-band, multi-modal interpretable functional connectivity 
(MMMIFC) framework integrated with a three-dimensional convolu
tional neural network (3D-CNN) is introduced. EEG signals are decom
posed into 19 narrow frequency bands spanning 1–20 Hz, each 
producing a 19 × 19 FC matrix based on 19 EEG channels. Stacking 
these matrices yields a 19 × 19 × 19 spectral–spatial representation, 
enabling high-resolution frequency-band analysis and joint spec
tral–spatial–temporal feature learning. This design advances beyond 
conventional EEG-based methods by capturing fine-grained connectivity 
patterns and supporting post-hoc identification of interpretable 
biomarkers.

The remainder of this paper is organized as follows. The next section, 
‘State of the Art’, reviewed relevant literature on EEG-based detection for 
AD and FTD, emphasizing the biomarkers of AD and FTD as well. In 
‘Methodology’, the proposed multi-band time–frequency functional 
connectivity framework is described, along with the data collection, 
signal pre-processing pipeline and the deep learning strategy adopted. 
The ‘Results and Comparison’ section reported the classification perfor
mance and biomarker patterns identified across experimental settings 
and compared with the related works in the same dataset. The subse
quent ‘Discussion’ section explored frequency-dependent brain dynamics 
in AD and FTD, emphasizing DMN related alterations, time-varying 

connectivity patterns, and the methodological insights and limitations 
of this study. The ‘Conclusion’ concluded the paper. The experiments 
were conducted on a system equipped with an Intel i7-13700F CPU, 64 
GB of memory, and an NVIDIA RTX 4070 Ti GPU.

2. State of the art

Broadly, EEG-based studies in the context of AD and FTD can be 
grouped into several methodological categories. One major focus is on 
signal processing techniques that extract features from specific fre
quency bands such as delta, theta, alpha, beta, and gamma bands to 
characterize alterations in brain rhythms associated with cognitive 
impairment. These features, which often include power spectral density, 
entropy measures, and time-frequency representations, have been 
extensively investigated in studies aiming to delineate the electrophys
iological signatures of AD and FTD. In parallel, another line of research 
explores the brain connectivity patterns by constructing inter-regional 
relationships from EEG recordings. FC refers to statistical de
pendencies between signals from different brain regions, while EC 
captures directional influences and causal interactions. Both FC and EC 
provide complementary perspectives on large-scale brain network or
ganization and have been increasingly used to understand network-level 
dysfunction in disorders such as AD and FTD. The related works were 
summarized as follows.

Miltiadous et al. extracted Relative Band Power (RBP) features across 
five EEG frequency bands using the Welch method and applied them to 
machine learning classifiers to distinguish AD, FTD, and HC [19]. 
Comparing several ML methods, they found the Random Forest (RF) 
model achieved the highest classification accuracies of 77.01 % for AD 
vs HC and 72.01 % for FTD vs HC, supporting the diagnostic potential of 
EEG-based RBP features. In the same year, Miltiadous et al. enhanced 
the Spectral coherence connectivity (SCC) method based on RBP fea
tures and used the DICE-net deep learning method to represent the ML 
methods [20]. This improved architecture achieved higher accuracy 
with 83.28 % for AD vs HC and 74.96 % for FTD vs HC which demon
strates the benefit of deep feature extraction in EEG-based dementia 
classification. Zheng et al. introduced the Multi-Threshold Recurrence 
Rate Plot (MTRRP) technique, which captures nonlinear and temporal 
EEG dynamics across multiple thresholds [21]. By combining MTRRP 
features with a support vector machine (SVM) classifier, their method 
further improved classification performance, achieving accuracies of 
87.69 % for AD vs HC and 82.69 % for FTD vs HC. This highlights the 
importance of incorporating complex temporal patterns in EEG analysis 
for more accurate dementia differentiation. Building on this work, 
Zheng et al. further explored advanced EEG feature extraction by 
time-frequency domain FC measures with SVM classifiers, demon
strating the continued enhancement of diagnostic accuracy for both AD 
and FTD [11]. Their latest model achieved impressive performance with 
an accuracy of 95.38 %, sensitivity of 94.4 %, and specificity of 96.6 % 
for AD vs HC classification, and an accuracy of 81.54 %, sensitivity of 
86.2 %, and specificity of 77.8 % for FTD vs HC classification. AlSharabi 
et al. developed an EEG-based clinical decision support system for early 
AD using EMD and DL technique [22]. By applying EMD to extract 
features from resting-state EEG signals and evaluating several AI clas
sifiers, their approach achieved high diagnostic performance via Con
volutional Neural Network (CNN) model, with classification accuracies 
of 94.8 %, effectively distinguishing between neurotypical individuals 
and patients with mild or moderate AD. Lal et al., proposed an optimized 
ML framework that used Singular Value Decomposition (SVD) entropy 
for feature extraction, and K-Nearest Neighbours (KNN) for classifica
tion [23]. The model achieved high classification accuracies: 93 % for 
AD vs HC, 92.5 % for FTD vs HC, and 91 % for AD vs FTD. The study by 
Zheng et al. proposed an integrated approach using spectral, complexity, 
and synchronization features extracted from resting-state EEG signals to 
distinguish AD from HC [24]. The RF model provided the best result 
with 95.86 % accuracy, demonstrating that combining multiple EEG 
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feature types significantly improves diagnostic accuracy for AD. Ma 
et al. applied the Phase-based Connectivity Index (PHI) with an SVM to 
EEG data for dementia classification, achieving an impressive 96.6 % 
accuracy specifically in distinguishing AD from FTD [25]. This result 
highlights the strong potential of their method for accurate differential 
diagnosis between these two dementia subtypes. Wang et al. reported an 
improved Artificial Fish Swarm–Genetic Algorithm (AFS–GA) hybrid 
method for feature selection from EEG signals to automatically detect 
AD [26]. They extracted geometric and entropy-based features using a 
Second-Order Difference Plot (SODP) and applied the hybrid IAFS–GA to 
optimize feature selection, achieving a classification accuracy of 93.53 
%, sensitivity of 98.74 %, and specificity of 98.25 % with a Naive Bayes 
classifier. This approach demonstrates strong potential for reliable early 
AD diagnosis based on EEG data.

While many studies have focused on combining EEG signal pro
cessing with ML & DL technique to improve diagnostic accuracy, 
research that emphasizes the extraction and interpretation of discrimi
native biomarkers remains equally important for understanding the 
underlying neurophysiological changes in AD and FTD.

