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ABSTRACT 
This research concerns the deep stereo networks used for inferring depth from images 

captured with a stereo pair of cameras. Central to the process is the measurement of 

disparity between the images, with the computational effort depending on the limit 

of the “disparity search range (DSR)” over which the search is to be performed.  Like 

the traditional stereo techniques, deep learning stereo methods also require users to 

specify the upper bound of DSR, commonly known as the “Maximum Disparity”, 

manually. Selecting a substantially lower or a higher maximum disparity than 

necessary for a given scene can lead to disparity estimation errors or performance 

degradations during disparity inference.  

This thesis presents an automatic disparity search range estimation technique for 

deep learning stereo which can be seamlessly embedded into the stereo algorithm 

itself without requiring pre-processing or explicit configuration by the users. The 

method incorporates a novel metric referred to as the Sum of New Cost Extrema 

(SNCE). The stated metric can be estimated on a per-layer basis during the cost volume 

construction phase of the stereo method.  This can serve as the criterion on which to 

decide whether to continue the cost volume creation process at a given disparity, or 

to terminate it.  In this way, the maximum disparity for a given scene is determined.  

The SCNE metric is further utilised in a deep stereo algorithm which produces accurate 

disparity maps while estimating the disparity search range automatically without user 

intervention. The memory efficient design of the algorithm makes it possible to 

optimise memory for standard desktop computers and consumer-grade graphics 

processing hardware. Evaluations conducted using the benchmark stereo datasets 

indicate that the algorithm is able to produce accurate results for synthetic and real 

stereo image sequences without requiring users to set any parameter values during 

disparity inference, setting a new state-of-the-art benchmark in stereo disparity 

estimation. Results indicate improvements in performance due to the computational 

efficiency arising from the optimal cost volume sizes. When used with standard stereo 

image sequences, the algorithm performed up to 50% faster compared to a reference 

implementation with a fixed cost volume size. Extended testing with common stereo 

evaluation metrics on various real-world stereo datasets showed that the algorithm 



   ii 
 

can produce accurate results under varying scene conditions. Additional tests on 

images captured with a custom-built stereo camera confirmed the generalization 

capabilities of the algorithm while demonstrating the possibility of achieving complete 

independence from user specified parameters values when inferring depth from real 

world stereo imagery. 
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DEFINITIONS 
 

Camera Calibration – Camera calibration is the process of determining intrinsic and extrinsic 

parameters of a camera that consists of a lens and an imaging sensor. Intrinsic parameters 

refer to the internal characteristics such as focal length, centre, and distortion. Extrinsic 

parameters determine the position and the orientation of the camera with respect to the world.  

Stereo Image Rectification – Transformation of images from mutually displaced cameras into 

a parallel camera geometry so that the pixels which correspond to the same point in 3D will lie 

in the same horizontal line in the two images.  

Disparity – Apparent displacement between matched features in two views from two cameras.  

Matching Cost – Matching cost refers to a numerical measure of similarity or dissimilarity 

(singular valued or multi-dimensional) between two pixels being matched.  

Legacy Stereo Pipeline – Legacy stereo pipeline also referred to as the conventional or 

traditional stereo pipeline is a collective name for the 4-stage disparity estimation process used 

by the conventional stereo disparity estimation algorithms which includes: matching cost 

computation, cost aggregation, disparity selection and disparity refinement. 

Epipolar Plane – The geometric plane that goes through a point of concern in the world and 

the two optical centres of a binocular stereo camera system.  

Epipolar Lines – Lines of intersection between the epipolar plane and the image planes of 

cameras in a stereo camera system. 

Disparity Search Range – Disparity search range refers to the range of pixel positions scanned 

along the epipolar lines in one image of a stereo pair, to find a match for a pixel in the other 

image. It consists of a floor value and a ceiling value.  

Maximum Disparity – This is the upper bound (i.e., ceiling value) of the disparity search range. 

In most stereo algorithms, the users are expected to provide a value for maximum disparity.  

Minimum Disparity – This is the lower bound (i.e., floor value) of the disparity search range and 

in most deep stereo algorithms it is taken as zero. However, it is possible to have negative 

minimum disparity because of calibration artefacts. In the scope of the thesis, the minimum 

disparity is considered to be zero.  

Cost Volume – A 3D or higher dimensional arrangement of computed matching costs by stereo 

algorithms. The dimensions of a cost volume are determined by the image width, image height, 

maximum disparity, and the dimensionality of the individual matching costs. Singular valued 

matching costs result in 3D cost volumes whereas 2D or higher dimensionalities lead to 4D or 

higher cost volumes.  

Binocular Stereo Algorithms – Binocular stereo algorithms estimate disparity or depth from 

images captured by using two mutually-displaced cameras. In this thesis, stereo algorithms 

refer to binocular stereo algorithms unless stated otherwise. 

Deep Stereo Algorithms – Stereo disparity/depth estimation algorithms which are based on 

deep neural networks. 
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Training Stage – Training phase of a supervised deep stereo algorithm during which the 

gradient of the loss is used for backpropagation. 

Disparity Inference – This refers to the phase after training when the trained model is used for 

estimating disparity maps from stereo images. During disparity inference, supervised deep 

stereo methods do not use backpropagation to update the model parameters. 

Automatic Disparity Search Range – Automatic Disparity Search Range refers to the automatic 

estimation of the disparity search range without user intervention. In stereo algorithms which 

use zero as the minimum disparity, estimation of the maximum disparity results in full disparity 

search range estimation. 

Sum of New Cost Extrema – Sum of New Cost Extrema is the novel metric introduced in this 

thesis. It refers to the number of matching cost extrema locations which move to the latest 

layer of a matching cost volume during a layer-wise cost volume creation process. 

Population Maximum (Disparity) – This refers to the maximum ground-truth disparity across 

all pixels in the entire stereo dataset in concern. 

Consumer Grade Hardware – This refers to the commonly available consumer graphics 

processing units or hardware often used for recreational/gaming activities by home users (at 

the time when the experiments were conducted). NVIDIA RTX2080 and NVIDIA GTX1070 are 

examples for devices referred to as consumer grade hardware in the thesis.  

LiDAR – A method used for measuring distance by measuring the return time of a reflected 

laser beam. 
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ABBREVIATIONS 
 

NCC  – Normalized Cross Correlation   

ReLU  – Rectified Linear Unit   

RNN  – Recurrent Neural Networks 

RT  – Rank Transform 

SAD  – Sum of Absolute Difference 

SGM – Semi Global Matching  

SIFT  – Scale Invariant Feature Transform   

SNCE  – Sum of New Cost Extrema 

SOTA – State of the Art 

SPP  – Spatial Pyramid Pooling 
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SURF  – Speeded Up Robust Features   
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AD  – Absolute Difference 
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BRISK  – Binary Robust Invariant Scalable Points 

CNN  – Convolutional Neural Network   

CPU  – Central Processing Unit  

CT  – Census Transform 

CUDA – Compute Unified Device Architecture 

DSR  – Disparity Search Range 

EPE  – End Point Error   

GPU  – Graphics Processing Unit  

LSTM  – Long Short-Term Memory 

MRF  – Markov Random Field   
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CHAPTER 01 - INTRODUCTION 

Binocular stereo vision involves extracting depth information from two views of a 

scene captured with a mutually displaced pair of cameras. The existence of biological 

stereo vision, as a reliable and self-sufficient form of perception in nature, continues 

to provide a benchmark for the machine-based binocular stereo vision systems [1]. 

One of the basic differences between biological and computer stereo vision is the prior 

configuration requirements. In biological stereo vision, the configuration process is 

autonomous and is driven by the environmental encounters by the species [2], 

whereas in computer stereo vision, the configurations must often be carried out by 

the users.  

The traditional computer stereo algorithms rely on a multitude of parameters which 

determine their accuracy and performance [3]. In contrast, deep learning-based 

stereo methods require fewer parameters to be configured by the users during 

disparity inference1. The “maximum disparity” which is the ceiling value of the 

disparity search range (DSR), still remains as a user-configured parameter in most of 

the state-of-the-art deep learning techniques. That includes the top performing 

techniques on stereo vision benchmarks [4], [5], [6], [7], [8]. In addition, all such 

techniques use the minimum disparity (which is the floor value of DSR) as zero. 

Therefore, if the maximum disparity can be estimated automatically as part of the 

deep stereo pipeline, deep stereo networks can be independent of the user-specified 

parameters during stereo disparity inference. The development of such a technique 

would lead to new possibilities such as: 

• Failsafe stereo vision systems which can be deployed into unknown 

environments without explicit configuration by the users 

• Reduced disparity estimation errors in the absence of overestimation or 

underestimation of parameters by the users 

• Plug-and-play stereo sensors in robotics which do not require users to be 

aware of the internal configuration of stereo algorithms or their parameters  

 
1 In deep learning stereo, “disparity inference” refers to the use of a trained deep stereo model to 
produce disparity maps from stereo images. In supervised deep stereo methods, disparity inference 
takes place after the training process is complete. 
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• Higher performance and better utilization of computing resources during 

disparity inference 

Past studies on “automatic disparity search range estimation” have resulted in 

methods which can be used with traditional stereo methods to extract a suitable 

disparity search range (or the maximum disparity) from stereo image data. However, 

such methods depend on either some initial disparity value extracted by using feature 

descriptors [9], [10], [11], [12], limiting the subsequent disparity search with seed 

points [13], [14], [15], setting user-defined initial values [16], [17], limiting search 

space with image pyramids [18], [19], [20], [21] or observing historical values in image 

sequences [22], [23], [24]. Moreover, they all are required to be implemented as 

separate pre-processes to the stereo disparity estimation process which prolongs the 

forward propagation time while still being user dependent.   

As far as the state-of-the-art deep stereo networks are concerned, most of the 

research work in the domain has been focussed on improving the accuracy of disparity 

estimations [25]. Consequently, their output accuracy during inference has been left 

dependent on the ability of the human users to determine a suitable maximum 

disparity value using their own judgement, trial-and-error or using methods that are 

external to the stereo disparity estimation network. The research study presented in 

this thesis aims to examine the possibility of making deep stereo networks 

independent of such user-specified parameter values, by making the disparity search 

range estimation an integral part of a deep learning network. 

1.1 Fundamentals of Stereo Vision 

Binocular stereo vision attempts to recover depth from the positional differences 

between matched points from two images of the same scene captured with mutually 

displaced cameras as shown in Figure 1.1. The illustration shows two cameras (Camera 

1 and Camera 2) registering image points (P1 and P2 on their respective image planes) 

for a point P on an object. The optical centres of the two cameras are denoted by C1 

and C2 and the distance between C1 and C2 is known as the baseline of the stereo 

system. The plane that goes through P, C1 and C2 is called the “epipolar plane” while 

the points of intersection (E1 and E2) between the image planes (shaded in grey) and 

the baseline (C1C2) are called “epipoles”. According to the geometry of the illustration, 



    

   3 
 

image points (P1 and P2) must be located on the lines of intersection between the 

epipolar plane and the image planes which are called “epipolar lines”. The constraint 

introduced by the geometry of the epipolar lines is referred to as “epipolar constraint”. 

 

 

 

 

 

 

 

One of the key tasks in stereo vision is to establish the matches between the points in 

the two images. If unconstrained, search for a pixel in one image would have to include 

all the pixels in the second image which would be computationally expensive. 

However, due to the epipolar constraint, it is sufficient to search along the epipolar 

lines. In a typical stereo camera set-up, the cameras are arranged in what is known as 

the “rectified configuration” which makes the epipolar lines parallel to the horizontal 

axis of the image planes. Therefore, when cameras are in rectified configuration, the 

search for a match for a pixel in one image, can be carried out along the same row in 

the other image. However, if the two optical axes are misaligned, horizontal and 

parallel epipolar lines can still be achieved through a rectification process which 

involves geometric transformation. Figure 1.2, depicts a camera pair in a rectified 

configuration. 
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Figure 1.2: Two cameras in rectified configuration having horizontal epipolar lines 
resulting in correspondence search along the horizontal rows of image points 
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In Figure 1.2, d1 and d1 denote the horizontal offsets of the image points from the image 

centre whereas z denotes the perpendicular distance (or depth) to the point P from 

the baseline b. The focal length of the two cameras is equal to f. The centres of the 

image planes of the two cameras C1 and C2 are denoted by O1 and O1 respectively. 

If the total disparity between the two image points (P1 and P2) in Figure 1.2 is denoted 

by d which is equal to the sum of d1 and d2 (or the difference between the x 

coordinates of P1 and P2 in pixels). The relationship between the depth z, baseline b, 

focal length f and the disparity d is given by Equation (1.1) below. 

𝑧 =
𝑏𝑓

𝑑
 (1.1) 

If a calibrated stereo camera with fixed baseline and focal length is concerned, the 

depth to an object point can be derived by computing the disparity between the two 

corresponding image points using Equation (1.1). Therefore, the binocular stereo-

based depth estimation problem can be solved by estimating the disparity between 

matching pixels in the stereo images. 

1.2 Disparity Estimation  
Disparity estimation in binocular stereo vision needs to find answers to the following 

fundamental questions. 

1. How to measure the similarity or dissimilarity between two pixels? 

2. How much to search for a match along the epipolar lines? 

3. How to select the best match given a set of closely matching points? 

4. How to handle any exceptions (ambiguous matching, occlusions etc.)? 

Most of the traditional disparity estimation techniques attempt to solve the above 

using the conventional/legacy stereo pipeline [26] while state-of-the-art techniques 

utilize end-to-end deep neural networks [25] to achieve the same. However, both 

types of techniques depend on user inputs to choose parameter values, essentially 

depending on the user when considering the fundamental questions above.  

1.2.1 Parameterization in Disparity Estimation 

Parameterization is not the enemy when studying the science related to any 

phenomenon. In fact, parameterization provides a basis for systematic analysis of the 
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same. However, the issue with the parameterization is that the values of the 

parameters must be known in advance before the systems can be used. Unless specific 

algorithms are developed to learn parameters exclusively from the input data, the 

accuracy of the results may depend on user inputs. 

Recent advances in machine learning and deep learning in general have considerably 

reduced the requirement for user configuration of parameters in vision systems 

including binocular as well as monocular systems. However, in stereo vision, there is a 

key parameter referred to as the maximum disparity (i.e., the ceiling value of the 

disparity search range) which is still required to be configured by the users.  

This thesis is based on a study conducted in order to develop a stereo disparity 

estimation method which does not require users to configure maximum disparity 

when inferring disparity maps from rectified stereo images. 

1.3 Research Objectives 
This study is aimed at achieving the three main objectives outlined below with the 

respective courses of action. 

1. Developing a methodology to automatically estimate the maximum disparity 

parameter in stereo vision algorithms without requiring user inputs  

This is to be achieved through an analysis of the matching cost volume 

creation process in stereo, using traditional stereo techniques. This includes 

experiments with standard stereo datasets and rudimentary stereo 

algorithms to observe the movement of matching cost extrema within a 

cost volume when it is constructed one layer at a time. The results are then 

used to study the correlation between the movement of the matching cost 

extrema and the maximum ground-truth disparity from the datasets. Based 

on the findings, the possibility of deriving a metric which can serve as the 

cost volume termination criterion, is explored. 

2. Formulating machine learning friendly metrics which can be used to eliminate 

the manual configuration of disparity search range 
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Based on the identified relationships between the cost extrema movement 

and maximum disparity, a metric is formulated in such a way that it can be 

efficiently calculated at each layer of the cost volume while it is being built. 

The mathematical foundation of the metric needs to be established to 

provide a theoretical basis to determine the applicability of the metric with 

varying scene conditions. Standard stereo datasets are used with 

traditional stereo methods as well as a custom-built deep learning stereo 

method to determine the feasibility of using the metric for maximum 

disparity predictions.  

3. Developing a fully autonomous stereo vision algorithm that does not require 

any pre-configuration by users during inference  

The developed metric is used with an improved deep learning stereo 

network to automatically terminate the cost volume creation process as 

soon as the maximum disparity is detected. Once the complete automation 

is achieved, the algorithm is used with standard stereo datasets to 

determine the accuracy of the maximum disparity predictions in sequences 

of images with ground-truth disparity. Furthermore, the disparity accuracy 

is investigated using the standard stereo accuracy measures while also 

analysing the possible cumulative gains in performance. 

1.4 Contributions 
The research work outlined in the thesis aims to advance the field of research through 

the contributions made by introducing the following. 

• The first deep learning-based stereo disparity estimation method to be 

completely independent of user-specified parameters during stereo 

disparity inference 

• A metric that can be used with existing state-of-the-art stereo vision 

algorithms so that they can also estimate the maximum disparity 

automatically as part of the forward propagation phase  
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• A new benchmark for fully autonomous stereo vision applications 

which is different from the existing benchmarks that mainly focus on 

disparity estimation accuracy  

• A method to better utilize computational resources in stereo disparity 

estimation especially in parallel computing (GPU) environments 

• The first deep learning-based stereo algorithm that does not require 

users to reconfigure in response to the changes in resolution and 

baseline selection (in multi-baseline systems) 

 

1.5 Thesis Overview 
Chapter 2 introduces the background of stereo vision both in terms of traditional and 

state-of-the-art deep learning-based stereo techniques covering the basics of the 

conventional stereo pipeline and the evolution of deep stereo methods. A background 

analysis of automatic disparity search range estimation follows, with the chapter 

summarising the findings which forms the basis for the research study. Research 

methodologies, research questions, and the main contributions of the study are 

discussed in Chapter 3.  

Chapter 4 outlines the development of a novel metric which can be used to 

approximately estimate the maximum disparity for a scene. A probability based 

mathematical formulation is discussed in detail before the metric is tested on stereo 

datasets to identify the conditions under which, totally deterministic results can be 

achieved. The impact of the metric on existing stereo techniques in terms of 

computational time complexity is discussed in Chapter 5. The work includes a detailed 

algorithmic analysis of CPU and GPU based stereo vision algorithms to investigate the 

feasibility of using the metric to estimate the maximum disparity without causing 

significant delays. 

In Chapter 6, a foundational level deep learning-based stereo method is developed 

step-by-step to test the feasibility of using the developed metric with deep learning 

stereo. The aim is to estimate the metric at each disparity during the forward 

propagation phase of the deep network. Although, the metric is not used to terminate 

the cost volume creation process at this stage of the study, Chapter 6 includes 
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experiments with stereo image sequences to verify the correlation between the value 

of the metric and the maximum values reported in ground-truth data. 

Chapter 7 introduces an end-to-end deep learning technique which utilizes the metric 

to terminate a layer-wise cost volume creation process at a suitable maximum 

disparity to achieve complete automation. A special training regime is introduced 

which is aimed at improving the accuracy of the disparity predictions and the 

maximum disparity predictions simultaneously. A 4-stage extensive evaluation of the 

trained model is conducted using standard stereo datasets and stereo images 

captured with a custom-built stereo camera. 

Finally, Chapter 8 includes a summary discussion on how the study managed to answer 

the research questions, achievement of the research objectives and future work 

related to the metrics and algorithms developed as part of this study. 
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CHAPTER 02 - LITERATURE REVIEW 

This chapter starts with an overview of the traditional stereo vision techniques 

focussing on the legacy stereo pipeline (in Section 2.1) which also served as the 

foundation for early deep learning stereo techniques.  A comprehensive review of the 

evolution of deep learning-based stereo techniques is presented in Section 2.2 which 

outlines the key milestones in development and significant contributions that made 

the state-of-the-art possible. Section 2.3 shows how the existing stereo disparity 

estimation techniques still require users to configure certain parameters and provides 

a list of state-of-the-art techniques which also rely on user-configured “maximum 

disparity” parameter.  Section 2.4 contains the results of a focused review of literature 

on automatic disparity search range detection techniques and outlines their merits 

and drawbacks. A summary of the findings is provided at the end of the chapter in 

Section 2.5. 

2.1 Traditional Stereo Vision 
Stereo vision has remained one of the most important and extensively studied areas 

of research in machine vision for decades [25], [27]. Like stereopsis in animal binocular 

vision [1], computer stereo vision techniques rely on the positional differences of the 

objects in images captured by two or more imaging devices. Unlike biological vision 

which benefits from additional positional information from phenomena like vergence 

movements [28] of the eyes, computer stereo vision depth estimations often have to 

rely on image differences alone [29], except when using some additional active sensors 

like laser, in a sensor fusion application with stereo [30].  

Depending on the extent to which the disparity information is recovered from the left 

and right images, stereo techniques can be broadly segregated into two branches: 

dense stereo and sparse stereo methods [31] with some intermediate algorithms 

being referred to as semi-dense stereo methods [32]. Dense methods attempt to 

recover depth for all the points in the images whereas sparse techniques focus on 

interest points or specific objects of interest in the scene. Semi-dense methods in 

contrast, involve selective dense matching in a subset of image points [33] (e.g., 

matching textured areas while leaving the texture-less regions unmatched).  
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2.1.1 The Conventional Stereo Pipeline 

The conventional stereo algorithms follow the characteristic processing stages which 

are collectively referred to as the legacy stereo pipeline. It is comprised of the 

following four stages connected in a cascading arrangement [26]. 

1. Matching cost computation 

2. Cost aggregation 

3. Disparity selection 

4. Disparity refinement 

The traditional two-frame-stereo process starts with establishing a similarity (or 

dissimilarity) measure which can provide a numeric representation that serves as the 

matching cost between two pixels. Common techniques for calculating the matching 

costs include Absolute Difference (AD), Sum-of-Absolute-Difference (SAD), Sum-of-

Squared-Difference (SSD) and Normalized Cross Correlation (NCC) with non-

parametric measures such as Rank Transform (RT) and Census Transform (CT) [26]. 

When the costs are calculated at each pixel location for all possible disparities, they 

are usually organized into a 3D (or higher dimensional) data structure which is known 

as a cost volume [34].  

Based on the cost aggregation and disparity selection stages, conventional stereo 

methods can be further classified into three groups: “Local” methods, “Global” 

methods and “Semi-Global” methods [25]. Cost aggregation in local methods involve 

combining the matching costs over a support region (also referred to as a support 

window, mask, or an aggregation window [35]) which helps reduce matching 

uncertainties.  Global techniques on the other hand, often skip the same (stage 2) and 

feed the computed costs to the disparity selection stage directly [26]. 

During the disparity selection stage, the most fitting disparities are selected based on 

the matching costs associated with each pixel. Local methods employ a “Winner-

Takes-All (WTA)” approach by selecting the disparities with the lowest associated cost.  

In contrast, global methods search for disparity assignments that minimize a global 

cost function (i.e. energy function) involving all costs at all disparities [36] via 

optimization techniques such as Graph Cuts [37] or Belief Propagation [38]. Semi-

global methods attempt to minimize the combination of dissimilarity cost and 
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regularization cost along a limited set of paths or directions across the cost volume to 

achieve computational efficiency [39].  

Once the disparities have been selected, they are further refined during the disparity 

refinement stage (which is also called post-processing or fine-tuning stage). This final 

stage includes regularization and occlusion detection [26]. Left-to-right consistency 

check is a common practice in stereo vision where two disparity maps (left and right 

disparity maps depending on which image is being used as the reference image for 

matching cost computation) are compared to identify the false matches [40]. If 

inconsistencies are found, various strategies can be used to remove them. For 

example, inconsistent disparities can be replaced with consistent values extracted (or 

interpolated) from the neighbouring pixels [39].  

Until the deep stereo methods came to the forefront, the accuracy improvements in 

traditional stereo continued through confidence estimation methods for stereo [41], 

[42]. Accuracy of the confidence estimation techniques themselves kept improving 

with strategies such as training random forest classifiers to combine confidence 

measures [43] and supervised training to predict the correctness of matches and 

confidence estimates [44]. 

2.2 Evolution of Deep Stereo Methods 
The advent of the artificial neural networks in machine vision has significantly 

benefited the stereo vision techniques in terms of performance and accuracy [27]. 

However, the early deep stereo vision algorithms did not replace the full stereo 

pipeline. Instead, the matching cost computation was one of the earliest to get 

replaced by neural networks [25]. In one of the earliest examples [45], the researchers 

used a Siamese network to produce matching scores for image patches surrounding 

the pixels being matched. Their solution used cross based cost aggregation followed 

by semi-global matching and a left-to-right consistency check for disparity refinement. 

Although considerable gains in accuracy were achieved at the time, the technique 

required additional processing to find the best match from a series of closely matching 

image patches.  

Improvements to the visual correspondence between image patches continued with 

the addition of multi-scale feature extraction [46] which allowed comparisons to be 
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made in terms of spatial features instead of pixel intensity-based measures. Another 

similar deviant of the Siamese networks-based stereo methods used convolution over 

image patches to produce feature representations (i.e., feature volumes) before 

combining them into a matching score by using an inner product layer [47]. As 

reported by the authors, the change led to more accurate results with faster 

processing times.  However, their technique still relied on conventional methods for 

cost aggregation and post-processing. 

The availability of training data with ground-truth remained a hurdle for the early work 

in deep stereo vision. Although the stereo benchmark datasets such as Middlebury 

2001-2014 [48], [49], [50], [51], [52] and KITTI 2012-2015 [53], [54] were extensively 

used for supervised learning at the time, the number of image pairs available was still 

not large enough. The introduction of the Scene Flow dataset [55] in 2016 with over 

35,000 stereo image pairs with ground-truth data was a significant contribution to the 

stereo vision community. Later additions such as ETH3D [56],  Driving Stereo [57] and 

GENUA PASTO [58] have made training data more accessible to the researchers.   

In order to create adaptable stereo vision models (and to provide a solution for the 

scarcity of training data), some researchers proposed self-supervised network models 

which can learn from data during inference, without pre-training. Most of such 

methods used left-to-right consistency in stereo as the guiding rule for learning [59], 

[60] while some used active sensing technologies like IR – cameras later [61]. The work 

presented in [60] shows an attempt to use image warping error instead of disparity 

error to train a deep stereo vision model and demonstrates the self-improving ability. 

Since the data used for training is not known in advance, achieving a higher accuracy 

with self-supervised stereo remained a challenge. 

2.2.1 End-to-End Learning 

When the Scene Flow dataset was introduced, a disparity estimation technique called 

DispNet [55] was also introduced. DispNet was capable of regressing disparities from 

images directly using an encoder-decoder architecture (made possible by a series of 

convolutional and deconvolution layers). Some variations of the encoder-decoder 

architecture-based methods used the same at multiple stages. The work in [62] 

includes two such networks connected in series. However, they all still required a 
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correlation layer for scalability (to produce smooth disparity maps across scenes with 

large variations in disparity) and therefore rely on user inputs to determine the extent 

to which correlation is tested.  

Another end-to-end stereo framework was introduced in [63] which used a highway 

network to produce a cost volume and a disparity refinement network made of 

convolutional and fully connected layers to produce a disparity map from the cost 

volume. However, the feature and disparity refinement networks required separate 

training which affected the scalability. The overall architecture also included 

conventional post-processing steps such as left-right consistency, sub-pixel 

optimization and smoothing with filters.  

A scalable deep stereo method marked a key milestone in 2017 when GC-Net [64] 

incorporated geometry and context information (learned through high level feature 

representations of image data) to produce disparity predictions using an end-to-end 

framework. The key contribution of their work was the introduction of “differentiable 

disparity regression” which allowed gradients to be backpropagated through the 

disparity regression network by using the gradient friendly “softargmin” operation in 

place of the previously used “argmin” operation.  Inspired by the success of residual 

learning, GC-Net also featured residual blocks of network layers to enable high 

frequency information to be used by the downstream network layers when making 

predictions which simultaneously improved the gradient flow. 

2.2.2 Deep Learning Stereo Pipeline 

The ability to replace all stages of the legacy stereo pipeline with an end-to-end deep 

network gave rise to a new class of deep learning-based stereo vision algorithms. The 

resulting architectural pattern is referred to as “3D regularization structure” in 

literature [25]. The algorithms which follow the 3D regularization structure, can be 

identified by their three characteristic stages of processing which include: (1) feature 

extraction, (2) cost volume creation and (3) regularization. The following sections 

outline the different algorithms which have achieved better results by improving one 

or more stages of the “3D regularization structure”.  
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2.2.2.1 Improved Feature Extraction 

EdgeStereo [65] has improved feature extraction using edge contours and related 

constraints by incorporating edge cues into the loss function used for training, thereby 

improving the overall accuracy of disparity estimations. FADNet [66] also optimizes 

feature extraction further through the introduction of point-wise correlation layers 

and dual-residual blocks concatenated at multiple scales. CFP-Net [67] is another 

example of a multi-scale feature matching network with improved correspondence. 

Similarly, SegStereo [68] relies on the feature network to extract semantic information 

which can enhance disparity predictions through better matching while also featuring 

the ability to learn both supervised and unsupervised. In contrast, Guided Stereo [69] 

uses external LiDAR measurements to enhance features learned by the convolutional 

network.  

2.2.2.2 Optimizing Multiples Stages 

Certain models enhance feature extraction and cost volume at the same time. The 

network presented in [70] which is called AMNet, uses a modified version of the 

ResNet [71] feature extractor to produce depth separable features. AMNet then 

creates a multi-scale cost volume which consists of sub-volumes for feature distances, 

concatenated features, and depth wise correlation. In contrast, the work in [72] 

incorporates a confidence estimation network to alter the generated cost volume 

which enhances the unimodality of the cost distribution which is helpful when 

regressing disparities with the “softargmin” operation [64].  

GWC-Net [73] includes a group wise correlation stage where the extracted feature 

vectors are divided into segments before calculating a correlation score which is then 

combined with the concatenated feature volume to create a combined cost volume. 

SSPCV-Net [74] includes a pyramid cost volume to capture semantic information as 

well as multi-scale spatial information. Cost volumes with multi-scale information with 

or without pyramid cost volumes, require large amounts of memory [75] which can 

become a bottleneck during training and inference [25]. 

Moreover, there are networks that incorporate improvements to both the feature 

extraction and regularization stages. For example, PSM-Net [76] uses a spatial pyramid 

pooling (SPP) module to learn context information at different scales by having 

multiple convolutional layers in parallel, with each parallel path having different 
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feature lengths. A 3D convolutional encoder-decoder architecture is then used for cost 

aggregation to achieve better accuracy compared to regularization using basic 3D 

convolutional layers.  

Meanwhile, some SOTA algorithms use additional cost aggregation layers within the 

end-to-end deep learning-based architecture. GA-Net (Guided Aggregation Network 

[7] with variants like [77]) is one such network which has implemented semi-global 

cost aggregation in the form of a deep neural network.  However, the resource 

utilization problem can be made worse by having multiple cost volumes or elaborate 

aggregation stages especially when the maximum disparity is high [5]. 

2.2.3 Stereo with Recurrent Neural Networks 

Based on the recurrent neural networks (or RNNs), some researchers have attempted 

to integrate left-to-right consistency into the learning process. One such study [78] 

uses “Highway” networks [79] to produce a cost volume which is used as input to a 

stacked convolutional LSTM model called LRCR (Left-Right Comparative Recurrent). 

LRCR is trained to evaluate left-right consistency to produce more refined disparities. 

However, the training process must be conducted in two stages due to the increased 

complexity of the network. 

An RNN-based stereo matching network for video is demonstrated in [80]. It uses a 

concatenated feature volume from the input images and disparity estimates by an 

encoder-decoder network as input to LSTM modules to learn temporal relationships 

in both input images and the disparity maps. Despite achieving a higher level of 

accuracy compared to other self-supervised methods, the feature volume 

construction phase depends on user input for disparity range. 

Recurrent neural networks have also been used for confidence estimation and 

matching cost refinement in stereo vision. For example, the study in [81] uses a set of 

LSTM modules to predict a confidence score for a pixel location given its associated 

cost vector whereas the work in [82] demonstrates the use of a recurrent neural 

network to correctly identify the location of match points.  
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2.2.4 Recent Studies in Deep Stereo 

The available literature shows that the recent studies have focussed on incremental 

developments and additions to the 3D-regularization structure to achieve higher levels 

of accuracy, performance, and optimal resource utilization. For example, some key 

studies have used confidence and uncertainty-based measures [83], [84], [85], [86],  

adaptive confidence estimation networks [87], [88], [72],  active inputs [69], [89] and 

multi-level robust feature representations [90] to improve disparity accuracy in deep 

stereo. On the other hand, certain hierarchical approaches [4], [5] have improved 

performance in addition to the accuracy. It is noteworthy how the network in [5] does 

not explicitly store a 3D (or higher dimensional) cost volume which leads to the 

efficient use of GPU memory. However, its multi-level initialization stage computes 

the matching costs at all disparities up to a maximum value chosen by the user. In 

another unique hierarchical network found in [4], Neural Architecture Search (NAS) 

has been used to incorporate human knowledge of deep networks to select the best 

feature and cost aggregation network structures for a deep stereo network. Their 

study marks a significant milestone due to the automatic selection of the optimal 

network architecture in deep stereo. Nevertheless, the solution depends on user-

defined parameter values for maximum disparity like many other deep stereo 

techniques discussed so far. 

2.3 Reliance on Parameters in Stereo Vision 
The traditional stereo methods (local, global and semi-global alike) use parameters 

such as the mask size [91], maximum disparity (and related parameters in the form of 

maximum disparity range, disparity levels, displacement range) [92], penalties [39] 

and MRF parameters [93]. In addition, there are other custom defined parameters in 

some handcrafted cost functions used by various stereo techniques [51]. An effort to 

estimate parameters from the input images can be seen in [94] which features a MRF 

parameter estimation technique for global stereo for algorithms such as Graph-Cuts 

and Belief Propagation. SGM-Net [95] on the other hand, uses a deep learning network 

to learn penalty parameters in semi-global-matching which has resulted in accuracy 

improvements.  
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In contrast, end-to-end deep learning stereo methods use only a limited number of 

user-configurable parameters during inference [27]. Most of the parameters 

associated with such methods are usually selected and optimized during the training 

phase. Once the training is complete, only a few parameters are required to be set by 

the users for disparity inference. However, during this background study it was found 

that to this date, the maximum disparity remains a user-configured parameter in many 

deep learning stereo techniques. Table 2.1 includes a list of top performing algorithms 

on the KITTI 2015 stereo benchmark at the time of writing. They all require users to 

specify a suitable maximum disparity value during disparity inference.  

The publicly available source code for some methods in Table 2.1 (e.g., [4], [6], [7], [67], 

[72], [73], [76], [96]) and the published method descriptions indicate that most of the 

methods define their cost volumes in the form of fixed-sized tensors in memory during 

the forward propagation through the network. Subsequently, the elements in the cost 

volumes get filled with the corresponding features or concatenated features at each 

disparity in a sequential manner (starting from disparity zero to some maximum 

disparity value specified by the user). The finished cost volumes are then passed on to 

the regularization stage during which the costs get further aggregated by the cost 

aggregation layers. Finally, disparity regression and up-sampling operations produce 

disparity maps at the original image resolution. 
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Name Title Manual 

Max. Disp. 

Typical 

Value/Values 

LEAStereo [4] Learning Effective Architecture Stereo Yes 192 

HITNet [5] Hierarchical Iterative Tile-refinement Network Yes 320, 160, 

256 

CSPN [6] Convolutional Spatial Propagation Network Yes 192 

GA-Net [7] Guided Aggregation Network Yes 192 

AMNet [70] Deep Atrous Multi-scale Stereo Disparity 

Estimation Network 

Yes 192 

AcfNet [72] Adaptive Unimodal Cost Filtering for Deep 

Stereo Matching 

Yes 192 

AANet [96] Adaptive Aggregation Network Yes 192 

Edge Stereo 

[65] 

Multi-Task Learning Network for Stereo 

Matching and Edge Detection 

Yes 192 

SSPCV-Net [74] Semantic Stereo Matching with Pyramid Cost 

Volumes 

Yes 256,192 

HSM [97] Hierarchical Deep Stereo Matching Yes 384,512 

PSM-Net [76] Pyramid Stereo Matching Network Yes 192 

PDS [98] Practical Deep Stereo Yes 255 

CRL [62] Cascade Residual Learning  Yes 160/40 

GWCNet [73] Group Wise Correlation Network Yes 192 

FADNet [66] Fast and Accurate Network for Disparity 

Estimation 

Yes 192 

CFP-Net [67] Cross-form Pyramid Network Yes Not Given 

SegStereo [68] Exploiting Semantic Information for Disparity 

Estimation 

Yes 96 

DispNetC [55] DispNet with Correlation Layer Yes 160/40 

LRCR [78] Left-Right Comparative Recurrent Model for 

Stereo Matching 

Yes 228 

Table 2.1: A list of state-of-the-art stereo disparity estimation techniques which rely on users to configure a 

maximum disparity value / disparity search range. Table contains deep stereo networks (with a published 
method) from the top 100 algorithms on KITTI 2015 benchmark (i.e., anonymous submissions with no 

method details have been omitted while variants of the same network have also been removed).  
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2.3.1 Deviations and Exceptions 

The background study also found some deep stereo methods which can reduce the 

disparity search space. For example DeepPruner network [99] which is based on 

PatchMatch stereo [16], is able to reduce the disparity search range on a per pixel 

basis with the help of a deep neural network. However, the confidence estimation 

process still requires the minimum and the maximum values to be specified by the 

user. Advantages of the method include the savings in processing power due to the 

reduced size of the cost volume. The main drawback however is that the output 

accuracy depends on the manual parameter selection by the users.  

Some encoder-decoder architecture-based algorithms can predict disparities without 

requiring users to provide the maximum disparity explicitly. For example, in a stereo 

vision-based robotic surgery application [100], researchers have been able to employ 

an end-to-end network based on the same paradigm to regress disparities directly. 

Their method uses the output disparity predictions to reconstruct the source images 

so that the reconstruction error can in turn be used to train the network. In another 

similar approach [101], the disparity predictions by the network are used to shift the 

pixels in the right image, creating a warped image. The warped image is then 

compared against the reference image for training. Such methods are suitable when 

the maximum disparity is limited (like in the case of robotic surgery where inherently 

small baseline leads to smaller disparities between the left and right views). In 

contrast, the DispNet [55] which also uses the encoder-decoder architecture, includes 

a correlation layer to handle large disparities. Correlation layers can efficiently handle 

large horizontal displacements provided that a suitable range is set by the users. 

2.4 Automatic Disparity Search Range Estimation in Stereo 
In deep stereo methods listed in Table 2.1 above, the maximum disparity corresponds 

to the disparity dimension of the cost volume. Therefore, in deep stereo methods that 

build a cost volume, the maximum disparity determines the disparity search range in 

full (as the minimum disparity is generally assumed to be zero). Although the 

automatic DSR estimation has not been studied much in deep stereo (as found in the 

background study), many traditional techniques in the past have attempted to 

estimate the same from the input data.  
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Such techniques can be categorized into two groups: 

1. Scene-based DSR estimation techniques 

2. Progressive DSR estimation techniques  

 

2.4.1 Scene Based DSR Estimation Techniques 

The scene based DSR estimation techniques aim to recover a suitable DSR from each 

individual stereo image pair. They commonly use feature descriptors, disparity priors, 

support points, stochastic properties or coarse-to-fine pyramid approaches. 

