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Abstract: Dental caries is the most frequent dental health issue in the general population. Dental
caries can result in extreme pain or infections, lowering people’s quality of life. Applying machine
learning models to automatically identify dental caries can lead to earlier treatment. However,
physicians frequently find the model results unsatisfactory due to a lack of explainability. Our study
attempts to address this issue with an explainable deep learning model for detecting dental caries.
We tested three prominent pre-trained models, EfficientNet-B0, DenseNet-121, and ResNet-50, to
determine which is best for the caries detection task. These models take panoramic images as the
input, producing a caries–non-caries classification result and a heat map, which visualizes areas
of interest on the tooth. The model performance was evaluated using whole panoramic images of
562 subjects. All three models produced remarkably similar results. However, the ResNet-50 model
exhibited a slightly better performance when compared to EfficientNet-B0 and DenseNet-121. This
model obtained an accuracy of 92.00%, a sensitivity of 87.33%, and an F1-score of 91.61%. Visual
inspection showed us that the heat maps were also located in the areas with caries. The proposed
explainable deep learning model diagnosed dental caries with high accuracy and reliability. The heat
maps help to explain the classification results by indicating a region of suspected caries on the teeth.
Dentists could use these heat maps to validate the classification results and reduce misclassification.

Keywords: caries; dental health; explainable deep models; deep learning; Grad-CAM

1. Introduction

Oral diseases are estimated to affect approximately half of the world’s population today,
of which 2.3 billion people worldwide suffer from permanent dental caries [1]. Dental
caries, often known as tooth decay, is a disease characterized by tooth damage produced by
bacteria in the mouth that create lactic acids, which directly harm the tooth’s enamel layer.
This can eventually lead to a small gap between the teeth, which can cause pain, infection,
and tooth loss if left untreated [2–4]. Not all caries lesions can be identified visually and
tactilely. Therefore, imaging techniques are frequently used to improve the detection rate [5–7].
However, even with medical imaging, dentists may miss early caries lesions. Therefore,
diagnosis and treatment success depends on the technology and individual performance of
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the reading expert [8]. Furthermore, examining X-ray images adds to doctors’ workload. An
automatic detection approach with excellent consistency and accuracy is necessary to assist
clinical stomatologists with objective caries diagnosis.

The visible light transillumination method [9], calibrated diaphragm computed tomog-
raphy [10,11], international caries detection and assessment system [12], and quantitative
light-induced fluorescence were all used in early works on dental caries detection. Another
study established a system of improving panoramic dental radiology for diagnosing dental
caries using image processing techniques [13]. Researchers also investigated computer-
assisted caries detection with X-ray images [14–17]. With the Logicon Caries Detector
(LCD), using upgraded CAD software, Tracy et al. [14] investigated and confirmed the
efficiency of a density analysis auxiliary tool in helping dentists detect and classify caries
based on user feedback. Using an early dentinal caries diagnostic tool, dentists could
identify twice as many early dentinal caries. Oliveira et al. [15] designed a feed-forward
artificial neural network to identify dental caries and classify whether there was caries
in panoramic dental X-ray images. In their study, a classification accuracy of 98.7% was
achieved. Osterloh and Viriri [16] developed an unsupervised learning approach through
blob detection and cluster analysis for caries that performed well with an accuracy of 96% in
diagnosis. Tikhe et al. [17] developed an algorithm for detecting enamel and interproximal
caries utilizing digital periapical radiography images. Our analysis shows that no segmen-
tation was conducted in any of these studies; only caries detection was performed. Caries
segmentation is important because it provides further information regarding the degree of
caries, such as the caries area, which may be required for further caries classification.

Deep learning has recently been a popular topic in dentistry, particularly in dental
caries detection [18–20]. However, because there is little research concentrating on deep
learning-based caries segmentation, it remains a topic that demands further attention in the
field. Xu et al. proposed a 3D tooth segmentation method using deep convolutional neural
networks (CNNs) [21]. Their mesh labelling method outperformed current geometry-
based methods, with an accuracy of 99.06% measured by area. However, their method is
limited when the boundary between two teeth is corrupted by the simplification procedure
described in their approach. A large fraction of the error is due to the different appearances
of wisdom teeth on each dental mesh. This is because wisdom teeth are either absent,
less, or only partially visible. Since wisdom teeth data are so limited, the training stage
is challenging. In 2022, researchers conducted caries segmentation using a U-shaped
network and vision transformer, dilated convolution, and feature pyramid fusion methods
on clinically collected tooth X-ray images [22]. The method was successful compared to
UNet, Trans-Unet, and Swin-Unet, with an average dice similarity of 75% and an average
pixel classification precision of 74% on the test set. However, due to clinical collection
constraints, their analysis was limited by the small number of images in the dataset.
Lee et al. [23] also conducted a similar study for early dental caries segmentation using
Unet on bitewing radiographs. Their method also suffers from a lack of labelled data. Data
augmentation techniques may be useful to improve the accuracy of deep learning-based
approaches for classifying teeth by up to 5% [24]. All these studies focus on improving
caries detection performance. However, the systems do not explain how these results are
achieved. Hence, it is difficult for dentists to verify the outcomes, resulting in low trust in
these systems. Recently, explainable artificial intelligence models have become interesting
research fields [25].