In the study by Vicchietti et al., the authors applied six computa
tional time-series analysis methods including wavelet coherence, fractal 
dimension, quadratic entropy, wavelet energy, quantile graphs, and 
visibility graphs on raw and wavelet-filtered EEG signals across delta, 
theta, alpha, and beta frequency bands [27]. The results showed that 
wavelet coherence in the alpha and beta bands was significantly reduced 
in AD patients, indicating disrupted functional connectivity. Quantile 
graph complexity and visibility graph connectivity were also lower in 
AD subjects, particularly in the delta and theta bands, reflecting 
simplified brain dynamics. Furthermore, fractal dimension and 
quadratic entropy exhibited consistent reductions across multiple bands, 
suggesting a loss of signal complexity and variability in AD. Wavelet 
energy was notably decreased in the alpha band in AD, highlighting 
diminished neuronal synchronization. These findings underscore the 
value of frequency-specific EEG biomarkers in characterizing the neural 
alterations associated with AD.

Ranjan and Kumar introduced a novel method employing Crossplot 
Transition Entropy (CPTE) to analyse resting-state EEG data from pa
tients with AD and FTD [28]. The study constructed FC to assess dif
ferences in network organization between the two groups. Key findings 
revealed that FTD patients exhibited higher connectivity measures in 
specifically clustering coefficient, subgraph centrality, and eigenvector 
centrality particularly in the delta, theta, and gamma frequency bands. 
The CPTE-based network parameters achieved a classification accuracy 
of 87.58 % in distinguishing FTD from AD, with the gamma band 
yielding the highest accuracy at 92.87 %. These results suggest that 
CPTE-derived EEG network metrics can serve as potential biomarkers 
for differentiating FTD from AD.

Al-Ezzi et al. applied Partial Directed Coherence (PDC) to 21-channel 
EEG recordings of cognitively healthy older adults stratified by CSF Aβ/ 
tau ratios, and found reduced temporal connectivity alongside increased 
frontal connectivity in the pathological group [29]. These connectivity 

alterations were associated with neuropsychological measures, MRI 
volumetrics, and HRV, suggesting that EC can reveal early-stage 
network changes in preclinical AD.

The MMMIFC method, originally developed for EEG-based detection 
of schizophrenia and alcoholism, has shown strong performance in our 
previous studies [30,31]. In the present work, this method is adapted for 
the classification of EEG signals in AD and FTD. The framework dem
onstrates not only competitive classification performance but also the 
ability to extract informative biomarkers relevant to underlying neuro
physiological mechanisms.

3. Methodology

Fig. 1 presents an overview of the proposed analytical pipeline, 
which is organized into four key modules: data acquisition, signal pre- 
processing, extraction of brain network features via MMMIFC, and 
classification using a 3D-CNN architecture inspired by VGG. This 
structured framework facilitates the transformation of raw EEG re
cordings into high-level representations of functional brain connectivity, 
which are then utilized for distinguishing among clinical conditions. The 
following sections describe each processing stage in detail.

3.1. Data collection

The resting-state eyes-closed EEG dataset used in this study was 
originally collected by Miltiadous et al. and is publicly available on the 
OpenNeuro platform (https://openneuro.org/datasets/ds004504/versi 
ons/1.0.2) [19]. The recordings were acquired at the 2nd Department 
of Neurology, AHEPA General Hospital, Thessaloniki, Greece. This 
dataset includes 88 participants: 36 diagnosed with AD, 23 with FTD, 
and 29 HC. Cognitive function was assessed via the Mini-Mental State 
Examination (MMSE), where lower scores indicate more severe 
impairment. The median disease duration for patients was 25 months 
(IQR: 24–28.5). Diagnoses followed clinical criteria outlined in DSM and 
ICD guidelines.

EEG signals were recorded using a Nihon Kohden EEG-2100 system, 
employing 19 scalp electrodes positioned according to the international 
10–20 system: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, 
P4, T6, O1, and O2. Two reference electrodes (A1 and A2) were placed 
on the mastoids for impedance monitoring. Prior to recording, electrode 
impedance was ensured to be below 5 kΩ. Participants were seated 
comfortably with eyes closed during approximately 12–14 min of 
recording. Data were sampled at 500 Hz, with sensitivity set at 10 μV/ 
mm, a time constant of 0.3 s, and a high-frequency filter at 70 Hz.

3.2. Pre-processing

EEG data preprocessing involved several key steps. First, signals 
were bandpass filtered between 0.5 and 45 Hz using a Butterworth filter 
and referenced to the average of mastoid electrodes (A1 and A2). Arti
fact subspace reconstruction within EEGLAB toolbox based on MATLAB 

Fig. 1. The overview of the proposed methodology to detect AD and FTD.
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was applied next, removing segments with excessive noise defined by a 
0.5-s sliding window exceeding a standard deviation (SD) threshold of 
17. Then, Independent Component Analysis (ICA) via the ‘RunICA’ al
gorithm separated the 19 channels into independent components. 
Components classified as ocular or jaw artifacts by the ‘ICLabel’ tool 
were excluded. Although recordings were obtained during eyes-closed 
resting states, residual artifacts related to eye and jaw movements 
were detected and eliminated through this process.

To capture temporal variability in brain connectivity, dynamic 
functional connectivity was computed using a sliding window approach. 
A window size of 30 s was applied to the cleaned EEG signals, with 
connectivity calculated every 5 s, enabling the analysis of connectivity 
fluctuations over time.

3.3. Multi-band Morlet mutual information functional connectivity

To quantify nonlinear and frequency-specific functional connectivity 
between EEG channels, a method based on mutual information (MI) of 
time-frequency power features derived using Morlet wavelet transform 
(MWT) was employed. This measure is referred to as MMMIFC.

3.3.1. Time-frequency power estimation
To extract dynamic spectral features from the EEG data, a time- 

frequency analysis was performed using the MWT. The EEG signals 
were segmented into 30-s epochs, and each epoch was analysed inde
pendently. The analysis covered the frequency range from 1 Hz to 20 Hz, 
which captures the delta, theta, alpha, and low beta bands commonly 
associated with cognitive and pathological brain states.

For each central frequency ‘fcr’, a complex Morlet wavelet was con
structed with a fixed time-frequency resolution ratio (fc/ σf = 7), 
ensuring an optimal balance between temporal localization and fre
quency precision. The wavelet was defined in equation (1). 

ψ(t)=A ⋅ e

(

−
t2

2σ2
t

)

⋅e2πⅈfct (1) 

where σf = fc/7, σt = 1/
(
2πσf

)
, and ‘A’ is a normalization factor. The 

wavelet was truncated to a finite support of ±3.3 σt to maintain nu
merical efficiency while preserving most of the signal energy.

The signal was convolved with each wavelet to obtain the time- 
frequency representation. The absolute value of the resulting complex 
output was used to compute the power distribution over time and fre
quency. This approach enables the visualization of transient oscillatory 
activities and their evolution, which is critical for studying dynamic 
functional connectivity. In this experiment, the transform is applied 
across a frequency range of 1–20 Hz with 1 Hz resolution (i.e., 1–2 Hz, 
2–3 Hz, …, 19–20 Hz), using a wavelet width parameter of 1 to balance 
time and frequency resolution.

For each frequency band ‘f’, the average time-frequency power is 
computed for each channel in equation (2)

PC(f)=mean
(⃒
⃒Wf (xc(t))

⃒
⃒2
)

(2) 

where ‘Wf (xc(t))’ denotes the MWT at frequency ‘f’, ‘xc(t)’ and is the 
time series of channel ‘c’.