2.4.1.1 Feature Descriptor Based Techniques 

Past studies [9], [10] show efforts to estimate the disparity search range with feature 

descriptors like SIFT [102] and SURF [103]. For the results to be accurate, the relevant 

feature descriptors need to be able to match key points in the images associated with 

the foreground objects in the scene, which correspond to the largest disparity.  

Although such techniques can automatically find the maximum disparity, feature 

descriptors have their own parameters and thresholds [10] which must be specified 

and fine-tuned by the users to achieve reliable results. Furthermore, the time 

complexity of the stereo algorithms can be affected by the processing delays 

associated with such feature descriptors [11] when used in-line with the disparity 

estimation process. 

2.4.1.2 Stochastic Methods 

Authors of the work presented in [17] have used the correlation between the left and 

right images as a function of the distance between the images to form a variogram 

which has been subsequently used to estimate the maximum disparity. They have 

managed to obtain reasonably accurate DSR estimations using a hand-crafted 

heuristic rule developed by experimentation. 

PatchMatch stereo [16] has been developed based on the assumption that large 

groups of pixels in digital images can be assigned to a fewer number of planes (inspired 

by the PatchMatch correspondence algorithm in image editing [104]). The method 

attempts to assign pixels iteratively to a set of planes starting from a random 

association and converges well under most practical scenarios. However, PatchMatch 

stereo relies on a user-specified value in the form of the “maximum allowed disparity” 

which gets reduced by half during each iteration of the refinement process. This makes 
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the initial value crucial for the overall performance. However, the technique highlights 

the feasibility of using the law of large numbers for disparity assignments in the face 

of uncertainty.  

2.4.1.3 Disparity Priors and Support Points 

The work in [13] shows an effort to use a set of initial support points to eliminate the 

ambiguities associated with disparities of the remaining points. The objective is to 

build a disparity prior based on triangulation of sparse but well-established match 

points which in turn determines the disparity search range for the ambiguous points. 

Robustness of the point correspondences is determined using a handcrafted method 

that measures the L1 distance between filtered grids of blocks in two images. Those 

blocks are also checked for left-to-right consistency before selection. However, the 

study indicates that the process must be initialized with a user-defined maximum 

disparity. When obtaining the published results, the researchers have in fact used an 

initial value equal to half the image width.  

In a similar approach, the study presented in [15] uses robustly established matches 

to add constraints to the subsequent calculations of disparity. Initial set of reliably 

matched points have been obtained using normalized cross correlation and a 

threshold value. The method which is based on the principle of smooth variation of 

disparity, can remove the ambiguities gradually. 

The algorithm presented in [12] starts with a limited set of seeds produced by using a 

pre-matcher and then grows to produce a semi-dense disparity map which is robust 

against the inaccuracies in the initial seeds. The results indicate that the computational 

time depends on the quality of the initial correspondence seeds despite the output 

disparity maps are unaffected. This can lead to convergence issues at higher resolution 

levels with larger DSR values. 

Adaptive selection of a DSR value based on the other pixels in the neighbourhood is 

demonstrated in [14]. The process uses disparity values from the previous image rows 

to limit the DSR for the pixels which are processed later. However, at least one row 

must be processed with an initial DSR value defined by the user. Moreover, an 

incorrect initial setting can cause error propagation into the subsequent iterations. 
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2.4.1.4 Coarse-to-Fine and Image Pyramid Approaches 

The study outlined in [18] has used an image pyramid in which the low-resolution 

layers are used to create disparity maps with an initial disparity search range before 

using the results to better estimate the disparity search space for the pixels at higher 

resolution levels. Nevertheless, their methodology requires some disparity search 

range to start the process and the images must be processed at multi resolution levels 

which adds to the overall computational complexity.  

In the methodology published in [19], the process starts with an initial disparity search 

range and then keeps expanding the range iteratively until the original image size is 

reached. Their method is based on the findings of [20] which introduces a confidently 

stable matching approach that helps identify the largest unambiguous regions in 

matching. However, the matching process must be repeated at many different 

resolution levels until the final value is chosen which can be time consuming if used in 

combination with an already complex stereo disparity estimation algorithm. The 

accuracy of the results also depends on the initial disparity search range selection. 

A modified coarse-to-fine pyramid-based approach is proposed in [21] with 

enhancements to subsampling scale selection and tuning of the histogram threshold. 

Although incremental developments in accuracy and temporal disparity accuracy is 

observed, initial disparity range selection must still be made by the users. 

2.4.2 Progressive DSR Estimation Techniques 

Progressive techniques estimate disparity search range for image pairs from the 

previous stereo images in a sequence. These methods are typically used for recovering 

depth from videos. The objective is to add constraints on disparity based on the 

predicted disparity flow values as shown in [22].  A recent study [23] demonstrates 

how progressive disparity range estimation can be used in an actual application 

involving a driver assistance system. They use BRISK based feature point matching 

between the left and the right images to create a sparse v-disparity [24] histogram 

from which the disparity search range can be estimated at the beginning. Subsequent 

estimations are then calculated by parabola fitting to the row-wise dense estimations 

and choosing the best fitting path. This is another example method that relies on a key 
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point extraction algorithm for its accuracy which requires careful selection of 

thresholds and other parameters related to the key point extraction method itself. 

2.5 Summary of Findings 
In this chapter, the past studies on stereo vision were discussed. They indicate that 

the conventional stereo methods implement the stages of the legacy stereo pipeline 

which include matching cost computation, cost aggregation, disparity selection and 

disparity refinement.  Early neural networks-based stereo vision methods also 

followed the same architectural paradigm and replaced some conventional stages 

(especially the matching cost computation) with deep learning-based counterparts. 

Introduction of the differentiable “Softargmin” operation to replace the commonly 

used “argmin” operation allowed disparity regression to be carried out end-to-end in 

a gradient-friendly and scalable manner. The possibility of producing disparity maps in 

a single forward pass through a deep network led to a new architectural pattern called 

“3D Regularization Structure”.  

The new end-to-end architectural blueprint has three characteristic stages of 

processing which include feature extraction, cost volume creation and disparity 

regularization. Based on the 3D regularization architecture, the progression of deep 

stereo networks continued with some techniques incrementally optimizing one or 

more stages. For example, certain techniques have used elaborate feature extraction 

networks while others have utilized complex cost aggregation blocks, regularization 

networks and higher dimensional cost volumes. Studies indicate that the use of higher 

dimensional cost volumes lead to excessive resource utilization during both training 

and disparity inference. More recent studies have focussed on optimizing the 

performance and computational resource utilization of the stereo algorithms in 

addition to accuracy by introducing architectural changes to the stages of the deep 

stereo pipeline. 

During the literature review, it was further observed that the conventional methods 

have various user-specified parameters that are required to be set or configured by 

the users in order to obtain accurate disparity maps. In contrast, deep learning-based 

algorithms have only a fewer number of stereo vision related user-specified 

parameters. However, the maximum disparity or the ceiling value of DSR, is still 
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required to be configured by the users based on their understanding of the scene 

structure. This includes even the top performing deep stereo algorithms on stereo 

benchmarks such as KITTI and Middlebury. Further, investigations into the methods 

which do not expect the maximum disparity as part of input, revealed that they rely 

on other user-configured parameters.  

The review revealed two types of automatic DSR estimation techniques. The first uses 

individual scene-based methods to estimate DSR from individual stereo image pairs. 

They use feature descriptors, disparity priors/seeds, user-defined initial DSR estimates 

and coarse-to-fine image pyramid approaches to estimate a suitable DSR for a given 

scene. In contrast, progressive DSR estimation methods use DSR values from previous 

images of a sequence to limit the disparity search in subsequent calculations. 

However, the most common drawback of both types of methods according to the 

available literature is that they depend on other user-defined parameters or initial 

manual DSR estimates.  
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CHAPTER 03 - RESEARCH METHODOLOGY 

Introduction 
The literature review in Chapter 2 revealed that the traditional stereo techniques have 

many user-configured parameters such as the maximum disparity or disparity search 

range (DSR) while most deep learning stereo methods require the maximum disparity 

alone as a user-configured input during disparity inference. Therefore, it is imperative 

that if a deep stereo network can estimate the maximum disparity parameter 

automatically by itself without user intervention, then full autonomy in stereo 

disparity estimation can be achieved. However, the literature review also revealed that 

the existing automatic DSR estimation techniques have drawbacks of their own such 

as the additional computational complexity and custom parameters or thresholds 

which require selection and fine-tuning by the user before accurate results can be 

obtained. This thesis presents a new technique to estimate the maximum disparity 

automatically as part of the forward propagation stage of a deep stereo network. The 

current chapter outlines the research methodology used to develop the technique to 

meet the objectives identified in Chapter 1. 

3.1 Research Questions 
To achieve the objectives of the study, the following research questions need to be 

answered.  

1. What phenomenon or associated metric can be used to determine the size of 

a cost volume in deep learning-based stereo algorithms, without user 

intervention? 

In the background study, it was found that most of the deep stereo 

techniques use a cost volume creation process which starts by defining 

a fixed-sized cost volume which is filled with layers of features or 

concatenated features learned from the stereo images, up to the 

maximum disparity defined by the user. If the cost volume can be built 

layer by layer and some layer-wise metric is able to provide an 

indication of the point at which that process should terminate, then that 

would determine the maximum disparity for the scene automatically.  
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2. Would such a metric be computationally efficient enough to be incorporated 

into a stereo method? 

Stereo disparity estimation process is a computationally demanding 

operation on its own. Deep stereo techniques have an inherently higher 

order of growth in computational complexity which is the main reason 

why they usually require specialized hardware (GPUs) for training and 

even inference in most cases. Therefore, any additional computations 

introduced to the already complex process can have a negative impact 

on the performance of the overall network. Therefore, it is not 

unreasonable to question if such a metric would introduce too much of 

a burden especially in terms of the order of growth of computations 

pertaining to the overall algorithm. 

3. Can such a metric leverage on the stereo matching accuracy of the deep stereo 

network for accuracy of maximum disparity predictions? 

Deep stereo networks are usually trained for the output accuracy in 

terms of the disparity maps they produce. The training process uses the 

accuracy (or error) of the predictions to adjust the network parameters. 

Hence, it is important to ask if the accuracy of the predicted maximum 

disparity (by the metric) would improve with the matching accuracy of 

the network. If not, other optional criteria may have to be used to train 

the network. 

4. If such a metric is integrated into a deep learning network, will the model 

require a special training regime to converge?  

As found in the literature review, the state-of-the-art deep stereo 

techniques often use elaborate 3D convolutional networks for cost 

aggregation. Hence, it is important to investigate the impact of cost 

aggregation networks on the convergence of a metric which works at 

the cost volume stage, and vice-versa. 

5. What gains could be achieved by using the automatic maximum disparity 

prediction with a deep learning network?  

A universal maximum disparity assignment would lead to a waste of 

computational power especially when the stereo image sequences have 
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a wide variety of disparity ranges. On the other hand, a layer-wise 

metric on a cost volume can result in performance degradation. 

Therefore, it is important to ask if maximum disparity estimation with a 

metric can lead to significant gains in performance in the long run. Next, 

it is also important to investigate for other potential gains associated 

with such an approach. 

3.2 Methodology Overview 
A five-stage research methodology is adopted to find answers to the five research 

questions. The individual steps (i.e., phases or stages) of the methodology include:  

1. Development of a metric to provide termination criteria for a cost volume  

2. Evaluate the feasibility of the metric in terms of computational complexity 

3. Analyse the convergence of the metric using a deep stereo method 

4. Develop an end-to-end stereo network and embed the metric 

5. Training and evaluation using standard and custom stereo data  

A simplified graphical illustration of the five phases can be found in Figure 3.1 and the 

individual phases are explained in the sections to follow.  

 

 

 

 

3.2.1 Development of a Metric to Provide Termination Criteria for Cost Volume  

The objective of this stage is to develop a metric which can be computed at each 

disparity to provide a universal termination criterion or criteria to end a layer-wise cost 

volume creation process, thereby determining the maximum disparity for any given 

scene. Initially, fundamental stereo matching techniques such as AD, SAD, SSD, RT, CT 

and NCC are used to study the changes in local matching cost extrema, in response to 

a layer-wise cost volume construction process. The intention here is to identify any 

phenomena associated with the matching cost extrema that coincide with the 

maximum disparity of a given stereo image pair. Standard stereo images from 

Figure 3.1: The five main steps of the methodology 
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Middlebury, KITTI, Scene Flow and custom-created stereo images with ground-truth 

disparity maps are used for the analysis. Based on the findings, a new metric (called 

Sum of New Cost Extrema - SNCE) is developed which can be estimated at each 

disparity to determine whether the cost volume construction should continue or 

terminate at a particular disparity. The mathematical foundation of the metric is then 

established to identify any conditions under which universal and user-independent 

convergence of the of the metric (i.e., the value of the SNCE metric meeting the 

termination criterion/criteria) can be achieved to reliably locate the maximum 

disparity. Subsequently, the developed metric is evaluated using synthetic and real 

datasets from stereo vision benchmark datasets (KITTI, Middlebury, Scene Flow) to 

validate whether the convergence of the SNCE metric coincides with the maximum 

disparity. Whenever necessary, custom stereo image pairs are synthesized and used 

to test the metric under challenging scenarios.  

 

 

 

 

3.2.2 Evaluation of the Computational Complexity of the SNCE Metric  

During this stage, the developed metric is further studied with both algorithmic 

analysis and empirical methods to estimate the additional computational complexity 

introduced by the metric on top of the already iterative computations associated with 

stereo disparity estimation. In order to achieve the same, the new metric is 

incorporated into basic stereo disparity estimation algorithms in both CPU and GPU 

environments. Initially, this is done with pseudo-code for algorithmic analysis and then 

the pseudo-code is implemented in Python and C++ for empirical analysis with real 

data to validate the theoretical findings. As part of the process, stereo images from 

the benchmark stereo datasets are used at four different resolution levels to 

investigate if the new metric affects the order of growth of computations associated 

with stereo algorithms. Furthermore, the overall impact of the metric on the 

Definition: SNCE Convergence: If the value of the SNCE metric computed at a 

particular disparity meets the termination criteria/criterion identified as part of the 

study, then it is referred to as “SNCE Convergence”. The disparity value at which this 

happens, is a candidate for maximum disparity for the stereo image pair in concern.  
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computational time of a stereo disparity estimation algorithm (on both CPU and GPU 

architectures) is analysed to determine the feasibility of the metric.  

3.2.3 Analyse the Convergence of the Metric using a Deep Stereo Network 

In the third phase of the overall methodology, a foundational deep stereo network is 

developed which can produce disparity maps along with a series of SNCE values 

computed at each disparity (i.e., at each layer along the disparity dimension of the cost 

volume). The developed network is trained using the Scene Flow “Driving” dataset 

using hyper parameters selected through experimentation with an optimizer. Next, 

the trained network is used to predict disparity maps for the validation/test stereo 

images while computing the SNCE metric at each disparity up to a value beyond the 

maximum disparity reported in the ground-truth data. The output disparity maps are 

then analysed qualitatively to ensure that the disparity predictions closely match the 

ground-truth data. The resulting SNCE variations are compared with the maximum 

disparity values extracted from the ground-truth data to verify if the convergence of 

the SNCE metric, occurs at the maximum disparity for a given scene. The same steps 

are repeated to further evaluate the metric using a series of stereo image sequences 

extracted from the validation data. Image cropping is used to improve the diversity of 

the maximum disparity values observed in test data.  Finally, the disparity values that 

coincide with SNCE convergence are recorded and compared against the maximum 

disparity values extracted from the ground-truth data.  

3.2.4 Develop an End-to-end Deep Stereo Method and Embed the Metric 

In the fourth stage of the methodology, an end-to-end deep stereo network is 

developed based on the “3D Regularization Structure” in such a way that the network 

is able to: 

✓ Build and allocate memory on-demand to the cost volume 

In a typical deep stereo network, a fixed-sized cost volume is 

constructed using the features extracted from the left and right 

stereo images by computing the matching costs or concatenating the 

features at each disparity starting from zero up to a user-specified 

maximum disparity. Such algorithms can afford to pre-allocate 

memory to hold the cost volume as the size is known in advance.  



    

   30 
 

However, when using the SNCE metric to determine the maximum 

disparity automatically, the size of the cost volume is unknown in 

advance. Therefore, the network needs to be able to allocate 

memory on demand so that the layers of cost can be added to the 

cost volume until termination criteria is met. Also, due to the 

possibility of large maximum disparity values, the network needs to 

be memory efficient so that any over-estimation of the maximum 

disparity does not result in memory allocation errors. 

✓ Compute the SNCE metric at every new layer added to the cost volume 

Each time a new layer is added to the cost volume the network should 

also be able to efficiently estimate the value of the SNCE metric for 

the newest layer. 

✓ Terminate the process at any disparity based on the computed value of the 

metric 

If the estimated value of the SNCE metric meets the termination 

criteria, the network should be able to terminate the cost volume 

creation process and start the cost aggregation stage. However, the 

necessary precautions must be taken to meet the input 

dimensionality requirements of the aggregation layers which may 

have strict requirements in terms of the input tensor sizes to 

guarantee a fixed dimensionality at the output (e.g., Transposed 

Convolutional Layers). In such cases, termination of the cost volume 

creation process can be delayed until the additional criteria is met. 

 

3.2.5 Training and Evaluation 

The convergence of the SNCE metric at the maximum disparity cannot be guaranteed 

before training the deep stereo network. In addition, the training process needs to be 

conducted with a large dataset over several iterations (or epochs). Hence, the use of 

automatic maximum disparity during training can result in delays due to over-

estimation of maximum disparity especially at the beginning when the network is 

partially trained.  Such delays can lead to training times which are prohibitively longer 

and impractical. Also, it is not feasible to train a deep stereo network with all potential 
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maximum disparity values up to the stereo image width. Ideally the network should 

be able to learn with a small maximum disparity and then detect any suitable 

maximum disparity value during the disparity inference. Therefore, the SNCE-based 

automatic disparity estimation must be disabled during the training phase and a small 

fixed maximum disparity value must be used to achieve faster processing times so that 

the overall training time can be maintained within practical time limits. Only the pixels 

having disparities equal to or below the selected fixed maximum disparity must be 

used for backpropagation to update weights and biases in the network. Once the 

training phase is finished, automatic maximum disparity detection must be enabled 

for disparity inference which is the ultimate objective (i.e., develop a deep stereo 

algorithm which can produce stereo disparity maps independently of user-defined 

parameters).  

3.2.5.1 Improving the Accuracy of the Maximum Disparity and Dense Disparity 

Estimations 

Unlike the deep stereo networks which are optimized for the accuracy of the output 

disparity maps, the deep learning model developed at this stage requires to ensure 

that the accuracy of both the final disparity maps as well as the maximum disparity 

estimations improve simultaneously during training. Hence, the network loss 

calculation during training needs to include both the output disparity accuracy as well 

as some additional criteria which can help improve the accuracy of the maximum 

disparity estimations with SNCE. This is achieved by using a special training process 

called “Clamped Training”. 

In clamped training, an additional disparity map is obtained by sending a copy of the 

cost volume through a “Softargmin” based disparity regression layer and an up-

sampling layer. Then the intermediate and the final disparity maps are compared 

against the ground-truth to obtain disparity errors which are combined to estimate 

the overall loss.  

3.2.5.2 Training and Evaluation Stages 

The developed network is trained with clamped training in a 3-stage process, using 

three datasets to improve the accuracy of the maximum disparity predictions and final 

disparity maps while ensuring generalization capabilities of the network.  
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The 3 stages of training are: 

1. Initial Training 

2. Extended Training 

3. Fine Tuning 

NVIDIA RTX2080 and NVIDIA GTX1070 GPUs are used as the hardware for training. At 

the beginning of each training stage, automatic maximum disparity estimation with 

SNCE is disabled and the maximum disparity is fixed to a value of 256 pixels. Then only 

the pixels with ground-truth disparities equal to or lower than 256 pixels are used to 

train the network with clamped training. At the end of each training stage, SNCE-based 

automatic disparity estimation is enabled to conduct testing and evaluation.  

Moreover, the intermediate regression and up-sampling layers (used to obtain 

intermediate disparity maps for clamped training) are disconnected from the network 

during performance evaluations. At the end of each training stage, an evaluation of 

the network is conducted using the validation data. Upon completion of all 3 training 

stages, a comprehensive evaluation is conducted using 3 additional benchmark 

datasets (ETH3D, Middlebury 2014 and KITTI 2012) and custom stereo images 

captured with a custom-built stereo camera. 

3.2.5.2.1 Initial Training and Evaluation 

The aim of the initial training phase is to ensure that the network is able to converge 

in terms of the accuracy of the maximum disparity estimations and the dense disparity 

maps. Initial training is conducted using 600 stereo image pairs (with ground-truth) 

from the Scene Flow “Driving” dataset. The data is segregated into training and 

validation datasets in an 80/20 split. At the end of the initial training phase, the 

validation data is used to analyse the disparity maps qualitatively and quantitatively. 

The qualitative analysis involves visual inspection of the predicted and ground-truth 

disparity maps for inconsistencies. The quantitative analysis of the output disparity 

maps is conducted using the following commonly used stereo disparity accuracy 

measurements: 
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1. Average Error (End Point Error)– Average error refers to the absolute difference 

between the predicted and ground-truth disparity maps taken as an average 

over the whole pixel space.  

2. Three Pixel Error (3-Pixel Error) – Three-pixel error refers to the percentage of 

pixels in the disparity prediction with associated error of more than 3 pixels 

compared to the ground-truth. 

During the initial training phase, additional tests are conducted using sequences of 

cropped stereo image pairs from the validation dataset to verify if the maximum 

disparity estimations using SNCE match the maximum disparity reported in the 

ground-truth. Image cropping is used to enhance the diversity of the maximum 

disparity values encountered during evaluation. A much smaller cropping size is used 

at this stage to introduce more variation in maximum disparity. Finally, a performance 

evaluation is conducted using 5 cropped stereo image sequences each having 60 

stereo image pairs from the validation dataset. Firstly, the average processing time per 

stereo image pair is computed for the 5 image sequences while keeping the SNCE-

based automatic maximum disparity estimation enabled. Then the same experiment 

is repeated with the cost volume size fixed to the largest maximum disparity value 

observed in the dataset. A comparative analysis is then conducted to check for gains 

or losses in performance.  

3.2.5.2.2 Extended Training and Evaluation 

The objective of the extended training stage is to train the novel stereo network with 

a large dataset to enhance the diversity of stereo data encountered during training. 

The Scene Flow “Flying Things 3D” dataset with 22,390 stereo image pairs (with 

ground-truth) is used to conduct extended clamped training. Data is separated into 

training and validation datasets with a ratio of 80/20. Instead of running through the 

whole image dataset at each epoch, 1000 randomly selected images from the training 

dataset are used for each training cycle. The overall training is conducted for 1000 

such iterations. This is done to limit the GPU memory required to keep intermediate 

data (e.g., tensors) for debugging and analysis. At the end of extended training, the 

validation dataset is used to conduct a qualitative and quantitative analysis on the 
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disparity maps predicted by the trained network. The same stereo disparity accuracy 

measurements are used for the quantitative analysis.  

3.2.5.2.3  Fine-Tuning and Evaluation 

Ideally the network should be trained on a large dataset of real-world stereo images 

with ground-truth so that it is able to generalize across any calibrated stereo image 

pair. However, the same effect can be achieved by obtaining the network model saved 

after extended training and retraining it with a small real-world stereo dataset. For 

that purpose, KITTI 2015 dataset with 200 stereo images (with ground-truth) is used 

with a 90/10 split between the training and validation datasets. Upon completion of 

the fine-tuning stage, a qualitative and quantitative analysis is conducted using the 

validation data in a similar way to the previous stages. Upon completion of the fine-

tuning stage, the network is ready for evaluation for its generalization capabilities on 

additional datasets and images captured with an experimental stereo camera setup.  

3.2.5.3 Evaluation on Additional Datasets 

Upon successful completion of the three training stages, the network is further 

evaluated using three additional datasets: ETH3D, Middlebury 2014 and KITTI 2012. 

The objective is to test the trained model on different types of stereo images (e.g., 

grayscale and colour) which have been captured with different cameras (i.e., different 

baselines, resolution levels etc.) and scenes with diverse structure in terms of the 

proximity of the objects. A qualitative analysis is then conducted using the predicted 

disparity maps and the available ground-truth data. It is followed up by a quantitative 

analysis using the average error and three-pixel error metrics. 

3.2.5.4 Evaluation on Custom Stereo Images 

Finally, the generalization capabilities of network are tested with stereo images 

captured using a custom-built stereo camera system. The objective here is to analyse 

the network’s response to imperfect stereo image pairs captured with an 

experimental stereo camera. The setup consists of a pair of individual FLIR 

Chameleon3 cameras with fisheye lenses mounted on a custom-built stereo rig as 

shown in Figure 3.2.  

Prior to capturing images for evaluation, stereo calibration is performed using a series 

of images of a checkerboard pattern captured with each of the cameras. Upon 
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completion, calibration parameters are stored for later use when performing fisheye 

distortion correction and stereo calibration. Subsequently, the system is used to 

obtain calibrated stereo images of structured indoor scenes as well as sequences of 

outdoor scenes. The foreground objects are manipulated, or new objects are 

introduced into the foreground of the scenes to vary the maximum disparity. The 

network is then used to predict disparity maps for static scenes as well as sequences 

of images before analysing the disparity maps qualitatively. 

 

Figure 3.2: Custom built stereo camera setup to obtain calibrated stereo image pairs for evaluating 
generalization capabilities of the novel deep stereo network. System consists of two FLIR Chameleon CM3-U3-

13S2C-CS cameras fitted with Fisheye lenses having manually variable focal length. 

 

3.3 Chapter Summary 
This chapter introduced a 5-stage methodology to achieve the objectives outlined in 

Chapter 1. In the first stage of the methodology, experiments will be conducted using 

basic stereo algorithms and standard stereo datasets to study the movement of local 

matching cost extrema during a layer-wise cost volume creation process. The objective 

is to find any phenomenon that coincide with the maximum disparity. Based on the 

findings a new metric called Sum of New Cost Extrema (SNCE) will be developed. A 

mathematical model for the metric will establish the termination criteria for a layer-

wise cost volume creation process based on the value of the metric. Standard stereo 

benchmark datasets with ground-truth will be used to evaluate the metric for its 

convergence.  

During the stage 2, an algorithmic analysis will be conducted and followed up with an 

empirical analysis to determine the additional computational complexity introduced 



    

   36 
 

by the metric. Pseudo code of the basic stereo algorithms is then modified to include 

the metric and implemented in code for analysis using stereo images of varying 

resolution. The order of growth of computations associated with the modified 

algorithms (with and without the metric) is then determined. Experiments in both CPU 

and GPU environments will be completed to study the feasibility of the metric for use 

with deep stereo algorithms. 

In the 3rd stage of the process, a basic deep stereo algorithm is developed in such a 

way that it can compute the new metric at every layer during the forward propagation 

through the network. The developed network model is then trained and evaluated 

with cropped stereo images and image sequences from the Scene Flow “Driving” 

dataset to validate SNCE convergence at maximum disparity. Although the SNCE 

metric is computed at each disparity, the cost volume size is kept fixed during this 

stage so that the value of the metric can be analysed at the maximum ground-truth 

disparity and above. 

A fully-fledged deep stereo network is developed during the 4th stage of the 

methodology. This involves developing capabilities such as progressive memory 

allocation on GPU for the cost volume and termination or scheduled termination of 

the cost volume creation process based on the value of the metric.  

During the 5th and final stage, the “clamped training” process will be introduced which 

is aimed at ensuring both SNCE convergence and output disparity accuracy improve 

simultaneously during the training process. A 3-stage training process is then used to 

train the end-to-end network with the objective of improving its generalization 

capabilities. The three training stages include initial training, extended training and 

fine-tuning. Scene Flow “Driving”, Scene Flow “Flying Things 3D” and KITTI 2015 

datasets are used during the training stages, respectively. At the end of each training 

process, the resulting network is evaluated using the validation data both qualitatively 

and quantitatively. Upon completion of the training process, the final network model 

is evaluated using stereo images from 3 additional stereo datasets (ETH3D, 

Middlebury 2014 and KITTI 2012) and stereo images captured using an experimental 

stereo camera system. 
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CHAPTER 04 - AUTOMATIC ESTIMATION OF DSR 

Introduction 
The literature review in Chapter 2 revealed that in many stereo algorithms, disparity 

search range (DSR) remains a user-configured parameter that relies on user’s intuition 

and understanding of the scene structure. Furthermore, it was observed that even the 

modern state-of-the-art deep stereo techniques accept the ceiling value of DSR (i.e., 

the “Maximum Disparity”) in the form of user input. This chapter aims to develop a 

metric which determines the termination criteria for a layer-wise cost volume creation 

process, thereby effectively determining the “Maximum Disparity” without user 

intervention. 

The study in this chapter starts with an in-depth analysis of the matching cost extrema 

movements within a partially built cost volume when new layers of costs are added to 

the same. A metric called Sum of New Cost Extrema (SNCE) is then developed to 

capture the information about the movement of the local cost extrema. The novel 

metric is tested with foundational stereo vision techniques by using standard stereo 

datasets and custom-created synthetic image data. A mathematical model is 

developed to explain the behaviour of the metric and to study the reliability, 

certainties and uncertainties associated with the maximum disparity predictions made 

by using the metric. Subsequently, the unimodality of the matching costs is discussed 

which can lead to completely deterministic results when using the SNCE metric. 

4.1 Local Cost Extrema Movements in a Partially Built Cost Volume 
The size of a typical 3-dimensional cost volume used in most traditional stereo 

algorithms, is determined by the image width, height and the maximum disparity 

chosen by the user. For every pixel in the reference image of a stereo image pair, the 

corresponding 3D cost volume has an array of matching costs, having a length equal 

to the maximum disparity. Hence, the minimum or the maximum matching cost (i.e., 

matching cost extrema) for a given pixel, can be located anywhere within the disparity 

search range from 0 2 to the maximum disparity. In algorithms which assign disparities 

 
2 Usually, a disparity value of zero is considered invalid as it indicates an infinite distance according to 
Equation (1.1). However, when matching finite pixels between two images, the possibility of a match 
being found at the same location on the other image could not be ruled out. Therefore, in this study 
the minimum possible disparity for a scene is taken as zero.  
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based on a Winner-Take-All (WTA) approach, the location of the cost extremum is 

chosen as the best-match disparity for a given pixel. For example, Figure 4.1 shows the 

Sum-of-Absolute-Difference (SAD) based matching cost distributions for 5 pixels (P1 

to P5) selected from the popular Middlebury “Cones” stereo image pair. The vertical 

green markers in the figure indicate the positions of the most stable cost extrema 

within the disparity search range from 0 to 60 pixels. The individual locations along the 

disparity dimension are mentioned inside the square labels of the markers.  

 

Figure 4.1: SAD-based matching cost distributions (computed over a 11x11px mask) for 5 random pixel locations in 

the Middlebury "Cones" 2003 stereo image pair at a resolution of 450x375 and a maximum disparity of 60 pixels. 

The green markers indicate the locations of the global cost extrema over the disparity search range of 0 – 60. 

According to the five subplots provided in Figure 4.1, the cost distributions have distinct 

extrema established within the disparity search range (DSR) which spans from 0 to 60 

pixels (here 60 is a user-defined value). It is important to note that the use of SAD for 

cost aggregation is arbitrary. If Normalized Cross Correlation (NCC) is used with the 

same set of points, distinct maxima (instead of minima) would be established at the 

same disparities as shown in Figure 4.2.   
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Figure 4.2: NCC based matching cost (aggregated over a 11x11px mask) distributions for the same 5 random pixel 

locations (w.r.t left image) from the "Cones" stereo image pair - Middlebury 2003 benchmark. The green coloured 

markers indicate the locations of the NCC-based matching cost extrema. 

In a typical stereo vision scenario, the cost extrema in Figure 4.1 and Figure 4.2 

correspond to the best match disparities for the five pixels (i.e., assuming disparity 

assignment with a WTA approach). For the same set of points as earlier, if the user 

sets the maximum disparity to 30 pixels, then the locations of some matching cost 

extrema would change as shown in Figure 4.3. 

 

Figure 4.3: SAD-based matching cost extrema (i.e., green markers) for the same set of points (P1-P5) with a user-

defined maximum disparity of only 30 pixels (i.e., smaller DSR of 0-30 instead of 0-60 used earlier). Cost minima 

locations of P3 and P5 are now different compared to the locations observed earlier when the maximum disparity 

was set to 60 pixels.  
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In fact, Figure 4.3 can be thought of as the matching cost distribution for five points 

inside a partially built cost volume which has only 30 layers along the disparity 

dimension. Figure 4.4 shows a partially built cost volume with the local extrema for the 

five points from P1 to P5 established in the range of disparity values from 0 to 30. As 

more layers are being added, these positions may or may not change depending on 

the matching cost distribution at each pixel position.  

 

 

 

 

 

 

 

 

 

 

 

As a further illustration, Figure 4.5 shows what happens to the cost extrema associated 

with the point P3 located at [356,287] when the maximum disparity is changed from 

10 to 60 in increments of 10 while keeping the minimum disparity equal to zero. 

Figure 4.4: A graphical illustration of the matching cost distributions of points P1 to P5 inside a partially built cost 
volume which has 30 layers along the disparity dimension. Stable and unstable cost extrema are marked with 
green and orange markers. H, W and dmax stand for the image width, height and the best-match maximum 

disparity, which is unknown at the given partially built stage, respectively.  
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Figure 4.5:  Variation of SAD-based cost minima for the point P3 when the maximum disparity is changed from 10 

to 60 in increments of 10 pixels at a time while keeping the minimum disparity at 0. The orange-coloured markers 

indicate where the cost minima were located temporarily before settling at the most stable location marked with 

green markers. 

In the scenario depicted in Figure 4.5, changing the maximum disparity from 10 to 60 

in increments of 10 pixels, has resulted in the cost extrema shifting to relatively 

unstable locations at disparity 10, 19, 22 and 40 (marked with orange markers), before 

finally settling at 47 (marked with green markers) which is the most stable cost 

extrema location for point P3. This provides a glimpse of how the extrema associated 

with image points keep shifting (or moving) to new locations when the disparity search 

range is expanded by choosing progressively larger values for maximum disparity.  

 

 

 

4.2 Building the Cost Volume Layer-by-Layer 
It is possible to simulate layer-wise construction of a cost volume by setting the step 

size to 1 (instead of 10 used earlier) and then progressively increasing the ceiling value 

of DSR, one step at a time. Figure 4.6 shows what happens to the matching cost 

extrema of the same 5 random points (P1 to P5) on the Middlebury “Cones” image 

pair, when the maximum disparity is changed in steps of 1 pixel from 0 to 60. In 

accordance with the adopted convention, the orange-coloured markers indicate the 

Convention: This chapter adopts the convention of using orange-coloured markers 

to indicate unstable matching cost extrema locations and green coloured markers 

to point to the most stable cost extrema for a given matching cost distribution.  
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locations of the relatively unstable cost extrema while the green markers show the 

final stable cost extrema for each matching cost distribution.  

 

Figure 4.6: Changes in matching cost extrema locations for the same 5 points (P1-P5) from the Middlebury Cones 

image pair when the maximum disparity is changed from 0 to 60 in steps of 1 pixel at a time which simulates a 

cost volume that is being built one layer at a time up to 60 layers. The orange markers indicate the locations of the 

previous unstable cost extrema and the green markers indicate the locations of the final stable matching cost 

extrema locations for each of the 5 points. 

As it can be seen from Figure 4.6, when the maximum disparity is set to 0 (which 

represents a cost volume with only one layer), the cost extrema for all points have 

remained in the first and only layer of the cost volume. Hence, there are orange-

coloured markers at disparity 0 on each of the five subplots. Upon setting the 

maximum disparity to 1, the matching cost extrema of four points (P1, P2, P3 and P4) 

have moved to the 2nd layer of the cost volume. As a result, there are four vertical 

orange markers at disparity 1 in subplots of P1, P2, P3 and P4. Similarly, when the 

maximum disparity is set to 2, the cost extrema of the first 4 points (P1 to P4) have 

again moved to the 3rd layer; hence another 4 orange markers at disparity 2 on plots 

from P1 to P4. This appears to continue at most disparities until the most stable 

extrema locations are reached. The final stable minima locations are marked with 

green markers and no further shifts in cost extrema could be observed after reaching 

the most stable minima locations.   
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Figure 4.7 shows the total number of cost extrema shifts or movements at each 

disparity across all five points from P1 to P5 during the whole process (i.e., when 

increasing the maximum disparity from 0 to 60 in steps of 1 pixel). In other words, 

Figure 4.7 plots the total number of dashed markers at each disparity location across 

all five subplots in Figure 4.6. For example, there are 5 markers at disparity zero in 

Figure 4.6. Therefore, Figure 4.7 has a value of 5 at disparity zero. Similarly, at disparity 

1, Figure 4.6 has 4 markers in the subplots from P1 to P4. Hence, Figure 4.7 has a value 

of 4 at disparity 1. The dashed green line at disparity 51 in Figure 4.7, indicates the 

largest value among the disparities associated with the five points (based on a WTA 

disparity assignment).  

 

Figure 4.7:  A graph showing the total number of matching cost extrema location changes (associated with the 5 
random pixels P1-P5) at each disparity when the cost volume is constructed one layer at a time up to 60 layers 

along the disparity dimension. The largest disparity for the five pixels (selected based on WTA at the lowest cost) is 
marked with a dashed green line. Orange coloured circles mark the disparities (up to the largest disparity marked 

in green) with zero extrema movements/shifts. 

Figure 4.7 indicates that the positions of the cost extrema associated with the five 

points (P1-P5) have changed many times at most of the disparities from 0 to 51 during 

the simulated layer-wise cost volume construction process. In fact, the cost extrema 

movements associated with just 5 pixels, have taken place at most of the disparities 

up to the largest disparity among the points P1 to P5 (i.e., 51) except at a few 

disparities marked with orange-coloured circles in Figure 4.7. This chapter aims to 

study the behaviour of the extrema movements shown in the figure, to identify the 

conditions under which the phenomenon can be used to determine a suitable 
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maximum disparity value automatically. The metric is expected to identify the 

occurrence of the last stable matching cost extremum/extrema for a given stereo 

image pair during a layer-wise cost volume creation process. 

4.3 Sum of New Cost Extrema 

The total sum of extrema movements plotted in Figure 4.7, is defined as a metric called 

“Sum of New Cost Extrema” or SNCE for further analysis in this chapter.  Therefore, 

the following definition is used throughout this chapter and the rest of the thesis. 

 

 

 

 

 

 

4.4 A Mathematical Expression for SNCE 

If each stereo image contains (N) number of pixels and the matching cost variation for 

the ith pixel is given by 𝐶𝑖, then the minima based SNCE value for the dth disparity of a 

partially built cost volume can be expressed using the following: 

𝑆𝑁𝐶𝐸(𝑑) =  ∑[a𝑟𝑔𝑚𝑖𝑛(𝐶𝑖) == 𝑑]

𝑁

𝑖=1

  (4.1) 

   where  [𝐼] =  {
1    𝑖𝑓 𝐼 𝑖𝑠 𝑇𝑟𝑢𝑒
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

The value of the “Iverson Bracket” or function [𝐼] in Equation (4.1) is equal to 1 when 

the cost minima for the given pixel is located at disparity d of a partially built cost 

volume. Otherwise, the value will be equal to 0. If the cost maxima are used instead 

of cost minima, the SNCE metric can also be expressed as shown in Equation (4.2). 