This paper proposes an explainable deep learning-based method for computer-assisted
automatic caries detection. The deep learning approach has identified various popular
pre-trained networks based on CNN. In total, 13,870 caries and non-caries tooth images
were obtained from 562 participants for network training and performance evaluation. We
explain our results by overlaying a heatmap on the images. This heatmap allows human
experts to verify the caries detection results, which might lead to higher levels of trust.

The main contributions of this study are as follows:

• End-to-end caries detection is achieved without the need for any feature extraction.
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• The proposed deep learning model has an explainable structure with the Grad-
CAM method.

• Our explainable structure showed that caries markings on the tooth regions during
the decision phase help experts during the diagnosis phase.

• The performance of the model is evaluated by various performance metrics, and
individual results are explained through heat maps.

• It is provided to mark the caries regions without needing any segmentation process.
• Our explainable model performs as efficiently as expert dentists in detecting and

localizing caries.

2. Materials and Methods

This study proposes a deep learning model for detecting caries and non-carious teeth
from panoramic dental images. Popular pre-trained CNN models are used to lower the
expenses of model training from scratch. These models include pre-learned and optimized
weights on large datasets, such as edges and shapes in images. The single tooth image
given as input to the deep learning model is estimated as caries or not caries at the output.
Heat maps are constructed using the Grad-CAM method to highlight which areas on the
dental image are concentrated in the predictions of the CNN model. Figure 1 shows a block
diagram of the proposed approach.
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2.1. Dental Dataset

The dataset used in this study was obtained from 562 subjects with ethical permission
(Id: 2022/03-18) from the Department of Firat University Faculty of Dentistry, Elazig,
Turkey. Data were labelled caries and non-carious based on a specialist’s determination
of tooth areas in panoramic tomography images. The specialist manually cropped the
tooth regions in the panoramic tomography image. During the manual cropping process, a
bounding box was defined for each tooth, and the expert adjusted the size and coordinates
of the bounding box. Each bounding box’s area was then saved as a separate image.

A total of 1160 caries and 1040 non-caries tooth images were obtained from all panoramic
images. In Figure 2, tooth samples with caries and non-carious labels are provided.

Data augmentation techniques have been used to prevent the negative effects that
may occur due to the small number of images. The data augmentation procedure utilized
rotation, shift, shear, zoom, flip, and fill. Augmentation was applied to the training and
validation sets but not to the test set. Using the data augmentation method, the number
of caries and non-caries samples in the training and validation phase increased to 6635.
Therefore, a total of 13,870 tooth samples were employed for training and validation within
the scope of this study. We used 300 caries and 300 non-caries images during the test
phase. These images were selected from different subjects used during the training and
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validation phase. Table 1 provides detailed information on the numerical distribution of
dataset samples following data division.
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Table 1. The numerical distributions of the data used in the models’ training, validation, and
testing stages.

Phase
Number of Original Data Number of Augmented Data

Caries Non-Caries Caries Non-Caries

Train 860 740 6635 6635
Test 300 300 300 300

Total 2200 13,870

2.2. Proposed Classification Method

This study employed CNN-based EfficientNet-B0 [26], DenseNet [27], and ResNet [28]
models for the classification process. The stated models’ performance has already been
established successfully after they were trained on large image datasets. These models
are pre-trained models since they were previously trained, and their weight has been
optimized. These weights can be used in other models by using the transfer learning
method. The last layers of the deep learning models mentioned in this study were retrained
for tooth images and used in the study. Given the challenges of developing problem-
specific solutions, the models were trained on large datasets, which can benefit a wide
range of image classification studies. CNNs are typically built at a fixed resource cost, and
then the number of layers is expanded when more resources become available to improve
the performance. Increasing the number of layers results in a higher input resolution for
training and evaluation, which can enhance the model’s accuracy. However, even if the
mentioned methods increase the model accuracy, their performance may remain insufficient.
To address that issue, Tan et al. [26] proposed a new model scaling technique that uses the
combined coefficient to scale CNNs in a structured manner. Their method used fixed-size
scaling instead of increasing the number of layers. The EfficientNet model family is smaller
and faster than other models because it is based on a novel scaling method. EfficientNet-B0
is the base model, and EfficientNet-B1 to EfficientNet-B7 have scaled variants of the base
model. Figure 3 shows a block diagram of EfficientNet-B0.
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Figure 4. A block diagram representation of the ResNet model depicting its working structure. 
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Figure 3. A block representation of the EfficientNet-B0 deep learning model.