3.3.2. Mutual information-based connectivity estimation
For each frequency band, the mutual information is computed be

tween all pairs of channels based on their averaged power values. The 
mutual information between two random variables ‘Pi’ and ‘Pj’ is 
calculated in equation (3)

MI
(
Pi,Pj

)
=
∑

x,y
pij(x, y)log

(
pij(x, y)

pi(x)pj(y)

)

(3) 

where ‘pi(x)’ and ‘pj(y)’ are the marginal probability density functions, 

and ‘pij(x, y)’ is the corresponding joint distribution.
To account for varying marginal entropies and enhance compara

bility across channel pairs, the mutual information values are normal
ized by self-information, the formula is described in equation (4)

H(f)(i, j)=
MI
(
Pi, Pj

)

MI(Pi,Pi)
(4) 

The resulting matrix ‘H(f) ∈ RC×C’ is symmetrized to form the final 
frequency-specific connectivity matrix shown in equation (5)

MMMIFC=
H(f) +

(
H(f)
)˕

2
(5) 

This computation is repeated across all selected frequency bands to 
obtain a three-dimensional tensor that ‘T ∈ RC×C×F’ where ‘F = 19’ is the 
number of the frequency bands.

To remove trivial and redundant connections, diagonal elements and 
unity values in each matrix ‘MMMIFC(f)’ are set to zero. The final tensor 
‘T’ reflects nonlinear, frequency-resolved functional dependencies be
tween EEG channels and serves as the input for deep learning analysis 
and the detail is shown in Fig. 2.

3.4. Classification through 3D VGG-inspired CNN technique

In this study, the input to the model is a three-dimensional MMMIFC 
matrix with dimensions 19 × 19 × 19, representing large-scale in
teractions within the brain. In the context of complex brain network 
analysis, such matrices are interpreted as adjacency matrices that 
encode pairwise relationships between brain regions across multiple 
dimensions. Structurally, this forms a brain graph where each node 
denotes a brain region, and the edge weights capture the strength of 
inter-regional communication. These brain graphs provide a compact 
and comprehensive representation of global brain dynamics. Unlike raw 
EEG signals, which are time-series data recorded from individual elec
trodes, FC matrices capture the topological organization of functional 
connections across the whole brain. This makes them particularly suit
able for studying complex neurological disorders such as AD and FTD, 
where abnormal network connectivity plays a central role (see Table 1).

3.4.1. 3D VGG-inspired CNN model
To effectively capture the spatial dependencies and latent topologi

cal features embedded in the MMMIFC matrices, a deep three- 
dimensional VGG-inspired CNN was designed. The architecture con
sists of four convolutional blocks, each comprising two 3D convolutional 
layers with ReLU activations, followed by a 3D max-pooling layer for 
spatial down-sampling. These sequential blocks enable the extraction of 
hierarchical features, allowing the network to learn both localized and 
distributed connectivity patterns inherent to the brain network topol
ogy. Following the convolutional layers, the extracted features are 
flattened and passed through two fully connected layers with ReLU ac
tivations and dropout regularization. A final fully connected layer fol
lowed by a SoftMax activation outputs the predicted class probabilities. 
The architecture detail is summarized in Table 2.

3.4.2. Leaving one group out training method
To evaluate the generalization performance of the proposed model, a 

leaving one group out validation strategy was adopted. Each diagnostic 
category including AD, FTD, and HC was subdivided into six non- 
overlapping subject groups, as detailed in Table 3.

For the AD vs HC classification task, in each validation fold, one AD 
group and one HC group were selected as the test set, while the 
remaining five AD and five HC groups were used for training. This 
procedure was repeated six times so that every group pair served as the 
test set exactly once. The same strategy was applied to the FTD vs HC 
and AD vs FTD classification tasks. In each fold, 20 % of the training data 
was randomly allocated as an internal validation set to fine-tune model 
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parameters and monitor overfitting. The validation data were randomly 
selected from the training set without replacement, and the remaining 
samples were used for model training. This leaving one group strategy 
ensures subject-independent validation and allows for robust assessment 
across group-level variability. Final classification results were averaged 
across all folds.

3.4.3. Training configuration selection
The training configuration was carefully selected to ensure stable 

convergence and effective feature learning from the high-dimensional 
3D functional connectivity data. The model was optimized using the 

Fig. 2. 3D MMMIFC matrix across frequencies (1–19 Hz) with four representative 2D connectivity matrices at (1–2 Hz), (5–6 Hz), (9–10 Hz) and (13–14 Hz).

Table 1 
Summarizes the demographic and clinical data of the participants.

Group Gender (Male/ 
Female)

Age (mean ±
SD)

MMSE (mean ±
SD)

Disease duration 
(months)

AD 12/24 66.4 ± 7.9 17.75 ± 4.50 25 (24–28.5)
FTD 9/14 63.6 ± 8.2 22.17 ± 8.22 25 (24–28.5)
HC 11/18 67.9 ± 5.4 30.00 ± 5.40 N/A

Table 2 
The 3D VGG-inspired CNN architecture used in EEG AD & FTD detection.

Block Layer Input Size Output Size Hyperparameters

Input 3D imaged-data input 19 × 19 × 19 × 1 19 × 19 × 19 × 1 –
Block 1 Convolutional Layer 19 × 19 × 19 × 1 19 × 19 × 19 × 8 Kernel: 3 × 3 × 3, Stride: 1 × 1 × 1, Channels: 8.

ReLU 19 × 19 × 19 × 8 19 × 19 × 19 × 8 –
Convolutional Layer 19 × 19 × 19 × 8 19 × 19 × 19 × 8 Kernel: 3 × 3 × 1, Stride: 1 × 1 × 1, Channels: 8.
ReLU 19 × 19 × 19 × 8 19 × 19 × 19 × 8 –
Max Pooling Layer 19 × 19 × 19 × 8 9 × 9 × 9 × 8 Pool Size: 2 × 2 × 2, Stride: 2 × 2 × 2

Block 2 Convolutional Layer 9 × 9 × 9 × 8 9 × 9 × 9 × 16 Kernel: 3 × 3 × 3, Stride: 1 × 1 × 1, Channels: 16.
ReLU 9 × 9 × 9 × 16 9 × 9 × 9 × 16 –
Convolutional Layer 9 × 9 × 9 × 16 9 × 9 × 9 × 16 Kernel: 3 × 3 × 3, Stride: 1 × 1 × 1, Channels: 16.
ReLU 9 × 9 × 9 × 16 9 × 9 × 9 × 16 –
Max Pooling Layer 9 × 9 × 9 × 16 4 × 4 × 4 × 16 Pool Size: 2 × 2 × 2, Stride: 2 × 2 × 2