𝑆𝑁𝐶𝐸(𝑑) =  ∑[a𝑟𝑔𝑚𝑎𝑥(𝐶𝑖) == 𝑑]

𝑁

𝑖=1

  (4.2) 

Definition: Sum of New Cost Extrema: In a partially built matching cost volume, the 

total number of pixels with their matching cost extrema located at the current layer 

(layer added last) of the cost volume is called the “Sum of New Cost Extrema” or 

SNCE. The SNCE value can also be computed in the form of “Sum of New Cost 

Minima” or “Sum of New Cost Maxima” (SNCM) based on the cost aggregation 

method used. Nevertheless, SNCM and SNCE refers to the same metric and the 

terms can be used interchangeably.  
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4.5 SNCE on Standard Stereo Datasets 

The Middlebury 2003 “Cones” stereo image pair includes 168,750 pixels at quarter 

resolution (i.e., 375x450). According to the ground-truth data, the largest integer 

disparity associated with the pixels in the stereo area3 of the “Cones” image pair is 

equal to 54 pixels. Tests with 5 pixels (P1 to P5) earlier, showed that the extrema 

movements occur at most disparities up to the largest WTA disparity associated with 

the pixels in concern. Figure 4.8 shows the variation of SNCE across all pixels against 

disparity when a SAD-based cost volume is constructed one layer at a time from 0 to 

60 layers using a mask size of 11x11 pixels. 

 

Figure 4.8: A plot showing the Sum of New Cost Extrema (SNCE) variation associated with all 168,750 pixels in 
the Middlebury 2003 Cones stereo image pair when the cost volume is constructed up to 60 layers (one layer at a 

time). The SNCE value appears to stay high until the maximum ground-truth disparity is reached. The vertical 
dashed-green line shows the largest ground-truth disparity across all pixels (which is 54 pixels in the “stereo 

area” of the “Cones” image pair). 

According to Figure 4.8, when there was only one layer in the cost volume, the cost 

extrema associated with all 168,750 pixels have remained in the first layer (at disparity 

0). Then with the addition of new layers to the cost volume, some of the cost extrema 

have shifted to the newly added layers. For example, approximately 25,000 extrema 

movements have occurred at a disparity of 40 pixels. In other words, when the 40th 

layer was added to the cost volume, the cost minima of around 25,000 pixels have 

moved to the 40th layer.  

It is also important to note that the SNCE value in Figure 4.8 appears to have become 

smaller around the maximum ground-truth disparity among all pixels which is 54 

 
3 Stereo area is the area of overlap between the images of a stereo pair. For pixels located outside the 
stereo area of one image, no matches can be found within the image boundaries of the other. 
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pixels. This is more visible from Figure 4.9 which shows an enlarged view of the SNCE 

variation closer to the disparity value of 54. The diagram also shows that, at a disparity 

of 50 pixels, there have been around 10,000 extrema shifts. Then from disparity 50 to 

54, the value has become significantly smaller particularly closer to the maximum 

ground-truth disparity marked with the vertical green line.  

 

Figure 4.9: Enlarged view of the SNCE variation closer to the disparity value of 54 pixels for the Middlebury 2003 
Cones stereo image pair, when the cost volume is created one layer at a time up to 60 layers. SAD has been used 

with a mask size of 11x11 to produce the matching costs. 

4.5.1 SNCE on Other Datasets 

The series of subplots from (a) to (d) in Figure 4.10 show the variation of SNCE for 4 

sample stereo image pairs from the Middlebury, Scene Flow and KITTI benchmark 

datasets. The maximum ground-truth disparity associated with the 4 scenes are 

different from each other with values spanning from 76 to 385.26 according to the 

ground-truth data. However, the value of SNCE appears to reduce to some smaller 

value (or values) around the largest ground-truth disparity for each scene marked with 

dashed-vertical-green lines. When considering the scale of the vertical axis, the graphs 

also indicate that there are thousands of pixels with their cost extrema switching 

positions at each disparity up to the disparity values marked in green.  

 

 

 

Important: At this point a clear correlation between the maximum ground-truth 

disparity and the small SNCE values cannot be established. The next section aims 

to develop a mathematical model which can be used to first explain the results 

shown in Figure 4.10 including the dependency on the scene structure. 
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(a) Middlebury 2014 – “Bike” 

 
(b) A Sample from Scene Flow “Flying Things 3D” Data 

 
(c) A Sample from “KITTI 2015 Stereo” Data 

 
(d) A Sample from “KITTI 2015 Stereo” Data 

 
Figure 4.10: SNCE Variations across all image pixels for sample stereo image pairs from (a) Middlebury 2014, (b) 
Scene Flow Flying Things 3D, (c) Scene Flow Driving and (d) KITTI 2015 stereo datasets. The SNCE value appears 

to reach a lower value around the maximum ground-truth disparity reported in the stereo area of the scenes 
(shown with dashed-green markers with their values specified within the brackets).  
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4.6 Mathematical Representation 

Consider the following depiction (Figure 4.11) of a partially built cost volume having the 

dimensions of W x H x dmax (where W = width, H = height and dmax = the maximum 

expected disparity for the scene which is yet to be found). At its current state, the cost 

volume has only d number of layers along the disparity dimension. The point O (x, y, 

0) is the matching cost at zero-disparity for a random pixel at (x, y) on the reference 

image. The point D (x, y, d) is the matching cost for the same pixel at a disparity d. The 

point D (x, y, d) is located on the dth layer of the cost volume.  

 

 

 

 

 

 

 

 

 

 

 

Now, the local cost extrema for the matching costs associated with a pixel at (x, y) on 

the reference image, must reside within the series of values from O to D (referred to 

as OD hereafter). If the disparity values along the OD direction have an equal likelihood 

of being the local cost extrema location on OD (exceptions to this assumption will be 

addressed in Section 4.6.1 on scene structure), then the probability of the matching 

cost extrema along OD being located at dth layer is given by Equation (4.3) below. 

𝑃(𝐸𝑥𝑡𝑟𝑒𝑚𝑎 𝑜𝑛 𝑂𝐷 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝐷) =  
1

𝑑
 (4.3) 

     

Figure 4.11: A partially built cost volume (with the d-th layer being the latest) 

Matching costs (vector) for a 

point O (x, y)  

1 

d 
W 

H O(x, y, 0) 

dmax 

dth layer 

D(x, y, d) 
y 

x 
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Conversely, the probability of not having cost extrema located at the same layer is 

given by: 

𝑃(𝑁𝑜 𝐸𝑥𝑡𝑟𝑒𝑚𝑎 𝑎𝑡 𝐷) =  1 −  𝑃(𝐸𝑥𝑡𝑟𝑒𝑚𝑎 𝑜𝑛 𝑂𝐷 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝐷) 

      =  1 −  
1

𝑑
 

      =  
𝑑− 1

𝑑
 

 
 
(4.4) 

When the whole image is concerned, there are (𝑊𝑥𝐻) number of points on any layer 

of the cost volume. Therefore, the probability of not having any extrema located on 

the dth layer can be calculated as: 

𝑃(𝑁𝑜 𝐸𝑥𝑡𝑟𝑒𝑚𝑎 𝑎𝑡 𝑑′𝑡ℎ 𝑙𝑎𝑦𝑒𝑟) =  (
𝑑 −  1

𝑑
)

(𝑊𝐻)

 (4.5) 

Furthermore, the probability of having at least one extremum located at the dth layer 

can be defined as: 

𝑃(𝐴𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑒𝑥𝑡𝑟𝑒𝑚𝑢𝑚 𝑎𝑡 𝑑′𝑡ℎ 𝑙𝑎𝑦𝑒𝑟) =  1 −  (
𝑑 −  1

𝑑
)

(𝑊𝐻)

 (4.6) 

As per the conditions for the above equation to stay valid, the disparity d should be 

less than the maximum expected disparity 𝑑𝑚𝑎𝑥 for the scene. Therefore, the 

complete equation for all disparities including values below and higher than the 𝑑𝑚𝑎𝑥 

can be written as: 

𝑃 (
𝐴𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 

𝑒𝑥𝑡𝑟𝑒𝑚𝑢𝑚 𝑎𝑡 
𝑑𝑡ℎ 𝑙𝑎𝑦𝑒𝑟

) = {
1 −  (

𝑑 −  1

𝑑
)

𝑊𝐻

, 0 < 𝑑 ≤ 𝑑𝑚𝑎𝑥

0 4, 𝑑 > 𝑑𝑚𝑎𝑥

 (4.7) 

 

From the equation, it can be deduced that the probability of having at least one 

extremum at the newest layer of a partially built cost volume, depends on the total 

number of pixels in the image as well as the current disparity (when the current 

disparity is lower than the maximum expected disparity for the scene). Specifically, a 

lower disparity value d makes the probability higher whereas a higher number of pixels 

also leads to a higher probability.  

 
4 Assuming stronger stereo matching with reliable disparity assignment capabilities. 
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4.6.1 Effect of the Scene Structure 

Depending on the scene structure it may not be possible to assume that the cost 

extrema are randomly distributed in the range from 0 to some disparity d for all pixel 

locations. For example, some of the cost extrema may have already reached their most 

stable positions by disparity d. In such instances, only the remaining unstable extrema 

are likely to move to the newest layer of the cost volume. If 𝑁(𝑑) represents the 

number of unstable cost extrema at disparity d, then the Equation (4.7) can be modified 

as given below: 

𝑃 (
𝐴𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 

𝑒𝑥𝑡𝑟𝑒𝑚𝑢𝑚 𝑎𝑡 
𝑑𝑡ℎ 𝑙𝑎𝑦𝑒𝑟

) = {1 − (
𝑑 −  1

𝑑
)

𝑁(𝑑)

, 0 < 𝑑 ≤ 𝑑𝑚𝑎𝑥

0, 𝑑 > 𝑑𝑚𝑎𝑥

 (4.8) 

According to Equation (4.8), if the value of N(d) is large enough and the dmax for the 

scene has not yet been reached, then there is still a higher probability of locating at 

least one cost extrema at the newest layer of the cost volume. Since disparity is 

inversely proportional to the depth, the value of N(d) can be perceived as an estimate 

of the number of pixels associated with the foreground of the scene with respect to 

the depth at disparity d. This can be better understood by plotting the SNCE variation 

with the ground-truth frequency distribution as a histogram as show in Figure 4.12.  

 

Figure 4.12: SNCE Variation and the ground-truth disparity frequency distribution for the Middlebury 2003 
"Cones" image pair at quarter resolution. SAD was used for cost aggregation over a 11x11 mask when 

computing SNCE for disparities from 0 to 60. The ground-truth disparity frequency is low in the disparity range 
shaded in yellow (0-16). However, the SNCE value has remained high due to the large number of pixels which are 

yet to reach their stable extrema by disparity 16. 
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Figure 4.12 shows both the ground-truth frequency distribution and the SNCE variation 

for the Middlebury 2003 “Cones” image pair in the same diagram. According to the 

histogram shown at the bottom of the figure, there are only a very few pixels having 

any ground-truth disparities in the range from 0 to 16 (area shaded in yellow). 

Therefore, at disparities below 16, most of the pixels in the image correspond to the 

foreground with respect to a depth that corresponds to disparity 16. This leads to a 

higher probability of locating cost extrema of such pixels in the newest layer. As a 

result, the SNCE values in the disparity range from 0 to 16 have remained 

comparatively high. It is also noteworthy, how the SNCE value declines steeply at 

disparities (e.g., disparity 21 and 46) which correspond to the larger ground-truth 

disparity frequencies. It is a result of many cost extrema settling at their respective 

stable positions at 21 and 46.  

4.6.2 Empirical Analysis – SNCE vs. Foreground Objects 

In order to verify the effect of the foreground objects, two synthetic stereo scenes 

were created which include three planar objects with each having different sizes and 

associated disparities between the corresponding pixels. All images have a white 

texture-less background. Figure 4.13 shows the synthetic stereo images with dashed 

lines and arrows showing the different disparities assigned to the red, blue and green 

objects. The image pair on the left (Figure 4.13 (a)) has its largest object (green surface) 

as the foreground object whereas the stereo image pair on the right (Figure 4.13 (b)) 

has its smallest object (red surface) in the foreground. 

Next, two SAD-based cost volumes were created using the synthetic image pairs, in a 

layer-wise manner while aggregating the costs with a mask size of 11x11 pixels. At 

every step, the number of pixels with their cost extrema located at the newest layer, 

was recorded as the SNCE value. The SNCE values at each disparity from the two 

scenes, were then plotted on the same graph (Figure 4.14) for comparison. In the plots, 

the large SNCE values at disparity 0 have been clipped to make the rest of the SNCE 

variations more visible.  

(Please refer to Appendix B to locate the synthetic images, source code and a software 

executable used to produce the results) 
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Left Image 

 

 

 

 

Right Image 

 

 

 

 

 

(a) Scene 1: Large Object in the Foreground 

    Left Image 

 

 

 

 

    Right Image 

 

 

 

 

 

(b) Scene 2 – Small Object in the Foreground 

Figure 4.13: Synthetic stereo image pairs depicting 3 mutually displaced planar objects with different disparities. 
The pair of images on the left (a) has the largest object in the foreground and the image pair on the right (b) has 

the smallest object in the foreground (simulated using the disparities shown with the dashed lines and arrows 
which are not part of the images). All images have a size of 11242x375. 

 

As seen from the results in Figure 4.14, the SNCE values of “Scene 1” have been 

consistently higher than the values from “Scene 2” due to the larger foreground object 

in “Scene 1”. This stems from the fact that there are many pixels associated with the 

green object (compared to the red object in “Scene 2”) which are unlikely to reach 

stable cost extrema before the corresponding disparity of 60 pixels which also happens 

to be the largest disparity for the scenes. A larger foreground object leads to a higher 

N(d) in Equation (4.8) at disparities below 60 which means that there is a higher 

probability of having at least one pixel with their cost extrema moving to the newest 

layer of a cost volume.  

In addition, the SNCE values also appear to increase gradually during the ground-truth 

disparity ranges such as 1 – 15, 16 – 30 and 31 – 60. Moreover, the increase is much 

more noticeable during wider ranges (e.g., more during 31 - 60 than 16 - 30). This is 

due to the widening of the disparity search space which increases the probability of 

mismatches which in turn leads to more shifts in matching cost extrema (hence a 

higher SNCE value). 

60px 30px 15px 15px 30px 60px 
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Figure 4.14: SNCE Variations for the two synthetic scenes shown in Figure 4.13. As expected according to 
Equation (4.8), the scene with the largest object in the foreground has a higher SNCE value towards the end. The 

steeper decline in SNCE at ground-truth disparities 15, 30 and 60 can also be observed clearly. 

In both SNCE profiles (for “Scene 1” and “Scene 2”), the SNCE value has reached zero 

at disparity 61 just after the largest disparity for the scene which is 60 pixels. However, 

this was not the case in the SNCE profiles for the stereo images such as Middlebury 

“Cones”, “Bike” and other examples provided earlier. They apparently reached some 

smaller SNCE value or values around the largest ground-truth disparity for the scene. 

A quick experiment with noise confirms that with the introduction of even a little bit 

of noise, the results for the synthetic images also begin to look like the results 

observed with the standard stereo datasets.  

Figure 4.15 shows the updated SNCE variation when a small amount of normally 

distributed Gaussian noise is added to the synthetic stereo images. The addition of 

noise introduces more challenges to the SAD-based matching which appears to make 

the point of convergence of the SNCE profile uncertain. Therefore, the accuracy of the 

matching techniques should also be included in the analysis. 

 Important: If the closest foreground object in Figure 4.13 (b) is made even smaller 

with just a handful of pixels associated with it, then the SNCE value may become 

zero or smaller prematurely before reaching the largest stable matching cost 

extrema for the scene.  

SNCE = 0 
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Figure 4.15: SNCE variation profiles for the synthetic stereo images in Figure 4.13 with added Gaussian noise 
(normally distributed). The noise added to the left and right images are different. In contrast to the previous 
noise-free scenario, SNCE profiles have not reached a value of zero immediately after the maximum disparity 

which is reminiscent of the results obtained with the standard stereo images from Middlebury, KITTI and Scene 
Flow datasets. 

 

4.7 Deterministic Estimation of Maximum Disparity 
The experiments and results so far suggest that the value of the SNCE metric (based 

on the rudimentary aggregation techniques SAD) may reduce to some lower value or 

values at around the largest disparity for a given scene and then possibly remain low 

afterwards. However, it is not yet clear how a suitable maximum disparity value can 

be extracted from the SNCE variations especially due to the challenges such as: 

1. The reliance on the foreground objects/scene structure as per the Equation 

(4.8) 

As seen during the development of the equations from 4.3 to 4.8, the 

probability of locating extrema on the newest layer of the cost volume 

at disparities below the maximum, depends on the size of the objects in 

the foreground in terms of the number of pixels they occupy in the 

image space. However, this is not an assumption which can be made 

about all the scenes. There can be scenes with only a handful of pixels 

representing the foreground objects. Therefore, more improvements 

are required to make it possible to identify a suitable maximum 

disparity value in a scene independent manner. 

 

SNCE > 0 
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2. Non-deterministic results 

Even with larger foreground objects, there exists a certain probability of 

not locating any extrema at disparities below the largest disparity 

associated with the pixels. This can make any SNCE-based maximum 

disparity estimations stochastic in nature. Such uncertain estimates 

may not be practical for critical applications that depend on stereo 

vision accuracy. Therefore, further investigations are required to 

eliminate the uncertainty. 

3. Difficulty in extracting a suitable maximum disparity from the SNCE variations 

observed so far, as they do not converge to a specific value 

So far, the only time the SNCE could be used to uniquely identify a 

suitable maximum disparity was during the tests with synthetic images. 

In the absence of noise, the SNCE value for the synthetic stereo image 

pairs became zero just after maximum disparity. In other examples, 

SNCE value appeared to reach some non-specific value or values around 

the largest ground-truth disparity. In such instances, it is difficult to 

decide when to terminate the cost volume creation process based on 

the SNCE value. At this point it is tempting to utilize a user-specified 

threshold to extract a candidate maximum disparity as shown in one of 

the author’s published work in [105]. However, this thesis further 

investigates the use of the SNCE metric to find user independent, scene 

independent and fully deterministic criteria which can be used to 

terminate a layer-wise cost volume creation process without requiring 

custom thresholds. 

 

To address the challenges mentioned above, the focus of this chapter turns towards 

the stereo matching technique. In all experiments so far, the pixel intensity differences 

were aggregated using the elementary SAD method with a fixed mask size of 11x11 

pixels. As the first step, the effect of the mask size is studied in detail to establish its 

relationship with the SNCE variation. 
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4.7.1 SNCE vs. Mask Size 

The success of traditional local stereo matching techniques depends on how well the 

local intensity landscape around a certain pixel is uniquely captured by the aggregation 

operation. In case of SAD-based stereo matching, the intensity differences between 

the corresponding points are aggregated over a window of values given by the mask 

size. Generally, the use of a large mask size yields good results due to the mask 

encompassing additional information about the pixels in the neighbourhood of the 

specific pixels being matched as shown in Figure 4.16.  

 
(a) 11x11 

 
(b) 21x21 

 
(c) 31x31 

 
(c) 41x41 

Figure 4.16: An illustration of how different mask sizes encompass different levels of information. The points 
shown are the same 5 points from P1 to P5 used for analysis earlier in the chapter. Large mask sizes often help 

enclose additional information for comparison. 

However, when using traditional techniques like SAD under certain scene conditions 

such as depth discontinuities/edges, occluded areas and repetitive structures, 

additional information from the pixels in the neighbourhood can have a negative effect 

on matching accuracy (depending on the mask size). While acknowledging the positive 

and negative effects of mask size on matching, the current section aims to explore the 

effect of different mask sizes on SNCE variation.  
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4.7.1.1 Extrema Shifts vs. Mask Size 

Figure 4.17 shows the effect of a slightly larger mask size of 21x21 on cost extrema 

movements associated with the five points (P1-P5) during a layer-wise cost volume 

construction process in which the layers of SAD-based matching costs are added to 

the cost volume from disparity 0 to 60 sequentially. From the figure, it is notable how 

the extrema movements associated with the points P1, P2 and P4 have taken place at 

every disparity in the areas shaded in yellow which span from disparity 0 to the most 

stable cost minima of the respective points. Moreover, the uniqueness of the cost 

extrema appears to have improved when compared with the cost distributions 

obtained with a mask size of just 11x11 pixels shown earlier in Figure 4.6. 

 

 

Figure 4.17: Extrema movements observed in the matching cost distributions (calculated using SAD with a mask 
size of 21x21 compared to 11x11 mask used previously) of 5 points (P1-P5), during the layer-wise cost volume 

construction process. In the regions highlighted in yellow, the subplots of three points (P1, P2 and P4) have 
extrema shifts (orange markers) at every disparity up to their respective stable cost minima locations (green 

markers).  

 
Figure 4.18 (a) and (b) below, show the matching cost distributions and the associated 

extrema movements (i.e., during a layer-wise cost volume construction process) 

obtained by increasing the mask size further up to 31x31 and 41x41 pixels, 

respectively.   
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          (a) 

 
         (b) 

Figure 4.18: Extrema location changes observed in the matching cost distributions of 5 points (P1-P5), during a 
layer-wise cost volume construction process involving SAD-based costs with a mask size of (a) 31x31 and (b) 41x41 

pixels. In the regions highlighted in yellow, extrema movements (orange markers) have taken place at every 
consecutive disparity up to the most stable cost minima (green markers).  

The cost distributions in Figure 4.17, Figure 4.18 (a) and Figure 4.18 (b) show how the 

increasing mask size has resulted in more and more pixels having consecutive extrema 

shifts up to the most stable extrema. Moreover, the matching cost values at disparities 

after the cost extrema, appear to increase continuously. For example, all cost 

distributions in Figure 4.18 (b) have consecutive extrema shifts towards the clearly 

established unique cost extrema of each pixel. The continuous descent towards a 

unique minima and subsequent increase in value of a cost distribution is a tell-tale sign 

of a “Unimodal Cost Distribution”. 
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Unimodal cost distributions have significant advantages when it comes to the SNCE 

estimations compared to non-unimodal (or multi-modal) cost distributions according 

to the definition given by Equation (4.1). If the unimodality of the cost distributions can 

be assured, then the Iverson block inside the Equation (4.1) will be non-zero, for at least 

one of the pixels, until the most stable cost extrema location for all the pixels are 

reached. 

 

 

 

From the cost volume standpoint, when layers of costs are added to the cost volume, 

the unimodal cost distributions introduce extrema changes at every disparity until the 

stable extrema are reached. As a result, a SNCE variation profile obtained with any 

such pixel locations, stays non-zero (at least 1 or higher) until the largest disparity 

among them is reached. In addition, once the largest disparity is reached, then the 

SNCE value becomes zero and stays zero afterwards. This concept can be verified by 

plotting the SNCE profile for the 5 cost distributions at a mask size of 41x41 as shown 

in Figure 4.19.  

According to Figure 4.19, it is not possible for the SNCE value to become zero until every 

cost distribution has reached the respective unique extrema (marked with vertical 

dashed lines in grey and green).  

Definition: Unimodal Function: A function f(x) is said to be “Unimodal” if for some 

specific value of (x) given by (a): 

✓ the value of f(x) monotonically decreases towards some minima f(a) for all 

x<a and then monotonically increases for all x>a OR 

✓ the value of f(x) monotonically increases towards some maxima f(a) for all 

x<a and then monotonically decreases for all x>a 

 

 

Important: If the cost distributions of a group of pixels are unimodal, then the SNCE 

value for the same group of pixels at any disparity will converge to zero, if and only 

if the current disparity is higher than the largest disparity among the most stable 

cost extrema locations. 
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Figure 4.19: SNCE Variation for the unimodal cost distributions of the points P1 to P5 (obtained with SAD over 
41x41pixel mask). The vertical dashed-grey lines show the locations of the stable cost extrema of P1 to P4. The 
largest ground-truth disparity among the 5 pixels is shown with a dashed green line which is the location of the 
most stable extremum of P5. The SNCE profile converges to zero immediately after the maximum value of 51. 

 

4.8 Addressing the Challenges 
Based on Equation (4.1) and the results shown in Figure 4.18  (b) and Figure 4.19, any 

subset of the given 5 pixels in any combination are going to have the same result if 

their cost distributions are unimodal. In fact, the SNCE variation of a single pixel would 

stay as 1 until the best-match disparity for the pixel is reached and will remain zero 

thereafter. Consequently, if all the pixels in the stereo area of a stereo image pair is 

concerned, it should be possible to find the largest disparity among them based on the 

SNCE value reaching zero. Hence, as explained below in Table 4.1, unimodal cost 

distribution can address the challenges outlined in the previous section. 

 Challenge Effect of Unimodal Cost Distributions  

1 SNCE relies on the size of the 

foreground objects according 

to Equation (4.8) 

 

If the cost distributions are unimodal, then 

the SNCE value will reach zero only after all 

cost distributions have reached their most 

stable cost extrema. Therefore, it does not 

depend on the number of pixels and it would 

stay valid even with just one single cost 

distribution. 
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2 Non-deterministic or 

stochastic nature of the 

results 

 

Due to the continuously increasing or 

decreasing nature of the unimodal 

distributions, the local cost extrema for 

every pixel, moves to the newest layer of the 

cost volume until the most stable cost 

extrema are reached. This ensures a 100% 

probability of locating at least one 

extremum at the newest layer, until after all 

the pixels have reached their stable cost 

extrema. As a result, the probability given by 

Equation (4.6) becomes 100% which results in 

a deterministic outcome. 

3 Difficulty in extracting a 

suitable maximum disparity 

from a SNCE variation 

 

If the cost distributions are unimodal, then 

the individual cost distributions are going to 

have unique cost extrema. Therefore, the 

SNCE metric is not going to report any value 

other than zero after all the stable cost 

extrema locations have been reached. That 

provides a unique and unambiguous 

candidate for maximum disparity for the 

group of pixels in concern. Therefore, if the 

layers of unimodal costs are added to a cost 

volume (one layer at a time) and the SNCE 

value at each layer is computed, the first 

occurrence of a zero SNCE will signify the last 

stable cost extrema for the pixels in concern. 

Therefore, the cost volume creation process 

can terminate immediately.  

Table 4.1: How unimodal cost distributions address the challenges associated with SNCE when estimating a 
suitable maximum disparity value for a scene 
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4.9 Achieving Unimodality Across All Pixels 
The study so far has revealed the feasibility of using SNCE for detecting the maximum 

disparity among a group of pixel locations in a stereo image pair subjected to the 

unimodality of the cost distributions. However, it remains to be asked whether it is 

possible to achieve unimodal cost distributions for all pixel locations in a pair of stereo 

images. Previously, it was shown how the increase in mask size resulted in SAD-based 

traditional stereo matching costs becoming more unimodal. Therefore, it is important 

to study the effect of mask size on unimodality of the matching costs. 

4.9.1 Unimodality vs. Mask Size 

To test the effect of mask size on unimodality of the cost distributions, 15 SAD-based 

cost volumes were created for the same Middlebury 2003 “Cones” stereo image pair 

using different mask sizes starting from 11x11 pixels up to extremely large 201x201 

pixels. The stereo images were padded with zeros in instances where the area covered 

by the mask exceeded the image boundaries. The depth of the cost volume was set to 

60 layers. Then, every individual matching cost distribution was tested for the 

unimodality using the following criteria. 

✓ Existence of a clearly unique cost minima 

✓ Consecutive changes in cost minima location for disparities starting 

from zero up to the most stable cost minima 

The total number of pixels with unimodal distributions were recorded as a percentage 

of the total number of pixels in the Middlebury 2003 “Cones” image pair at quarter 

resolution which is 168,750 pixels. A plot of the results is shown in Figure 4.20. 
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Figure 4.20: Percentage of pixels with unimodal cost distributions in a SAD-based cost volume when built using 
different mask sizes. Middlebury 2003 “Cones” image pair at quarter resolution (450x375) has been used for the 

experiment. Areas of the masks that exceed the image boundaries have been padded with zeros during the 
process. 

As it can be seen from the figure, the percentage of unimodal cost distributions for 

SAD-based costs has increased with the mask size and the value has peaked at a mask 

size of 101x101 pixels. Thereafter, the percentage has started to decrease which is an 

indication of some cost distributions transitioning from being unimodal to non-

unimodal (i.e., multimodal). According to the graph, the maximum percentage of 

unimodal cost distributions that can be achieved by changing the mask size is slightly 

lower than 40% of the total number of pixels. That again is at a large mask size of 

101x101 pixels compared to the image size which is only 450x375 pixels. In summary, 

increases in mask size is not feasible from the practical standpoint and does not further 

improve the percentage of unimodal distributions.   

4.9.2 Unimodality vs. Traditional Stereo Matching 

Until now, only the SAD based cost aggregation has been used for generating the 

matching costs. However, there are other types of traditional cost aggregation 

techniques such as Sum of Squared Difference (SSD), Normalized Cross Correlation 

(NCC), Rank Transform (RT) and Census Transform (CT). Figure 4.21 shows the variation 

of unimodality as a percentage with changing mask sizes for SAD and other cost 

aggregation techniques, which have been obtained by following the same process as 

earlier. According to the plots, the algorithms such as SSD, NCC, RT and CT, lag SAD in 



    

   64 
 

terms of the percentage of pixels with unimodal cost distributions. Particularly the 

Rank Transform RT and Census Transform techniques have reported very low 

percentage of unimodal cost distributions even at larger mask sizes.  

 

Figure 4.21: A comparison of the percentage of pixels with unimodal cost distributions in cost volumes 
constructed with different cost aggregation techniques and mask sizes. Middlebury 2003 “Cones” image pair at 
quarter resolution (450x375) has been used for building the cost volumes. Zero-padding has been used in areas 

of the masks that exceed the image boundaries. 

Further tests including the best performing techniques above (i.e., SAD, SSD and NCC) 

reveal that even at extremely large mask sizes, the results do not vary much. The SAD-

based aggregation still produces the highest percentage of unimodal cost 

distributions. The SSD and NCC methods do catch up at larger mask sizes only to 

decline later as shown in Figure 4.22.  

According to Figure 4.22, SSD and NCC techniques also show a decline in the 

percentage of unimodal cost distributions after some mask sizes (SSD at 121x121 and 

NCC at 181x181). That is a clear indication of cost distributions for some pixel locations 

transitioning from being unimodal to non-unimodal cost distributions. The key take-

away here is the impracticality of finding a single mask size or a cost aggregation 

algorithm that can produce unimodal cost distributions across all pixels. 
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Figure 4.22: A comparison of the percentage of pixels with unimodal cost distributions in cost volumes 
constructed with SAD, SSD and NCC cost aggregation techniques at different mask sizes. Middlebury 2003 

“Cones” image pair at quarter resolution (450x375) has been used for building the cost volumes. Zero-padding 
has been used in areas of the masks that exceed the image boundaries. 

4.9.3 Practical Methods for Achieving Unimodality  

Local stereo matching techniques depend on the use of masks (adaptive or fixed-sized) 

to capture additional information in the neighbourhood of a given pixel when 

matching. One potential avenue for obtaining unimodal cost distributions with local 

matching techniques would be to use adaptive mask sizes. On the other hand, global 

stereo methods depend on a fully built cost volume for subsequent optimization in an 

iterative process. Therefore, they are naturally incompatible with a layer-wise cost 

volume construction process.  

However, there is a much more feasible solution which was already discussed during 

the literature review. Most of the modern end-to-end deep learning-based stereo 

techniques fundamentally depend on unimodality of the matching cost distributions 

due to the use of the differentiable “Softargmin” operation. Most importantly, they 

do not require users to configure any scene or user dependent parameters to achieve 

unimodal distributions. Instead, they can learn to produce unimodal distributions 

through supervised learning. This inherent property of deep learning techniques 

needs to be examined to determine the potential of using the same to achieve 

unimodal cost distributions. That would in turn lead to deterministic results when 

using the SNCE metric to predict a suitable maximum disparity value for a given scene. 
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4.10 Chapter Summary  

Chapter 4 started with an in-depth analysis of the matching cost distributions within a 

partially built cost volumes to study the movements of SAD-based matching cost 

extrema during a layer-wise cost volume construction process. A metric called “Sum 

of New Cost Extrema (SNCE)” was developed which captures the movement of 

matching cost extrema across all the pixels being matched. Tests with stereo image 

samples from standard stereo datasets such as Middlebury, KITTI and Scene Flow 

revealed that the metric appears to become smaller in value once the most stable cost 

extrema for all the pixels have been reached. However, a clear point of convergence 

could not be established.  

A probability based mathematical model was developed to explain the observed 

behaviour of the SNCE metric. The model revealed that the SNCE metric when taken 

as it is, depends on the number of image pixels occupied by the foreground objects. 

Tests using synthetic data confirmed the findings. Additional tests with different mask 

sizes revealed that unimodal cost distributions lead to the SNCE metric reaching a 

value of zero once all the stable cost extrema is reached. Thus, it was apparent that 

the SNCE metric can be used to deterministically estimate the largest disparity 

associated with a group of pixels subjected to the unimodality of cost distributions. 

However, achieving unimodality across all pixel locations using traditional local stereo 

matching techniques was found to be challenging. Even with larger mask sizes, the 

peak percentage of unimodal pixels attainable was slightly lower than 40% of the total 

number of image pixels. On the other hand, global stereo methods depend on a fully 

built cost volume for the subsequent optimization in an iterative process which makes 

them incompatible with a layer-wise cost volume construction process or the SNCE 

metric. According to the background study in Chapter 2, a better alternative for 

achieving unimodal cost distributions is available via deep learning-based stereo 

vision. Deep stereo techniques depend on the unimodality of matching costs for 

accurate disparity regression through the differentiable “Softargmin” operation. 

Hence, the convergence of the SNCE metric on deep stereo networks must be 

analysed next, provided that the SNCE metric can be computed efficiently as part of 

the already complex computations associated with deep stereo algorithms. 
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CHAPTER 05 - EFFICIENT ESTIMATION OF THE SNCE METRIC 

Introduction 
This chapter aims to analyse the computational complexity of the SNCE metric which 

was introduced in the previous chapter. The main objective is to investigate the 

feasibility of using the metric with stereo vision algorithms. First, a comprehensive 

algorithmic analysis is conduced to identify the order of growth of computations 

associated with the SNCE metric. Experiments are then conducted to validate the 

same empirically using C++ and CUDA based implementations of a basic stereo 

algorithm with embedded SNCE. Finally, the results are analysed to estimate the 

computational overhead of the SNCE process on both CPU and GPU architectures.  

5.1 Time Complexity of SNCE 
The time complexity associated with the SNCE metric can be determined by analysing 

the operations contained in the mathematical expression below (Equation (5.1)), which 

was developed in the previous chapter. Equation (5.1) contains an Iverson block 

followed by a summation operation over the pixel space N. The Iverson block encloses 

a comparison between the current disparity d and the result of the argmin operation 

along the one-dimensional array of matching costs 𝐶𝑖 associated with the ith pixel. 

Therefore, the analysis should start with the “argmin” operation before incorporating 

the comparison and summation operations. 

𝑆𝑁𝐶𝐸(𝑑) =  ∑[a𝑟𝑔𝑚𝑖𝑛(𝐶𝑖) == 𝑑]

𝑁

𝑖=1

 (5.1) 

5.1.1 Algorithmic Complexity of the Enclosed “Argmin” Operation 

A simple algorithm for the operations contained in the Iverson block in Equation (5.1) 

is shown in the pseudo code below.  

ALGORITHM 01: Computing the Iverson Block in Equation 5.1 above. 

//Calculate the disparity at which the minimum matching cost is located 

//Input: Array Di[1 × 𝑑] matching costs associated with any pixel up to a disparity (d) 

//Output: Integer 1 or 0; An output of 1 if the minimum index equals to (d-1); 0 otherwise 
01 ∶    𝑚𝑖𝑛_𝑖𝑛𝑑𝑒𝑥 ←  𝐷𝑖[0] 

02 ∶    𝒇𝒐𝒓 𝑖 ← 0 𝒕𝒐 (𝑑 − 1) 𝒅𝒐 

03 ∶            𝒊𝒇 𝐷𝑖[i] < 𝑚𝑖𝑛 _𝑖𝑛𝑑𝑒𝑥: 

04 ∶                     𝑚𝑖𝑛_𝑖𝑛𝑑𝑒𝑥 ← 𝑖 
05 ∶    𝒊𝒇 min_𝑖𝑛𝑑𝑒𝑥 𝒆𝒒 (𝑑 − 1): 

06 ∶             𝒓𝒆𝒕𝒖𝒓𝒏 1 

07 ∶    𝒓𝒆𝒕𝒖𝒓𝒏 0 
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As per the pseudo code for ALGORITHM 01, there are two basic operations that take 

place during the computation. If 𝑡𝑓 is the execution time for the comparison with 

assignment within the loop (shaded in yellow in pseudo code), then the total execution 

time 𝑇𝑓 for the loop (at dth disparity) can be approximated by the following equation 

(Equation (5.2)). 

𝑇𝑓(𝑑) ≈  ∑ 𝑡𝑓

𝑑−1

0

 (5.2) 

If the comparison operation or any follow up calculation after the for loop takes 𝑡𝑐 

time to execute (as shaded in blue in ALGORITHM 01 above), then the total execution 

time for the Iverson block (at dth disparity) in Equation (5.1) can be estimated to be: 

𝑇(𝑑) ≈ ∑ 𝑡𝑓

𝑑−1

0

 +  𝑡𝑐   (5.3) 

According to Equation (5.3), the total number of calculations that needs to be 

performed is given by d + 1 which includes d number of operations within the loop and 

1 operation outside. Therefore, the complexity of operations contained in the Iverson 

block has an order of growth equal to d. 

5.1.2 “Argmin” Operation Over the Total Image Space 

The calculation enclosed in the Iverson block of Equation (5.1) must be computed for 

all N pixels in the stereo images. If the width and height of the images are denoted by 

(𝑤) and (ℎ), then the pseudo code below outlines the computation of the minima 

based SNCE at a disparity value denoted by d. 