He et al. [28] introduced a deep learning model called ResNet, which won the ILSVRC
ImageNet competition in 2015. The main difference between ResNet and previously
proposed architectures is that it has a more complex structure. Batch normalization was
utilized for the first time in a Deepnet model. Some versions of this architecture consist
of 26 million parameters, including Resnet18, Resnet50, and Resnet101. Figure 4 shows a
block depiction of the ResNet model structure.
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Huang et al. [27] developed a deep learning model where each layer is connected to all
other layers. Due to the dense connections between the layers, it is termed DenseNet. Such
densely connected architectures use feature maps of previous layers as the input for each
layer. In addition, each layer’s feature maps are used as inputs for each subsequent layer.
In the DenseNet design, each layer keeps the original data and the activation from the
previous layers. The model is denser and more efficient because it has shorter connections
between the input and output layers. A visual representation of the DenseNet model’s
working structure is shown in Figure 5.
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3. Experiments
3.1. Experimental Setup

The deep learning model was trained using the EfficientNet-B0, DenseNet-121, and
Resnet-50 models. The Keras library, designed for the Python programming language,
allows models with a different number of layers to be included in the training process.
We used ImageNet weights instead of random starting weights in the training models.
The relevant models’ final layers have been customized to differentiate between caries
and non-caries images. In the redesigned layers, Softmax was employed as an activation
function. We chose Adam optimization, cross-entropy loss, 16 batch size, and a learning
rate of 0.001, and the early stop function was active for 50 epochs to obtain the highest
performance. All these operations took place in a Google Colab environment. The early
stop feature was activated, and the weights with the highest value were recorded when
the validation accuracy rate did not exceed the highest value for five consecutive rounds.
We resized the tooth images before they were used for training and testing due to their
poor resolution. To determine the most suitable model EfficientNet-B0, DenseNet-121,
and ResNet-50 models were trained with the same hyperparameters. After completing
the training phases, several performance measures were evaluated, and the best classifier
model was identified.

3.2. Performance Evaluation Metrics

In classification studies, confusion matrix-based performance measures are utilized
to assess the performance of the deep learning model. The confusion matrix shows the
relationship between the deep learning model’s predicted class label for the input image in
the output layer and the input image’s ground-truth label. Binary classification models can
predict two classes at the output. As a result, there can be up to four possible scenarios in
class estimation. The following are the details of these cases [29,30]:

• The first case, True Positive (TP), occurs when the classifier’s deep learning network
predicts that an image with a Caries label has Caries.

• The second case, False Positive (FP), occurs when the classifier’s deep learning network
predicts that an image with no Caries label has Caries.

• The third case, False Negative (FN), is when the classifier deep learning model predicts
an image with a Caries label as no Caries.

• The fourth case, called True Negative (TN), is when an image known to have no Caries
label is predicted as no Caries by the classifier deep learning model.

The confusion matrix is assembled by placing the TP, FP, TN, and FN values in a
2× 2 matrix. A high number of TP and TN cases indicates a good classification performance.
TP, FP, TN, and FN values have been used to standardize several performance metrics for
measuring classification performance. These measures are listed below, along with their
mathematical definitions.

Accuracy = (TP + TN)/(TP + FP + FN + TN) (1)

Sensitivity = TP/(TP + FN) (2)

Precision = TP/(TP + FP) (3)

Specificity = TN/(TN + FP) (4)

F1 Score = (2 × (Precision × Sensitivity))/((Precision + Sensitivity)) (5)

Matthews Correlation Coefficient (MCC) = ((TP × TN) (FP × FN))/
√

((TP + FP)(TP + FN)(TN + FP)(TN + FN)) (6)

3.3. Results

Each model was trained separately, and the number of training epochs was adjusted
according to the early stop condition. Figure 6 documents the training process by plotting
the model performance over the training epochs. After the first training epoch, the models
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achieve 70% classification accuracy and above. The good performance during the initial
training epoch indicates that the pre-trained network layers could extract relevant informa-
tion from the dental images. Figure 7 shows the confusion matrices and ROC curves for
each model.
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Figure 7. Confusion matrices and ROC curves obtained by the models on the test images: (a) EfficientNet-
B0, (b) DenseNet-121, and (c) ResNet-50.

Table 2 documents the best performance of each model during the training phase.
The accuracy values obtained for the test data are 90.00%, 91.83%, and 92.00% for the
EfficientNet-B0, DenseNet-121, and ResNet-50 models, respectively. Despite the model’s
performances being quite close to each other, the ResNet-50 model outperformed the others
by a slight margin. The sensitivity, specificity, precision, F1-score, and MCC values of all
models are also detailed in Table 2.