Block 3 Convolutional Layer 4 × 4 × 4 × 16 4 × 4 × 4 × 32 Kernel: 3 × 3 × 3, Stride: 1 × 1 × 1, Channels: 32.
ReLU 4 × 4 × 4 × 32 4 × 4 × 4 × 32 –
Convolutional Layer 4 × 4 × 4 × 32 4 × 4 × 4 × 32 Kernel: 3 × 3 × 3, Stride: 1 × 1 × 1, Channels: 32.
ReLU 4 × 4 × 4 × 32 4 × 4 × 4 × 32 –
Max Pooling Layer 4 × 4 × 4 × 32 2 × 2 × 2 × 32 Pool Size: 2 × 2 × 2, Stride: 2 × 2 × 2

Block 4 Convolutional Layer 2 × 2 × 2 × 32 2 × 2 × 2 × 64 Kernel: 3 × 3 × 3, Stride: 1 × 1 × 1, Channels: 64.
ReLU 2 × 2 × 2 × 64 2 × 2 × 2 × 64 –
Convolutional Layer 2 × 2 × 2 × 64 2 × 2 × 2 × 64 Kernel: 3 × 3 × 3, Stride: 1 × 1 × 1, Channels: 64.
ReLU 2 × 2 × 2 × 64 2 × 2 × 2 × 64 –
Max Pooling Layer 2 × 2 × 2 × 64 1 × 1 × 1 × 64 Pool Size: 2 × 2 × 2, Stride: 2 × 2 × 2

Fully Connected Fully Connected Layer 1 × 1 × 1 × 64 1 × 1 × 1 × 128 Channels: 128
ReLU 1 × 1 × 1 × 128 1 × 1 × 1 × 128 –
Dropout Layer 1 × 1 × 1 × 128 1 × 1 × 1 × 128 Dropout Rate: 50 %
Fully Connected Layer 1 × 1 × 1 × 128 1 × 1 × 1 × 128 Channels: 128
ReLU 1 × 1 × 1 × 128 1 × 1 × 1 × 128 –
Dropout Layer 1 × 1 × 1 × 128 1 × 1 × 1 × 128 Dropout Rate: 50 %
Fully Connected Layer 1 × 1 × 1 × 128 1 × 1 × 1 × 2 Output classes: 2
SoftMax 1 × 1 × 1 × 2 1 × 1 × 1 × 2 ​

Output Classification Layer 1 × 1 × 1 × 2 1 × 1 × 1 × 2 –
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Adam algorithm, a stochastic gradient-based optimizer known for its 
computational efficiency and ability to handle sparse gradients and non- 
stationary objectives. An initial learning rate of 1 × 10− 4 was used, 
which is commonly recommended when employing Adam to prevent 
overshooting in the early stages of training, particularly in deep net
works with complex spatial structures.

The model was trained for a maximum of 20 epochs, providing suf
ficient iterations for convergence while avoiding excessive overfitting. A 
mini-batch size of 32 was used to balance memory efficiency and 
gradient estimation stability. To reduce variance due to data order and 
promote better generalization, the training data were shuffled at the 
beginning of each epoch.

To prevent overfitting and encourage model generalization, L2 
weight regularization (also known as weight decay) was applied with a 
regularization factor of 0.0001. This regularization technique penalizes 
large weights and helps constrain the complexity of the model.

Training and validation processes were executed on a GPU- 
accelerated environment, which significantly reduced computation 
time and allowed for real-time visualization of training progress. A 
training progress plot was generated, displaying metrics such as loss and 
accuracy curves for both training and validation, aiding in 

hyperparameter adjustment and training diagnostics. The optimizer of 
the proposed 3D VGG-spired CNN model in MATLAB 2023B is shown in 
Fig. 3.

4. Results and Comparison

4.1. Model classification performance

To comprehensively evaluate the classification performance of the 
proposed method across different diagnostic tasks, confusion matrices 
were employed to visually represent the model’s prediction results on 
various classes. Confusion matrices provide not only the counts of cor
rect and incorrect predictions but also form the basis for calculating key 
performance metrics.

In this study, three primary metrics are considered, including accu
racy, sensitivity and specificity.

Accuracy indicates the proportion of correctly predicted samples 
among all tested samples, calculated as: 

Acc=
TP + TN

TP + TN + FP + FN
(6) 

where ‘TP’ is true positive and ‘TN’ is true negative denote the number of 
correctly classified positive and negative samples, respectively, while 
‘FP’ is false positive and ‘FN’ is false negative representing misclassified 
samples.

Sensitivity called recall, measures the model’s ability to correctly 
identify positive samples: 

Sen=
TP

TP + FN
(7) 

Specificity reflects the model’s capability to correctly identify 
negative samples: 

Spe=
TN

TN + FP
(8) 

Fig. 4 illustrates the confusion matrices for three classification tasks, 
including AD vs HC, FTD vs HC, and AD vs FTD. These matrices facilitate 
a direct assessment of prediction accuracy and error distribution.

From the confusion matrices, the overall accuracy for the AD vs HC 
classification reached 90.77 %, with sensitivity and specificity of 88.89 
% and 93.10 %, respectively. The FTD vs HC task achieved an accuracy 

Table 3 
Six-group data for classification.

Group AD (36 subjects) FTD (23 subjects) HC (29 subjects)

Group 
1

Sub-001, Sub-002, Sub- 
003, Sub-004, Sub-005, 
Sub-006.

Sub-066, Sub-067, 
Sub-068, Sub-069.

Sub-037, Sub-038, 
Sub-039, Sub-040, 
Sub-041.

Group 
2

Sub-007, Sub-008, Sub- 
009, Sub-010, Sub-011, 
Sub-012.

Sub-070, Sub-071, 
Sub-072, Sub-073.

Sub-042, Sub-043, 
Sub-044, Sub-045, 
Sub-046.

Group 
3

Sub-013, Sub-014, Sub- 
015, Sub-016, Sub-017, 
Sub-018.

Sub-074, Sub-075, 
Sub-076, Sub-077.

Sub-047, Sub-048, 
Sub-049, Sub-050, 
Sub-051.

Group 
4

Sub-019, Sub-020, Sub- 
021, Sub-022, Sub-023, 
Sub-024.

Sub-078, Sub-079, 
Sub-080, Sub-081.

Sub-052, Sub-053, 
Sub-054, Sub-055, 
Sub-056.

Group 
5

Sub-025, Sub-026, Sub- 
027, Sub-028, Sub-029, 
Sub-030.

Sub-082, Sub-083, 
Sub-084, Sub-085.

Sub-057, Sub-058, 
Sub-059, Sub-060, 
Sub-061.

Group 
6

Sub-031, Sub-032, Sub- 
033, Sub-034, Sub-035, 
Sub-036.

Sub-086, Sub-087, 
Sub-088.

Sub-062, Sub-063, 
Sub-064, Sub-065.

Fig. 3. The optimizer of 3D VGG-spired CNN model.
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of 90.38 %, sensitivity of 86.96 %, and specificity of 93.10 %. For the 
more challenging AD vs FTD classification, the accuracy decreased to 
57.63 %, with a sensitivity of 72.22 % and specificity of 34.78 %.