ALGORITHM 02: Computing minima based SNCE  

//Calculate the SNCE at a disparity value of d 

//Input: 3D Array CVi[ℎ × 𝑤 × 𝑑] matching costs  

//associated with any pixel up to a disparity d 

//Output: Integer (𝑠𝑛𝑐𝑒_𝑣𝑎𝑙𝑢𝑒); SNCE value at disparity d  

01 ∶    𝑠𝑛𝑐𝑒_𝑣𝑎𝑙𝑢𝑒 ← 0 

02 ∶    𝒇𝒐𝒓 𝑚 ← 0 𝒕𝒐 (ℎ − 1) 𝒅𝒐: 

03 ∶             𝒇𝒐𝒓 𝑛 ← 0 𝒕𝒐 (𝑤 − 1) 𝒅𝒐: 

04 ∶                       𝑚𝑖𝑛_𝑖𝑛𝑑𝑒𝑥 ←  𝐶𝑉𝑖[𝑚, 𝑛, 0] 

05 ∶                        𝒇𝒐𝒓 𝑖 ← 0 𝒕𝒐 (𝑑 − 1) 𝒅𝒐 

06 ∶                                 𝒊𝒇 𝐶𝑉𝑖[m, n, i] < min _𝑖𝑛𝑑𝑒𝑥: 

07 ∶                                          𝑚𝑖𝑛_𝑖𝑛𝑑𝑒𝑥 ← 𝑖 

08 ∶                        𝒊𝒇 𝑚𝑖𝑛_𝑖𝑛𝑑𝑒𝑥 𝒆𝒒 (𝑑 − 1): 

09 ∶                                𝑠𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 ← 𝑠𝑛𝑐𝑒_𝑣𝑎𝑙𝑢𝑒 + 1 

10 ∶    𝒓𝒆𝒕𝒖𝒓𝒏 𝑠𝑛𝑐𝑒_𝑣𝑎𝑙𝑢𝑒 
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As shown in the pseudo code, the total execution time for SNCE calculation at a certain 

disparity d increases with the number of pixels in the images. Therefore, the total time 

it takes to complete all the computations can be approximated by the following 

expression. 

𝑇𝑓(𝑑) ≈ ∑ ∑ (∑ 𝑡𝑓

𝑑−1

0

+ 𝑡𝑐)

𝑤−1

0

ℎ−1

0

 (5.4) 

 

5.1.3 Estimating SNCE at Each Disparity 

It is important to note that the SNCE values must be calculated for all disparities 

starting from 0 to some higher disparity value 𝑑𝑚𝑎𝑥 which is expected to be found 

using the SNCE metric itself. At zero disparity, the total number of calculations 

required to estimate SNCE is proportional to the number of pixels in the image which 

is equal to n. At a disparity value of d, the same estimation expands to n x d or w x h x 

d times. Hence, it is apparent that there is a best-case-scenario (at disparity 0) and a 

worst-case-scenario (at the maximum disparity). In the best-case scenario at zero 

disparity, the computational time for estimating SNCE value can be expressed by: 

𝑇0 =  𝑇𝑓(0) ≈ ∑ ∑ 𝑡𝑐

𝑤−1

0

ℎ−1

0

 (5.5) 

 

At the maximum disparity of 𝑑𝑚𝑎𝑥 the computational time estimation reaches the 

worst-case-scenario which is given by the following expression. 

𝑇𝐷𝑚𝑎𝑥 =  𝑇𝑓(𝐷𝑚𝑎𝑥) ≈ ∑ ∑ ( ∑ 𝑡𝑓

𝑑𝑚𝑎𝑥−1

0

+ 𝑡𝑐)

𝑤−1

0

ℎ−1

0

 (5.6) 

 

Therefore, the total computational time 𝑇𝑡𝑜𝑡𝑎𝑙  for the estimation of SNCE values for 

all disparities from zero to the maximum disparity equals to the sum of all estimations 

(from the best case to the worst-case scenarios).  

𝑇𝑡𝑜𝑡𝑎𝑙(𝐷𝑚𝑎𝑥) ≈ 𝑇0 + 𝑇1 + ⋯ + 𝑇𝐷𝑚𝑎𝑥 (5.7) 
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𝑇𝑡𝑜𝑡𝑎𝑙(𝑑𝑚𝑎𝑥) ≈ ∑ ∑ 𝑡𝑐

𝑤−1

0

ℎ−1

0

+ ∑ ∑ (∑ 𝑡𝑓

1

0

+ 𝑡𝑐)

𝑤−1

0

ℎ−1

0

+ ⋯

+ ∑ ∑ ( ∑ 𝑡𝑓

𝑑𝑚𝑎𝑥−1

0

+ 𝑡𝑐)

𝑤−1

0

ℎ−1

0

 

(5.8) 

 

5.2 The Order of Growth in Computations 
The order of growth of an algorithm refers to the growth in the number of 

computational steps when the size of the inputs is increased. In order to estimate the 

order of growth in computations, it is important to establish the total number of 

computational steps as a function of the input dimensions.  

The total number of steps that leads to 𝑇𝑡𝑜𝑡𝑎𝑙(𝑑𝑚𝑎𝑥) in Equation (5.8) can be calculated 

by summing the number of computations associated with each of the disparities. If 

the same is denoted by 𝐶𝑡𝑜𝑡𝑎𝑙, it can be expressed in the following manner. 

 

𝐶𝑡𝑜𝑡𝑎𝑙 = {𝑤 × ℎ × 1} + {𝑤 × ℎ × 2} + {𝑤 × ℎ × 3} + ⋯ + {𝑤 × ℎ × (𝑑𝑚𝑎𝑥 + 1)} 

 

𝐶𝑡𝑜𝑡𝑎𝑙 = (𝑤 × ℎ){1 + 2 + 3 + ⋯ + (𝑑𝑚𝑎𝑥 + 1)} 

  

𝐶𝑡𝑜𝑡𝑎𝑙 =
(𝑤 × ℎ)(𝑑𝑚𝑎𝑥 + 1)(𝑑𝑚𝑎𝑥 + 2)

2
 

 

(5.9) 

 

According to the expression for 𝐶𝑡𝑜𝑡𝑎𝑙, the order of growth of the calculations 

increases with the input size (which is determined by the height and width) and the 

quadratic value of the disparity search range. If n denotes the size of the input in a 

single dimension, the order of growth (when estimating minima-based SNCE values 

for all disparities up to d can be incorporated into an expression using the standard 

“Big-oh” (Big-O) notation. 

𝐶(𝑛, 𝑑) ∈  𝑂 (𝑛2𝑑2) (5.10) 
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5.2.1 Order of Growth in Stereo Disparity Estimation 

From the analysis so far, the order of growth of the SNCE estimation was found to be 

extremely high. However, it needs to be compared with the complexity of stereo vision 

algorithms which already have a higher order of growth and contain most of the 

computations required by the SNCE metric. For example, consider the pseudo code of 

a Sum-of-Absolute-Difference (SAD) based stereo disparity estimation method (for 

grayscale images) which is given below. The algorithm uses a mask size of (𝑘 ×  𝑘) for 

cost aggregation with SAD with winner-takes-all (WTA) disparity selection. 

ALGORITHM 03: Computing a disparity map from a stereo image pair  

//Estimate the disparity map using two calibrated grayscale stereo images 

//Input: Maximum disparity (dmax), mask size [𝑘 × 𝑘], 

//Stereo image pair Img1[ℎ × (𝑤 + 𝑑𝑚𝑎𝑥)] (padded with zeros), Img2[ℎ × 𝑤]  

//Output: 𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑝[ℎ × 𝑤]   

01 ∶    𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 ← 𝑧𝑒𝑟𝑜𝑠[ℎ × 𝑤] 

02 ∶    𝑚𝑖𝑛𝑣𝑎𝑙 ← 𝑧𝑒𝑟𝑜𝑠[ℎ × 𝑤] 

03 ∶    𝑟 ← 𝒊𝒏𝒕(𝑘/2 − 1) 

04 ∶    𝒇𝒐𝒓 𝑑 ← 0 𝒕𝒐 (𝑑𝑚𝑎𝑥 − 1) 𝒅𝒐: 

05 ∶             𝒇𝒐𝒓 𝑚 ← 𝑟 𝒕𝒐 (ℎ − 1) 𝒅𝒐: 

06 ∶                        𝒇𝒐𝒓  𝑛 ←  𝑟 𝒕𝒐 (𝑤 − 1) 𝒅𝒐: 

07 ∶                                  𝑠𝑎𝑑 = 0 

08 ∶                                  𝒇𝒐𝒓 𝑎 ← 0 𝒕𝒐 (𝑘 − 1) 𝒅𝒐: 

09 ∶                                         𝒇𝒐𝒓 𝑏 ← 0 𝒕𝒐 (𝑘 − 1) 𝒅𝒐: 

10 ∶                                                 𝑑𝑖𝑓  ←  𝑎𝑏𝑠 (
𝑖𝑚𝑔1[𝑚 − 𝑟 + 𝑎,   𝑛 − 𝑟 + 𝑏]

−𝑖𝑚𝑔2[𝑚 − 𝑟 + 𝑎,   𝑛 − 𝑟 + 𝑏]
) 

11 ∶                                                 𝑠𝑎𝑑 ←  𝑠𝑎𝑑 + 𝑑𝑖𝑓 

12 ∶                                 𝒊𝒇 𝑑 𝒆𝒒 0: 

13 ∶                                         𝑚𝑖𝑛𝑣𝑎𝑙[𝑚, 𝑛]  ←  𝑠𝑎𝑑   

14 ∶                                 𝒆𝒍𝒔𝒆: 
15 ∶                                        𝒊𝒇 𝑠𝑎𝑑 𝒍𝒆𝒔𝒔 𝒕𝒉𝒂𝒏 𝑚𝑖𝑛𝑣𝑎𝑙[𝑚, 𝑛]: 

16 ∶                                                   𝑚𝑖𝑛𝑣𝑎𝑙[𝑚, 𝑛]  ←  𝑠𝑎𝑑 

17 ∶                                                   𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦[𝑚, 𝑛]  ← 𝑑 

18 ∶   𝒓𝒆𝒕𝒖𝒓𝒏 𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 

 

Following a similar process as before, the order of growth of the computations of the 

given stereo algorithm can be estimated from the pseudo code to be the following 

(Equation (5.11)). 

𝐶𝑆𝐴𝐷 𝑠𝑡𝑒𝑟𝑒𝑜(𝑛, 𝑑, 𝑘) ∈  𝑂(𝑛2𝑑 𝑘2) (5.11) 
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5.2.2 Embedding SNCE in Stereo 

One clear observation from the pseudo code of the SAD-based stereo algorithm 

(ALGORITHM 03) is the fact that, most of the calculations required for estimating SNCE 

already exist in the stereo estimation algorithm itself. Therefore, it is possible to 

embed SNCE calculation in the stereo vision algorithm without adding a 

𝑂(𝑛2𝑑2) computational burden on top of the stereo algorithm that already have an 

order of growth equal to 𝑂(𝑛2𝑑 𝑘2)  which would be prohibitively expensive. 

Consider the following pseudo code which shows a modified version of the stereo 

algorithm which includes an embedded SNCE estimation process. The changes are 

marked with boxes shaded in blue and yellow. 

ALGORITHM 04: Computing a disparity map from a stereo image pair while calculating SNCE 

//Estimate the disparity map using a calibrated grayscale stereo image pair  

//while calculating SNCE at each disparity.  

//Input: Maximum disparity (dmax), mask size [𝑘 × 𝑘], 

//Stereo image pair Img1[ℎ × (𝑤 + 𝑑𝑚𝑎𝑥)] (padded with zeros), Img2[ℎ × 𝑤]  

//Output: 𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑝[ℎ × 𝑤]   

01 ∶    𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 ← 𝑧𝑒𝑟𝑜𝑠[ℎ × 𝑤] 

02 ∶    𝑚𝑖𝑛𝑣𝑎𝑙 ← 𝑧𝑒𝑟𝑜𝑠[ℎ × 𝑤] 

03 ∶    𝑠𝑛𝑐𝑒 ← zeros[𝑑𝑚𝑎𝑥] 

04 ∶    𝑟 ← 𝒊𝒏𝒕(𝑘/2 − 1) 

05 ∶    𝒇𝒐𝒓 𝑑 ← 0 𝒕𝒐 (𝑑𝑚𝑎𝑥 − 1) 𝒅𝒐: 

07 ∶             𝒇𝒐𝒓 𝑚 ← 𝑟 𝒕𝒐 (ℎ − 1) 𝒅𝒐: 

08 ∶                       𝒇𝒐𝒓  𝑛 ←  𝑟 𝒕𝒐 (𝑤 − 1) 𝒅𝒐: 

09 ∶                                  𝑠𝑎𝑑 = 0 

10 ∶                                  𝒇𝒐𝒓 𝑎 ← 0 𝒕𝒐 (𝑘 − 1) 𝒅𝒐: 

11 ∶                                         𝒇𝒐𝒓 𝑏 ← 0 𝒕𝒐 (𝑘 − 1) 𝒅𝒐: 

12 ∶                                                  𝑑𝑖𝑓 ←  𝑎𝑏𝑠 (
𝑖𝑚𝑔1[𝑚 − 𝑟 + 𝑎,   𝑛 − 𝑟 + 𝑏]

−𝑖𝑚𝑔2[𝑚 − 𝑟 + 𝑎,   𝑛 − 𝑟 + 𝑏]
) 

13 ∶                                                  𝑠𝑎𝑑 ←  𝑠𝑎𝑑 + 𝑑𝑖𝑓 

14 ∶                                  𝒊𝒇 𝑑 𝒆𝒒 0: 

15 ∶                                         𝑚𝑖𝑛𝑣𝑎𝑙[𝑚, 𝑛]  ←  𝑠𝑎𝑑   

16 ∶                                         𝑠𝑛𝑐𝑒[𝑑]  ←  𝑠𝑛𝑐𝑒[𝑑] + 1 

17 ∶                                  𝒆𝒍𝒔𝒆: 

18 ∶                                         𝒊𝒇 𝑠𝑎𝑑 𝒍𝒆𝒔𝒔 𝒕𝒉𝒂𝒏 𝑚𝑖𝑛𝑣𝑎𝑙[𝑚, 𝑛]: 

19 ∶                                                    𝑚𝑖𝑛𝑣𝑎𝑙[𝑚, 𝑛]  ←  𝑠𝑎𝑑 

20 ∶                                                    𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦[𝑚, 𝑛]  ← 𝑑 

21 ∶                                                    𝑠𝑛𝑐𝑒[𝑑]  ←  𝑠𝑛𝑐𝑒[𝑑] + 1 

22 ∶    𝒓𝒆𝒕𝒖𝒓𝒏 𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 
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As shown in the modified pseudo code, with only 2 additional steps, the whole SNCE 

process can be incorporated into the stereo disparity estimation process without 

changing the order of growth of computational steps. This contrasts with the naive 

SNCE estimation process which had a growth in the order of 𝑂(𝑛2𝑑2). If small, fixed 

mask sizes are concerned, the order of growth of the SNCE embedded-stereo method 

can be lower than the earlier estimation of 𝑂(𝑛2𝑑2). In ALGORITHM 04, a 1D array is 

used to store the SNCE values. If the maximum disparity is unknown at the beginning, 

then the size of the array can be set to the image width. At the end of each iteration, 

some SNCE-based exit criteria can be used to terminate the process as shown in green 

in the modified pseudo code (ALGORITHM 05) below. 

ALGORITHM 05: Computing a disparity map with SNCE based maximum disparity 

//Estimate the disparity map using a calibrated grayscale stereo image pair while  

//using SNCE to determine the maximum disparity based on some SNCE threshold 

//Input: Maximum disparity (dmax), mask size [𝑘 × 𝑘],SNCE threshold (threshold) 

//Stereo image pair Img1[ℎ × (𝑤 + 𝑑𝑚𝑎𝑥)] (padded with zeros), Img2[ℎ × 𝑤]  

//Output: 𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑝[ℎ × 𝑤]  Output of 1 if the minimum index equals to (d); 0 
//otherwise 

01 ∶    𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 ← 𝑧𝑒𝑟𝑜𝑠[ℎ × 𝑤] 

02 ∶    𝑚𝑖𝑛𝑣𝑎𝑙 ← 𝑧𝑒𝑟𝑜𝑠[ℎ × 𝑤] 

03 ∶    𝑠𝑛𝑐𝑒 ← zeros[𝑤] 

04 ∶    𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 ← (𝑠𝑜𝑚𝑒 𝑢𝑠𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎) 

05 ∶    𝑟 ← 𝒊𝒏𝒕(𝑘/2 − 1) 

06 ∶    𝒇𝒐𝒓 𝑑 ← 0 𝒕𝒐 (𝑤 − 1) 𝒅𝒐: 

07 ∶             𝒇𝒐𝒓 𝑚 ← 𝑟 𝒕𝒐 (ℎ − 1) 𝒅𝒐: 

08 ∶                        𝒇𝒐𝒓  𝑛 ←  𝑟 𝒕𝒐 (𝑤 − 1) 𝒅𝒐: 

09 ∶                                  𝑠𝑎𝑑 = 0 

10 ∶                                  𝒇𝒐𝒓 𝑎 ← 0 𝒕𝒐 (𝑘 − 1) 𝒅𝒐: 

11 ∶                                         𝒇𝒐𝒓 𝑏 ← 0 𝒕𝒐 (𝑘 − 1) 𝒅𝒐: 

12 ∶                                                  𝑑𝑖𝑓 ←  𝑎𝑏𝑠 (
𝑖𝑚𝑔1[𝑚 − 𝑟 + 𝑎,   𝑛 − 𝑟 + 𝑏]

−𝑖𝑚𝑔2[𝑚 − 𝑟 + 𝑎,   𝑛 − 𝑟 + 𝑏]
) 

13 ∶                                                  𝑠𝑎𝑑 ←  𝑠𝑎𝑑 + 𝑑𝑖𝑓 

14 ∶                                  𝒊𝒇 𝑑 𝒆𝒒 0: 

15 ∶                                         𝑚𝑖𝑛𝑣𝑎𝑙[𝑚, 𝑛]  ←  𝑠𝑎𝑑   

16 ∶                                         𝑠𝑛𝑐𝑒[𝑑]  ←  𝑠𝑛𝑐𝑒[𝑑] + 1 

17 ∶                                  𝒆𝒍𝒔𝒆: 

18 ∶                                         𝒊𝒇 𝑠𝑎𝑑 𝒍𝒆𝒔𝒔 𝒕𝒉𝒂𝒏 𝑚𝑖𝑛𝑣𝑎𝑙[𝑚, 𝑛]: 

19 ∶                                                    𝑚𝑖𝑛𝑣𝑎𝑙[𝑚, 𝑛]  ←  𝑠𝑎𝑑 

20 ∶                                                   𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦[𝑚, 𝑛]  ← 𝑑 

21 ∶                                                    𝑠𝑛𝑐𝑒[𝑑]  ←  𝑠𝑛𝑐𝑒[𝑑] + 1 

22 ∶            𝒊𝒇 𝑠𝑛𝑐𝑒(𝑑) 𝒎𝒆𝒆𝒕𝒔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎: 

23 ∶                       𝒃𝒓𝒆𝒂𝒌 

24 ∶    𝒓𝒆𝒕𝒖𝒓𝒏 𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 
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5.3 Empirical Analysis 
So far, the theoretical analysis of a basic stereo vision algorithm has shown that the 

SNCE estimation can be embedded without increasing the order of growth of the 

computations. However, it is important to validate the same using empirical methods 

and find out exactly how much additional time complexity is added by SNCE. To 

investigate the same, this section includes experiments involving C++ based 

implementations of the algorithms presented in the preceding sections. 

5.3.1 Methodology 

Four sets of stereo image pairs were created using the “Bike” image pair from the 

Middlebury 2014 dataset by progressively resizing the images and reducing the width 

and height by half. The first image pair has the same width and height as the original 

(2964x2000 pixels) whereas the last image pair has 1/8th of the initial width and 

height. The maximum disparity was set to 280 pixels at the full resolution and then 

reduced by half every time the images were rescaled by a factor of two. Hence, at half-

quarter resolution, maximum disparity is limited to 35 pixels. Mask size was set to 3x3. 

Disparity maps were then estimated using the SAD-based basic stereo algorithm on a 

1.8 GHz AMD CPU while measuring the computational time. Algorithm was executed 

5 times at each resolution to obtain an average value. The final values were analysed 

to verify if they match the order of growth given by 𝑂(𝑛2𝑑 𝑘2).  Subsequently, the 

SNCE related changes were introduced to the algorithm and the experiments were 

repeated to verify if the new set of results follow the same order of growth. Please 

refer to Appendix B to locate source code and the software used. 

5.3.2 Results 

5.3.2.1 Order of Growth of the Stereo Algorithm 

The Table 5.1 below shows the results when using the stereo algorithm alone (without 

the SNCE operation). As seen from the results, algorithm has taken close to 3 minutes 

(178.29 seconds) to compute the disparity map at full resolution (2964x2000) while 

taking only (0.33 seconds) at half-quarter resolution of 370x250.  

According to the theoretical analysis earlier, the order of growth of the computational 

time was found to be 𝑂(𝑛2𝑑 𝑘2) which indicate that the computational time should 

decrease by 8 (23) times, every time the width, height and disparity are reduced by 

half (while keeping the mask size constant at 3x3). The last row in Table 5.1, shows the 
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execution time for half, quarter and half-quarter resolution levels multiplied by 8. It is 

apparent from the results that the computational time has reduced by approximately 

8 times. Therefore, it can be concluded that the order of growth found through 

algorithmic analysis, is approximately the same as the actual order of growth observed 

when the basic SAD-based stereo algorithm was run on actual computing hardware.  

 Execution Time in Seconds (s) 

 Resolution Full (2964x2000) Half (1482x1000) Quarter (741x500) Half of Quarter (370x250) 

Take 1 175.80 22.28 2.71 0.33 

Take 2 182.45 22.65 2.76 0.34 

Take 3 180.36 22.38 2.74 0.35 

Take 4 175.99 21.94 2.70 0.34 

Take 5 176.84 22.10 2.75 0.34 

Average 178.29 22.27 2.73 0.34 

x8  178.18 21.83 2.73 

Table 5.1: Execution times in seconds for SAD based stereo disparity estimation algorithm using the Middlebury 
2014 "Bike" image pair at 4 different resolution levels with a maximum disparity of 280 at full resolution. 

Maximum disparity was halved each time the width and height were reduced by half. The arrow connections show 
how the execution times have reduced by approximately 8 times at each level. 

 

5.3.2.2 Order of Growth of the Stereo Algorithm with SNCE 

When the same experiments were repeated with changes to accommodate SNCE 

computations, the average computational time did not increase significantly (as shown 

in Table 5.2). Like in the previous experiments, the reduction of maximum disparity, 

width and height by half has resulted in computational times improving by 

approximately 8 times.  

  Execution Time in Seconds (s) 

 Resolution Full (2964x2000) Half (1482x1000) Quarter (741x500) Half of Quarter (370x250) 

Take 1 180.50 22.29 2.83 0.34 

Take 2 177.14 22.29 2.75 0.36 

Take 3 181.61 22.20 2.76 0.34 

Take 4 196.13 23.04 2.75 0.35 

Take 5 180.66 22.45 2.81 0.36 

Average 183.21 22.45 2.78 0.35 

x8   179.64 22.25 2.81 

Table 5.2: Execution times in seconds for SAD based stereo disparity estimation algorithm with embedded SNCE 
computations using the Middlebury 2014 "Bike" image pair at 4 different resolution levels with a maximum 

disparity of 280 at full resolution. Maximum disparity was halved each time the width and height were reduced by 
half. The arrow connections show how the execution times have been reduced by approximately 8 times at each 

level. 

It is also important to note that the overall computational time at each resolution level 

has not increased significantly despite calculating SNCE at each disparity. For example, 

at half-quarter resolution, the time has only increased by 10 ms (from 340 ms to 350 
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ms). Table 5.3 below shows the increase in computational time as a percentage of the 

average execution time in the absence of SNCE calculation.  

  Execution Time in Seconds (s) 

 Resolution 
Full 
(2964x2000) 

Half 
(1482x1000) 

Quarter 
(741x500) 

Half of Quarter 
(370x250) 

Stereo Only 178.29 22.27 2.73 0.34 

Stereo with SNCE 183.21 22.45 2.78 0.35 
Increase in Time 
(seconds) 4.92 0.18 0.05 0.01 

Percentage Increase 2.76  0.82  1.78  2.90  

Table 5.3: A comparison of the execution times between the basic stereo and SNCE-based stereo 

As seen from the results in Table 5.3, the increase in computational time due to SNCE 

is less than 3% of the total execution time of the algorithm.  

5.4 Parallelization of SNCE Estimation 
Deep learning-based state-of-the-art algorithms use the power of parallel processing 

on GPUs to expedite the training and inference times of stereo vision algorithms. 

Embedding SNCE into such deep learning methods requires the SNCE metric to be 

suitable for parallel processing.  Therefore, the fittingness of SNCE for parallel 

processing is investigated in this section. 

As shown at the beginning of the chapter, SNCE calculation for a particular disparity 

involves an “argmin” operation followed by a comparison, results of which must be 

summed over all the pixels. Therefore, an intuitive solution for parallelization of SNCE 

would be to assign the operations enclosed in the Iverson brackets of Equation (5.1), to 

individual threads on a GPU. However, the summation of the individual results 

requires the threads to be synchronized.  

5.4.1 CUDA Programming 

All parallel computing related experiments in this chapter are conducted using the 

CUDA (Compute Unified Device Architecture) parallel computing platform using 

NVIDIA devices. CUDA programming is based on C-language and the development 

depends on the architecture of the GPU device being used. The pieces of code written 

for NVIDIA devices that support CUDA are called “kernels” or “kernel functions” which 

are executed on many parallel threads in the GPU. Threads in a GPU are structured as 

grids of thread blocks. Therefore, when executing a kernel, thread requirements can 

be specified by specifying the block dimension in terms of threads, and the grid 
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dimension in terms of the number of such blocks. For example, a 4x4 grid of 4x4 blocks 

would indicate 16 blocks with 16 threads each (i.e., grids and blocks can have 1D, 2D 

or 3D dimensions). However, the “grids and blocks” structure is important for 

accessing threads and assigning tasks to each using CUDA programming. CUDA 

provides several variables to access the grid-block architecture. For example, 

“threadIdx” variable can be used to identify threads so that “threadIdx.x”, 

“threadIdx.y” and “threadIdx.z” refer to the location of the thread in the thread block 

and they provide the coordinates along X, Y and Z dimensions, respectively. The 

“blockIdx” variable works the same way but identifies the block within the grid. In 

addition, “blockDim” provides the dimensions of the blocks.  

5.4.2 Basic Stereo on GPU 

Before SNCE estimation on a GPU, it is important to come up with a stereo disparity 

estimation algorithm which is suitable for GPU architectures. The following pseudo 

code of a CUDA based kernel outlines an algorithm which can be used to obtain a 

disparity map from a pair of rectified stereo images on a GPU. 

ALGORITHM 06: Computing Stereo Disparity on GPU. 

//Calculate a disparity map given a pair of rectified grayscale stereo images 

//Input: Maximum disparity (dmax), mask size [𝑘 × 𝑘], 

//Stereo image pair Img1[ℎ × (𝑤 + 𝑑𝑚𝑎𝑥)] (padded with zeros), Img2[ℎ × 𝑤]  

//Output: 𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑝[ℎ × 𝑤]   

01 ∶    𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 ← 𝑧𝑒𝑟𝑜𝑠[ℎ × 𝑤] 
02 ∶    𝑚𝑖𝑛𝑣𝑎𝑙 ← 𝑧𝑒𝑟𝑜𝑠[ℎ × 𝑤] 
03 ∶    𝑖 ← 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑦 ∗ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑦 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦 
04 ∶    𝑗 ← 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 
05 ∶    𝒊𝒇 𝑘 <  𝑖 < ℎ − 𝑘 𝒂𝒏𝒅 𝑘 <  𝑗 < 𝑤 − 𝑘: 
06 ∶            𝒇𝒐𝒓 𝑑 ← 0 𝒕𝒐 (𝑑𝑚𝑎𝑥 − 1) 𝒅𝒐 
07 ∶                    𝑚𝑐 ←  𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝐶𝑜𝑠𝑡(𝑖, 𝑗, 𝑑): 
08 ∶                    𝒊𝒇 𝑑 𝒆𝒒 0: 
09 ∶                            𝑚𝑖𝑛𝑣𝑎𝑙(𝑖, 𝑗)  ← 𝑚𝑐          
10 ∶                    𝒆𝒍𝒔𝒆: 
11 ∶                            𝒊𝒇 𝑚𝑐 <  𝑚𝑖𝑛𝑣𝑎𝑙(𝑖, 𝑗): 
12 ∶                                       𝑚𝑖𝑛𝑣𝑎𝑙(𝑖, 𝑗)  ← 𝑚𝑐  
13 ∶                                       𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦(𝑖, 𝑗) ← 𝑑 
14 ∶    𝒓𝒆𝒕𝒖𝒓𝒏 𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 

In the pseudo code provided above, the segment with the yellow background shows 

the use of kernel variables to uniquely identify a thread in the grid and block 

architecture so that the tasks can be assigned to each. The segment with a blue 

background shows the tasks carried out by each thread which are repeated at each 
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disparity (due to the “for” loop). The “matchingCost” function refers to any calculation 

that involves a computation of a similarity measure with a mask size of (k x k).  The 

most important difference between the GPU and CPU implementations is the 

simplicity. Due to the parallel architecture, the stereo computations have been 

reduced to the correspondence search at each pixel by a thread in the GPU. As a result, 

the order of growth of computations of an algorithm depends only on the order of 

growth of the computations carried out by each thread and the number of threads. 

Therefore, the order of growth of computations of the given GPU-based stereo 

example should remain within 𝑂(𝑛2𝑑 𝑘2) in big-oh notation. 

5.4.3 Incorporating SNCE Calculations 

Like in the case of SNCE calculation for SAD-based stereo outlined earlier, SNCE can be 

included as part of the GPU-based implementation as well. This can be demonstrated 

with only a few changes to the pseudo code of the GPU-based stereo example in the 

previous section. The following pseudo code segment shows a GPU-based stereo 

algorithm which is able to compute SNCE at each disparity.  

ALGORITHM 07: Computing Stereo Disparity with SNCE on GPU. 

//Calculate a disparity map given a pair of rectified grayscale stereo images 

//Input: Maximum disparity (dmax), mask size [𝑘 × 𝑘], 

//Stereo image pair Img1[ℎ × (𝑤 + 𝑑𝑚𝑎𝑥)] (padded with zeros), Img2[ℎ × 𝑤]  

//Output: 𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑝[ℎ × 𝑤]   

01 ∶    𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 ← 𝑧𝑒𝑟𝑜𝑠[ℎ × 𝑤] 
02 ∶    𝑚𝑖𝑛𝑣𝑎𝑙 ← 𝑧𝑒𝑟𝑜𝑠[ℎ × 𝑤] 
03 ∶    𝑠𝑛𝑐𝑒 ← zeros[𝑑𝑚𝑎𝑥]  
04 ∶    𝑖 ← 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑦 ∗ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑦 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦 
05 ∶    𝑗 ← 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 
06 ∶    𝒊𝒇 𝑘 <  𝑖 < ℎ − 𝑘 𝒂𝒏𝒅 𝑘 <  𝑗 < 𝑤 − 𝑘: 
07 ∶            𝒇𝒐𝒓 𝑑 ← 0 𝒕𝒐 (𝑑𝑚𝑎𝑥 − 1) 𝒅𝒐 
08 ∶                    𝑚𝑐 ←  𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝐶𝑜𝑠𝑡(𝑖, 𝑗, 𝑑): 
09 ∶                    𝒊𝒇 𝑑 𝒆𝒒 0: 
10 ∶                            𝑚𝑖𝑛𝑣𝑎𝑙(𝑖, 𝑗)  ← 𝑚𝑐  
11 ∶                            𝑎𝑡𝑜𝑚𝑖𝑐𝐴𝑑𝑑(𝑠𝑛𝑐𝑒[𝑑], 1)        
12 ∶                    𝒆𝒍𝒔𝒆: 
13 ∶                            𝒊𝒇 𝑚𝑐 <  𝑚𝑖𝑛𝑣𝑎𝑙(𝑖, 𝑗): 
14 ∶                                       𝑚𝑖𝑛𝑣𝑎𝑙(𝑖, 𝑗)  ← 𝑚𝑐  
15 ∶                                       𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦(𝑖, 𝑗) ← 𝑑 
16 ∶                                      𝑎𝑡𝑜𝑚𝑖𝑐𝐴𝑑𝑑(𝑠𝑛𝑐𝑒[𝑑], 1)  
17 ∶    𝒓𝒆𝒕𝒖𝒓𝒏 𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 

The changes from the previous section include the addition of a 1D array called “snce” 

(shown with a yellow background) to hold the SNCE results. Each element in the “snce” 
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array corresponds to the SNCE values at each disparity. The additional “AtomicAdd” 

operations (highlighted in green) are used to provide a thread safe method to 

increment each value in the “snce” array.  

5.4.4 Atomicadd Operation 

According to the pseudo code above, each thread in a GPU that computes some stereo 

matching score at a certain disparity, needs to be able to increment the corresponding 

element in the “snce” array if the current matching score is the minimum score found 

so far (up to the current disparity). However, a large number of threads attempting to 

update the same element can lead to what is termed as a “race-condition”. This can 

result in the updates to the elements being inconsistent. Therefore, the example 

implementation uses the “Atomicadd” operation provided by the CUDA platform 

which ensures that multiple threads are allowed to update the respective elements in 

the “snce” array without causing inconsistencies.  

5.4.5 Order of Growth of Computations 

Like in the example of CPU based stereo method, the order of growth of computations 

in the parallel stereo calculation method with SNCE remains at 𝑂(𝑛2𝑑 𝑘2) even after 

the introduction of SNCE provided that the “AtomicAdd” operations do not lead to 

increase in the order of growth. In the next section, empirical methods are used to 

experimentally verify the same. 

5.4.6 Methodology 

Using the same dataset in Section 1.4.1, a GPU-based stereo vision technique was used 

to derive disparity maps while using the GPU thread configurations shown in the Table 

5.4. The maximum disparity was set to be 280 pixels at full resolution and progressively 

reduced by half, every time the resolution is reduced. Time to generate the disparity 

map was recorded 5 times at each resolution and an average value was taken. The 

same steps were repeated with the SNCE-enabled version of the algorithm to record 

execution times at each resolution level.  An NVIDIA RTX2080 GPU with 8 GB memory 

and 2944 CUDA cores, was used as the hardware platform for the experiment. Please 

refer to Appendix B to locate source code and the software used. 
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Resolution Maximum Disparity Block Grid 

2964 x 2000 280 16 x 16 x 1 186 x 125 x 1 

1482 x 1000 140 16 x 16 x 1 93 x 63 x 1 

741 x 500 70 16 x 16 x 1 47 x 32 x 1 

371 x 250 35 16 x 16 x 1 24 x 16 x 1 

Table 5.4: Allocation of thread blocks at each resolution. Block configuration is kept constant and the grid 
configuration is changed to accommodate sufficient threads to cover the resolution. 

 

5.4.7 Results 

5.4.7.1 SAD-based Stereo on GPU without SNCE 

Table 5.5 lists the observed algorithm-execution-time when the GPU-based stereo 

algorithm was used 5 times at each resolution. As seen from the table, the average 

time at quarter resolution is close to 8 times the value at half-of-quarter resolution. 

The last two rows confirm that the same observation stands for other resolution levels 

as well indicating that the order of growth of the computational time remains 

approximately the same even when the SAD-based stereo algorithm is implemented 

on GPU.   

  Execution Time in Seconds (s) 

 Resolution 
Full 
(2964x2000) 

Half 
(1482x1000) 

Quarter 
(741x500) 

Half of Quarter (370x250) 

Take 1 2.0673 0.2217 0.0281 0.0038 

Take 2 2.1485 0.2280 0.0305 0.0039 

Take 3 2.0738 0.2362 0.0270 0.0043 

Take 4 2.1004 0.2217 0.0308 0.0043 

Take 5 2.0765 0.2221 0.0274 0.0043 

Average 2.0933 0.2259 0.0288 0.0041 

X8   1.8076 0.2302 0.0330 

Table 5.5: Execution times for SAD-based stereo disparity estimation algorithm on GPU using Middlebury 2014 
bike image pair at 4 different resolution levels (All times are given in seconds). The arrows indicate how the 

execution times have reduced by approximately 8 times when width, height and disparity were reduced by half. 

 

5.4.7.2 SAD-based Stereo on GPU with SNCE 

Table 5.6 presents the results for the SAD based stereo vision algorithm on GPU with 

embedded SNCE computations. Like the previous example, the experiments have 

been run for 5 times and the individual values as well as average values are shown in 

table. The last row contains the execution times for half, quarter and half-of-quarter 

resolutions, multiplied by 8.  
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 Execution Time in Seconds (s) 

 Resolution 
Full 
(2964x2000) 

Half 
(1482x1000) 

Quarter 
(741x500) 

Half of Quarter (370x250) 

Take 1 2.6784 0.3014 0.0369 0.0048 

Take 2 2.7530 0.3042 0.0357 0.0047 

Take 3 2.7524 0.3020 0.0393 0.0052 

Take 4 2.6955 0.3138 0.0351 0.0047 

Take 5 2.7179 0.2958 0.0350 0.0046 

Average 2.7195 0.3035 0.0364 0.0048 

X8  2.4651 0.3081 0.0385 

Table 5.6: Execution times for SAD-based stereo disparity estimation algorithm with SNCE on GPU using 
Middlebury 2014 bike image pair at 4 different resolution levels (All times are given in seconds). The arrows 

indicate how the execution times have reduced by approximately 8 times when width, height and disparity were 
reduced by half. 

As depicted by the connection arrows, average execution times in consecutive 

columns have increased by approximately 8 times which indicate that the order of 

growth of the approximate computational times are consistent with 𝑂(𝑛2𝑑 𝑘2). 

5.5 Computational Time with and without SNCE 
The next table of results (Table 5.7) contains the average execution times for the SAD-

based stereo disparity estimation algorithm on GPU (before and after embedding 

SNCE). It is important to note that the values are significantly smaller at lower 

resolution. For example, at half-of-quarter resolution, the disparity estimation has only 

taken approximately 4 milliseconds. Even at the highest resolution of 2964x2000, the 

average time to compute the disparity map with a maximum disparity of 280 pixels 

has only taken approximately 3 seconds which is a significant improvement compared 

to the results on CPU (Table 5.3). 

To analyse the results in the table further, it is important to understand the cost 

volume resolution in deep stereo networks. For example, even the top performing 

algorithms [6], [7], [76] on stereo benchmarks usually build cost volumes at 1/4th of 

the original image resolution. Therefore, a cost volume resolution of 741x500 

translates to an input image resolution of 2964x2000. According to the table, SNCE 

estimation at 741x500 has resulted in an additional delay of only 7.6 milliseconds. In 

fact, even the lowest cost volume resolution level used for this experiment (370x250) 

is higher than the quarter-resolution of images from some stereo benchmarks. For 

example, the KITTI 2015 dataset has a resolution of 1242x375 which corresponds to a 
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cost volume resolution of 314x94 whereas in the Scene Flow dataset the same 

corresponds to 240x135 (i.e., due to the original image resolution of 960x540). 

According to the table, at a maximum disparity of 280, the additional delay introduced 

by SNCE when processing such datasets with an SAD based algorithm on a GPU would 

be lower than 0.7 milliseconds. 