These results demonstrate that the proposed model effectively dis
tinguishes neurodegenerative diseases from HC with high precision. The 
lower performance in differentiating AD from FTD reflects the over
lapping clinical and neurophysiological features between these condi
tions, indicating the need for further refinement or additional 
biomarkers to improve discrimination.

4.2. Baseline classifier comparison

In the 3D - CNN framework, the feature representation was organized 
into a 19 × 19 × 19 (6859) image data format. To assess the robustness 
and transferability of the MMMIFC features outside a deep learning 
context, three representative conventional classifiers including SVM, 
Decision Tree (DT), and KNN were employed for comparative analysis. 
This baseline evaluation clarifies whether the observed classification 
gains are attributable mainly to the intrinsic properties of the features or 
to the neural network architecture. Given the symmetrical nature of the 
MMMIFC matrix and the fact that self-connections (e.g., Pz to Pz) have 
constant zero values, only the non-redundant upper-triangular elements 
were preserved, yielding (19 × 19–19)/2 × 19 = 3249 unique features. 
The performance outcomes for these three classifiers are reported in 
Table 4.

Table 4 clearly shows that the proposed deep learning approach 
outperforms the three conventional machine learning methods in dis
tinguishing both AD from HC and FTD from HC.

4.3. Previous works comparison

To contextualize the current results, a comparison with previous 
studies employing the same dataset is presented. Table 5 summarizes the 
reported classification accuracies along with the methodologies utilized 
in these studies.

Fig. 4. Confusion matrices of the classification performance among the proposed method.

Table 4 
Comparison with three machine learning methods.

AD vs HC FTD vs HC

Machine & Deep learning methods Acc Sen Spe Acc Sen Spe

DT 84.62 % 83.33 % 86.21 % 84.62 % 82.61 % 86.21 %
SVM 90.14 % 86.11 % 93.10 % 88.46 % 86.96 % 89.66 %
KNN 87.69 % 86.11 % 89.66 % 86.54 % 82.61 % 89.66 %
Proposed method 3D VGG-inspired CNN 90.77 % 88.89 % 93.10 % 90.38 % 86.96 % 93.10 %

Table 5 
Comparison with previous work in EEG AD/FTD detection.

Reference Technique AD vs HC FTD vs HC

Miltiadous et al. 
(2023) [19]

RBP + RF Acc: 77.01 
%

Acc: 72.01 %

Sen: 78.32 
%

Sen: 72.32 %

Spe: 80.94 
%

Spe: 80.94 %

Miltiadous et al. 
(2023) [20]

RBP, SCC + DICE-net Acc: 83.28 
%

Acc: 74.96 %

Sen: 79.81 
%

Sen: 60.62 %

Spe: 87.94 
%

Spe: 78.63 %

Zheng et al. (2024) 
[21]

MTRRP + SVM Acc: 87.69 
%

Acc: 82.69 %

Sen: 73.91 
%

Sen: 73.91 %

Spe: 89.66 
%

Spe: 89.66 %

Lal et al. (2024) [23] SVD entropy + KNN Acc: 91 % Acc: 93 %
F1-score: 
93 %

F1-score: 
92.5 %

Ma et al. (2024) [25] PHI + SVM Acc: 76.92 
%

Acc: 90.38 %

Sen: 97.22 
%

Sen: 78.26 %

Spe: 51.72 
%

Spe: 100.00 
%

Zheng et al. (2025) 
[11]

CMI-FC + SVM Acc: 95.38 
%

Acc: 81.54 %

Sen: 94.4 % Sen: 86.2 %
Spe: 96.6 % Spe: 77.8 %

Proposed method 
(2025)

MMMI-FC + 3D VGG- 
inspired CNN

Acc: 90.77 
%

Acc: 90.38 
%

Sen: 88.89 
%

Sen: 86.96 
%

Spe: 93.10 
%

Spe: 93.10 
%
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Table 5 presents a comparative analysis of the proposed method 
against several recent approaches in EEG-based detection of AD and 
FTD. While many prior studies have achieved competitive classification 
accuracy using various combinations of entropy measures, feature se
lection techniques, and traditional classifiers such as SVM, KNN, RF, the 
proposed method of this experiment based on MMMIFC, and a 3D VGG- 
inspired CNN demonstrates consistently strong performance across both 
AD and FTD classifications.

Importantly, unlike most earlier methods that focus purely on clas
sification accuracy, the proposed approach leverages FC as a core 
feature representation. This not only enhances diagnostic performance 
but also provides neurobiologically interpretable insights, potentially 
serving as biomarkers for disrupted neural communication in neurode
generative diseases. FC analysis captures alterations in inter-regional 
brain dynamics, offering a more physiologically grounded understand
ing of cognitive impairment, which is crucial for early detection and 
clinical decision-making.

5. Discussion

5.1. Frequency bands selection

The selection of the 1–20 Hz frequency band was data-driven, based 
on observations from the time-frequency power spectrum derived using 
the MWT algorithm. The spectral analysis conducted across the AD, FTD, 
and HC groups indicated that most of the EEG energy was concentrated 
in the low-frequency range between 1 Hz and 20 Hz. Corresponding 
power distribution plots further supported this finding, demonstrating 
that neural activity within this range exhibited the most prominent 
fluctuations across all subject groups, as shown in Fig. 5. The data pre
sented in Fig. 5 were extracted from the Pz electrode, which is located 
near the posterior midline and considered a key node of the DMN which 
is a brain system critically involved in memory, attention, and self- 
referential processing. This range spans the delta, theta, alpha, and 
beta bands, which have been repeatedly implicated in cognitive pro
cessing, attention, and neurodegenerative pathology.

This frequency interval encompasses the delta, theta, alpha and beta 
bands, which have been frequently associated with cognitive processing 
and neurodegeneration. Prior research has demonstrated that alter
ations in these frequency bands are characteristic of dementia-related 
brain changes. Specifically, Chetty et al. reported that AD patients 
exhibited significantly increased theta power and reduced connectivity 
in theta and alpha bands, indicating abnormal neural synchronization in 
these low-frequency ranges [32]. Furthermore, a recent study in pro
posed by Zheng et al. revealed that AD was associated with prominent 
reductions in time-frequency functional connectivity within the delta, 
theta, and alpha bands, particularly in frontal and temporal areas [11]. 
In addition, Rostamikia et al. systematically compared EEG features of 
AD and FTD, showing that both conditions presented distinctive patterns 
of spectral power within low frequency bands [33]. In their work, AD 
was characterized by elevated delta and theta activity and reduced alpha 
and beta power, whereas frontotemporal dementia exhibited relatively 
preserved beta power with different topographical distributions. 
Focusing the analysis within this frequency range enabled a more tar
geted investigation of the functional dynamics most relevant to disease 
mechanisms, while simultaneously minimizing the influence of 
higher-frequency noise and reducing the dimensionality of the input 
data.

In the current framework, the 1–20 Hz band is not treated as a single 
block but is subdivided into 19 contiguous 1 Hz-wide sub-bands. This 
subdivision produces a distinct functional connectivity matrix for each 
sub-band, enabling the capture of narrow-band alterations that might be 
diluted when using broader conventional ranges. By integrating these 
sub-band matrices into a unified multi-dimensional representation, the 
method can exploit subtle differences in oscillatory coupling across both 
frequency and spatial domains. Such granularity supports a more precise 
characterization of group-specific neural dynamics and provides a richer 
feature space for the subsequent classification stage.

Fig. 5. Mwt power spectrum and frequency energy distribution.
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5.2. Exploring information theoretic effective connectivity for AD vs FTD 
classification

The proposed MMMIFC framework combined with 3D-CNN just 
achieved an accuracy of 57.63 %, a sensitivity of 72.22 % and specificity 
of 34.78 % result in distinguishing AD from FTD. To further investigate 
whether alternative connectivity measures could improve classification 
performance, seven information-theoretic EC algorithms including In
formation Geometric Causal Inference (IGCI), Conditional Distribution 
Similarity Fit (CDS), Regression Error Based Causal Inference (RECI), 
Additive Noise Model (ANM), Causally Conditioned Entropy (CCE), 
Directed Information (DI), Transfer Entropy (TE) were evaluated using 
the same pre-processing procedure. These EC methods were imple
mented via the PySPI toolbox, and the classification results are sum
marized in Table 6.

Among these methods, CCE yielded the best performance of Table 5, 
achieving classification accuracy of 72.88 %, sensitivity of 75.00 % and 
specificity of 69.57 %, respectively, for the AD vs FTD task. However, for 
the AD vs HC and FTD vs HC classifications, no performance improve
ment over the MI-based approach was observed. Nevertheless, the 
highest accuracy obtained with these EC-based features still falls 
considerably short of that reported in recent studies employing power 
spectrum–based features. Acharya et al. proposed one CWT-based 
spectrogram classification approach using a lightweight EEGConvNeXt 
network achieved an accuracy of 98.21 %, sensitivity of 98.29 %, 
specificity of 98.05 % in AD vs FTD discrimination [34]. These results 
highlight a substantial performance gap between the present EC-based 
approach and certain power spectrum–oriented reported in the 
literature.

It should be noted that frequency-domain EC algorithms were not 
considered in this comparison, as such methods typically require 
multivariate autoregressive (MVAR) modelling such as Directed Trans
fer Function (DTF), Directed Coherence (DC), PDC, Granger Causality 
(GC), Group Delay (GD). This modelling framework differs fundamen
tally from the MWT-based signal processing approach adopted in this 
study, making direct comparisons inappropriate. Therefore, the present 
analysis focuses solely on information-theoretic EC methods applied in 
the time domain to assess their potential for improving AD vs FTD 
discrimination.

5.3. Investigations of brain functions across frequency bands

Functional connectivity patterns were examined across four classical 
EEG frequency bands as delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), 
and beta (13–20 Hz) to investigate differences in brain network char
acteristics among AD, FTD, and HC groups. These frequency bands were 
selected to capture a broad range of brain oscillatory activity, from slow- 
wave synchronization to faster rhythms associated with cognitive 
functions.

Figs. 6 and 7 display the average functional connectivity matrices of 
AD vs HC and FTD vs HC, respectively, across all four bands. The visu
alizations reveal that both AD and FTD groups exhibit generally reduced 
functional connectivity values compared to the HC group, particularly in 

the lower frequency bands (delta and theta). As the frequency increases 
toward the alpha and beta bands, the differences in connectivity values 
between patient groups and controls appear less pronounced. These 
findings suggest a frequency-dependent attenuation of functional con
nectivity in AD and FTD, with more evident reductions occurring in 
slower oscillatory activity.

5.3.1. Definition and electrode mapping of the DMN
DMN is a set of interconnected brain regions that are more active 

during resting states than during externally directed cognitive tasks 
[35]. It plays a critical role in internally focused cognitive functions such 
as autobiographical memory, self-referential thought, and mental 
simulation. The DMN typically includes the medial prefrontal cortex 
(PFC), posterior cingulate cortex (PCC), lateral temporal cortex (LTC), 
and related parts of the occipital cortex (OC).

Alterations in DMN connectivity have been extensively implicated in 
neurodegenerative diseases. In AD research, numerous f-MRI studies 
have reported significant disruptions in posterior DMN connectivity, 
particularly in the PCC and precuneus regions, which are among the 
earliest affected sites by amyloid pathology reported by Greicius et al. 
[36]. In addition, Zhou et al. stated that f-MRI research in FTD has 
revealed dissociable patterns: while AD patients exhibit posterior DMN 
disconnection, FTD patients tend to show reduced connectivity in the 
anterior DMN, including the medial PFC and anterior temporal regions 
[37]. These differential signatures suggest that DMN-based biomarkers 
may aid in distinguishing dementia subtypes.

To extend these findings, the present study further investigates DMN- 
related functional connectivity using EEG data. By analysing connec
tivity patterns among selected DMN-relevant scalp electrodes, we aim to 
explore whether EEG-based functional alterations in the DMN can 
differentiate between AD, FTD, and HC. Compared to f-MRI, EEG offers 
superior temporal resolution and the potential for real-time, low-cost 
monitoring of brain network dynamics. In this study, 10 EEG channels 
were selected which were Fp1, Fp2, P3, P4, O1, O2, T3, T4, Cz, and Pz 
that approximately map to key DMN hubs. These electrodes allow us to 
probe the anterior, posterior, and lateral subsystems of the DMN from an 
electrophysiological perspective. Although O1 and O2 are traditionally 
associated with the occipital lobe and primary visual cortex, recent 
studies suggest that occipital regions may exhibit functional coupling 
with posterior DMN hubs, such as the precuneus and posterior cingulate 
cortex, particularly in resting-state conditions [38,39]. Therefore, O1 
and O2 were included in the DMN analysis to extend the spatial coverage 
of posterior cortical activity and to better capture disease-related dis
ruptions in large-scale network integration. A summary of the anatom
ical and functional correspondences is provided in Table 7.

5.3.2. Evaluation of brain function in AD and HC
After removing ocular, muscular, and cardiac artifacts with ICA, the 

cleaned EEG signals were decomposed into delta (1–4 Hz), theta (4–8 
Hz), alpha (8–13 Hz), and beta (13–20 Hz) bands using MWT. Pairwise 
cross-mutual information was then computed among ten electrodes 
associated with the DMN of Tabel 5 to produce a weighted adjacency 
matrix W = wij for each subject and frequency band.

Table 6 
Comparison of Classification Results with seven Information Theoretic EC algorithm.