  Execution Time in Seconds (s) 

Cost Volume 
Resolution 

Full 
(2964x2000) 

Half  
(1482x1000) 

Quarter 
(741x500) 

Half of Quarter 
(370x250) 

SAD Stereo Only 2.0933 0.2259 0.0288 0.0041 

SAD Stereo with 
SNCE 

2.7195 0.3035 0.0364 0.0048 

Increase in Time 
(seconds) 

0.6262 0.0776 0.0076 0.0007 

Table 5.7: A comparison of the execution times (on GPU) for the basic SAD-based stereo with and without SNCE. 
The last row indicates the net increase in computational time due to SNCE. 

 

Chapter Summary 
The study outlined in Chapter 5 started with an algorithmic analysis of the SNCE metric 

to identify its computational complexity in terms of the order of growth of the 

computations. When analysing the pseudo-code, it was observed that even the basic 

stereo algorithms already contain most of the computations required by the SNCE 

metric. The analysis also showed that the SNCE metric can be efficiently embedded 

into the existing stereo algorithms without changing their order of growth in 

computations. An empirical analysis using a C++ based implementation of a basic 

stereo algorithm (with the ability to compute the SNCE metric at every disparity), 

confirmed the theoretical findings. The study was then extended to parallel processing 

(GPU) environments with a CUDA based implementation. The results obtained using 

an NVIDIA RTX2080 GPU confirmed that the order of growth remains unchanged as 

expected. However, a significantly faster performance was achieved with very little 

added-latency due to the SNCE metric (at quarter resolution levels of the datasets such 

as Middlebury, KITTI and Scene Flow). Since the SNCE metric is all about extrema 

movements, the findings of this chapter should equally apply to extrema movements 

in a cost volume of a deep stereo network.  
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CHAPTER 06 - SNCE CONVERGENCE IN DEEP STEREO 

Introduction 
The last chapter included experiments which demonstrated the feasibility of 

estimating the SNCE metric as part of a rudimentary stereo algorithm on sequential 

and parallel computing architectures. The results indicated that the performance 

achieved on consumer hardware is acceptable for deep learning-based algorithms. 

The next step is to leverage on the unimodal cost distributions of a deep stereo 

network to achieve SNCE convergence, so that the maximum disparity for a scene can 

be detected during the forward propagation phase of the network.  

This chapter starts by outlining the architecture of the proposed network detailing the 

key components and their functionality. The training process is outlined next, with 

emphasis on data selection, data preparation, hyper-parameter selection and 

monitoring of progress. An evaluation conducted with the weights and biases saved at 

different stages of the training process follows, which is aimed at finding out whether 

the accuracy of the SNCE-based maximum disparity estimations improves with 

training. Finally, the robustness of the method is validated using tests on stereo image 

sequences. 

6.1 Network Architecture 
The overall network architecture used for the experiments consists of four stages: 

feature extraction, cost volume creation, disparity regression and up-sampling. A 

multi-layer 2D convolutional neural network is used to extract features from the input 

stereo images after down-sampling them into a lower resolution (1/4th of the original). 

A cost volume creation module (CV Module) then concatenates the features and 

aggregates them using another multilayer 2D convolutional block to produce a 3D cost 

volume. Subsequently, a disparity regression layer extracts suitable disparities which 

are then up sampled by an up-sampling layer to produce a disparity map at original 

image resolution. The overall architecture of the deep stereo model used in this 

chapter is shown in Figure 6.1. The Python source code (PyTorch [106] based) for the 

individual components and the complete network is included in Appendix C. 
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6.1.1 Feature Network 

The feature extraction network (referred to as “Feature Net” in the diagram) is built 

from four different types of 2D convolutional neural network (CNN) blocks shown in 

Figure 6.2. It starts with an input layer, which includes a 2D convolutional layer with a 

stride size of 4 which is used to reduce the resolution of the grayscale input images to 

1/4th of the original image size. This helps ensure that the computational time and 

space requirements of the network can be maintained within the practical limits.  

The input layer is then connected to a series of network blocks (called “Type A” blocks 

in Figure 6.2). Each forward path in “Type A” blocks has a combination of 2D 

convolutional (with different kernels sizes – 3x3, 5x5 and 7x7), batch-normalization 

and ReLU layers.  Two of the forward paths use dilated convolution with larger kernel 

sizes to enlarge the receptive field of the network. The residual connection makes it 

possible to connect several blocks in series without hindering gradient propagation 

while also allowing predictions of upstream layers to be passed on to the downstream 

layers. The output of the seven “Type A” blocks is then connected to a set of 7 “Type 

B” blocks connected in series. “Type B” blocks contain only two parallel paths with only 

one of them having dilation enabled. They also have a residual connection allowing 

more blocks to be connected to create a much deeper network. The final output of 

 

Figure 6.1: Architecture of the deep learning network used for the experiments  
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As outlined in Chapter 2, modern deep stereo networks which follow the “3D 

regularization structure”, commonly use 3D convolutional costs aggregation layers 

to aggregate the matching costs further. However, such further aggregation is 

omitted in this chapter to focus on the cost volume (and the cost extrema 

movements) which is central to the SNCE metric and its convergence. 
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the feature network is produced by the “output block” which is a single 2D 

convolutional layer. The notable difference in the output block from the other blocks 

is the exclusion of batch normalization and ReLU layers to aid in pre-scaling of the 

matching costs in the quest for achieving unimodal cost distributions. As found in 

Chapter 4, unimodality is the main requirement for deterministic convergence of the 

SNCE metric.  

 

 

 

 

 

 

 

 

 

 

 

 

(a) Input Layer 

 

 

 

 

 

 

 

 

 

 

 

(b) “Type A” Block 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) “Type B” Block (d) Output Layer 

 

Figure 6.2: Different types of CNN blocks used to build the "Feature Net" of the deep learning network used for 
experiments in this chapter 
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All input and output feature lengths (channels) are set to 32 except in the case of the 

input layer which uses an input feature length of 1 for the grayscale input images. 

“Type A” or “Type B” blocks do not change the dimensionality of the input tensors. 

The overall architecture of the feature extraction network is shown in Figure 6.3.  

 

 

 

 

 

6.1.2 Cost Volume Module (CV Module) 

The main task of the “CV Module” is to build a cost volume using the output feature 

volumes provided by the “Feature Network” and compute the SNCE metric at every 

layer.  However, only a fixed-sized cost volume is built during the study outlined in this 

chapter. (i.e., before estimating the maximum disparity automatically via a layer-wise 

cost volume creation process, it is important to empirically verify whether a deep 

learning technique can produce unimodal cost distributions which are essential for 

deterministic SNCE convergence). As observed during the literature review, many 

deep stereo networks use cost volumes by concatenating features on a per pixel basis 

at each disparity which results in a 4D cost volume. However, as shown in Chapter 4, 

the SNCE metric is calculated on singular valued matching costs so that the extrema 

can be traced at each layer. Therefore, a CNN-based feature aggregation network 

(shown in Figure 6.4) is used to learn to predict a single valued representation from a 

pair of concatenated feature vectors, which can then be stored in a 3D cost volume.  
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Figure 6.3: Overall architecture of the Feature Network 
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Figure 6.4: The feature aggregation network used by the cost volume module to produce single valued 
matching costs for the 3D cost volume. The network accepts a concatenated feature vector with a length of 64 

and uses a combination of 2D convolutional and ReLU layers to output a single valued cost for each pixel at 
each disparity. 
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Figure 6.5 provides a graphical illustration of how two feature vectors (associated with 

two pixels being matched) are concatenated and then aggregated by the aggregation 

CNN to produce a single valued matching cost in the cost volume. 

 

  

 

 

 

 

 

 

 

 

 

 

6.1.3 Regression Module 

In the proposed network, disparity regression module carries out the task of regressing 

disparities from the CV module output. Due to being non-differentiable, the 

conventional approach of getting the index of the matching cost extrema (referred to 

as the “argmin” operation in literature) is not suitable for gradient propagation in a 

deep learning network. However, a gradient friendly, differentiable equivalent can be 

composed by using the differentiable “softargmin” operation to extract a matching 

disparity from a series of matching scores [64]. The “softargmin” operation on a cost 

distribution 𝐶 is given by the following Equation (6.1). 

 

𝑆𝑜𝑓𝑡𝑎𝑟𝑔𝑚𝑖𝑛 = ∑ 𝑑 ×

𝑑𝑚𝑎𝑥

𝑑=0

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(−𝐶𝑑) 

 

(6.1) 

 

(d=disparity, dmax = maximum disparity and −𝐶𝑑=negative value of the matching score at dth 
disparity) 
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Figure 6.5: A graphical illustration showing how a 2D CNN is used to derive a single valued matching cost at 
point (x, y, d) in the cost volume by using the two feature vectors associated with the two points{ (x, y) & (x + d, 

y) } on stereo images with a mutual displacement of (d) pixels along the horizontal epipolar lines. 
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6.1.3.1 Convergence of Softargmin Operation 

Although the softargmin operation is differentiable, it is vulnerable to multi-modal 

matching cost distributions under certain conditions. Thus, the cost distributions must 

be unimodal for the softargmin operation to be feasible for use in deep stereo 

networks. As an example, Figure 6.6 shows six SAD-based matching cost distributions 

associated with a random pixel location with the coordinates (157,89) on “Middlebury 

2003 Cones” stereo image pair. The costs have been calculated up to a maximum 

disparity of 60 pixels by changing the aggregation mask size from 1x1 to 15x15. In the 

6 subplots, the matching cost distributions are shown in blue while their weighted 

softmax probability functions are plotted in orange. The blue vertical lines mark the 

locations of the minima predicted by the “softargmin” function in Equation (6.1).   

From the figure, it is apparent that when a larger mask size is used (which makes the 

cost distributions more unimodal as shown in Chapter 4), the softargmin based 

prediction tends to align well with the actual minima. It is also important to note how 

scaling (i.e., values on the vertical axis progressively increasing with the mask size) has 

some correlation with the softargmin convergence. In fact, Figure 6.6 shows how the 

scaling of matching cost values has a positive effect on the unimodality of cost 

distributions which in turn can improve the softargmin convergence. Therefore, both 

the output layer of the feature network (Figure 6.2 (d)) and the feature aggregation 

network (Figure 6.4), do not contain “Batch-normalization” layers in order to allow the 

network to learn scaling during the training process.  

 

(Figure extends to the next page) 
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Figure 6.6: The sub-figures from top to bottom show the SAD-based matching cost variations for a random pixel 

from the “Middlebury 2003 Cones” image pair, when the mask size is changed from 1x1 to 15x15. The blue 

vertical lines show the locations of the minima predicted by the “softargmin” operation. When the mask size 

increases, the predictions start to align well with the actual minima.  

6.1.4 Up-Sampling Module 

As mentioned earlier, the input layer reduces the dimensionality of the feature 

network which leads to faster learning with less resources on GPU hardware. However, 

it also makes the output disparity resolution lower than the original resolution of the 

images. Therefore, an up-sampling layer is used to increase the resolution of the 

predicted disparity maps back to the original resolution. Due to the feature extraction 

network operating at 1/4th of the image width and height, the up-sampled disparities 

must be multiplied by 4 to obtain the final disparities. 

6.2 Data Preparation 
Data preparation for training is one of the most crucial stages of the supervised-

training process in deep neural networks. When fitting a neural network model to a 

problem, the overall success depends on how well the data is selected and suitably 

prepared for training. The model for the current experiment is required to learn 
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features from images instead of remembering the values (a phenomenon which is 

known as over-fitting). The training process involves the adjustment of weights and 

biases of the network which determine the features that the network is capable of 

learning. During backpropagation, these weights and biases get updated based on the 

gradient of the output loss. If the features in input data are not scaled consistently, 

then there can be discrepancies in how the weights and biases get updated in 

response to the network encountering similar features. That makes it harder for the 

network to learn. The process of re-scaling the features in the input is known as 

normalization. When training the basic deep stereo network outlined in this chapter, 

Z-score normalization (which is also known as standardization) was used to normalize 

the input image data. 

6.2.1 Z-Score Normalization 

The z-score normalization (or standardization) involves scaling of the image data so 

that they contain their pixel intensity values distributed with a mean value of zero and 

a standard deviation of one. Since the experiments are carried out using grayscale 

images, the features are required to be normalized based on intensities of a single 

channel. The following equation (Equation (6.2)) shows the relationship between the 

pixel intensities and their normalized values.  

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑡 𝑃𝑜𝑖𝑛𝑡 (𝑃) =  
Pixel intensity at (P)–  Mean intensity

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

 

(6.2) 

  

As per the Equation (6.2), the mean and the standard deviation values must be available 

before the image data can be normalized. These measures can be estimated for the 

entire image dataset or on a per-image basis (i.e., for each image). For the training 

process outlined in this chapter, normalization of the grayscale images has been 

carried out using the mean and standard deviation computed on a per-image basis.  

6.2.2 Dataset Selection 

The “Scene Flow – Driving” dataset was selected for the experiment, which contains 

synthetic driving scenes captured at various focal lengths, directions and capture 

intervals. From the “Scene Flow – Driving” dataset captured at a focal length of 15 mm 

and a faster simulated vehicle speed, images listed under the “forward” and 
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“backward” categories were compiled into a single dataset with 600 image pairs. Then 

80% of the images (480 image pairs) were used as the training batch whereas the 

remaining 120 images were reserved for validation and testing with 60 images each. 

Validation images were used for tracking the validation accuracy during training while 

the 60 test images were set aside for testing and evaluation after training.   

The images in the dataset contain a rich mix of scenes which are usually challenging to 

any stereo vision method due to the presence of shadows, glare, reflections and very 

fine structures. However, such phenomena do not occur in every image pair of the 

dataset. Therefore, it was important to ensure that the training dataset contains a mix 

of scene conditions expected during inference. Otherwise, if the training dataset does 

not contain a particular type of scene condition, then the network would be unable 

produce good results when it eventually encounters unfamiliar scene conditions 

during testing. For example, if the training dataset did not include images with 

shadows, it would be hard for the network to produce good inference output for the 

test data with scenes containing shadows.  

The Scene Flow dataset being a driving dataset, contains multiple image pairs with 

similar scene conditions in sequence. Therefore, every 5th image pair in the forward 

and backward sequences was selected to be part of the testing and validation datasets 

while reserving all other images for training.  

6.2.3 Data Augmentation 

Using only 480 image pairs for training can result in the network over-fitting to the 

data because of the limited size of the dataset. Moreover, there is only a limited 

amount of variation in the maximum ground-truth disparity in Scene Flow image pairs 

at original image resolution. This can be seen in Figure 6.7, which shows the variation 

of the maximum ground-truth disparity associated with all 600 images in the dataset 

used for the experiments. As shown in the graph, the maximum ground-truth disparity 

at native resolution often remains closer to the mean value with only a few infrequent 

changes. However, by randomly cropping the original images into a smaller size, many 

different images with a wider range of maximum ground-truth disparity values can be 

obtained. Having a wider variation in maximum ground-truth disparity is important 

when verifying the convergence of the SNCE metric.  
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Figure 6.7: Variation of the maximum ground-truth disparity across all 600 stereo image pairs at native resolution 
(960x540). The standard deviation is smaller which indicates infrequent variation.  

The dataset was further augmented by randomly cropping the images to a size of 

800x480 pixels. Figure 6.8 depicts the variation of the maximum ground-truth disparity 

for the augmented dataset. As seen from the plot, the new dataset has a much better 

variation in maximum ground-truth disparity. This is evident from the value of the 

standard deviation which is 18.47 for the augmented dataset as opposed to only 7.42 

at native resolution. 

 

Figure 6.8: Distribution of the maximum ground-truth disparities across the dataset (600 images) with random 
cropping to 800x480. Values vary frequently over a larger range. 
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6.3 Training  
When training a neural network, it is required to estimate how much the network 

output is different from the expected output which is the purpose of having a loss 

function. The proposed network is expected to produce a 2D disparity map from a 

stereo image pair which needs to be compared against the ground-truth disparity map 

for the same scene. Due to being robust against the outliers, “SmoothL1 Loss” which 

is also known as the “Huber Loss” was selected as the loss function which is given by 

the following equation. 

 

𝑙𝑜𝑠𝑠(𝑥, 𝑦) =  {
0.5(𝑥 − 𝑦)2/𝛽,   𝑖𝑓 |𝑥 − 𝑦| < 𝛽

|𝑥 − 𝑦| − 0.5𝛽 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

 

(6.3) 

In Equation (6.3), the predicted output is given by 𝑥 and the expected output is given 

by 𝑦. 𝛽 is typically set to 1. According to the equation, SmoothL1 loss behaves very 

similar to the L1 loss (which is the absolute difference between the predicted and 

expected values) when the value of L1 loss is more than 𝛽. However, when the L1 loss 

is less than 𝛽, the Huber loss takes the form of L2 loss which is the squared difference 

between the values. The objective is to prevent the potential exploding gradients due 

to larger discrepancies between the predicted and expected values.  

6.3.1 Learning Rate and Optimizer 

The learning rate determines the extent to which the weights and biases are updated 

when the gradient of the loss is backpropagated through the network. Usually the 

learning rate or the “step size” is set within an optimizer which is the actual algorithm 

that updates the weights based on the gradient of the loss. For the current 

experiment, the learning rate was set to 0.0001 with other default settings (Adam beta 

parameters= [0.9, 0.999], weight decay=0) on Adam optimizer [107]). 

6.3.2 Validation and Monitoring of Progress 

The disparity dimension of the cost volume module was fixed5 at 96 which translates 

to 384 pixels at original image resolution. An NVIDIA GTX1070 GPU with 8 GB on board 

memory was used as the hardware platform for training. The network model was 

 
5 The reliability of the SNCE metric at predicting a suitable candidate maximum disparity is yet to be 
verified at this point. That is the main purpose of the current chapter. Therefore, as outlined in the 
methodology in Chapter 3, a fixed-sized cost volume is used for both training and evaluation process 
explained in the current chapter.  
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trained with the augmented dataset for 500 training cycles (epochs). At the end of 

each cycle, the model parameters were saved for later analysis. The images from the 

validation dataset were used to calculate the validation loss at the end of each epoch 

and the values were recorded to track the progress.  It was observed that the 

validation loss continued to decrease reaching a value of around 2.80 at 500 epochs. 

Figure 6.9 shows the variation of the validation loss with the number of training cycles.  

 

Figure 6.9: Variation of the validation loss during training. Validation loss continued to decrease reaching a value 
of 2.80 at 500 epochs. 

6.4 Results and Evaluation 
After training for 500 epochs, the trained network was used to derive disparity maps 

for 60 cropped stereo image pairs (i.e., with a crop size of 800x480 pixels) from 60 test 

images. Some sample disparity maps are given in Figure 6.10 which contains the results 

for 5 stereo image pairs. In the figure, grayscale left images are shown in the leftmost 

column for reference. The ground-truth disparity maps are shown in the middle while 

the predicted disparity maps are shown in the rightmost column.  

6.4.1 Qualitative Analysis 

A quick visual inspection of Figure 6.10 reveals that the network has managed to closely 

predict disparity maps despite challenging conditions such as shadows, glare and 

occluded areas. The relatively smoother disparity variation around the leftmost edges 

of the predicted maps indicates that the model has been able to reasonably regularize 

the regions which are located outside the stereo area. However, when compared to 

the ground-truth disparity maps, there are some instances of missing details, blurry 
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edges and erroneous predictions. The visually identifiable obvious errors are marked 

on the disparity maps themselves.  

 

Figure 6.10: Sample disparity predictions using the described network. Grayscale left images have been provided 
as a reference on the left-most column. The ground-truth disparity maps are shown in the middle with the 

predicted disparity maps on the right. The colour spectrum used for the disparity maps is given in Figure 6.11. 

 

 

Figure 6.11: Colour spectrum used for disparity maps included in this thesis. The red colour indicates the object 
points in the foreground of the scene whereas the blue colour pixels indicate the object points in the background. 

The other colours indicate the object points in between.  
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6.4.2 Evaluation Methodology 

The model parameters saved after 1 training cycle were loaded into the network and 

the CV module was configured to use a maximum disparity value of 96. Then a 

randomly selected stereo image pair (Figure 6.12) from the Scene Flow “Driving” test 

dataset was used as input to the network and the SNCE values for the disparity range 

from 0 to 96 were extracted from the CV module. The process was repeated with 

model parameters saved after 2, 5, 10, 50, 100 and 500 cycles to obtain 6 more SNCE 

profiles. All seven SNCE profiles were plotted on the same graph along with the 

maximum ground-truth disparity for the scene in the stereo area.  

 

Figure 6.12: The selected stereo test image pair (with ground-truth) from the Scene Flow “Driving” dataset. The 
area shaded in red on the left image shows the pixels which have their corresponding pixels located outside of 
the image boundaries of the right image (i.e., according to the left-ground-truth-disparity map). The objective 
here is to extract a maximum disparity value for the stereo area in the scene. Therefore, when obtaining the 

maximum disparity for comparison, disparities in the (red) shaded area have been excluded. 

 

6.4.3 Evaluation - SNCE Convergence 

Figure 6.13 shows the series of seven SNCE plots obtained with network models saved 

after 1, 2, 5, 10, 50, 100 and 500 training cycles.  It is important to note that the figure 

contains SNCE variations at cost volume resolution (i.e., 1/4th of the width and height 

of the original image). The maximum ground-truth disparity for the scene in the stereo 

area was found to be 269.5 pixels which corresponds to approximately 67 pixels at 

cost volume resolution.  It is marked with a dashed vertical line with the label “Max GT 

Disparity”. According to the graph, it appears as if all SNCE variation profiles have 

reached some smaller value at around the maximum ground-truth disparity. However, 

the scale of the vertical axis makes the smaller values appear to be closer to zero which 

can be misleading. Figure 6.14, shows an enlarged view of the same graph around the 

neighbourhood of the maximum ground-truth disparity which reveals that only some 

of the graphs have reached zero while the others have remained non-zero even after 

the maximum ground-truth disparity for the scene has been reached.  
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Figure 6.13: SNCE profiles for the scene in Figure 6.12 obtained with the network models saved after different 

number of training cycles (at cost volume resolution or 1/4th of the original image resolution). All SNCE variations 

appear to converge to some smaller value around the maximum ground-truth disparity for the stereo image pair.  

 

For example, the plot shown in blue (in Figure 6.14) which corresponds to the model 

trained for only one cycle, has not reached zero at any disparity. In contrast, the SNCE 

profiles obtained with the models trained for 100 and 500 training cycles have reached 

zero immediately after reaching the maximum ground-truth disparity and have 

remained constant thereafter.  

 

Figure 6.14: An enlarged view of the SNCE profiles for the scene in Figure 6.12 obtained with the network models 
saved after different number of training cycles at the cost volume resolution. The SNCE profiles that correspond to 
the well-trained networks (100, 500 epochs) show convergence to zero immediately after the maximum ground-

truth disparity. 
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The SNCE graphs obtained with the models trained for 100 and 500 cycles are barely 

distinguishable from each other in the neighbourhood of the maximum ground-truth 

disparity as they lie on top each other. The plot shown in purple which corresponds to 

the model trained for 500 epochs, provides a better view of SNCE convergence around 

maximum ground-truth disparity. 

6.4.4 SNCE Convergence in Image Sequences 

The results for the chosen test image pair suggest that the SNCE value computed using 

the fixed-sized cost volume converges to zero at a suitable candidate maximum 

disparity which is equal to or slightly above the maximum ground-truth disparity for 

the scene. Furthermore, the SNCE convergence appears to improve with the number 

of training cycles. Therefore, the next step is to verify if the findings would hold for a 

sequence of images with a diverse set of maximum ground-truth disparity values.  

6.4.4.1  Methodology 

Using seeded-random cropping, 3 sets of image sequences (each having 60 images) 

were created from the Scene Flow “Driving” test dataset which was reserved earlier. 

The deep stereo network was loaded with the parameters saved after 500 training 

cycles. The CV module was set to a maximum disparity of 96 at cost volume resolution 

which is higher than the maximum ground-truth disparity of the entire Scene Flow 

“Driving” dataset at quarter resolution. Using the model, SNCE profiles were obtained 

for all image pairs in the image sequences. The value at which each SNCE variation 

becomes zero was recorded as the “estimated candidate maximum disparity” value 

for each stereo image pair. The extracted candidate maximum disparity values were 

compared with the maximum disparity values observed in ground-truth data. Like the 

previous experiment, the maximum ground-truth disparity value for each image pair 

was estimated by considering the stereo area only. 

6.4.5 Results on Image Sequences 

The results for the first image sequence are shown in Figure 6.15. According to the 

figure, the plot in orange shows the candidate maximum disparity estimations for each 

image pair in the sequence. The maximum ground-truth disparity in the stereo area 

for each image pair is shown in blue. The horizontal axis indicates the indices of the 

corresponding image pairs in the sequence. As seen from the results, the SNCE value 
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has reached zero at or just above the maximum ground-truth disparity for all cropped 

image pairs. 

 

Figure 6.15: Results for the first image sequence. Estimated candidate maximum disparities align well with the 
maximum ground-truth disparity values reported in the stereo area of the scenes showing a stronger correlation. 

The results for the second pseudo-random image sequence are shown in Figure 6.16. 

From the graph, it is apparent that a clear majority of the estimated candidate 

maximum disparity values have been either equal to or slightly higher than the 

maximum reported in the ground-truth, except for one instance circled in red.  

 

Figure 6.16: Results for the second image sequence showing that the disparities at which the SNCE value reached 
zero closely matches the maximum ground-truth disparity in most cases. All values are equal to or slightly higher 

which is acceptable. An unusually high estimation is marked with a dashed-red circle. 

Estimated value is unusually 

higher than the ground-truth 
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6.4.5.1 Unusually Higher Estimations 

The results for the third image sequence are shown in Figure 6.17. Although the results 

appear to indicate a very close correlation between the maximum ground-truth 

disparity values and the candidate maximum disparity estimates in most cases, there 

is another exception similar to the results of the second image sequence. In both 

image sequence 2 and 3, the SNCE metric has reached zero at an unusually higher 

disparity for the image pairs marked with dashed red circles in Figure 6.16 and Figure 

6.17. Therefore, a closer inspection of the image pairs and the corresponding disparity 

maps is required to find the root cause for the deviations.  

 

 

Figure 6.17: Results for the third image sequence. Most estimations align well while there is one candidate 
maximum disparity estimation which is unusually higher than the corresponding ground-truth maximum. 

 

6.4.5.1.1 Methodology for Exceptions Analysis 

The cropped stereo image pairs which correspond to the exceptions were located 

using the pseudo-random sequences. Then the located image pairs were used as input 

to the deep stereo network loaded with parameters saved after 500 training cycles, to 

produce disparity maps. The input images, output disparity maps and the 

corresponding ground-truth disparity maps were then inspected for any 

overestimation of disparity.  

Estimated value is 

unusually higher than the 

ground-truth maximum 
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6.4.5.1.2 Root Cause for Unusually Higher Estimations 

Figure 6.18 shows the stereo image pair, the ground-truth disparity map and the 

predicted disparity map for the exceptional scenario marked with a circle in Figure 6.16. 

The stereo pair is a challenging one for stereo correspondence due the existence of 

glare. Area in the predicted disparity map, where the estimated disparities for some 

pixels are larger than the maximum ground-truth disparity, is marked with a yellow 

rectangle6. The corresponding areas in the stereo image pair and the ground-truth 

disparity map are also marked with bounding boxes. According to the figure, the 

network has overestimated disparities for some pixels in the area containing glare 

related image artefacts. A further investigation into the exceptional scenario in the 

third image sequence also revealed the presence of discrepancies in the estimated 

disparity values in an area affected by glare as shown in Figure 6.19. In both scenarios, 

the SNCE value has been affected by the existence of cost extrema at higher disparities 

than the maximum values in ground-truth data, due to challenging scene conditions.  

 

Figure 6.18: Stereo images, ground-truth disparity map and the output disparity map for the exception reported in 
the second image sequence. Bounding boxes enclose the pixels for which the estimated disparity is larger than the 
ground-truth maximum. The stereo pair is a challenging one due to glare, therefore the cost volume produced by 

the model has some cost extrema located at higher disparities than the maximum ground-truth disparity. This has 
resulted in the SNCE value reaching zero at a higher disparity than the ground-truth maximum. 

 
6 The yellow rectangle has been drawn based on the minimum and maximum values of the x and y 
coordinates of the affected pixels. Therefore, it does not mean all the pixels within the boundaries of 
the yellow rectangle have reported unusually high values. Only some of them have. 

Estimated value > actual 
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Figure 6.19: Stereo images, ground-truth disparity map and the output disparity map for the exception reported in 
the third image sequence. Bounding boxes enclose the pixels for which the estimated disparity is larger than the 

ground-truth maximum. The stereo pair again is a challenging one due to glare, therefore the cost volume 
produced by the model has some cost extrema located at higher disparities than the maximum ground-truth 

disparity. This has resulted in the SNCE value reaching zero at a higher disparity than the ground-truth maximum. 

 

6.4.5.2 Predictions Beyond the Stereo Area 

Until now, the maximum ground-truth disparity was estimated by considering the 

stereo area only. However, deep stereo algorithms can also estimate disparities for 

pixels outside the stereo area as seen from the estimated disparity maps shown earlier 

in Figure 6.10. However, when a pixel is outside the stereo area, two match points 

cannot be established in the pair of stereo images which makes the disparity unknown. 

The only way the algorithm can estimate a disparity value for such a pixel is by using 

its regularization capabilities based on the already established matches. To investigate 

the performance of the basic deep stereo network outside the stereo area, the 1st 

image sequence was re-evaluated with the maximum ground-truth disparity values 

estimated over the entire pixel space of the respective image pairs. Figure 6.20 shows 

the plots for the SNCE-based candidate maximum disparity estimations and the 

maximum ground-truth disparity (over the entire pixel space) for each cropped image 

pair in the 1st image sequence. The updated results reveal that most of the candidate 

maximum disparity estimations are still equal to or slightly higher than the maximum 

Estimated value > actual 
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ground-truth disparity (over the entire pixel space). This is probably due to the pixels 

with the highest ground-truth disparity being located in the stereo area already. 

However, there is one exception (marked with a dashed-red circle in Figure 6.20) in 

which the SNCE-based candidate maximum disparity estimation is lower than the 

ground-truth disparity which merits further investigation using the disparity maps. 

 

Figure 6.20: Updated results for the first image sequence with the areas outside the stereo area also considered 
when computing the maximum ground-truth disparity. Most estimations still align well while there is one instance 

(circled in red) which shows that the SNCE-based candidate maximum disparity estimation is lower than the 
maximum ground-truth disparity. 

6.4.5.2.1 Root Cause for Lower Estimations 

By following the same methodology as earlier, the stereo image pair, ground-truth 

disparity map and the predicted disparity map were extracted for the exceptional 

scenario in the updated results for the first image sequence. The results are shown in 

Figure 6.21. In the area marked with blue bounding boxes, the ground-truth disparity 

values are higher than the candidate maximum disparity value for the scene which was 

estimated using the SNCE metric7. A closer look at the left and the right images indicate 

that the affected area is located outside of the stereo area. As seen from the images, 

the part of the car marked with a yellow bounding box in the left image in Figure 6.21 

is not visible in the right image. This means that the cost extrema in the cost volume 

 
7 This again does not mean that the ground-truth disparity is higher than the candidate maximum for 
all pixels within the bounding box. Only some of the pixels meet the condition. However, the bounding 
box has been drawn by using the maximum and the minimum values of the x and y coordinates of the 
corresponding pixels. 

Estimated value is lower 

than the ground-truth 

maximum. 
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have been established at lower disparities (than the ground-truth disparity values) for 

the same pixel locations. This has caused premature SNCE convergence before 

reaching the maximum ground-truth disparity for the whole scene.  

 

Figure 6.21: Stereo images, ground-truth disparity map and the output disparity map for the exception reported in 
the updated results of the first image sequence (with the area outside the stereo area included when computing 

the maximum ground-truth disparity). Bounding boxes enclose the pixels for which the estimated candidate 
maximum disparity is smaller than the ground-truth maximum. The affected pixels are outside the stereo area. 

 

Chapter Summary 
The feasibility of achieving SNCE convergence with a deep stereo network was studied 

in Chapter 6. A deep stereo network that can produce a 3D cost volume and estimate 

the SNCE metric at each disparity was developed at the beginning. The network was 

then trained using the Scene Flow “Driving” dataset while saving the weights and 

biases after each training iteration. Upon completion of the training process, the 

trained model was used to obtain disparity maps for sample stereo images from the 

test dataset. A qualitative analysis of the results indicated that the network has been 

able to produce disparity maps with reasonable accuracy in terms of the details 

captured by the disparity maps. However, it was also observed that the challenging 

scene conditions such as image glare can produce errors in the output.  
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An experiment conducted using the network parameters saved at different stages of 

the training process, revealed that the SNCE convergence gets better with training. It 

also showed that the value of the metric indeed becomes zero immediately after 

reaching the maximum ground-truth disparity as long as the network is sufficiently 

trained.  

Further tests with stereo image sequences with ground-truth data indicated that the 

disparity at which the SNCE metric reaches zero, coincides reasonably well with the 

maximum ground-truth disparity. The study also showed that inaccurate stereo 

matching can lead to SNCE convergence at a higher disparity than the maximum 

reported in ground-truth data. This implies that the SNCE metric is vulnerable to the 

stereo matching errors. It was also observed that the SNCE metric can underestimate 

disparities for pixels outside the stereo area.  

The basic deep stereo network presented in this chapter only used a fixed-sized cost 

volume. Due to the stronger correlation between the SNCE-based candidate maximum 

disparity estimations and the maximum ground-truth disparity in the stereo area, 

progressive cost volume construction with SNCE-based termination of the process is 

attempted next in Chapter 7.  
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CHAPTER 07 - AUTOMATIC DSR WITH DEEP LEARNING 

Introduction 
In the previous chapter, it was shown that the SNCE convergence can be achieved with 

the inherently unimodal cost distributions in deep stereo networks. The network used 

for the experiments included a feature extraction network and a basic feature 

aggregation module which produced a fixed-sized cost volume. The next challenge is 

to improve it further so that the cost volume can be built one layer at a time and the 

process can be terminated when the SNCE value reaches zero. Hence, this chapter 

introduces a novel deep stereo network called ADSR-Net (Automatic Disparity Search 

Range Network) which can automatically estimate a suitable maximum disparity value 

for a given scene, during a progressive cost volume creation stage.  

The study starts by identifying the design objectives to guide the development 

process. The network architecture is introduced next, and it is implemented in 

PyTorch. A performance analysis is conducted using the untrained network to ensure 

that the forward propagation time of the network remains practical for training and 

inference. Clamped Training is introduced to improve the unimodality of the matching 

costs during training, in the presence of a stronger cost aggregation network. 

The network is trained in a 3-stage process which involves training with stereo images 

from the Scene Flow “Driving”, “Flying Things 3D” and KITTI 2015 stereo datasets 

sequentially. At the end of the first stage, an evaluation is conducted using cropped 

stereo image sequences to assess the accuracy of the maximum disparity predictions. 

In addition, a comparative analysis is conducted with a reference implementation that 

uses a fixed-sized cost volume, to identify any cumulative gains in performance when 

using automatic maximum disparity estimation.  After each training stage, the model 

is evaluated using the validation datasets to determine the accuracy of the disparity 

predictions. Upon completion of all three stages, an extended evaluation is carried out 

using additional datasets such as the Middlebury 2014, ETH3D and KITTI 2012 to 

analyse the output accuracy both quantitatively and qualitatively. The study concludes 

with a demonstration of the generalization capabilities and user-parameter 

independence of the ADSR-Net through a qualitative analysis involving a custom-built 

stereo camera system. Source code for the ADSR-Net is included in Appendix C. 
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7.1 Design Objectives  
A clear set of objectives must be defined in advance to guide the successful 

development of any deep learning-based algorithm. In this study, the proposed stereo 

disparity estimation network is expected to achieve the following objectives. 

1. Faster average inference times when processing stereo image sequences 

The deep stereo model should be able to choose optimum cost volume 

sizes due to automatic estimation of a suitable maximum disparity for 

each scene in a stereo image sequence. This should result in 

computational time savings compared to when using a fixed large 

maximum disparity value that suits all scenes. 

2. The model should be able to learn at a lower disparity range  

It is computationally efficient to train a network at a fixed small 

maximum disparity which limits the size of the cost volume which in turn 

reduces the number of calculations during back-propagation.  However, 

during the inference stage, the proposed system should be able to adapt 

to disparity values larger than the value used during training.  By using 

the SNCE metric, the system should be able to automatically estimate a 

suitable maximum disparity without the user specifying a value. 

3. Automatic maximum disparity detection during inference only 

If automatic maximum disparity detection is used during training, the 

size of the cost volumes can be different from one scene to another 

making it difficult to use mini-batch gradient descent. Therefore, 

automatic maximum disparity estimation should only be used during 

disparity inference and NOT during the training stage (Please refer 

Appendix D for a detailed explanation). 

4. The network should have a low memory footprint so that it can be trained and 

used on consumer-grade GPU hardware.  

If present, larger maximum disparity values (up to image width) can 

cause large cost volume sizes which result in higher memory utilization 

by the algorithm. Therefore, a design goal is set to make the algorithm 

more memory efficient so that it can be trained and run-on consumer 

grade GPU devices. Most importantly the network must be developed 
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in such a way that it can safely handle over-estimation of maximum 

disparity values under exceptional circumstances.  

7.2 Network Architecture 
The architecture of the ADSR-Net also follows the “3D regularization structure”. It is 

comprised of a 2D convolutional feature extraction network, a layer-wise cost volume 

creation module (with SNCE-based termination capability) and a regularization 

module. Figure 7.1 shows a block diagram of the new architecture and the proceeding 

sections outline the design of the individual modules in detail.  

 

 

 

 

 

  

 

7.2.1 Memory Efficient Design  
 

7.2.2 Improved Feature Net 

According to the results from the previous chapter, there were a few errors in 

candidate maximum disparity estimations due to matching errors. Therefore, the 

feature extraction network in the ADSR-Net model needs to be strengthened to 

minimize the possibility of such errors. Feature network used for earlier experiments, 

included 14 layers of “Type A” and “Type B” blocks (Figure 6.2). In the new feature 

network, the number of “Type A” blocks is increased up to 10 while keeping the 

number of “Type B” blocks the same at 7. Therefore, the only difference in Feature 

network from the previous chapter is the addition of three “Type A” blocks. Input and 

output feature length of all blocks is maintained at 32. Furthermore, the input layer 

has an input feature length of 3 to accommodate the 3 colour channels to facilitate 

training with colour images. The output feature length of the input layer matches the 

input feature length of “Type A” blocks, which is 32.  

Figure 7.1: High level architecture of the state-of-the-art stereo disparity estimation network (ADSR-Net). 
Overall layout follows the “3D Regularization Structure”. SNCE module within the CV module is only activated 
during inference and remains switched off during training in order to facilitate training with mini batches of 

data (i.e., mini-batch gradient descent). 
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7.2.3 Cost Volume Module (CV Module) 

The CV module of the new architecture must accomplish the following two tasks to 

achieve full automation in terms of automatically detecting a suitable maximum 

disparity. 