AD vs HC FTD vs HC AD vs FTD

Connectivity Method Acc Sen Spe Acc Sen Spe Acc Sen Spe

IGCI 76.92 % 72.22 % 82.76 % 71.15 % 60.87 % 79.31 % 54.24 % 55.56 % 52.17 %
CDS 78.46 % 72.22 % 86.21 % 76.92 % 69.57 % 82.76 % 59.32 % 58.33 % 60.87 %
RECI 70.77 % 63.89 % 79.31 % 71.15 % 60.87 % 79.31 % 57.63 % 58.33 % 56.52 %
ANM 86.15 % 83.33 % 89.66 % 84.62 % 78.26 % 89.66 % 67.80 % 72.22 % 60.87 %
CCE 90.77 % 88.89 % 93.10 % 86.54 % 78.26 % 93.10 % 72.88 % 75.00 % 69.57 %
DI 87.69 % 83.33 % 93.10 % 84.62 % 78.26 % 89.66 % 69.49 % 72.22 % 65.22 %
TE 81.54 % 75.00 % 89.66 % 78.85 % 69.57 % 86.21 % 59.32 % 75.00 % 34.78 %
MI 90.77 % 88.89 % 93.10 % 90.38 % 86.96 % 93.10 % 57.63 % 72.22 % 34.78 %
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Global efficiency measures the ease of parallel information transfer 
across the brain network, and it is defined as: 

GE=
1

N(N − 1)
∑

i∕=j
wij (9) 

where ‘wij’ denotes the edge lengths of the weighted adjacency matrix 
and ‘N’ is the number of the EEG channel, here N = 19.

Diffusion efficiency captures the capacity of the brain network for 
robust information flow via not only the shortest but also alternative 

paths. Defining the graph Laplacian L = D − W with ‘D’ as the degree 
matrix, let ‘L’ be its Moore Penrose pseudoinverse. For any two distinct 
nodes ‘I’ and ‘j’, the mean first-passage time is 

MFPTij =N
(
Lii + Ljj − 2Lij

)
(10) 

Diffusion efficiency is then the average reciprocal of these times: 

DE=
1

N(N − 1)
∑

i∕=j

1
MFPTij

(11) 

Fig. 6. MMMIFC connectivity matrix of AD and HC in delta, theta, alpha and beta band.

Fig. 7. MMMIFC connectivity matrix of FTD and HC in delta, theta, alpha and beta band.
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Reductions in diffusion efficiency in the brain network reflect the 
loss of redundant communication routes within the DMN.

The weighted clustering coefficient indexes how tightly nodes cluster 
into triads, and the equation of calculation of the clustering coefficient is 
shown as follow. 

Ci =
1

ki(ki − 1)
∑

u∕=vϵN(i)
(wiuwivwuv)

1
3,CC=

1
N
∑N

i=1
Ci (12) 

Where ‘Ci’ indexes the degree to node ‘i’ form tightly interconnected 
triads, ‘ki’ is the degree of node ‘i’ and ‘N(i)’ is the set of neighbours of 
node ‘i’. A lower clustering coefficient in the brain network reflects a 
breakdown of these local clusters within the DMN.

The following Table 8 and Fig. 8 illustrates the group-wise distri
butions of global efficiency, diffusion efficiency, and clustering coeffi
cient in both AD and HC participants across the delta, theta, alpha, and 
beta frequency bands, highlighting topological network alterations in 
DMN region associated with AD.

In previous studies, graph theoretical metrics have been increasingly 
recognized as potential biomarkers for distinguishing AD from healthy 
cognitive aging. Spruyt et al. employed high-density EEG to examine the 
relationship between tau protein aggregation and functional connec
tivity in the alpha frequency band [40]. The findings revealed that 
increased tau deposition was associated with a decrease in the global 
clustering coefficient. Wu. et al. applied graph theory to EEG data to 
assess topological parameters, including clustering coefficient, global 
and local efficiency [41]. The results indicated that AD patients 
exhibited increased mean Phase Lag Index (PLI) values in the theta band, 
along with decreases in clustering coefficient, and global efficiency in 
the alpha band. These alterations reflect disrupted functional connec
tivity patterns in AD. Accordingly, the present analysis applies these 
graph metrics to EEG-derived brain networks to explore their potential 
as functional biomarkers in AD.

The current analysis builds upon these findings by examining graph 
metrics specifically within the DMN across multiple frequency bands. 
The results show that the theta band presents the most prominent group 
differences between AD and HC, consistent with previous studies high
lighting theta-related connectivity alterations. Among all pairwise 
comparisons, the AD vs HC contrast showed the largest differences 
in global efficiency, diffusion efficiency, and clustering coefficient, 

suggesting pronounced disruption of DMN network integration and 
segregation in AD. Theta oscillations within DMN hubs such as the 
hippocampus, posterior cingulate cortex, and medial prefrontal 
cortex are crucial for episodic memory processes; reduced theta- 
band coupling among these regions likely contributes to the 
observed declines in network metrics and aligns with the charac
teristic memory impairment in AD. Consistently reduced values of all 
three-graph metrics in the delta and theta bands further support the 
presence of widespread low-frequency network disintegration in the AD 
group. Notably, a divergent pattern emerged in the alpha band, where 
diffusion efficiency was paradoxically higher in the AD group, suggest
ing a possible compensatory mechanism or frequency-specific alter
ation. Additionally, although all three metrics in the beta band were 
elevated in AD compared to HC, the magnitude of group differences was 
relatively small, indicating that beta band measures may have limited 
sensitivity in distinguishing AD from HC.

5.3.3. Evaluation of brain function in FTD and HC
To investigate functional network alterations associated with FTD, 

graph theoretical analysis was applied to EEG-derived brain networks of 
FTD patients and HC, using the same methodological framework 
described in the previous section. Table 9 and Fig. 9 present the distri
butions of the same three graph theory measurements for FTD and HC 
groups. These results provide insight into the frequency-specific dis
ruptions in functional integration and segregation in FTD. Comparisons 
across bands highlight distinct topological changes that may serve as 
potential biomarkers for distinguishing FTD from HC.

Wu et al. reported functional network alterations in FTD have been 
characterized by increases in theta band synchronization, as reflected by 
elevated mean PLI values, alongside enhancements in graph theoretical 
metrics such as node degree, clustering coefficient, global efficiency, 
and local efficiency [41]. In contrast, reductions in alpha band con
nectivity particularly decreased amplitude envelope correlation values 
have been accompanied by lower values across the same graph metrics, 
indicating frequency-specific disruptions in network integration. Unlike 
AD, these changes in FTD do not appear to follow a widespread regional 
pattern but are rather more localized.

In the present analysis, the most pronounced FTD vs HC differences 
were observed in the delta band, where all three DMN-derived graph 
metrics were substantially lower in the FTD group. Conversely, alpha- 
and beta-band metrics were consistently higher in FTD compared to HC, 
while theta-band values showed moderate reductions. This spectral 
profile differs from AD, where the largest differences occurred in the 
theta band, suggesting distinct frequency sensitivities of DMN disruption 
across the two disorders. The observed low-frequency decreases in 
global and local network organization likely reflect impaired long-range 
integration and segregation in FTD, whereas the high-frequency in
creases may indicate compensatory recruitment of alternative process
ing pathways or maladaptive hyper-synchronization within preserved 
cortical regions.