I. Build a 3D cost volume progressively (one layer at a time) in GPU memory 

In the absence of any prior knowledge about the maximum disparity applicable 

for a scene, the CV module must build the cost volume one layer at a time until 

the termination criteria are met (i.e., SNCE value reaching zero and any 

additional criteria). Therefore, the CV module is responsible for progressively 

allocating memory to the growing cost volume in an efficient manner. The cost 

volume construction process of the ADSR-Net uses the 2D convolutional feature 

aggregation network from the previous chapter (Figure 6.4) and refer to it as 

the pre-aggregation network (or Pre-Agg) to improve the clarity of the 

explanations. By using the Pre-Agg network, feature correspondences from the 

left and right images are compiled into cost volume layers which are 

progressively stacked on top of each other to form a variable-sized cost volume.  

II. Compute and use SNCE to detect maximum disparity during inference 

Every time a new layer is added to the cost volume, the CV module needs to 

calculate the SNCE value for the new layer and verify if the metric has reached 

zero in which case the cost volume can be deemed to have reached its final 

size. The CV module is then required to terminate the cost volume creation 

process or schedule termination in such a way that it does not affect any 

downstream components in the network. Scheduled termination may be 

necessary if downstream network layers have restrictions on the 

dimensionality of the input tensors. 

In the ADSR-Net, the SNCE computation is carried out at every disparity during stereo 

inference only.  SNCE based termination remains switched off during training of the 

network for computational efficiency and to allow the use of mini-batch gradient 

descent. PyTorch-based source code for the cost volume module is provided in 

Appendix C which shows the implementation details of the features outlined so far.  
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7.2.4 Regularization Module 

The regularization module consists of three blocks: the cost aggregation network, 

disparity regression layer and the up-sampling layer. It accepts a variable-sized cost 

volume from the CV module and aggregates the costs with the cost aggregation 

network before using the disparity regression and up-sampling layers to produce a 

disparity map at the original image resolution.  

7.2.4.1 Cost Aggregation Network 

The matching cost volume produced by the CV module is further aggregated by a 

modular cost aggregation network in the ADSR-Net architecture. The main pre-

requisite for a candidate cost aggregation network for the ADSR-Net is the ability to 

accept variable sized cost volumes produced by the CV module. Therefore, the cost 

aggregation network of the ADSR-Net has been designed as a combination of three 

types of blocks comprised of 3D convolution, 3D transpose convolution, 3D batch 

normalization and ReLU layers. The first block type (input layer) which is shown in 

Figure 7.2, accepts a 3D cost volume. It then converts the 3D cost volume into a 4D 

tensor which is repeatedly processed by the downstream layers of the cost 

aggregation network. The 3D convolution operation in the input block is followed by 

3D batch normalization and ReLU operations. 

 

 

 

   

 

 

 
To improve the scalability of the aggregation architecture, the rest of the aggregation 

network includes the “aggregation blocks” shown in Figure 7.3. Unlike the input block, 

aggregation blocks consist of two parallel branches (Branch-A and Branch-B) of 3D 

convolutional and transpose convolutional layers connected with intermediate 3D 

batch normalization and ReLU layers. Furthermore, there is a residual connection from 

input to the output which allows the high frequency information to be used for the 

predictions by the downstream layers. The most noteworthy feature of the 
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Figure 7.2: Input layer of the 3D convolutional cost aggregation network 
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aggregation block is the existence of a 3D transpose convolutional layer in Branch-B. 

The regular 3D convolutional layer in Branch-B has a stride size of 2 pixels along the 

disparity dimension which reduces the output resolution by half along the disparity 

dimension of the input tensor. Thereafter, the 3D transpose convolutional layer which 

also has its stride size set to 2 along the disparity dimension, restores the original 

resolution. What the design does is providing 3 paths for the data to flow. The residual 

path does not alter the information whereas the Branch-A attempts to process the 

input tensor with a detailed view along the disparity dimension. The Branch-B learns 

to process the same with an aggregated view along the same dimension.  The ADSR-

Net uses 5 such aggregation blocks which are connected in a cascading arrangement 

after the input layer. If needed, the number of such blocks can be increased based on 

the availability of GPU memory.  

 

 

 

 

 

 

 

 

 

 

 

At the end of the chain of aggregation blocks, an “output block” helps reduce the 

dimensionality of the input tensor back to 3D from 4D by using the last 3D 

convolutional layer as shown in Figure 7.4. The output block needs to produce a 3D 

tensor as input to the regression layer of the regularization module. To permit 

variability of the values, the output block does not include batch normalization or ReLU 

operations after the final 3D convolution operation. Therefore, the final matching 
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Figure 7.3: An aggregation block with a residual connection. There are 5 of them in the 
regularization module of the ADSR-Net model used for the experiments in this chapter. 
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costs can take any value without the network imposing restrictions (this is important 

when ensuring unimodality of the aggregated costs).      

 

 

 

 

 

 

 

 

7.2.4.2 Regression and Up-Sampling Layers 

The aggregated cost volume coming out of the output block of the cost aggregation 

network is used by the regression layer to regress disparities through a differentiable 

“softargmin” approximation to the traditional “argmin” operation. Starting from the 

down-sampled output from the input layer of the feature extraction network, all 

operations take place at 1/4th the original resolution (i.e., 1/4th width and 1/4th height). 

Therefore, to produce disparity maps at the original image resolution, an up-sampling 

layer is also used at the very end of the regularization operation.  

7.2.5 Efficiency of the Cost Volume Module 

Before training the network, it is important to evaluate the performance of the cost 

volume module to ensure that it does not cause significant delays during the forward 

pass through the network. Longer delays can make the inference times prohibitively 

longer rendering the network unfeasible. Therefore, in a preliminary study, the 

forward propagation latency through the ADSR-Net was measured and compared 

against the latency data acquired by replacing its CV module with fixed-sized cost 

volumes. Two types of such fixed-sized cost volumes (3D and 4D) were used to obtain 

two sets of statistics for comparison.  

First, the untrained network was used to produce disparity maps for ten randomly 

selected stereo image pairs from the Scene Flow- “Driving” dataset. Since the network 

was untrained at this point (hence no SNCE convergence), disparity cut-off had to be 

programmatically initiated at pre-configured values of 960, 480, 240 and 120 which 
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Figure 7.4: Layers in the output block in the aggregation network of ADSR-Net. 
Note the last 3D convolutional layer which does not have batch normalization or 

ReLU operations after it. 
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correspond to the full, half, quarter and half-quarter width of the original image. Then 

the forward propagation time on an NVIDIA GTX1070 GPU was measured for each 

image pair at the given disparity cut-off points. An average value for the latency (over 

10 images) was obtained and recorded for analysis. Then the same process was 

repeated with fixed-sized (define once) cost volumes (3D and 4D) in place of the CV 

module. 

7.2.5.1 Forward Propagation Times on Scene Flow Data 

The results of the experiment involving 10 images from the Scene Flow driving data 

are shown in the Table 7.1 below. 

The difference in forward propagation times between the layer-wise cost volume 

construction (first row of results in Table 7.1) and the fixed 3D cost volume (second 

row), can be attributed to the SNCE estimation delay and the time taken for the layer-

stacking operation. For example, according to the results obtained at a maximum 

disparity of 120 pixels, the additional delay introduced by those operations is 

approximately 16ms which is about 4.5% increase from the total time associated with 

a fixed-sized 3D cost volume (pre-defined in memory) with a maximum disparity of 

120 pixels. Similarly, at the theoretical maximum disparity (i.e., image width of 960 

pixels), the same amounts to around 7.7% increase. When compared with the 

processing times associated with a 4D cost volume, the additional delay introduced by 

the CV module ranges from 2.5% to 6.5% of the total time (when DSR is changed from 

half-quarter to full image width).  

7.2.5.2 Forward Propagation Times on KITTI 2015 Data 

The same experiment was re-run using stereo images from the KITTI 2015 driving 

dataset to test against the changes in image resolution. The KITTI images have a 

Cost Volume Type 

 
Cost Volume  

Construction Method 

Mean Forward Propagation Time (ms) 
Max Disparity  

(960) 
Max Disparity  

(480) 
Max Disparity 

(240) 
Max Disparity 

(120) 

CV Module Layer-wise 2281.18 1176.51 636.34 371.50 

3D Cost Volume Define once/Fixed 2116.59 1117.97 602.82 355.49 

4D Cost Volume Define once/Fixed 2140.44 1130.88 618.34 362.37 

Table 7.1: Forward time delay for the network before and after replacing the cost volume creation process with 
fixed-sized 3D and 4D cost volumes (i.e., Obtained using the Scene Flow Driving dataset with an original image 

resolution of 960x540) 
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resolution of 1242x375 as opposed to the Scene Flow images with a resolution of 

960x540. The results are shown in the Table 7.2 below. 

As per the results, the increase in delay introduced by SNCE estimation and tensor 

stacking operations, has varied from 4.5% to 7.7% approximately when the maximum 

disparity was changed from 152 to 1242 pixels. Another significant observation from 

the results is the “Memory Error” associated with the 4D cost volume which justifies 

the use of a pre-aggregation network in the ADSR-Net to reduce the dimensionality of 

the cost volume before regularization. On-board memory available on NVIDIA 

GTX1070 GPU (8 GB) has been insufficient in the case of the 4D cost volume when the 

maximum disparity was set to image width. This validates the use of a 3D cost volume 

in the ADSR-Net.  If a higher dimensional cost volume is used, then there can be abrupt 

terminations of the inference process due to over-estimated maximum disparity 

under exceptional circumstances. As shown in the previous chapter, there can be 

exceptions when the system encounters a matching error or unfamiliar data.  

Therefore, in summary, the following conclusions can be made based on the results of 

the experiments involving the CV module of the ADSR-Net. 

✓ The processing delay introduced by the layer-wise cost volume construction 

and SNCE calculations does not lead to significant increase in overall forward 

propagation time (typically less than 10% on standard stereo datasets) 

✓ Smaller dimensionality of the cost volume produced by the ADSR-Net leads to 

efficient use of on-board memory, making it better suited for layer-wise cost 

volume construction in GPU memory.  

Cost Volume Creation 
Method 

Mean Forward Propagation Time (ms) 
Max Disparity  

(1242) 
Max Disparity  

(620) 
Max Disparity 

(308) 
Max Disparity 

(152) 

CV Module 2768.97 1401.97 736.16 408.57 
Fixed 3D Cost Volume 2568.72 1310.00 695.93 391.16 
Fixed 4D Cost Volume Memory Error 1336.49 706.07 393.12 

Table 7.2: Forward propagation times for the network before and after replacing the layer-wise cost volume 
creation process with fixed-sized 3D and 4D cost volumes (i.e., Obtained using the KITTI 2015 Driving dataset 

with original image resolution of 1242x375) 
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7.3 ADSR-Net Training 

After determining that the CV module is able to process larger maximum disparity 

values without introducing significant delays, the next step is to train the model so 

that it can accurately estimate output disparity maps while using the SNCE metric to 

estimate a suitable maximum disparity value during disparity inference.  As learned 

from Chapter 4, the accuracy of the SNCE-based maximum disparity predictions 

depends on the unimodality of the matching costs. Therefore, the training process 

needs to improve the overall matching accuracy of the network while ensuring 

unimodality of the matching costs used by the SNCE metric.  

7.3.1 Training Objectives 

Unlike the other deep learning-based stereo techniques which focus on the accuracy 

of the output disparity maps alone, the ADSR-Net needs to achieve a higher level of 

accuracy in maximum disparity estimations and dense disparity predictions 

simultaneously. Furthermore, the ADSR-Net model must be trained at a smaller fixed 

maximum disparity in order to use mini-batch gradient descent (Appendix D) and to 

complete training within practical time limits. As shown in Table 7.1, if the estimated 

maximum disparity reaches the full image width during training, then the processing 

time can be more than 2 seconds per image pair on a consumer grade GPU. That would 

make the training time impractical for large datasets.  

7.3.2 Network Preparation 

For the regression layer in the new architecture to work effectively, the cost 

aggregation network must produce an aggregated-cost volume with unimodal cost 

distributions. However, it does not necessarily mean that the CV module output will 

also be unimodal. For the SNCE-based maximum disparity estimations to be accurate, 

the matching costs produced by the CV module must also be unimodal in nature. Thus, 

to achieve unimodality in the CV module output and the aggregation network output, 

both must have “Softargmin” based disparity regression layers connected to their 

respective outputs during training. The cost aggregation network already has a 

regression layer connected although the CV module does not have one. The solution 

is to connect a secondary regression layer to the CV module output separately as 

shown in Figure 7.5. By adding an up-sampling layer, another supplementary disparity 
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output can be obtained at original image resolution as shown in the figure. Now, if 

both disparity outputs can be used during the loss computation, it is possible to ensure 

unimodality in CV output while improving the final disparity output accuracy through 

supervised training. Nevertheless, it is important to note that this modified 

architecture is only used during training.  

 

 

 

 

 

 

 

 

 

 

 

7.3.3 Clamped Training 

Typical deep stereo disparity estimation algorithms use the difference (or error) 

between the predicted and expected disparity maps as input to the network loss 

calculation. With the ADSR-Net modified during training, the loss calculation needs to 

combine the two losses involving “Disparity 1” and “Disparity 2” outputs in Figure 7.5. 

This effectively clamps the final disparity prediction to the intermediate prediction 

from the pre-aggregation network, forcing the network to improve accuracy of both 

predictions. Therefore, in this thesis, the process is referred to as “Clamped Training”.  

It is also possible to use weights to decide how much each disparity error estimate 

contributes to the final loss. However, in this study, each disparity error was set to 

contribute equally towards the overall loss without skewing towards one of the 

disparity outputs.  

Figure 7.5: A graphical illustration of how the ADSR-Net is slightly changed during training to enforce SNCE 
convergence. It is important to note that the automatic maximum disparity estimation remains turned off during 
the training process which means a smaller fixed maximum disparity is enforced. Any pixel having its predicted 

disparity value higher than the selected maximum is excluded from backpropagation. 
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7.3.4 Prediction Loss/Accuracy 

Using the same loss function (SmoothL1 Loss) the output loss calculation for the ADSR-

Net was modified to incorporate the final and intermediate predictions (“Disparity 1” 

and “Disparity 2” in Figure 7.5). Hence, the final loss calculation (𝐴𝐷𝑆𝑅_𝑁𝑒𝑡 𝐿𝑜𝑠𝑠) is 

given by: 

  
𝐴𝐷𝑆𝑅_𝑁𝑒𝑡 𝐿𝑜𝑠𝑠 =  𝒍𝒐𝒔𝒔(𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦1, 𝑔𝑡) +  𝒍𝒐𝒔𝒔(𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦2, 𝑔𝑡) (7.1) 

 

𝑤𝑖𝑡ℎ →  𝒍𝒐𝒔𝒔(𝑥, 𝑦) =  {
0.5(𝑥 − 𝑦)2/𝛽,   𝑖𝑓 |𝑥 − 𝑦| < 𝛽

|𝑥 − 𝑦| − 0.5𝛽 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

 

7.3.5 Hyper-Parameters, Optimizer and GPU Hardware  

Selecting an optimal learning rate for a network is a challenging exercise on its own 

and the supplementary disparity map (“Disparity 2”) makes the margin of error even 

smaller. That makes clamped training susceptible to learning rate selection. Since two 

partially shared networks are learning to predict similar outputs at the same time, it is 

important to select a learning rate which is suitable for both networks. For the ADSR-

Net, a learning rate of 1x10-4 was found to be a good starting point. Throughout the 

training process, image data was augmented to have an image size of 512x256 pixels 

and 256x256 during the fine-tuning stage. The same optimizer used in the previous 

chapter (Adam optimizer) was used with the selected learning rate and other default 

settings (beta parameters of the Adam optimizer= [0.9, 0.999], weight decay=0). The 

batch-size was set to 2. Initial tests with hardware revealed that training on NVIDIA 

RTX2080 GPU with 2944 CUDA cores and 8 GB on-board memory, was approximately 

30% faster than training on NVIDIA GTX1070 due to the highe7r number of CUDA 

cores.  

7.3.6 Data Preparation 

The Scene Flow “Driving” image set, Scene Flow “Flying Things 3D” and KITTI 2015 

stereo datasets were normalized using Z-score normalization before using them for 

training the ADSR-Net. Unlike the model developed in the previous chapter which used 

the mean and standard deviation at individual image level, the ADSR-Net was trained 

with images normalized using the channel-wise mean and standard deviation values 

calculated over each dataset. All images were then randomly cropped to a size of 

512x256 pixels during training so that the training speed can be improved while 
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increasing the diversity of the image data encountered by the network. The channel-

wise statistics used for image normalization can be found in Appendix E.  

7.3.7 Training Regime 

Due to the existence of multiple datasets and multiple training objectives, the training 

process had to be conducted in stages as outlined below. 

I. Initial training stage 

The objective of initial training was to train the ADSR-Net enough to 

evaluate the accuracy of the maximum disparity estimations and 

gains in performance as a result of estimating the maximum 

disparity automatically. Like the experiments used in the previous 

chapter, a selected set of stereo images from the Scene Flow 

“Driving Dataset” was used for initial training. 

II. Extended training 

The objective of extended training was to train the ADSR-Net over 

a large dataset so that it can predict disparity maps across various 

scenes without retraining. Ideally a large real-world dataset with 

dense disparity ground-truth data should have been used. 

However, the available real-world datasets such as KITTI 

2012/2015, only contain a limited number of stereo images (with 

sparse ground-truth). Therefore, extended training was conducted 

using the synthetic “Flying Things 3D” dataset before fine-tuning 

with a real-world dataset.  

III. Fine-Tuning  

The ADSR-Net is expected to predict disparity maps for real-world 

stereo images captured with real cameras. To accomplish the 

same, the model trained with “Flying Things 3D” dataset during 

extended training, was trained further with the KITTI 2015 dataset.  

It is important to note that a lower learning rate was used during the “Fine-Tuning” 

stage. The number of training cycles (epochs) was also limited. This was done to make 

sure that the fine-tuning process does not undo the learning during the previous 
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stages (i.e., does not change the weights and biases significantly). A summary of 

parameters associated with each of the training stages is provided in Table 7.3. 

Parameter Initial Training Extended Training Fine Tuning 

Dataset Scene Flow “Driving”  Scene Flow “Flying Things 

3D” 

KITTI 2015 Scene Flow  

Image Size (px) 960x540 960x540 1242x375 

Crop Size 512x256 512x256 256x256 

Maximum Disparity at 

Cost Volume Resolution 

(During Training Only) 

64 64 32 

Batch Size 2 2 8 

No of Images 600 22,390 200 

Training/Testing Split 80/20 80/20 90/10 

Epochs 500 1024 160 

Learning Rate 0 - 300 epochs → 1e-4 

300 - 500          → 1e-5 

0 - 500       → 1e-4 

500 - 800   → 1e-5 

800 - 1024 → 1e-6 

0 - 160 → 1e-7 

(monitor and adjust) 

Optimizer Adam Adam Adam 

Table 7.3: Summary of parameters associated with each of the training stages of the ADSR-Net. 

 

7.4 Evaluation  

In the sections to follow, the ADSR-Net is evaluated against the objectives outlined at 

the beginning of the chapter. To prepare the ADSR-Net for evaluation, SNCE is enabled 

in the CV module (as it was turned off during training). Furthermore, the additional 

layers such as regression and up-sampling layers which were connected to the Pre-

Agg output of the network during training are disabled to stop them from causing any 

delays during inference, particularly when measuring delays to validate performance. 

The model parameters saved at different training-stages are loaded into the model 

and the updated model is used to produce disparity maps for the validation data splits 

as well as stereo images from datasets such as ETH3D, Middlebury 2014 and KITTI 

2012. The results are then analysed for performance and accuracy in terms of 

maximum disparity and dense-disparity predictions. Finally, the generalization 

capabilities of the ADSR-Net are evaluated using the stereo images captured with a 

custom-built stereo camera.   
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The overall evaluation process can be divided into four steps. They are aimed at 

determining the following: 

1. Accuracy of the maximum disparity estimations 

2. Performance improvements due to automatic maximum disparity 

estimation 

3. Accuracy of the dense disparity maps produced by the ADSR-Net 

4. Generalization capabilities of the ADSR-Net when presented with 

custom stereo image data 

The evaluation steps presented in this chapter, follow the order in which they were 

done in parallel to the training process. Since the accuracy of the maximum disparity 

estimations by the ADSR-Net is the main objective of this chapter, it is evaluated 

immediately after completing the initial training phase. The same is true about 

performance which must also be verified immediately after the initial training stage. 

On the other hand, the accuracy of the disparity maps is evaluated at multiple stages 

(at the end of every training stage and comprehensively after the training is complete).  

However, the generalization capabilities of the ADSR-Net are only evaluated at the end 

of the training process, using the fully trained ADSR-Net. A more detailed view of the 

individual steps involved in evaluation is given in Table 7.4.  The first column in the table 

shows the evaluation stage while the second column defines the corresponding 

objectives. The third column outlines how the ADSR-Net and the test data is prepared 

before the results are obtained. The fourth column shows the different types of 

analysis (quantitative and qualitative) conducted on the results obtained by using the 

prepared data and the trained network model. 
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# Evaluation Step Preparation Analysis 
1 Accuracy of the 

maximum disparity 
estimations 

Evaluation Data 
5 Sequences of stereo test image pairs from 
the Scene Flow “Driving” dataset (from the 
validation/test data split) 

Quantitative 
Compare estimated vs. 
ground-truth 
maximum disparity 

 
Qualitative 
Visual analysis of the 
predicted dense 
disparity maps 

Data Preparation 
Crop images and ground-truth data files to 
create pseudo random sequences of 60 
images, each having the size 512x256 pixels 

Model Parameters 
ADSR-Net with parameters saved after the 
initial training stage 

Model Preparation 

✓ Turn ON SNCE in the CV module 

2 Performance 
improvements due to 
automatic disparity 
estimation 
(improvements in 
computational 
efficiency) 

Evaluation Data 
Test image pairs from the Scene Flow 
“Driving” dataset (from the validation/test 
split) 

Quantitative 
Estimate mean 
processing time over 
60 images for the five 
image sequences and 
compare that with the 
processing time 
observed when using 
a fixed cost volume 
with maximum 
disparity set to the 
maximum value 
observed in the test 
data 

 
Qualitative 
N/A 

Data Preparation 
Crop images and ground-truth data files to 
create five pseudo random sequences of 60 
images, each having the size 512x256 pixels 

Model Parameters 
ADSR-Net with parameters saved after the 
initial training stage 

Model/Models Preparation 
✓ Turn ON SNCE in the CV module for 

measuring inference time for automatic 
disparity  

✓ Turn OFF SNCE and set the maximum 
disparity to the population max in test 
data 

3 Accuracy of the 
dense disparity maps  

Evaluation Data 
✓ Stereo image pairs from the Scene Flow 

“Flying Things3D”, Scene Flow “Driving” 
and KITTI 2015 stereo datasets – (from 
the validation/test split) 

✓ Stereo image pairs (15 RGB stereo pairs) 
from Middlebury 2014 stereo dataset 

✓ Stereo image pairs (27 pairs) from 
ETH3D grayscale stereo image dataset 

Quantitative 
Estimate and compare 
common stereo 
disparity evaluation 
metrics  

✓ End-Point-
Error 

✓ 3-Pixel Error 

 
Qualitative 
Visual analysis of the 
predicted dense 
disparity maps 

Data Preparation 
None 

Model Parameters 
✓ ADSR-Net parameters saved after each 

training stage for Scene Flow “Driving”, 
“Flying Things 3D” and KITTI 2015 
datasets 

✓ Fully trained ADSR-Net parameters 
saved after fine-tuning for stereo 
images from Middlebury 2014, ETH3D 
and KITTI 2012 
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Model Preparation 
✓ Turn ON SNCE in the CV module 
 

4 Generalization 
capabilities of ADSR-
Net when presented 
with data captured 
with custom stereo 
image pairs 

Evaluation Data 
✓ Stereo image captured with the custom-

built stereo camera setup explained in 
chapter 3. 

 

Quantitative 
N/A  
 
Qualitative 
✓ Visual analysis of 

the predicted 
dense disparity 
maps 

✓ Identify 
challenging scene 
conditions 

 

Data Preparation 
Rectify images  

Model Parameters 
✓ Fully trained ADSR-Net parameters 

saved after fine-tuning for stereo 
images from Middlebury 2014, ETH3D 
and KITTI 2012 

Model Preparation 
✓ Turn ON SNCE in the CV module 
 

Table 7.4: A detailed overview of the steps covered in this chapter when evaluating the ADSR-Net using the test 
data as well as additional stereo images from standard datasets and images captured with a custom stereo 

camera. 

 

7.5 Results and Evaluation 
The following sub-sections with subheadings starting from EVALUATION STEP 1 to 

EVALUATION STEP 4, include evaluations of the results obtained at each of the steps 

outlined in Table 7.4. Then at the end, the strengths and weaknesses of the algorithm 

will be discussed with examples. 

7.5.1 EVALUATION STEP 1: Accuracy of Maximum Disparity Predictions 

As shown under step 1 in Table 7.4, immediately after the initial training stage, the 

ADSR-Net was used to produce a series of disparity maps for 5 sets of cropped stereo 

image sequences from the Scene Flow “Driving” test data. Pseudo-random values 

were used for the positions of the cropped images in each of the stereo image pairs 

so that the tests can be repeated. The results were used to make the following 

measurements for further analysis: 

✓ Maximum disparity detected by the ADSR-Net 

✓ The maximum ground-truth disparity for the image pair 
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Figure 7.6: Variation of the maximum ground-truth disparity (Expected) and the maximum disparity detected by 
the ADSR-Net (Predicted) for the 1st pseudo-random image sequence from the Scene Flow validation data 

Figure 7.6 contains the results of the first image sequence and it shows the variation of 

the maximum disparity values predicted by the ADSR-Net alongside the ground-truth 

maximum disparity values obtained from the Scene Flow validation data. The first 

observation that can be made from Figure 7.6 is the wider variation in maximum 

disparity compared to the image sequences used in the previous chapter. It is due to 

the much smaller cropping size during data augmentation. Analysis in the previous 

chapter included images cropped at 800x480 pixels as opposed to 512x256 pixels used 

here. The original image size of the Scene Flow dataset being 960x540, the smaller 

cropping size allows image patches to be extracted from different areas of the images 

that correspond to depths varying from low to high. The other main observation is 

how the ADSR-Net has managed to predict maximum disparity equal to or slightly 

higher than the ground-truth value for all image pairs. The same is true for the results 

of the 3rd image sequence shown in Figure 7.7. 

 Important: In practice users select maximum disparity values which are slightly 

larger than the expected maximum for different scenes. Any value smaller than the 

maximum or significantly larger can lead to errors in final disparity estimations. 

Therefore, the objective here is to automatically estimate a certain maximum 

disparity value which is equal to or slightly higher than the actual which is 

acceptable because of the presence of an additional cost aggregation network 

which is able to regularize the output further to produce accurate disparity maps. 
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Figure 7.7: Variation of the maximum ground-truth disparity (Expected) and the maximum disparity detected by 
the ADSR-Net (Predicted) for the 3rd pseudo-random image sequence from Scene Flow “Driving” validation data 

 

7.5.1.1 Overview of Exceptions in Maximum Disparity Estimations 

Results for the 4th image sequence shown in Figure 7.8, indicate that the SNCE-based 

maximum disparity estimation for one of the cropped stereo image pairs has been 

uncharacteristically higher than the maximum ground-truth disparity. In order to find 

the root cause for the exception the corresponding final disparity map was analysed.  

 
Figure 7.8: Variation of the maximum ground-truth disparity and the maximum disparity detected by the ADSR-
Net for the 4th image sequence from Scene Flow validation data. There is one instance for which the ADSR-Net 

has considerably over-estimated the maximum disparity for the scene. 

 

The input images, the ground-truth disparity map and the ADSR-Net prediction for the 

exception reported in the 4th image sequence is shown in Figure 7.9. It is clear from the 

input images that they have been affected by glare. Consequently, the output disparity 

map produced by ADSR-Net has also been affected. This is reminiscent of the results 

in the previous chapter that showed how image glare can make it unable for the 

network to reliably match the pixels in the affected area which increases the matching 

uncertainty, resulting in cost extrema movements past the maximum disparity.  
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Figure 7.9: The scene from the 4th image sequence in which the ADSR-Net has considerably over-estimated the 
maximum disparity. Final disparity output (by the ADSR-Net) for the scene is shown at the bottom right-hand 

corner which suggests that there were matching errors due to the glare present in the input images. 

 

Results of the 5th image sequence also suggest that the ADSR-Net has overestimated 

the maximum disparity for one of the cropped image pairs. The unusually high 

prediction is marked with a dashed red circle in Figure 7.10.  

 
     

Figure 7.10: Variation of the maximum ground-truth disparity and the maximum disparity detected by the ADSR-
Net for the 5th image sequence from Scene Flow validation data. There is one instance for which the ADSR-Net 

has considerably over-estimated the maximum disparity for the scene. 

When the corresponding input images were extract from the 5th image sequence, they 

also indicated the presence of glare. However, unlike the exception in the 4th image 

sequence, the ADSR-Net output did not show any visible errors in the corresponding 

areas in the the final disparity output shown in Figure 7.11. However, by enabling the 

Matching errors caused by 

image glare 
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additional disparity regression and up-sampling layers used for training, it was possible 

to obtain an intermediate disparity map which showed matching errors at pre-

aggregation level due to the glare related artefacts in the input images. Since image 

glare has only affected a small region, the cost aggregation network has been able to 

filter out the exception from the final disparity prediction. However, as seen from the 

exception in the 4th image sequence, this may not be possible in all cases.   

 

Figure 7.11: Scene from the 5th image sequence in which the ADSR-Net has considerably over-estimated the 
maximum disparity. Pre-aggregation output for the scene shown at the bottom left-hand corner shows errors 

caused by bad matching due to the glare present in the input images. Since only a small area has been affected, 
the cost aggregation network has been able to filter out the exception in the final disparity prediction. 

A rare exception, in which the ADSR-Net has underestimated the maximum disparity, 

can be seen in the results of the 2nd image sequence shown in Figure 7.12.  

 

Figure 7.12: Variation of the maximum ground-truth disparity (Expected) and the maximum disparity detected 
by the ADSR-Net (Predicted) for the 2nd pseudo-random image sequence from Scene Flow “Driving” validation 
data. There is one instance (circled) in which the ADSR-Net has underestimated the maximum disparity value. 

ADSR-Net under-estimating max 

disparity 

Matching errors caused by 

image glare 
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Since most issues encountered by the ADSR-Net were related to the matching 

accuracy of the pre-aggregation network, the same should be tested for the image 

pair related to the underestimation of the maximum disparity. To begin the triaging 

process, the SNCE was disabled on ADSR-Net and the maximum disparity was set to 

152 pixels (or 38 pixels at cost volume resolution) which is the ground-truth maximum 

disparity for the image pair in concern. The additional regression and up-sampling 

layers (used for training) were also connected to the ADSR-Net to obtain a disparity 

map from the pre-aggregation network. The corresponding input images, the ground-

truth disparity map and the intermediate disparity map are shown in Figure 7.13. 

 

Figure 7.13: The scene from the 2nd sequence in which the ADSR-Net had under-estimated the maximum 
disparity. Pre-aggregation output for the scene suggests that the closest object has been mismatched (even with 

a fixed maximum disparity) due to the errors associated with the mostly occluded object (circled in red).  

 

According to Figure 7.13, an object in the right image (a part of a passing vehicle) is 

occluding a large area (about 1/3rd the image width) in the right image. This has 

resulted in the pre-aggregation network registering errors in the corresponding region 

as shown in the “Pre-Agg” output. Even with a manually configured maximum 

disparity, pre-aggregation network has incorrectly identified the second closest object 

as the closest. Since the ADSR-Net has only completed initial training the exception 

can again be attributed to the ineffective matching at pre-aggregation level. 

Therefore, the network needs to be trained even further which is the objective of the 

extended training. 

Matching errors caused by large occlusion 

Next object in the foreground 

identified as the closest 
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7.5.1.2 Qualitative Analysis of the Results after Initial Training 

After confirming that the ADSR-Net is able to reasonably predict maximum disparity 

values in stereo image sequences with larger variance in maximum disparity (despite 

a few exceptions as noted earlier), the same ADSR-Model was used to predict disparity 

maps for test stereo images from the Scene Flow “Driving” dataset at their original 

resolution (of the size 960x540 pixels). Disparity maps for 3 sample images, produced 

by the ADSR-Net are given in Figure 7.14. 

As seen from the figure, even after the initial training stage with only 480 stereo image 

pairs, the ADSR-Net has started producing reasonably accurate disparity maps without 

user-specified parameters such as the maximum disparity which is a significant 

achievement compared to other deep learning techniques which require at least the 

maximum disparity value to be specified by the users.  

 

 

               Sample (a) 

 

               Sample (b) 

 

               Sample (c) 

Figure 7.14: Three sample disparity maps produced by the ADSR-Net after the initial training stage which was 
conducted using the “Scene Flow – Driving” dataset. The shown maps have been selected from the ADSR-Net 
predictions for validation image pairs. The leftmost image in each row shows the reference image (left) in the 

stereo image pair. The disparity map in the middle shows the ground-truth disparity for the given stereo image 
pair. The output disparity map on the right, shows the ADSR-Net prediction. 
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7.5.2 EVALUATION STEP 2: ADSR-Net Performance  

Based on the accuracy of the maximum disparity predictions by the ADSR-Net and its 

ability to produce disparity maps with reasonable quality, the model was determined 

to be ready for a performance evaluation. First, the trained ADSR-Net was used to 

produce disparity maps for 5 pseudo-randomly cropped stereo image sequences 

(from the validation dataset) while determining the maximum disparity automatically. 

The average/mean inference times over each image sequence was recorded for 

comparison. Next, the experiment was repeated with a reference implementation 

having a fixed-sized cost volume (i.e., by replacing the CV module of the ADSR-Net with 

a fixed-sized cost volume). The reference deep stereo network shared the feature-

network and the regularization module with the ADSR-Net but used a fixed-sized cost 

volume. The maximum disparity of the fixed cost volume was set to the maximum 

disparity observed in validation data (84px at quarter resolution). The bar chart in 

Figure 7.15 shows a comparison of the mean inference times across 5 image 

sequences. From the figure, it can be observed that the ADSR-Net (with automatic 

maximum disparity estimation) has produced the lowest mean inference times across 

all five image sequences. NVIDIA RTX2080 GPU was used for the evaluation. 

 

Figure 7.15: Difference in mean processing times between automatic and fixed maximum disparity for 5 pseudo-
random image sequences from the Scene Flow "Driving" test data with each sequence having 60 images. Green 

bars correspond to the inference times of the ADSR-Net whereas the yellow bars correspond to an ADSR-Net 
equivalent with a fixed-sized cost volume in place of the CV module (reference implementation). 

 

In fact, when the maximum disparity is manually set to the population maximum, the 

average processing time per image pair has increased by as much as 50% in some 

image sequences, compared to the processing times achieved through automatic 

maximum disparity with the ADSR-Net. This can be seen from Figure 7.16 which shows 
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the percentage increase in processing times when the maximum disparity is set to a 

fixed value defined by the user. Although it is possible for the measurements to change 

depending on the distribution of maximum disparity in the dataset, the observed 

savings in processing time with ADSR-Net has exceeded 50% in 3 out of 5 image 

sequences used for the experiment.  

 

Figure 7.16: Percentage increase in processing time when the maximum disparity was set to the population 
maximum of the Scene Flow “Driving” test data, manually. 

 

7.5.3 EVALUATION STEP 3: Dense Disparity Prediction Accuracy of the ADSR-Net 

Due to the availability of multiple datasets for evaluation during and after training, the 

accuracy of the disparity predictions by the ADSR-Net was analysed in two steps.  

1. Accuracy of Disparity Predictions on Validation Datasets 

At the end of each training stage, all validation datasets from 

Scene Flow “Driving”, Scene Flow “Flying Things 3D” and KITTI 

2015 were used to evaluate disparity prediction accuracy of the 

ADSR-Net.  

2. Accuracy of Disparity Predictions on Additional Datasets  

Upon completion of all 3 training stages, additional datasets 

(i.e., Middlebury 2014, KITTI 2012 and ETH3D datasets) were 

used to check the accuracy of the ADSR-Net when presented 

with unfamiliar data.  

 

 

 

0

10

20

30

40

50

60

Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5

Note: Evaluation on Middlebury, ETH3D and KITTI 2012 is sufficient to validate the 

generalization capabilities of the ADSR-Net. However, the evaluation (Step 4) aims 

to introduce more challenges through stereo images captured by using a custom-

built stereo camera.  
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7.5.3.1 Accuracy of Disparity Predictions on Validation Datasets  

At the end of each training stage, the ADSR-Net was used to predict disparity maps for 

the validation image pairs to validate the improvements in accuracy. Although the 

training was conducted at a small cropped-image size, the evaluation of disparity 

predictions was conducted at full image resolution.  The predicted disparity maps were 

saved and used for qualitative and quantitative analysis.  

7.5.3.1.1 Qualitative Analysis Disparity Maps on Validation Datasets 

Figure 7.17 shows some example dense disparity maps produced by the ADSR-Net for 

stereo images from the “Flying Things 3D” validation data, just after finishing the 

extended training phase. A close visual inspection of the results in the figure, reveals 

that the ADSR-Net has managed to capture the fine details in both foreground (red) 

and background (blue) despite the challenging inputs. Furthermore, the foreground 

objects in ground-truth disparity maps match the same in the ADSR-Net output 

indicating that the maximum disparity has not been underestimated. 

 

 
               Sample (a) 

 
               Sample (b) 

 
               Sample (c) 

Figure 7.17: Three sample disparity maps produced by the ADSR-Net after the extended training stage which was 
conducted using the Scene Flow “Flying Things 3D” dataset. The shown maps have been selected from the ADSR-
Net predictions for the validation image pairs. The leftmost image in each row shows the reference image (left). 
The disparity map in the middle shows the ground-truth disparity for the given stereo image pair. The disparity 

map on the right, shows the ADSR-Net prediction. 

 



    

   132 
 

Similar results can be observed in the disparity maps obtained after the fine-tuning 

stage using the validation images from the KITTI 2015 dataset. Three sample disparity 

output maps from the same are shown in Figure 7.18. A quick visual inspection confirms 

that the ADSR-Net has successfully captured the foreground and background objects 

correctly. It is important to note that the ground-truth disparity maps for the KITTI 

2015 test data have not been shown in the figure due to being sparse in nature and 

covering only about 2/3 of the image along the vertical dimension. However, the 

monocular cues available for the naked eye in the reference images are sufficient for 

the visual verification of finer details in the output disparity maps. For example, details 

of the trees in “Sample (b)” of  Figure 7.18 have been captured well in the output 

disparity maps. However, a quantitative analysis of the output disparity maps is 

required to reliably assess the accuracy of the disparity maps.  

 
               Sample (a) 

 
               Sample (b) 

 
               Sample (c) 

Figure 7.18: Three sample disparity maps produced by the ADSR-Net after fine-tuning with stereo image pairs 
from the KITTI 2015 stereo dataset. The shown maps have been selected from the ADSR-Net predictions for the 
validation image pairs. The leftmost image in each row shows the reference image (left). The disparity map on 

the right, shows the ADSR-Net prediction. 

7.5.3.1.2 Quantitative Analysis of Disparity Maps on Test/Validation Datasets 

There are many stereo vision related evaluation metrics which can be used to 

quantitatively evaluate the output disparity maps against the ground-truth data. For 

the current evaluation, the following two metrics are used. 
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1. Mean Error/End-Point-Error (EPE) 

The mean error estimates the average/mean value of the absolute 

difference between the estimated and expected (ground-truth) 

disparity maps. The value is given in pixels which provides an estimate 

of how much on average, the two disparity maps (predicted vs. ground-

truth) differ from each other. When analysing datasets, the value was 

computed as an average over the entire dataset. 

2. Mean 3-Pixel Error 

The 3-Pixel Error estimates the percentage of pixels in which the 

estimated disparity values differ by more than or equal to 3 pixels 

compared to the ground-truth disparity. This was also computed as an 

average over the entire dataset. 

For dense disparity estimations, both the above metrics can be estimated based on 

the total number of pixels in the image. However, when the ground-truth data is semi-

dense or sparse, using the total number of pixels with valid ground-truth disparity 

values can provide more meaningful results. Hence, the same is used in the analysis in 

the current section. 

The ADSR-Net internally down-samples the input images by a factor of 4 along the 

length and height dimensions and up-samples the disparity prediction at the end of 

the stereo pipeline by the same factor. Therefore, an error of 1 pixel at the cost volume 

resolution (which is 1/4th of the image resolution) corresponds to an error of 4 pixels 

at the original image resolution.  Therefore, the 3-Pixel error can provide an indication 

of the percentage of pixels with their disparity estimations within the 1-pixel error 

margin at the cost volume resolution. 

The Table 7.5 summarizes the average/mean values of the two metrics (3-Pixel error 

and Mean Error) for the validation datasets. A quick look at the 3-Pixel error shows 

that it remains between 9 to 13 percent. In other words, 87 to 91 percent of 

predictions have an error of less than 1 pixel at the cost volume resolution.  The most 

important finding from the summary of the results is the fact that the ADSR-Net has 

managed to keep the mean error across all datasets around 2 pixels (approximately) 

while estimating the maximum disparity automatically. At this point, it needs to be 
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stated that the ADSR-Net has not been optimized for any dataset.  Instead, it has been 

designed and trained to achieve autonomy during disparity inference with the ability 

to generalize across varying input data while using minimal computational resources.  

Table 7.5: Evaluation results obtained with 3 validation datasets. Mean error or the average end-point-error over 
the dataset and the mean 3-Pixel error for each dataset are mentioned along with other dataset specific 

information. The metrics have been estimated over the pixels with ground-truth data only. 

 

 

 

 

 

7.5.3.2 Accuracy of the Disparity Predictions on Additional Datasets 

For practical applications, it is much preferable to have deep learning algorithms that 

can predict disparity maps for data which is different from what they have been 

trained on.  Although the evaluations on validation data provide clues about the 

disparity estimation accuracy of the network on unseen data, validation data still has 

a lot in common with the training data because of originating from the same datasets. 

Therefore, the best way to evaluate the accuracy of the ADSR-Net on unfamiliar data 

is to conduct tests with additional datasets like ETH3D, Middlebury and KITTI 2012. 

These datasets have been specifically chosen to introduce as much variation in input 

as possible which poses the following challenges to the ADSR-Net. 

1. Differences in image types 

The ADSR-Net has been trained exclusively on RGB colour images 

from the Scene Flow and KITTI 2015 datasets. However, ETH3D and 

KITTI 2012 provide grayscale images to be used for testing which 

can introduce additional challenges to the ADSR-Net algorithm.  

 

 

Test Dataset Image Type 
No of 

Images 
GT 

Type 
Image Size 

Mean 3-Pixel 
Error (%) 

Mean 
EPE (px) 

Scene Flow Driving  Colour RGB 120 Dense  960x540 12.92 2.19 
Scene Flow Flying 
Things 3D  Colour RGB 4478  Dense  960x540 9.07 2.14 

KITTI 2015  Colour RGB 20  Sparse  ~1242x375 12.73 1.88 

Important: ADSR-Net has not been optimized for any dataset to achieve a rank on 

a stereo vision benchmark. Instead, it has been designed and trained with the 

objective of achieving autonomy during disparity inference with the ability to 

generalize across varying input data while using minimal computational resources. 
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2. Differences in image sizes 

The ADSR-Net has been trained with fixed-sized cropped images 

extracted from datasets with a reasonably fixed image size across 

all image pairs. In contrast, Middlebury 2014 and ETH3D datasets 

have a large variance in image sizes to challenge the ADSR-Net in 

terms of the size and scale of the objects.  

3. Difference in scene structure 

A key advantage of using diverse datasets is the ability to test the 

algorithm on scenes with different scene structures. This allows to 

test the ADSR-Net against dissimilar proximity levels especially with 

respect to the close-range objects.  

4. Difference in stereo baseline 

As seen in chapter 1, the baseline of a stereo camera affects the 

maximum disparity. Therefore, the additional datasets introduce 

further variations in input data to the ADSR-Net as they have been 

captured with different stereo cameras with different baseline 

distances. 

5. Short and Long-Range Views of the Same Scene 

The ETH3D dataset contains stereo images with multiple views 

(short range and long range) of the same scene which can be used 

to check if the ADSR-Net is able to correctly determine the obvious 

differences in maximum disparity. 

7.5.3.3 Qualitative Analysis of Results on Additional Datasets 

The results shown in Figure 7.19 through Figure 7.21 contain disparity predictions by 

the ADSR-Net for sample stereo image pairs from the three datasets: ETH3D, 

Middlebury and KITTI 2012, respectively. For every image pair, the figures include the 

reference image on the left, the ground-truth disparity map in the middle (except in 

Figure 7.21) and the ADSR-Net prediction on the rightmost column. A quick visual 

comparison against the ground-truth disparity maps confirms that the ADSR-Net has 

been able to handle varying inputs from different datasets accurately in terms of the 

details captured in the disparity maps. For example, in each of the scenes, the closest 
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objects to the camera have been clearly identified suggesting that the maximum 

disparity values have not been underestimated. 

7.5.3.3.1 ETH3D Dataset 

     
          Sample (a) 

 
               Sample (b) 

 
               Sample (c) 

Figure 7.19: The ADSR-Net disparity predictions for 3 sample stereo image pairs from the ETH3D dataset. The 
results have been obtained using the ADSR-Net model trained with Scene Flow “Driving”, “Flying Things 3D” and 
fine-tuned with the KITTI 2015 dataset. The leftmost image in each row shows the reference image (left) of the 

stereo image pair. The ground-truth disparity map is shown in the middle and the ADSR-Net output on the right. 
Results indicate reasonable disparity estimations for unfamiliar data.  

 

ETH3D samples shown in Figure 7.19 present special challenges to the network. For 

example, all three scenes from sample (a) to (b) indicate insufficient lighting with some 

regions being clearly darker than the rest. In addition, the scene in Figure 7.19 (b), has 

its foreground object spanning the whole image width which tests the algorithm’s 

ability to predict disparity maps in a scale independent manner. Nevertheless, the 

ADSR-Net has been able to handle the challenging scenarios which validates the 

success of the model design and the training process. However, the lack of details in 

the foreground objects such as the holes in the box in sample (a), vertical embossed 

stripes in sample (b) and thin branches in sample (c), indicate over-smoothing by the 

regularization module which is a drawback. 
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7.5.3.3.2 Middlebury 2014 

 
               Sample (a) 

 
               Sample (b) 

 
              Sample (c) 

Figure 7.20: ADSR-Net disparity predictions for sample stereo image pairs from the Middlebury 2014 dataset. 
Reference left images are shown on the left with the ground-truth disparity maps in the middle and the ADSR-
Net predictions on the right. From a qualitative standpoint, the ADSR-Net has produced disparity maps with 

reasonable accuracy despite noticeable errors close to the object boundaries. 

 
Sample disparity outputs for the Middlebury 2014 dataset shown in Figure 7.20 include 

close range and well-lit scenes in which the distribution of ground-truth disparities is 

skewed towards the maximum disparity of the scene. The reference images in Figure 

7.20 indicate the presence of texture-less areas which usually pose a challenge to the 

stereo vision algorithms. Nevertheless, the ADSR-Net has been able to estimate 

reasonably accurate disparity maps from a qualitative standpoint due to capturing the 

details of most of the objects when compared to the ground-truth disparity maps. 

However, disparity estimations around the edges of the objects lack in clarity, leading 

to blurry edges (e.g., recycle bin in Sample (b)).  
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7.5.3.3.3 KITTI 2012 

Despite much wider variation in object proximity in input images (compared to the 

Middlebury 2014 data), results from the KITTI 2012 dataset shown in Figure 7.21, 

indicate a clear segregation of the background and the foreground objects with much 

accurate details in the predicted disparity maps.  

 
              Sample (a) 

 
              Sample (b) 

 
              Sample (c) 

Figure 7.21: Sample ADSR-Net disparity predictions for KITTI 2012 stereo image data. Reference images are 
shown on the left with the ADSR-Net predictions shown on the right.  

 

For example, the road sign in sample (a) has been clearly identified including the thin 

pole on which it is mounted. The same is true for the object in sample (b) which 

appears to be a lighting post. The overhanging tree branches in sample (c) can be 

clearly distinguished from the background. The trailer which is parked under the tree 

in sample (c) which is obscured by the shadows, is still clearly identifiable in the 

disparity map. Other darker, shadowy regions in all three samples do not appear to 

have caused the algorithm to register noticeable mismatches. 

7.5.3.4 Quantitative Analysis of the Results on Additional Datasets 

Like the analysis done for the data from the validation datasets, a quantitative analysis 

is required to gain better insights when studying the results for the additional datasets. 

Table 7.6 shows the mean 3-Pixel error and the end-point-error estimates for the 3 

additional datasets. As it can be seen from the results, the average values reported by 

the evaluation metrics are slightly higher than the same reported earlier (with the 
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validation datasets) except in the case of ETH3D dataset. According to the mean 3-

Pixel error, more than 97% of the disparities estimated by the ADSR-Net on ETH3D 

dataset, have an error of less than 1 pixel at the cost volume resolution (quarter 

resolution) despite the algorithm encountering these images for the first time. In 

contrast, the results for the Middlebury and KITTI 2012 datasets have shown an 

increase in the end-point-error and the mean 3-Pixel error. However, over 80% of the 

disparities estimated by the ADSR-Net on Middlebury 2014, still have an error of less 

than 1 pixel at cost volume resolution. For the KITTI 2012 dataset, the same is true for 

88% of the pixels. Most importantly, the observed results have been obtained without 

any user-defined parameters.  

Dataset 
Image 
Type 

No of 
Images 

GT Type Image Size 
Mean 3-Pixel 

Error (%) 
Mean EPE 

(px) 

ETH3D  Gray  27  Dense  Variable 2.65 0.63 

Middlebury 2014  RGB 15  Dense  Variable 18.6 3.34 

KITTI 2012  Gray  194  Sparse  1226x370 11.49 2.66 

Table 7.6: Results of the quantitative analysis using 3 additional datasets. Despite the differences in image type 
(colour/grey), scene structures and image size, the ADSR-Net did not require the user to set any parameter 

values when obtaining these quantitative results. 

 

7.5.4 EVALUATION STEP 4: Evaluation on User-Captured Stereo Images 

The 4th and the final step in the ADSR-Net evaluation was carried out using a custom-

built stereo camera system (i.e., Figure 7.22). It is comprised of two FLIR Chameleon 3 

monocular cameras fitted with variable focal-length FISHEYE lenses mounted on a 

handmade stereo camera rig. The details of the cameras and lenses are provided in 

Appendix F. Since the individual monocular cameras have not been specifically 

matched for stereo applications, the images produced by the camera can be 

challenging to any stereo vision algorithm. Furthermore, the FISHEYE lenses with 

manually variable focal length and iris can pose more challenges when matching. 

Unlike the datasets used for evaluations earlier (captured with well-matched stereo 

cameras or simulated as such), custom stereo images captured with an improvised 

stereo system can help test the ADSR-Net on more realistic scenes under non-ideal 

conditions (which the real-time stereo algorithms are most likely to encounter). 
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Figure 7.22: Stereo camera system used for capturing custom stereo images. The setup contains two FLIR 
Chameleon CM3-U3-13S2C-CS cameras fitted with Computar A4Z2812CS-MPIR FISHEYE lenses (with manually 

variable focal length 2.8mm-10mm and iris) mounted on a hand built stereo camera rig.  

 

7.5.4.1 Stereo Calibration and Camera Preparation 

Images captured by the individual cameras must first be undistorted and rectified 

before sending them through the ADSR-Net model. This was achieved using a one-

time calibration process which was conducted before the rectification process. The 

process involved capturing a series of stereo images of a checker-board pattern in 

different orientations. The resulting images were used to obtain camera parameters 

so that the images could be undistorted (i.e. removing the fisheye distortion). The 

undistrorted image pairs were then used to perform stereo calibration. Stereo 

calibration parameters as well as the individual camera parameters were saved for 

later use when capturing new images. Upon capturing a new image pair using the 

custom stereo setup, the images were first undistorted by using the saved camera 

parameters before performing stereo calibration to obtain a calibrated pair of strereo 

images. Once calibrated, it was not required to change or set any parameters except 

following any structural changes to the camera rig in which case a recalibration of the 

sytem was requried. 

The other important aspects related to the image capturing process include exposure 

and gain selections for cameras. For structured static scenes, it is possible to use 

automatic gain and exposure settings because of the two cameras having the same 

internal algorithms for automatically adjusting the same (i.e. gain and exposure 

settings). However, in the case of stereo image sequences captured by moving the 

camera or objects, automatic gain and exposure can cause significant differences in 
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the output images. Therefore, in the experiments outlined in this section, images of 

some structured scenes (i.e. indoor) have been captured with automatic settings 

whereas the image sequences have been obtained with fixed exposure and gain 

settings only. Furthermore, the cameras had to be locked into a fixed baseline position 

before the calibration process and maintained fixed throughout (despite the baseline 

of the custom stereo rig being variable). Figure 7.23 shows the custom-built camera 

being used to capture a pair of images of a static scene.  

 

Figure 7.23: A static image being captured by using the custom-built stereo camera system. 

 

7.5.4.2 Results on Structured Scenes 

Figure 7.24 includes three calibrated stereo image pairs for 3 static scenes, captured 

using the custom stereo camera system, along with the disparity maps produced by 

the ADSR-Net. The static scene 1 in the figure contains a large soft-toy and uniquely 

identifiable objects placed infront of a textured background. The shapes of the objects 

and the soft-toy are clearly identifiable in the output disparity map produced by the 

ADSR-Net. The smooth transition of disparities, as evident from the gradual change in 

color gradient in the output disparity map (starting from the closest object points in 

the scene), indicates that the ADSR-Net has been able to estimate a suitable maximum 

disparity value for the scene automatically.  
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(a) Static Scene 1  

 

(b) Static Scene 2  

 

(c) Static Scene 3  

Figure 7.24: Disparity predictions for custom stereo camera images of 3 static scenes captured using the stereo 
camera rig shown earlier. The left image is shown on the left with the right image in the middle. The disparity 

map predicted by the ADSR-Net is shown on the right. 

 

The second example in Figure 7.24 (b) shows another static scene showing the same 

soft-toy figure in front of a backdrop comprised of glossy and texture-less areas with 

shadows and reflections. However, when analysing the disparity map of the scene 

produced by the ADSR-Net, it is clear that the contours of the foreground object (i.e., 

soft-toy figure) have been well identified by the algorithm. It is also noteworthy how 

the leading limb of the soft-toy figure is correctly associated with the largest disparity 

(as observed from the colour gradient in the disparity map). However, the disparity 

map also shows some noticeable errors in the texture-less regions and pixels that 

correspond to surfaces with glossy texture. 
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The third static scene in Figure 7.24 (c), shows the stereo images for an outdoor scene 

with vehicles parked on a driveway. As it can be noticed from the disparity map 

produced by the ADSR-Net, the contours of the objects (e.g., Cars, lighting pole, tree 

etc.) are clearly identifiable in the output. It is also important to note that the 

disparities associated with background do not include obvious errors. This can be 

attributed to the clearly distinguishable texture in the background objects including 

the trees and the clouds.  

However, disparity estimates of the background objects which are located far away 

from the cameras, lack in fine details. This is due to the inherent depth resolution issue 

in stereo (Equation (1.1)). Furthermore, the repetitive patterns on the foreground (e.g., 

driveway) have not caused significant errors although the darker shadow in front of 

the car has resulted in noticeable errors in the corresponding area of the output 

disparity map. Despite all scenes in Figure 7.24 (a) to (c) having unevenly lit areas (with 

a generally gloomy outcast), the ADSR-Net appears to have been able to handle 

uneven brightness and contrast well. 

7.5.4.3 Changing Maximum Disparity by Adding Foreground Objects 

Since the maximum disparity for a scene is directly related to the proximity of the 

foreground objects, the robustness of the ADSR-Net can be further challenged by 

manipulating the foreground objects of a scene. Figure 7.25 illustrates a scenario in 

which a new object is introduced to the foreground. Figure 7.25 (a) is the same static 

scene (Scene 1 in Figure 7.24) shown earlier and Figure 7.25 (b) depicts the same scene 

with a new object (a bottle) placed in the foreground.  

As expected, the ADSR-Net disparity prediction for the augmented scene shows the 

new foreground object (bottle) as being closest to the camera than the leading limb 

of the soft-toy figure which was the closest object earlier (before the foreground of 

the scene was manipulated). This coupled with the absence of obvious errors in the 

foreground, indicates that the ADSR-Net has been able to readjust the maximum 

disparity to suit changes in scene structure.  
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(a) Static Scene 1  

 

(a) Static Scene 1 + new close-range object (bottle) 

Figure 7.25: Introducing a close-range object to a static scene. When a new object (i.e., a bottle) was introduced 
as a foreground object to the static scene 1 (a), the ADSR-Net was able to automatically increase its maximum 

disparity to incorporate the new object in the disparity prediction as shown in (b). 

7.5.4.4 Results on Image Sequences 

As observed during the EVALUATION STEP 1, the advantages of automatic maximum 

disparity estimation become more evident when processing image sequences. In  

image sequences with larger variations in object proximity, automatic maximum 

disparity estimation can lead to significant savings in computational time compared to 

when using a fixed maximum disparity. However, the stereo image sequences used for 

the earlier experiments were sourced from standard stereo image datasets. To 

harness the capabilities of automatic maximum disparity estimation in a real-world 

application, the ADSR-Net must first be able to produce accurate disparity maps for 

image sequences captured using an imperfect stereo camera. Such an image sequence 

is shown in  Figure 7.26. The figure shows 5 stereo image pairs with the respective 

disparity predictions by the ADSR-Net. Images contain five consecutive scenes 

captured when panning the stereo camera from left to right starting from the static 

scene 3 (in Figure 7.24) earlier. As it can be seen from the image sequence, the scene 

structure changes with the camera movement. Yet, in spite of the changes, the ADSR-

Net predictions show that it has been able to capture the changes reasonably well. 

This demonstrates the generalization capabilities of the ADSR-Net. 
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     Left Image          Right Image             ADSR-Net Prediction 

Figure 7.26: ADSR-Net disparity predictions for a sequence of 5 stereo image pairs captured by panning the 
stereo camera rig from left to right (images from top to bottom correspond to the images periodically captured 

when panning the stereo camera rig from left to right). 
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7.5.5 Strengths of the ADSR-Net  

The following list of strengths separate ADSR-Net from the other deep learning stereo 

algorithms. 

✓ Independence from user’s understanding of the scene structure 

✓ Ability to handle multiple resolution levels without reconfiguration  

✓ Ability to handle multiple baseline stereo without user intervention 

7.5.5.1 Independence from User’s Understanding of the Scene Structure 

As outlined in Chapter 2, most stereo algorithms (traditional and deep learning-based) 

require users to specify the maximum disparity based on user’s knowledge and 

understanding of the scene structure.  However, the ADSR-Net does not require such 

inputs during inference. Figure 7.27 shows the ADSR-Net output for two stereo image 

pairs from the ETH3D dataset which correspond to one close-up view and another 

zoomed-out view of the same scene. For a typical deep stereo algorithm to produce 

accurate results for the given stereo images (“Delivery Area 1l” and “Delivery Area1s” 

of ETH3D), a user must either specify suitable maximum values for each scene 

separately or select a large value which is at least equal to or more than the expected 

maximum disparity for the close-up view. 

 
(a) Zoomed out view 

 
(b) Close up view 

Figure 7.27: Two views of the same scene (“Delivery Area 1l” and “Delivery Area1s” from the ETH3D dataset). 
The grayscale reference images are shown on the left with the ground-truth disparity maps in the middle. The 

ADSR-Net predictions are shown on the right. The ADSR-Net has automatically detected a suitably larger 
maximum disparity value for the close-range scene compared to the zoomed-out version.  

 

The ADSR-Net on the other hand has produced accurate disparity maps for both 

scenes (on visual comparison with the ground-truth disparity maps) without user-
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specified parameters. Another similar scenario is given in Figure 7.28. When predicting 

disparity maps across four scenes, the ADSR-Net did not require any user intervention 

other than providing the two input images. However, when compared to the ground-

truth disparity maps, the ADSR-Net has not only produced disparity maps which look 

similar to the ground-truth but match them quantitatively as well (i.e., due to being 

part of the ETH3D dataset, these image pairs were included in the summary of results 

presented in Table 7.6). 

 
(a) Zoomed out view 

 
(a) Close up view 

Figure 7.28: Two more views (“Playground 3l” and “Playground 3s”) from the ETH3D dataset depicting a close-
up view and a zoomed-out view of the same scene. The grayscale reference images are shown on the left with 

the ground-truth disparity maps in the middle. The ADSR-Net predictions are shown on the right. The ADSR-Net 
has automatically adjusted the maximum disparity value for the close-up scene. 

 

7.5.5.2 Ability to Handle Multiple Resolution Levels without Requiring User Inputs  

Figure 7.29 (a) shows another example from the grayscale ETH3D stereo dataset at 

original resolution along with the ground-truth disparity map and the corresponding 

ADSR-Net prediction. Figure 7.29 (b) shows the same at half resolution. In both cases, 

the ADSR-Net has been able to produce disparity maps which are qualitatively similar 

to the ground-truth disparity maps. In addition, the average error for the disparity 

estimates at full and half resolution was found to be 0.53 and 0.43 pixels respectfully 

(in the regions where the ground-truth disparity maps contain valid disparities).  
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(a) At original resolution 

 

(b) At half resolution 

Figure 7.29: The ADSR-Net disparity predictions for the “Delivery Area 1l” scene from the ETH3D data at two 
different resolution levels (original resolution [a] and half resolution [b]). The leftmost image shows the 

reference (left) image with the disparity ground-truth in the middle. The rightmost image shows the disparity 
prediction by the ADSR-Net. Unlike other deep stereo techniques, the ADSR-Net does not require users to adjust 

maximum disparity value depending on the resolution of the input images. 

 

7.5.5.2.1 Ability to Handle Multiple Baseline Stereo without User Intervention 

According to the basic stereo equation (Equation (1.1)) given in Chapter 1, varying 

baseline can change the disparity associated with a given object point. Therefore, 

when using typical deep stereo algorithms with multiple baseline stereo cameras (e.g., 

Bumblebee XB3), users must select two different disparity search ranges or maximum 

disparity values. Even then, depending on the proximity of the objects to the camera, 

the maximum disparity may have to be adjusted separately.  If a single large maximum 

disparity value is used with the two baselines, the long-range accuracy gains of the 

larger baseline configuration can be lost due to potential errors introduced by the 

unnecessarily large maximum disparity. 

On the other hand, throughout the evaluation steps from 1 to 4, the ADSR-Net was 

evaluated on datasets captured using stereo vision cameras with different baseline 

distances (including the custom-built stereo camera rig). It was shown that regardless 

of the type of images used, the ADSR-Net was able to produce disparity maps without 

the user having to specify the maximum disparity explicitly. Therefore, the ADSR-Net 

can make the disparity estimation process much simpler for multiple baseline 

configurations. 
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7.5.6 Challenging Scene Conditions / Phenomena 

By analysing the results recorded as part of the evaluation steps from 1 to 4, it was 

possible to find anomalies in disparity predictions by the ADSR-Net which appear to 

have a strong correlation with the following: 

1. Artefacts due to lens flare 

2. Regions with glare in images 

3. Low textured regions in stereo images 

7.5.6.1 Effect of Lens Flare 

For example, Figure 7.30 shows the end-point-error associated with the ADSR-Net 

predictions for all 27 stereo image pairs from the ETH3D dataset. Among the values, 

the end-point-error for the scene labelled “playground_2l” stands out due to the 

relatively high value.  

 

Figure 7.30: A bar-graph showing the variation of the "End-Point-Error" in disparity estimations for stereo image 
pairs from the ETH3D dataset at original resolution. The end-point-error of the ADSR-Net disparity estimation for 

the “Playground 2l” appears to be unusually high compared to the others. 

 

A closer inspection of the scene in concern and the disparity prediction by ADSR-Net 

(Figure 7.31) reveals that there are noticeable discrepancies between the predicted 

and the ground-truth disparity maps for the scene. The exception appears to coincide 

with the lens flare related artefacts in the input images. As it can be seen from Figure 

7.31, there is a cluster of disparity predictions in the corresponding area, which appear 

to be unusually larger in value. This together with the relatively accurate contours in 

the rest of the disparity predictions, indicate that the ADSR-Net has overestimated the 

maximum disparity for the region with lens-flare related artefacts.  
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     (a) Reference Image          (b) Ground-truth 
Disparity 

            © ADSR-Net 
Prediction 

Figure 7.31: Lens flare induced artefacts in the “Playground 2l” image pair of the ETH3D dataset appear to 
coincide with the unusually large and erroneous disparity predictions by the ADSR-Net.  

 
A quick comparison between the series of maximum disparity predictions for all 27 

ETH3D stereo image pairs and the respective ground-truth maximum values (Figure 

7.32) shows how much the ADSR-Net has over-estimated the maximum disparity for 

the scene labelled “playground_2l”. However, the unusually high maximum disparity 

has not resulted in abrupt termination of the algorithm due to the lack of GPU 

memory. This shows the importance of the memory efficient design of the ADSR-Net. 

 

Figure 7.32: A comparison between the maximum ground-truth disparity and the maximum disparity predicted 
by the ADSR-Net for all 27 stereo image pairs from the ETH3D dataset. The maximum disparity for the scene 

labelled “playground_2l” as determined by the ADSR-Net (based on SNCE) is significantly larger than the ground-
truth maximum. In other scenes, the ADSR-Net has predicted the maximum disparity closely. 
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7.5.6.2 Presence of Image Glare 

A similar procedure on other datasets revealed that, image glare in general has a 

negative effect on the disparity estimation accuracy of the ADSR-Net. For example, 

Figure 7.33 illustrates how glare in combination with a shadow can result in disparity 

estimation errors.  According to the predicted disparity map, background objects have 

been clearly identified even in some areas affected by glare (e.g., ground plane). In 

contrast, the leftmost part of the glare affected region in the foreground, spans out of 

the stereo area making it harder for the algorithm to fill in the disparities in the 

affected area. An in-depth analysis is required to establish the correlation conclusively. 

However, such an analysis is beyond the scope of the thesis due to the universal nature 

of the negative effects of glare in computer vision techniques.  

 

     (a) Reference Image          (b) Ground-truth Disparity             (c) ADSR-Net Prediction 

Figure 7.33: Glare induced errors in disparity predictions by the ADSR-Net (An example from the Scene Flow 
“Driving” dataset) 

 

7.5.6.3 Low Textured Areas 

 

 

(a) Reference image (b) ADSR-Net Output 

Figure 7.34: An example from KITTI 2012 dataset in which a low-textured area has introduced errors to the 
disparity map produced by the ADSR-Net. 

 
Low textured areas which affect the other stereo matching techniques, appear to have 

a negative impact on the ADSR-Net as well. This can be seen from the ADSR-Net output 

for a sample stereo image pair from the KITTI 2012 dataset shown in Figure 7.34. The 

area occupied by the sky in Figure 7.34 has very little texture. Therefore, the algorithm 

has produced an erroneous disparity map with the largest disparities located in the 
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low-textured region. In addition, it appears as if the ADSR-Net has attempted to fill in 

the remaining areas which has resulted in a utility pole being incorrectly identified as 

a tree due to the errors propagating from the texture-less region.  

7.6 Chapter Summary 
This chapter introduced an end-to-end deep learning-based stereo algorithm called 

ADSR-Net which utilizes the SNCE metric to detect a suitable maximum disparity for a 

given scene automatically.  The new improved architecture which is based on the 

findings of the previous chapter included a much deeper feature network, a modular 

cost aggregation network and a layer-wise cost volume creation module with SNCE-

based termination capability. 

Preliminary tests before training showed that the use of a pre-aggregation network to 

produce a 3D cost volume leads to a memory efficient network design compared to 

similar implementations with 4D or higher dimensional cost volumes. However, in the 

presence of a cost aggregation network an improvised training technique called 

“clamped training” was required to enforce unimodality of the matching costs at pre-

aggregation level. 

The chapter also introduced a multi-stage training process using 3 stereo datasets, 

with the objective of improving the generalization capabilities of the ADSR-Net. At the 

end of each training stage, the network was evaluated for disparity estimation 

accuracy both qualitatively and quantitatively. Tests involving image sequences (which 

were conducted immediately after the initial training stage) showed that the 

automatic maximum disparity estimation capability of the algorithm can result in up 

to 50 percent savings in average computational time per stereo image pair compared 

to when using a fixed cost volume size that fits the population data.  

Evaluations on validation data, additional datasets and the stereo images captured 

with a custom-built stereo camera system, revealed that the fully trained ADSR-Net is 

able to detect suitable maximum disparity values and predict accurate disparity maps 

under diverse scene conditions. The ADSR-Net was also able to handle variable 

resolution levels and multiple baseline distances without users having to specify 

parameter values explicitly. 
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Phenomena such as lens flare, glare and low textured areas which affect stereo 

matching techniques and other machine vision techniques in general, were found to 

cause errors in disparity estimations by the ADSR-Net. Extensive further evaluations 

focussed on each phenomenon are required to conclusively determine the exact cause 

of such errors which is beyond the scope of the current thesis. 

Although the ADSR-Net produced qualitatively and quantitatively accurate results 

across different stereo image datasets (standard and custom), the model has a lot of 

room for improvement in terms of the network architecture and training. The ADSR-

Net model used for the evaluation had only a smaller number of network blocks in the 

feature extraction and cost aggregation networks in order to maintain trainability on 

consumer grade GPUs such as GTX1070 and RTX2080. By increasing the number of 

blocks and by conducting training in high performance computing/multi-GPU 

environments with more resources, much better results can be achieved.  
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CHAPTER 08 - CONCLUSIONS AND FUTURE WORK 

Introduction 
The preceding chapters from 1 to 7 detailed the methodology, experiments, results 

and evaluations pertaining to the development of a deep stereo network called ADSR-

Net (Automatic Disparity Search Range Network) that does not depend on user-

specified parameter values to produce disparity maps. The overall process started with 

the development of the novel SNCE (Sum of New Cost Extrema) metric to serve as the 

termination criteria for a layer-wise cost volume construction stage. The feasibility of 

using the metric in CPU and GPU environments was then studied with algorithmic 

analysis and empirical methods. Upon positive confirmation, the metric was 

incorporated into an initial deep stereo method to validate the possibility of achieving 

SNCE convergence. Experiments with stereo image sequences extracted from the 

Scene Flow “Driving” dataset demonstrated that the SNCE value becomes zero at 

maximum disparity (or just above the maximum disparity). From this, the new metric 

was incorporated into an end-to-end deep stereo network which included a feature 

extraction module, a dynamic layer-wise cost volume creation module and a cost 

aggregation network. To train the network, a novel training scheme called “clamped 

training” was created to combine the final dense disparity prediction with an 

intermediate disparity prediction obtained after the cost volume creation stage.  

The ADSR-Net was then trained with Scene Flow “Driving”, Scene Flow “Flying Things 

3D” and KITTI 2015 datasets in a 3-stage training process targeted at improving the 

generalization capabilities. Clamped training helped improve the accuracy of the 

maximum disparity estimations and the disparity maps simultaneously.  Extensive 

post-training evaluations were carried out on the validation datasets, additional 

datasets (ETH3D, Middlebury 2014 and KITTI 2012) and stereo images captured using 

a custom-built stereo camera. A qualitative and quantitative analysis indicated 

accurate disparity predictions by the ADSR-Net under varying scene conditions.  The 

results on stereo image sequences showed a significant improvement in performance 

compared to the same algorithm with maximum disparity set to the population 

maximum. This chapter aims to summarize the research work in terms of achieving 

the objectives, merits of the contributions and future work.  
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8.1 Achievements in Objectives  
As elaborated in Chapter 1 and supported by the findings in Chapter 2, most deep 

stereo algorithms solve the stereo disparity estimation problem only partially on their 

own, due to their dependence on user-selected “maximum-disparity” or “disparity 

search range” parameters.  In other words, users partially-solve the disparity 

estimation problem for the machines by providing the expected range of variation in 

disparity, manually. The work presented in this thesis was aimed at eliminating the 

need for users to specify the commonly used “maximum-disparity” parameter in deep 

stereo networks. The maximum disparity parameter can often be the only such user-

specified parameter in many state-of-the-art stereo algorithms (Table 2.1) during 

disparity inference. Therefore, the automatic maximum disparity estimation in deep 

stereo is required for achieving complete independence from user’s prior knowledge 

of the scene structure or the lack thereof. To achieve the same, the following 

objectives were identified in Chapter 1.  

1. Developing a methodology to automatically estimate the maximum disparity 

parameter in stereo vision algorithms without requiring user input. 

2. Formulating machine learning friendly metrics which can be used to eliminate 

the manual configuration of the disparity search range / maximum disparity. 

3. Developing a fully autonomous stereo vision algorithm which does not require 

any pre-configuration by the users during disparity inference.  

Chapter 4 introduced the novel SNCE metric which can reliably indicate the occurrence 

of the maximum disparity for a given scene, based on its value if the matching cost 

distribution remains unimodal. The analysis in Chapter 4 showed that the SNCE metric 

met the requirements of the Objective 1, even though achieving unimodality of cost 

distributions with traditional techniques (such as changing the mask size) was not 

feasible due to the dependency on user judgement and scene conditions. Based on 

the findings of the literature review in Chapter 2, it was also observed that the 

unimodality of cost volumes is a pre-requisite for differentiable disparity regression in 

deep stereo networks. The existence of a common pre-requisite for the SNCE metric 

and the deep learning stereo algorithms was favourable for the development of a new 
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stereo technique to determine the maximum disparity automatically, provided the 

metric could be estimated in a computationally efficient manner.  

Chapter 5 showed that the SNCE metric can be estimated efficiently as part of the cost 

volume construction process in both CPU and GPU environments, without imposing a 

significant additional computational burden. Most importantly it was seen that the 

order of growth of the computations for a typical stereo disparity estimation algorithm 

does not change due to the introduction of the SNCE metric. That paved the way for 

incorporating the SNCE as part of the forward propagation phase of a deep stereo 

network directly.  

Chapter 6 featured a basic deep stereo network which was able to compute the SNCE 

metric at each disparity. This was done to check whether the SNCE value converges at 

maximum disparity or at an appropriate value slightly above it when using a deep 

stereo network. Experiments using the Scene Flow “Driving” dataset with data 

augmentation, further enforced the outcome. It was also observed that the accuracy 

improves in tandem with the stereo matching accuracy of the overall network.  Hence, 

the results in Chapter 6 confirmed that the pre-requisite unimodal cost distributions 

associated with deep stereo networks, indeed lead to deterministic convergence of 

the SNCE metric as anticipated in Chapter 4. At this stage however, the network was 

neither capable of building the cost volume one layer at a time nor terminating the 

cost volume automatically based on the SNCE metric. It was also not clear how an 

elaborate cost aggregation network would affect the overall process. 

The progressive construction and the automatic termination of the cost volume at an 

arbitrary disparity required dynamic assignment of memory to the cost volume tensor. 

Chapter 7 introduced an improved deep stereo network with the ability to dynamically 

allocate memory to the cost volume one layer at a time. The new design was able to 

compute SNCE at every layer and then terminate the process based on the estimated 

value of the metric. The new network which was named ADSR-Net, also featured a 

cost aggregation stage immediately after the cost volume creation stage. The ADSR-

Net demonstrated that the SNCE metric can be implemented in a machine learning 

friendly manner (Objective 2 above). However, to achieve the Objective 3, the network 

had to be trained in such a way that the accuracy of both the maximum disparity 
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estimations as well as the output disparity estimations would improve simultaneously. 

Therefore, a unique training scheme called “clamped training” was adopted.  In 

clamped training, the output accuracy of a network is combined with some 

supplementary criteria required to be optimized during the training process. Hence, 

when using clamped training with the ADSR-Net, the output disparity error of the 

network was combined with the disparity error associated with an intermediate 

disparity map extracted just before the cost aggregation stage (pre-aggregation level). 

This led to the effective “clamping” of the output accuracy to the pre-aggregation 

accuracy which in turn resulted in simultaneous improvement of both the maximum 

disparity estimations and the final disparity predictions.  

Extensive evaluations with standard stereo datasets (i.e., KITTI, Middlebury, Scene 

Flow, ETH3D) and stereo images captured with a custom-built stereo camera system 

showed that the ADSR-Net is able to achieve complete automation in maximum 

disparity estimation during stereo inference. This eliminated the need for any user-

specified parameter values when estimating disparity maps. The resulting deep stereo 

network set a parameter-less stereo benchmark on its own due to being the only deep 

stereo network with a variable-sized cost volume which is based on the dynamically 

determined maximum disparity. 

8.2 Research Outcomes and Contributions 
The novel deep stereo technique (ADSR-Net) provides a user independent solution to 

the stereo disparity estimation problem. This contrasts with many traditional and 

deep-learning-based stereo methods which have been designed to achieve higher 

matching accuracy on datasets such as KITTI and Middlebury, often with the help of 

users selecting a suitable maximum disparity value to optimize the output accuracy. 

Furthermore, by eliminating the most common user-defined parameter in deep 

stereo, this thesis has demonstrated complete user-parameter-independence in deep 

stereo inference with an example implementation that produced promising results. In 

addition to achieving full autonomy (which is the core objective behind this thesis), 

the ADSR-Net has also delivered the following positive research outcomes. 
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1. Gains in performance when processing stereo image sequences  

The ADSR-Net’s ability to dynamical choose a suitable maximum disparity value 

produced up to 50% savings in computational time when tested on sample 

stereo image sequences from the Scene Flow dataset. This was in comparison 

to the performance of the exact same algorithm with a fixed-sized cost volume 

set to a maximum disparity equal to the maximum ground-truth disparity 

observed in the dataset. In the conventional approach, a user is required to 

select a maximum disparity based on intuition in such a way that the chosen 

value covers all possible maximum disparity values for the scenes. Therefore, 

even for the long-range scenes with a small maximum disparity, such 

algorithms need to produce a fixed-sized cost volume with its disparity 

dimension equal to the user-selected large maximum disparity value. In 

contrast, the ADSR-Net is able to select a suitable value for each individual 

stereo pair automatically which leads to optimal use of the computing 

resources thus leading to savings in processing time. 