5.4. Significance of time-varying brain network analysis

Traditional brain network analysis often relies on static connectivity 
measures averaged over extended periods, assuming stable functional 
interactions among brain regions. However, brain connectivity is 
intrinsically dynamic, exhibiting fluctuations over short timescales. 
Using a sliding window approach, a series of time-resolved MMMIFC 
matrices can be computed, enabling the monitoring of functional con
nectivity evolution over time and revealing transient patterns that are 
undetectable with static analyses. In this study, a 30-s sliding window 
with a 5-s step size was adopted. As the analysis does not aim for real- 
time computation, computational latency per window was not a 
constraint. Compared with shorter windows, a 30-s segment provides 
sufficient oscillatory cycles in low-frequency bands including delta and 
theta band to yield more stable and reliable spectral and connectivity 

Table 7 
Mapping EEG channels to DMN brain areas.

EEG Channel Anatomical Region Associated DMN Subsystem

Fp1 Left PFC Anterior DMN
Fp2 Right PFC Anterior DMN
Cz Central midline DMN hub
P3 Left PCC Posterior DMN
P4 Right PCC Posterior DMN
Pz Midline PCC Posterior DMN
O1 Left OC Posterior visual integration area
O2 Right OC Posterior visual integration area
T3 Left LTC Lateral DMN
T4 Right LTC Lateral DMN

Table 8 
Graph theory analysis between AD and HC in DMN network.

Frequency 
bands

Global 
Efficiency

Diffusion 
Efficiency

Clustering 
Coefficient

AD Delta 0.453 ± 0.072 0.374 ± 0.035 0.449 ± 0.073
Theta 0.259 ± 0.071 0.297 ± 0.046 0.253 ± 0.072
Alpha 0.157 ± 0.039 0.228 ± 0.039 0.148 ± 0.038
Beta 0.137 ± 0.036 0.214 ± 0.037 0.126 ± 0.034

HC Delta 0.494 ± 0.050 0.382 ± 0.026 0.491 ± 0.050
Theta 0.310 ± 0.069 0.309 ± 0.043 0.305 ± 0.070
Alpha 0.158 ± 0.045 0.203 ± 0.054 0.148 ± 0.046
Beta 0.117 ± 0.066 0.197 ± 0.055 0.108 ± 0.066
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estimates, while also averaging out transient noise and artifacts often 
present in resting-state EEG. This choice balances temporal resolution 
with the stability of extracted features, which is critical for robust 
classification.

Applying graph-theoretical metrics such as global efficiency, diffu
sion efficiency, and clustering coefficient to each windowed MMMIFC 
matrix allows characterization of the evolving topological organization 
of brain networks. These dynamic network features reflect the brain’s 
flexibility and responsiveness, which are frequently compromised in 
neurodegenerative diseases such as AD and FTD and the detail is shown 
in Fig. 10.

The extracted dynamic network metrics, represented as temporal 
trajectories of GE, DE, and CC, serve as informative features for deep 
learning models. Compared to static connectivity measures, these dy
namic features contain richer temporal information, enhancing the 
model’s ability to discriminate between healthy and pathological brain 
states. Thus, incorporating time-varying brain network analysis not only 
advances the understanding of functional brain dynamics but also 
significantly improves the classification performance of deep learning- 
based diagnostic frameworks.

5.5. Limitation and contribution

Although the proposed framework demonstrates high accuracy in 

distinguishing AD, FTD, and HC, certain limitations remain. In partic
ular, the current method does not achieve high sensitivity in differen
tiating between AD and FTD. While brain connectivity algorithms offer 
strong performance in distinguishing pathological from healthy states, 
their capability in capturing subtle differences between AD and FTD 
remains limited in this setting. This may reflect overlapping functional 
connectivity disruptions between the two disorders or the need for more 
discriminative features.

Moreover, the analysis employed functional connectivity measures 
based on MMMIFC, which do not capture the directionality of in
teractions between brain regions. The absence of effective connectivity 
analysis prevents a deeper understanding of causal or directional in
formation flow within the brain networks, which could be critical for 
distinguishing between distinct neurodegenerative mechanisms.

Despite these limitations, the present study offers several key con
tributions. A novel deep learning–based classification approach was 
developed that achieves high accuracy in detecting AD and FTD from 
EEG data. By applying MWT, the analysis revealed that discriminative 
information was primarily concentrated within the 1–20 Hz frequency 
range. Furthermore, significant reductions in brain network function 
were observed in the delta and theta bands among AD and FTD patients. 
Specifically, the most pronounced difference between AD and HC was 
detected in the theta band, while the largest distinction between FTD 
and HC occurred in the delta band.

Additionally, the use of a sliding window technique enabled the 
extraction of time-varying network metrics, capturing the full temporal 
evolution of features such as global efficiency, diffusion efficiency, and 
clustering coefficient during the resting-state period. This dynamic 
analysis provides a more comprehensive representation of brain func
tion and enhances the interpretability and classification power of the 
proposed model.

6. Conclusion

This study provided important insights into the neurophysiological 
distinctions between AD, FTD, and healthy aging by leveraging EEG- 
based functional connectivity. By identifying specific frequency bands 

Fig. 8. Graph theory measurements of DMN brain network of AD and HC, here ‘GE’ is global efficiency, ‘DE’ is diffusion efficiency, and ‘CC’ is clustering coefficient.

Table 9 
Graph theory analysis between AD and HC in DMN network.

Frequency 
bands

Global 
Efficiency

Diffusion 
Efficiency

Clustering 
Coefficient

FTD Delta 0.457 ± 0.087 0.367 ± 0.028 0.453 ± 0.088
Theta 0.276 ± 0.075 0.301 ± 0.036 0.269 ± 0.073
Alpha 0.161 ± 0.041 0.227 ± 0.045 0.151 ± 0.041
Beta 0.139 ± 0.044 0.214 ± 0.043 0.129 ± 0.043

HC Delta 0.494 ± 0.050 0.382 ± 0.026 0.491 ± 0.050
Theta 0.310 ± 0.069 0.309 ± 0.043 0.305 ± 0.070
Alpha 0.158 ± 0.045 0.203 ± 0.054 0.148 ± 0.046
Beta 0.117 ± 0.066 0.197 ± 0.055 0.108 ± 0.066
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and network alterations that differentiate these conditions, the research 
advanced our understanding of their underlying brain mechanisms. 
Importantly, the ability to extract robust biomarkers from non-invasive 
EEG data offered a promising avenue for earlier and more accurate 
diagnosis, which was crucial for effective intervention and personalized 
treatment. The integration of advanced connectivity metrics with deep 
learning paves the way for practical clinical applications, potentially 
improving patient outcomes and informing future dementia research.
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