2. Memory Efficient Deep Stereo Design Pattern 

The SNCE metric requires single-valued matching costs between corresponding 

pixels. Therefore, the ADSR-Net uses a 3D cost volume having the dimensions 

determined by the image width, height and the maximum disparity estimated 

automatically by the SNCE metric. However, those single-valued costs are 

generated by a pre-aggregation network with trainable parameters. Hence, the 

ADSR-Net can learn to retain just enough information in a smaller-dimensional 

cost volume (i.e., 3D compared to 4D cost volumes in other deep stereo 

methods). Consequently, as observed in the results of Chapters 6 and 7, the 

ADSR-Net can produce accurate disparity maps while utilizing less memory 

resources to hold the cost volume tensors. This improves the trainability and 

inference capabilities of the network on consumer grade hardware like 

GTX1070 and RTX2080 (with 8 GB memory).  

3. Portable design for integration with other deep stereo networks  

The work presented in this thesis demonstrates the feasibility of achieving 

complete parameter independence during stereo inference using the 3D 
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regularization structure in such a way that it can also be easily adopted by the 

other deep stereo algorithm designs. The feature extraction network and cost 

regularization phases of the ADSR-Net are clearly segregated from the cost 

volume module. The feature network used in ADSR-Net is similar to the feature 

networks of other deep stereo networks that follow the 3D regularization 

architecture, in term of what it achieves. In addition, the cost volume module of 

the ADSR-Net was shown to be memory efficient which means that it can be 

integrated with other feature extraction and regularization designs to develop 

efficient deep stereo networks. Such models would result in improvements in 

performance while achieving user parameter independence during stereo 

inference.  

8.3 Addressing the Research Questions 
At the beginning of the study, five research questions were identified as being 

fundamental to the development of a deep stereo network that is independent from 

the user-specified parameters during stereo disparity inference. This thesis answers 

each individual research question as summarized below: 

1. What phenomenon or associated metric can be used to determine the size of a cost 

volume in deep learning-based stereo algorithms, without user intervention? 

The thesis introduced the novel SNCE (Sum of New Cost Extrema) metric which 

is an estimation of the number of corresponding pixels in a partially built cost 

volume with their cost extrema located at the current layer of matching costs. 

If unimodality of the matching cost distributions can be ensured, then the SNCE 

estimation at a given layer can be used to decide whether to continue building 

the cost volume by adding new layers or to stop the process. For example, if 

there is at least one pixel for which the matching cost extrema can be located 

at the current layer, then the process needs to continue. This provides a 

deterministic basis for a progressive cost volume construction process to 

continue or terminate at a given disparity which eliminates the need for the 

users to specify a value for the maximum disparity. As a result, the maximum 

disparity estimation can be carried out as part of the cost volume construction 

process which is integral to many stereo disparity estimation techniques. 
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2. Would such a metric be computationally efficient enough to be incorporated into a 

stereo method? 

The SNCE metric can be implemented in such a way that it does not change 

the order of growth in computations associated with stereo disparity 

estimation in both sequential and parallel processing environments. 

ALGORITHM 05 in Chapter 5 shows how a typical CPU-based block matching 

stereo algorithm can be modified to include SNCE-based automatic maximum 

disparity estimation without affecting the order of growth of the computations 

of the overall algorithm. ALGORITHM 07 in Chapter 5 shows how the same can 

be achieved in a GPU environment. This is because most of the repetitive 

computations required by the SNCE metric are already contained in the stereo 

disparity estimation process itself.  As a result, the SNCE metric can be 

integrated into a stereo algorithm without introducing significant additional 

delays. It stays true for deep learning stereo algorithms as well. Most of the 

existing deep stereo algorithms include a cost volume creation process during 

which the matching costs (1D or multi-dimensional) are concatenated for each 

pair of pixels being matched. Therefore, the same computations can be used 

for the SNCE estimation as well which results in the order of growth remaining 

unchanged.  

3. Can such a metric leverage on the stereo matching accuracy of the deep stereo 

network for accuracy of maximum disparity predictions? 

The SNCE metric ultimately depends on the unimodality of the matching cost 

distributions for accurate estimation of the maximum disparity for a given pair 

of stereo images. The deep stereo networks that follow the 3D regularization 

structure, naturally require the matching cost distributions to be unimodal so 

that the “Softargmin” operation can be used during disparity regression. 

Therefore, in deep stereo networks, the unimodality of the matching cost 

distributions improves with training. The increase in unimodality positively 

affects the SNCE-based maximum disparity estimations. Since the network is 

trained with loses calculated using the output disparity maps, the 

improvements in disparity estimation accuracy yield more unimodal 
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distributions which in turn improves the maximum disparity estimations using 

the SNCE metric.  

 
4. If such a metric is integrated into a deep learning network, will the model require a 

special training regime to converge?  

The ADSR-Net has an elaborate cost aggregation network between the cost 

volume module and the “Softargmin” based disparity regression. This eases 

the requirement for the cost volume coming out of the cost volume module to 

be unimodal. In other words, when an extended cost aggregation stage is 

present, it becomes the responsibility of the cost aggregation network to 

produce a unimodal matching cost distribution for the regression layers that 

use “Softargmin” operation. Hence, if the ADSR-Net is trained using the final 

disparity prediction accuracy alone, then the convergence of SNCE cannot be 

guaranteed. Therefore, a special training technique is required to ensure that 

the SNCE convergence takes place in parallel with the improvements to the 

final disparity accuracy. This is achieved by obtaining an intermediate disparity 

map from the cost volume (via additional regression and up-sampling layers) 

and adding the associated error to the final disparity estimation error of the 

network when computing the overall loss. Chapter 7 introduced the concept 

and defined it as “clamped training”. When the intermediate and final disparity 

predictions are clamped together, both are required to improve 

simultaneously for the output loss of the ADSR-Net to be reduced.  

5. What gains could be achieved by using the automatic maximum disparity prediction 

with a deep learning network?  

With SNCE, a deep network can learn to predict the final disparity map without 

depending on user inputs. The overall outcome is an algorithm which can be 

used to obtain a disparity map without requiring prior knowledge of stereo 

vision or related parameters. It also frees the algorithm output from errors in 

user’s judgment related to the maximum disparity. The existing deep stereo 

networks often require users to specify a different maximum disparity value if 

the scene structure, resolution or the stereo baseline is changed. The ADSR-
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Net which is equipped with SNCE does not have any such dependencies. Even 

if a new stereo camera is plugged in, the ADSR-Net can produce disparity maps 

right away as seen from the results reported in Chapter 7. Furthermore, 

dynamic selection of maximum disparity leads to significant savings when 

processing stereo image sequences. The conventional approach requires users 

to specify a maximum disparity suitable for all scenes in a stereo image 

sequence. As a result, users must select the largest expected maximum 

disparity. This results in the algorithm having to process a larger cost volume 

even for a scene with a smaller disparity. It also leads to over-use of 

computational resources due to processing larger tensors than necessary. 

According to the evaluation results in Chapter 7, the average processing time 

per image pair improved by as much as 50% or more when automatic 

maximum disparity detection was used instead of a fixed-sized cost volume. 

 

8.4 Future Work   
While achieving the core objectives, the study gave rise to the following future work. 

1. Improving the learning process and the loss function to incorporate unimodality  

As elaborated in Chapter 7, the ADSR-Net training process is governed by a loss 

function which combines the disparity prediction error at both the intermediate 

and final output levels in order to ensure that the SNCE-based maximum 

disparity estimation accuracy and the output disparity accuracy improve at the 

same time. However, as pointed out in Chapter 4, the SNCE metric ultimately 

depends on unimodality of the cost distributions. Apart from relying on the 

unimodal cost distributions produced by the “Softargmin” based regression 

layers, the loss function used for the ADSR-Net training did not explicitly include 

the unimodality as part of the loss equation mathematically. The ADSR-Net 

training process can be further improved by introducing additional losses to 

explicitly force the algorithm to adjust its weights and biases to further improve 

the unimodality of the final cost distributions. Due to the computational 

complexity of the existing unimodality tests, they could not be feasibly 

implemented on consumer grade GPU hardware at the time of study.  
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2. Training for a larger number of iterations with high performance hardware or multi-

GPU environments 

As elaborated in Chapter 7, the ADSR-Net can be trained on consumer grade 

GPU hardware due to the efficient use of computational resources. However, a 

higher disparity estimation accuracy can be achieved by increasing the number 

of training cycles (epochs) and training in high performance computing 

environments. Due to the unavailability of such advanced computing resources, 

extensive training of the ADSR-Net was not feasible during the study. Even 

during the extended training stage outlined in Chapter 7, the ADSR-Net was 

only trained with batches of randomly selected image samples instead of the 

whole training data split from the Scene Flow “Flying Things 3D” data. By using 

advanced computing resources during training, the ADSR-Net can be trained 

for a larger number of epochs on full datasets which would further increase the 

accuracies reported in Chapter 7. Only after such extended training that the 

ADSR-Net can be compared properly against other deep stereo accuracy 

benchmarks such as KITTI and Middlebury. However, it must be stated that the 

ADSR-Net being fully autonomous in determining parameters during inference, 

sets itself apart from the other deep stereo networks in which the users are able 

to carefully select parameters to optimize the results for a given dataset. 

Nevertheless, further training and comparison against benchmark datasets 

would help validate the potential of the ADSR-Net. 

3. Effect of challenging conditions which are common for stereo vision in general 

It was also found in Chapter 7 that the accuracy of disparity predictions by the 

ADSR-Net can be affected by commonly observed challenges in stereo vision 

(and machine vision in general) such as low textured regions and phenomena 

like glare and lens flare. The work presented in thesis does not include an in-

depth analysis of the algorithm’s response to such conditions. The existing 

knowledge as well as emerging knowledge in such areas can also be 

incorporated into the ADSR-Net to improve the output disparity accuracy of its 

disparity predictions. However, it is beyond the scope of this thesis. 
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Appendix A – Relationship Between Depth and Stereo Disparity  
 

 

 

 

 

 

 

 

 

 

The illustration shows the planner view of two cameras (Camera 1 and Camera 2) in 

rectified configuration registering image points (P1 and P2 on their respective image 

planes) for a point P on an object. The optical centres of the two cameras are denoted 

by C1 and C2 whereas d1 and d1 denote the horizontal offsets of the image points from 

the image centre. Furthermore, z denotes the perpendicular distance (or depth) to the 

point P from the baseline b. The focal length of the two cameras is equal to f. The 

centres of the image planes of the two cameras C1 and C2 are denoted by O1 and O1 

respectively. From the similar right-angled triangles of C1PL and C1P1O1: 

𝐶1𝐿

𝑧
     =       

𝑑1

𝑓
 

 

(A.1) 

From the similar right-angled triangles of C2PL and C2O2P2 : 

𝐶2𝐿

𝑧
     =       

𝑑2

𝑓
 

 

(A.2) 

By combining Equation (A.1) with Equation (A.2) the following can be deduced: 

 𝑏  =    𝐶1𝐿 + 𝐶2𝐿    =       
𝑧 (𝑑1 + 𝑑1)

𝑓
 

 

(A.3) 

If the d denotes the horizontal offset between the in pixels, then the relationship can 
be written as the following: 
 

𝑑  =    
𝑏 𝑓

𝑧
 

 

(A.4) 
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Appendix 1.1: Planar view of two cameras in rectified configuration having horizontal epipolar 
lines resulting in correspondence search along the horizontal rows of image points 
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As seen from Equation (A.4), the disparity d between two corresponding pixels is 

inversely proportional to the depth z to the point in the real world. Therefore, point 

objects which are located far away from the stereo camera lead to smaller disparities 

between the corresponding pixels whereas the points closer to the camera introduce 

much larger disparities. This is the basic principle behind stereo vision-based depth 

perception. 
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Appendix B – Supplementary Materials / Software  
 

Supplementary Materials and Utility Software 

All the supplementary materials and utility software for this research project are 
available via an archived folder which can be located by visiting the following link. 
Please use the “WINRAR” archiver (with the password given below) to access the files. 
 

Link https://drive.google.com/drive/folders/1DoeJRqT-
oVsmpxl77m0bnPuoid8rBSm5?usp=sharing 

Password AD5R!N3T#2021 

 

Chapter 4 

Experiments in Chapter 4 required the SNCE metric to be estimated for any given 
stereo image pair up to a maximum disparity specified by the user. It was also required 
to be repeated using stereo cost aggregation techniques such as AD, SAD, SSD, NCC, 
RT and CT. This was achieved using a Window x64 based utility which was developed 
using C++. A copy of the utility (with source code) is available in a folder named 
“Chapter 4” in the archive. Please refer to the “README.TXT” in the same folder for 
additional details on usage, pre-requisites, and permissions. 
 

Chapter 5 

Experiments in Chapter 5 required the SNCE metric to be estimated in both CPU and 
GPU environments while computing the computational time for the disparity 
estimation process. For the scenarios involving CPUs, a Windows x64 based software 
utility was developed using C++ and a CUDA kernel was developed in Picadas for GPUs. 
Both the programs and the source code (GPU-version only as the CPU version is the 
same as earlier) are available from the same repository in a folder called “Chapter 5”. 
Please refer to the “README.TXT” for additional details and instructions. 
 

Chapter 6 

The foundational deep stereo network which was developed as part of the study 
outlined in Chapter 6, is included as a Windows x64 based executable in a folder 
named “Chapter 6”. The executable file can be used to estimate disparity maps for the 
files in the “imgs” folder. Trained model is saved in “saved/configs” folder. Please refer 
to the “README.TXT” for instructions and Appendix C for the source code.  
 

Chapter 7 

A demo version of the end-to-end deep stereo network (ADSR-Net) is included as a 
Windows x64 based executable in a folder called “Chapter 7” in the archive. The 
executable can be used to estimate disparity maps for images placed inside the 
“sample” folder (without requiring users to specify any parameters). The saved model 
can be found inside the “saved/configs” folder. Please refer to the “README.TXT” for 
instructions and Appendix C for the source code.  
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Appendix C - Source Code  
 

Feature Extraction Networks 
The feature extraction networks in Chapter 6 and Chapter 7, both use “Type A” and “Type B” 
blocks. The following two code snippets of show PyTorch implementations of “Type A” and 
“Type B” blocks. 

 

class TypeA(torch.nn.Module): 
    def __init__(self): 
        super().__init__() 
        # Path 1 - (3x3) 
        self.path1 = torch.nn.Sequential( 
            torch.nn.Conv2d(32, 32, (3, 3), (1, 1), padding=(1, 1)), 
            torch.nn.BatchNorm2d(32), 
            torch.nn.ReLU(inplace=True), 
            torch.nn.Conv2d(32, 32, (3, 3), (1, 1), padding=(1, 1)), 
            torch.nn.BatchNorm2d(32), 
            torch.nn.ReLU(inplace=True) 
        ) 
 
        # Path 2 - (5x5) 
        self.path2 = torch.nn.Sequential( 
            torch.nn.Conv2d(32, 32, (5, 5), (1, 1), padding=(2, 2), dilation=1), 
            torch.nn.BatchNorm2d(32), 
            torch.nn.ReLU(inplace=True), 
            torch.nn.Conv2d(32, 32, (5, 5), (1, 1), padding=(2, 2), dilation=1), 
            torch.nn.BatchNorm2d(32), 
            torch.nn.ReLU(inplace=True) 
        ) 
 
        # Path 3 - (7x7) 
        self.path3 = torch.nn.Sequential( 
            torch.nn.Conv2d(32, 32, (7,7), (1, 1), padding=(3, 3), dilation=1), 
            torch.nn.BatchNorm2d(32), 
            torch.nn.ReLU(inplace=True), 
            torch.nn.Conv2d(32, 32, (7,7), (1, 1), padding=(3, 3), dilation=1), 
            torch.nn.BatchNorm2d(32), 
            torch.nn.ReLU(inplace=True) 
        ) 
 
        # common BN 
        self.ball = torch.nn.BatchNorm2d(32) 
 
        # Residual Connection 
        self.residual = torch.nn.Sequential() 
 
    def forward(self, x): 
        out1 = self.path1(x) 
        out2 = self.path2(x) 
        out3 = self.path3(x) 
        out = out1 + out2 + out3 
        out = self.ball(out) 
        out += self.residual(x) 
        return out 

“Type A” Block – Chapter 6 & 7 
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class TypeB(torch.nn.Module): 
    def __init__(self): 
        super().__init__() 
        # Path 1 - (3x3) 
        self.path1 = torch.nn.Sequential( 
            torch.nn.Conv2d(32, 32, (3, 3), (1, 1), padding=(1, 1)), 
            torch.nn.BatchNorm2d(32), 
            torch.nn.ReLU(inplace=True), 
            torch.nn.Conv2d(32, 32, (3, 3), (1, 1), padding=(1, 1)), 
            torch.nn.BatchNorm2d(32), 
            torch.nn.ReLU(inplace=True) 
        ) 
 
        # Path 2 - (5x5) 
        self.path2 = torch.nn.Sequential( 
            torch.nn.Conv2d(32, 32, (5, 5), (1, 1), padding=(2, 2), dilation=1), 
            torch.nn.BatchNorm2d(32), 
            torch.nn.ReLU(inplace=True), 
            torch.nn.Conv2d(32, 32, (5, 5), (1, 1), padding=(2, 2), dilation=1), 
            torch.nn.BatchNorm2d(32), 
            torch.nn.ReLU(inplace=True) 
        ) 
 
        # common BN 
        self.ball = torch.nn.BatchNorm2d(32) 
 
        # Residual Connection 
        self.residual = torch.nn.Sequential() 
 
    def forward(self, x): 
        out1 = self.path1(x) 
        out2 = self.path2(x) 
        out = out1 + out2  
        out = self.ball(out) 
        out += self.residual(x) 
        return out 

 

 

 

 

 

 

 

 

 

 

“Type B” Block – Chapter 6 & 7 
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The feature extraction network in Chapter 6 uses seven “Type A” blocks and seven “Type B” 
blocks connected in a cascading arrangement. In addition, the input layer of the network has 
only 1 input feature channel to accommodate grayscale images.  

 
class FeatureNetII(torch.nn.Module): 
    def __init__(self): 
        super().__init__() 
        # Feature Input Block (One channel for grayscale images) 
        self.inblock = torch.nn.Sequential( 
            torch.nn.Conv2d(1, 32, (5, 5), (4, 4), padding=(2, 2)), 
            torch.nn.ReLU(inplace=True), 
            torch.nn.BatchNorm2d(32) 
        ) 
 
        # Seven TypeA layers 
        layersA = [] 
        for i in range(7): 
            layersA += [TypeA()] 
        self.netA = nn.Sequential(*layersA) 
 
        # Connection Layer 
        self.midblock = torch.nn.Sequential( 
            torch.nn.Conv2d(32, 32, (3, 3), (1, 1), padding=(1, 1)), 
            torch.nn.ReLU(inplace=True), 
            torch.nn.BatchNorm2d(32) 
        ) 
 
        # Seven TypeA layers 
        layersB = [] 
        for i in range(7): 
            layersB += [TypeB()] 
        self.netB = nn.Sequential(*layersB) 
 
        # Output Layer 
        self.clast = torch.nn.Conv2d(32, 32, (3, 3), (1, 1), padding=(1, 1)) 
 
    def forward(self, x): 
        out = self.clast(self.netB(self.midblock(self.netA(self.inblock(x))))) 
        return out 

 

 

 

 

 

 

 

 

Feature Extraction Network - Chapter 6 
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The feature extraction network used in Chapter 7 uses ten “Type A” blocks and seven “Type 
B” blocks connected in a cascading arrangement. In addition, the input layer of the network 
has three input feature channels to accommodate RGB input images.  

 
class FeatureNetII(torch.nn.Module): 
    def __init__(self): 
        super().__init__() 
        # Feature Input Block (3 Channels for RGB images) 
        self.inblock = torch.nn.Sequential( 
            torch.nn.Conv2d(1, 32, (5, 5), (4, 4), padding=(2, 2)), 
            torch.nn.ReLU(inplace=True), 
            torch.nn.BatchNorm2d(32) 
        ) 
 
        # Ten TypeA layers 
        layersA = [] 
        for i in range(10): 
            layersA += [TypeA()] 
        self.netA = nn.Sequential(*layersA) 
 
        # Connection Layer 
        self.midblock = torch.nn.Sequential( 
            torch.nn.Conv2d(32, 32, (3, 3), (1, 1), padding=(1, 1)), 
            torch.nn.ReLU(inplace=True), 
            torch.nn.BatchNorm2d(32) 
        ) 
 
        # Seven TypeA layers 
        layersB = [] 
        for i in range(7): 
            layersB += [TypeB()] 
        self.netB = nn.Sequential(*layersB) 
 
        # Output Layer 
        self.clast = torch.nn.Conv2d(32, 32, (3, 3), (1, 1), padding=(1, 1)) 
 
    def forward(self, x): 
        out = self.clast(self.netB(self.midblock(self.netA(self.inblock(x))))) 
        return out 

 

 

 

 

 

 

 

Feature Extraction Network – Chapter 7 
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Cost Volume Modules (CV Modules) 
Two types of cost volume modules were developed as part of the study. The cost volume 

module developed in Chapter 6 declares a fixed-sized cost volume in memory and computes 

the matching costs. It also computes the SNCE values at each disparity for comparison against 

the maximum ground-truth disparity data.  

 

 
# PyTorch based python function to compute SNCE metric at every layer of the  
# fixed-sized cost volume of the network used for experiments in Chapter 6  
# x -> Left feature map with dimensions = batch_size x channels x height x width 
# y -> Right feature map with dimensions = batch_size x channels x height x width 
# preagg aggregates features from channels (32) to (1) in a learnable way 
def calCV(x, y, maxdisp, preagg): 

batch_size  = x.size()[0] # Batch Size 
channels  = x.size()[1] # Number of channels 
height   = x.size()[2] # Image height 
width   = x.size()[3] # Image width 
# Cost volume declared in advance in memory up to a depth of “maxdisp” 
covol   = x.new().resize_(batch_size, 1, maxdisp, height, width).zero_() 
# Temporary layer to store right featured at a given disparity 
RX   = y.new().resize_(batch_size, channels, height, width).zero_() 
sncm = []  # Array to hold SNCE value (Sum of New Cost Minima is used) 
# Loop through disparities up to “maxdisp” 
for i in range(0, maxdisp): 
         RX[:, :, :, :]  = 0   # Clear temporary feature layer 
        RX[:, :, :, i:width]  = y[:, :, :, 0:width - i] # Assign the current layer to RX 
 # Compute and store matching costs at 0 disparity 
         covol[:, :, i, :, :]  = preagg (torch.cat((x, RX), dim=1)) 
 
        if i > 0: # No need to compute SNCE at disparity (equal to width x height) 
  # Compute the SNCE value at current disparity (i)  

sval = (torch.sum((torch.min(covol[0, 0, :i, :, :], dim=0).indices) == (i - 
1))).cpu().numpy() 

              sncm += [sval] # Update SNCE array 
  
return covol, sncm 

 

 

 

 

 

 

 
 
 
 
 
 
 

Cost Volume Module - Chapter 6 
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The cost volume module of the ADSR-Net developed in Chapter 7, can build a cost volume 
one layer at a time while computing matching costs and the SNCE metric at each disparity 
before scheduling termination of the process when the termination criteria is met. 
 
# PyTorch based python function to generate a layer wise cost volume while computing  
# the SNCE value at each layer and then terminate when the SNCE value reaches zero.  
# x -> Left feature map with dimensions = batch_size x channels x height x width 
# y -> Right feature map with dimensions = batch_size x channels x height x width 
# preagg aggregates features from channels (32) to (1) in a learnable way 
def calculateCVA(x, y, preagg): 

schedule   = False   # Scheduled termination flag 
batch_size  = x.size()[0] # Stereo image pairs in a batch 
channels  = x.size()[1]  # Number of channels/filters 
height   = x.size()[2]  # Image height at quarter resolution 
width   = x.size()[3]  # Image width at quarter resolution 
# Initialize cost volume tensor with only one layer in it 
covol   = x.new().resize_(batch_size, 1, 1, height, width).zero_()   
# Temporary layer to store right featured at a given disparity 
RX   = y.new().resize_(batch_size, channels, height, width).zero_() 
# Expect worst case scenario 
Maxd   = width           
# Loop through all disparities until SNCE value reaches zero 
for i in range(0, width): 
  RX[:, :, :, :]   = 0   # Clear temporary feature layer 
         RX[:, :, :, i:width]  = y[:, :, :, 0:width - i]  # Assign the current layer to RX 
         if i == 0: # If there is only one layer in the cost volume  
  # Compute and store matching costs at 0 disparity 
              covol[:, :, i, :, :]  = preagg(torch.cat((x,RX), dim=1)) 
         else:       # There are previous layers stacked up to (i)th disparity  
  # Compute the matching costs at disparity (i) 
              tmp   = preagg(torch.cat((x,RX), dim=1)) 
              tmp   = torch.unsqueeze(tmp, dim=0) 
  # Stack up the current matching costs on top of the cost volume 
              covol   = torch.cat((covol,tmp), dim=2) 
      if i > 0:    # No need to compute SNCE at disparity (equal to width x height) 
  # Compute the SNCE value at current disparity (i)  
              sval = (torch.sum((torch.min(covol[0, 0, :i, :, :], dim=0).indices) == (i-1))) 
  # Added for formatting. Could be part of the previous line 
  sval = sval.cpu().numpy()  
 # If SNCE value is zero, schedule for termination 
            if sval < 1: 
                  schedule = True 
                  print("Detected max disparity "+str(i*4)) 
                  maxd  = i * 4  # compute maximum disparity at original resolution 
 # Check to see scheduled termination criteria is met 
         if schedule and i%2 == 1: 
              print("Breaking at i="+str(i)) 
              break 
return covol, maxd 

 
 

 
 
 
 

Cost Volume Module - Chapter 7 
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Both networks in Chapter 6 and Chapter 7 use a 2D feature aggregation network when 

computing a 3D cost volume using the feature volumes from the feature extraction network. 

This is achieved by using a 2D convolutional network which can predict a singular value 

representation for two feature arrays for two pixels being matched.  

 
class PreAgg(torch.nn.Module): 
    def __init__(self, fsize): 
        super().__init__() 
        self.conv1 = torch.nn.Conv2d(fsize, fsize, 3, stride=1, padding=1) 
        self.relu1 = torch.nn.ReLU(inplace=True) 
        self.conv3 = torch.nn.Conv2d(fsize, 1, 3, stride=1, padding=1) 
 
    def forward(self,x): 
        out = self.conv1(x) 
        out = self.relu1(out) 
        out = self.conv3(out) 
        return out 

 

Differentiable Disparity Regression 
End-to-end deep stereo networks rely on “Softargmin” operation to regress disparities from 

cost volumes without hindering the gradient backpropagation through the network. In the 

ADSR-Net and the foundational deep stereo network in Chapter 6, the process is implemented 

as a function. The following code snippet shows the PyTorch implementation of the regression 

operation. 

 
 
def regress(covol): 
    shape = covol.size() 
    dblock = torch.ones(shape[2], 1, 1).cuda() 
    dblock[:, 0, 0] = torch.arange(0, shape[2]) 
    dblock = dblock.repeat(shape[0], 1, 1, shape[3], shape[4]) 
    dmap = torch.sum(dblock * (F.softmax(-1 * covol, dim=2)), dim=2) 
    return dmap 

 

 

 

 

 
 
 
 
 
 
 
 

Feature Aggregation Network - Chapter 6 & 7 
 

Softargmin Based Disparity Regression - Chapter 6 & 7 
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Complete Network Used in Chapter 6 
Due to the modularity of the components developed as part of this PhD study, building 

complex deep stereo networks becomes easier. For example, the following code snippet 

shows the complete network (from Chapter 6). 

 
 
 
class MyNet(torch.nn.Module): 
    def __init__(self,bsize,height,width,maxdisp): 
        super().__init__() 
        self.bsize  = bsize   # Batch Size (Use 1 to avoid tensor mismatch) 
        self.height  = height   # Image Height 
        self.width  = width    # Image Width                 
        self.maxdisp = maxdisp # Fixed-sized cost needs max disparity          
        self.fnet  = FeatureNetI()    # The Feature network         
        self.preagg  = PreAgg(64) # The feature aggregation network 
 
        # The Up-sampling layer of the network 
        self.upsample = torch.nn.Upsample(scale_factor=4, mode='bicubic', align_corners=False)  
 
        # Network initialization code comes here 
 
    def forward(self,left,right): 
        
        left = self.fnet(left) # Obtaining the left feature volume 
         
        right = self.fnet(right) # Obtaining the right feature volume 
 
        # Build a fixed-sized cost volume and return with the SNCE array 
        covol, snce = calCV(left, right, self.preagg)  
         
        # Aggregate the costs, regress disparities and upsample to get final disparity map 
 
        dmap1 = self.upsample(regress(covol) * 4) 
        return dmap1, sncm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

End-to-End Network - Chapter 6 
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Cost Aggregation Network of the ADSR-Net 
The ADSR-Net uses multi-layer cost aggregation network to further aggregate the cost volume 

produced by the CV module. As outlined in Chapter 7, the cost aggregation network has 3 

types of blocks: input block, aggregation block and the output block. PyTorch based 

implementations of the individual blocks and the full network is shown in the code snippets 

below. 

 

 
class Conv3DIn(torch.nn.Module): 
    def __init__(self, inf, outf, mask, pad, stride): 
        super().__init__() 
        self.net = torch.nn.Sequential( 
            torch.nn.Conv3d(inf, outf, kernel_size=mask, padding=pad, stride=stride,bias=False), 
            torch.nn.BatchNorm3d(outf), 
            torch.nn.ReLU(inplace=True), 
        ) 
 
    def forward(self, x): 
        return self.net(x) 
 
 
 
 
class Conv3DOut(torch.nn.Module): 
    def __init__(self, inf, outf, mask, pad, step): 
        super().__init__() 
        self.net = torch.nn.Sequential( 
            torch.nn.Conv3d(inf, inf, kernel_size=mask, padding=pad, stride=step), 
            torch.nn.BatchNorm3d(inf), 
            torch.nn.ReLU(inplace=True),  
            torch.nn.Conv3d(inf, outf, kernel_size=mask, padding=pad, stride=step) 
        ) 
 
    def forward(self, x): 
        return self.net(x) 
 

 

 
class Conv3DMid(torch.nn.Module): 
    def __init__(self, inf, outf, mask, pad, step): 
        super().__init__() 
        # Branch A of the aggregation block (with 3D Convolution) 
        self.net = torch.nn.Sequential( 
            torch.nn.Conv3d(inf, outf, kernel_size=mask, padding=pad, stride= step), 
            torch.nn.BatchNorm3d(outf), 
            torch.nn.ReLU(inplace=True), 
            torch.nn.Conv3d(inf, outf, kernel_size=mask, padding=pad, stride= step), 
            torch.nn.BatchNorm3d(outf), 
            torch.nn.ReLU() 
        ) 
 
 
        # Branch B of the aggregation block (with 3D Transposed Convolution) 

Input Layer of the Cost Aggregation Network - Chapter 7 
 

Output Layer of the Cost Aggregation Network - Chapter 7 
 

Aggregation Block from the Cost Aggregation Network - Chapter 7 
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        self.tnet = torch.nn.Sequential( 
            torch.nn.Conv3d(inf, outf, kernel_size=mask, padding=pad, stride=(step *2, step, step)), 
            torch.nn.BatchNorm3d(outf), 
            torch.nn.ReLU(inplace=True), 
            torch.nn.ConvTranspose3d(inf, outf, kernel_size=(4,3,3),  

stride=(step *2, step, step), padding=pad), 
            torch.nn.BatchNorm3d(outf), 
            torch.nn.ReLU() 
        ) 
 
        # Residual connection from input to output 
        self.bypass = torch.nn.Sequential() 
 
    def forward(self, x): 
        net = self.net(x) 
        tnet = self.tnet(x) 
        bpass = self.bypass(x) 
        out = net + tnet + bpass 
        return out 

 

 
 
 
class My3D(torch.nn.Module): 
    def __init__(self, nol): 
        super().__init__() 
        # Input layer of the aggregation network 
        self.in3d = Conv3DIn(1, 32,3 , 1, 1) 
        layers = [] 
        # Append (nol) number of Aggregation Blocks 
        for i in range(nol): 
            layers.append(Conv3DMid(32, 32, 3, 1, 1)) 
        self.mid3d = torch.nn.Sequential(*layers) 
 
        # Output layer of the aggregation network 
        self.out3d = Conv3DOut(32, 1, 3, 1, 1) 
 
    def forward(self, x): 
        return self.out3d(self.mid3d(self.in3d(x))) 

 

 

 

 

 

 

 

Full Cost Aggregation Network - Chapter 7 
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End-to-End ADSR-Net Implementation 
Again, due to the modularity of the components developed during the study, the 

implementation of the complete ADSR-Net in PyTorch is clean and concise. The code snippet 

below shows the end-to-end ADSR-Net implemented using the modules shown earlier.  

 

 
class MyNet(torch.nn.Module): 
    def __init__(self,bsize,height,width): 
        super().__init__() 
        self.bsize  = bsize   # Batch Size (Use 1 to avoid tensor mismatch) 
        self.height  = height   # Image Height 
        self.width  = width    # Image Width         
        self.fnet  = FeatureNetII()  # The feature network         
        self.preagg  = PreAgg(64) # The feature aggregation network         
        self.my3d  = My3D(4)  # The cost aggregation network 
        # The Up-sampling layer of the network 
        self.upsample = torch.nn.Upsample(scale_factor=4, mode='bicubic', align_corners=False)  
 
        # Network initialization code comes here 
 
    def forward(self,left,right): 
         
        left = self.fnet(left) # Obtaining the left feature volume         
        right = self.fnet(right) # Obtaining the right feature volume 
 
        # Build the cost volume progressively and terminate when SNCE==0 return 
        # the cost volume and the detected maximum disparity 
        covol, maxd = calCVA(left, right, self.preagg)  
 
        # Obtaining an intermediate pre-agg level disparity map for testing 
        dmap1 = self.upsample(regress(covol) * 4) 
 
        # Aggregate the costs, regress disparities and upsample to get final disparity map 
        dmap2 = self.upsample(regress(self.my3d(covol)) * 4) 
        sncm = [maxd] 
        return dmap1, dmap2, sncm 
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Appendix D – Auto DSR During Training 

 
When training a neural network with datasets, network parameters can be updated in 

three different ways. In case of “Batch Gradient Descent”, the network parameters are 

updated with the mean gradient for the entire batch whereas if “Mini-Batch Gradient 

Descent” is used, then the parameters are updated using the mean of the gradients 

pertaining to each data mini-batch. In “Stochastic Gradient Descent”, network 

parameters are updated using the output gradient from each data sample.  

If SNCE is used to selectively terminate cost volume creation process at different 

maximum disparities while training the ADSR-Net, that can lead to discrepancies in the 

sizes of the corresponding cost-volume-tensors. In such instances, calculations related 

to the gradient propagation through the network can be affected by the mismatches 

in tensor dimensions. When using standard deep learning frameworks such as PyTorch 

and TensorFlow, the backpropagation process can terminate with an error.  

This can be avoided by using a batch size of 1 (Stochastic Gradient Descent) during 

training if that is acceptable. However, if a larger batch size is required during training 

(i.e., batch or mini-batch gradient descent is used), it is possible to use a suitable fixed-

sized cost volume during training (since the disparity ground-truth information is 

readily available). Once the training is complete, the pre-set maximum disparity can 

be removed, thereby allowing SNCE to be used to automatically estimate the 

maximum disparity during inference.  
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Appendix E – Dataset Statistics 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dataset Variant 
No of 

Images 
Mean Standard Deviation 

R G B R G B 

Scene Flow 

Driving 
(Forward  
and 
Backwards) 

 
600 73.6061 83.7100 83.9837 55.5312 59.1187 60.7565 

Scene Flow 
Flying Things 
3D 

22390 92.9623 101.9831 107.2283 40.6729 44.4135 48.2968 

KITTI 2015 
Stereo  

Stereo/Scene 
flow  
dataset 

 
200 98.6081 102.3069 97.2213 80.2671 78.5655 75.8632 

Table AppxE.1: Dataset statistics for the data used for training and validation of ADSR-Net. The mean and 
standard deviation have been calculated over the entire batch of images in each dataset 
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Appendix F - Camera/Lens Specifications   
 

Camera  
 

Part No CM3-U3-13S2C-CS 

ADC 12-bit 

Chroma Colour 

Frame Rate 30 

Lens Mount CS-Mount 

Mega-Pixels 1.3 

Pixel Size  3.75 

Readout Method Global Shutter 

Max Resolution  1288x964 

Sensor Format 1/3” 

Sensor Type CCD 

Sensor Name Sony ICX445 

Exposure Range 0.046ms to 31.9s 

Gain Range -11 dB to 23.991 dB 

Dynamic Range 58.77 

Interface USB3 Gen 1 

 
 

Lens 

 

Part No A4Z2812CS-MPIR 

Focal Length  Variable 

Focal Length (min) 2.8mm 

Focal Length (max) 10mm 

Lens Mount CS-Mount 

Iris Manual 

Megapixel  3 

Format 1.27” 
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Appendix G – Notes on Performance, Calibration and Accuracy 
 

Since ADSR-Net is able to dynamically adopt a suitable disparity search range for a given 

scene, the execution time for the algorithm depends on the proximity of the closest objects 

in front of the camera. In other deep stereo variants, larger “maximum disparity” values lead 

to much larger (and higher dimensional) cost volumes that affect the performance 

negatively. In contrast, due to the automatic selection of the disparity search range and 

special cost volume structure (with pre-aggregation), ADSR-Net is able to perform better 

compared to any reference implementation with a fixed sized cost volume.  

Results shown in Table 7.1 and Table 7.2 Chapter 7 can be used as guidelines when using 

ADSR-Net for any real-world application. However, caution must be taken to carry out 

preliminary tests to compute frame rates for close range objects to find out if the delivered 

frame rate is sufficient for the application in concern. This is especially important in 

applications like close range obstacle avoidance which require much faster frame rates for 

making faster control decisions. 

When using ADSR-Net with a custom-built stereo camera, stereo calibration is required to 

save the parameters for stereo image rectification. In such situations, the image rectification 

time must also be considered when computing the frame rates. When using standard stereo 

cameras, the output stereo image pairs can be used directly as inputs to the network.   

The overall accuracy depends on the training level of the ADSR-Net model used. Again, the 

evaluation results shown in Section 7.5 can be used as a guideline. If a higher accuracy is 

required, the model can be modified (using the source code provided in Appendix C) or the 

network can also be trained with more data.  

 
 
 
 
 
 
 
 
 
 