Table 2. Test data performance values obtained using various models employed in this study.

Deep Model Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision
(%)

F1-Score
(%)

MCC
(%)

EfficientNet-B0 90.00 83.00 97.00 96.51 89.25 80.80
DenseNet-121 91.83 87.33 96.33 95.97 91.45 84.01

ResNet-50 92.00 87.33 96.67 96.32 91.61 84.37
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Numerical performance measures provide helpful information about the ability of a
model to differentiate between caries and non-caries tooth images. However, these values
do not explain how the results were obtained. This places serious restrictions on root cause
analysis for failure case investigations. During such an investigation, we must treat the
deep model results as coming from a black box because we cannot trace them in the deep
network. In our case, this black box is described by the performance parameters. These
parameters are not helpful during a single root cause analysis because the accuracy values
indicate a non-zero chance of failure. Even the ResNet-50 is inaccurate in 8% of all cases.
We have addressed that issue by documenting the image regions where a deep learning
model focuses its efforts. The technique used was Grad-CAM [31], and the results were
shown as heat maps. The heat maps help human experts to determine whether the areas in
the images of a class are accurately predicted by the deep learning model while focusing
on the areas that play an active part in determining the class. In Figure 8, the working
framework of the Grad-CAM algorithm is depicted.
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Figure 8. A block diagram representing the Grad-CAM algorithm’s working structure.

The Grad-CAM algorithm performs its operations by referencing the feature maps
produced by the last convolution layer of a CNN. As a result, the last convolution layer
of the classifier deep learning model should be referenced with the Grad-CAM algorithm
with its terminology. After using the last convolution layer as a reference, a heat map
using gradients is created to emphasize the critical locations of the class label on the image.
In the generated heat maps, the yellow and red areas indicate the pixel areas that the
classifier’s deep learning network pays attention to while making predictions. In this study,
Grad-CAM outputs of several test images are given in Figure 9. The test images were first
sent to specialist dentists for marking the caries areas. The areas marked by dentists and
the heat map regions generated by the model were compared.

The areas focused by the deep model and the areas marked by the expert overlap
significantly, as seen in Figure 9. These images demonstrate that the deep learning model
focuses on the correct regions and accurately predicts caries. In addition to accurate
predictions, heat maps can provide crucial information about images that the model
predicted wrongly. Some examples of tooth images misclassified by the model are shown
in Figure 10.

The model appears to focus on the pulp chambers shown in Figure 10. The model
wrongly classified caries and the pulp chamber since the X-ray image focused near radiolu-
cency. Even experts make similar errors. Depending on the anatomical nature of the tooth,
caries-like artefacts may appear on the X-ray images in various locations. These artefacts
can cause images to be misinterpreted by the model. The analysis of the image in Figure 11
misclassified by the model shows the formation of radiolucency in the focused area of the
model due to the misalignment of the buccal and palatal cups of the tooth. The deep model
also evaluated these areas as caries.
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The deep model also misclassified the image sample as shown in Figure 12. One
reason for this error might be that the area of initial-stage caries was not clearly radiolucent.
Furthermore, it was too small and did not form cavitation. As a result, even a human expert
might ignore this type of early-stage caries.
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4. Discussion

Automated caries detection with medical images is an active research area. Table 3
provides details for a hand-curated selection of research studies on that topic. Most of
the selected works used CNN-based pre-trained models for medical decision support. In
their study, Singh and Sehgal used the CNN-LSTM architecture on the dataset containing
1500 images and achieved an accuracy value of 96%. They performed better than successful
pre-trained models, such as GoogLeNet and Alexnet [32]. Salehi et al. [33] used a CNN
model to predict enamel, dentin, and non-caries images on 81 samples. Huang and Lee [34]
used ResNet-152 in their work and achieved an accuracy rate of 95.21% with 748 images.
Lakshami and Chitra [35] detected cavities in teeth images with the AlexNet-based model.
Their model yielded a 96.08% accuracy rate. Leo and Reddy [36] detected caries with an
accuracy of 96.00% with the DNN model.

Table 3. Comparison of our work with some state-of-the-art study techniques (deep learning)
developed for automated caries detection.

Study Number of Class Number of
Images Classifier Accuracy

Singh and Sehgal [32] 6 (Class I-VI) 1500 CNN-LSTM 96.00%

Salehi et al. [33] 3 (Non-caries,
Enamel, Dentin) 81 CNN 90.75%

Wang et al. [37]
4 (Sound,

White-spot lesions,
Smashed, Plaque)

7200 T-Net CNN 95.45%

Huang and Lee [34] 3 (Non-caries, Enamel
and Dentin) 748 ResNet-152 95.21%

Lakshmi and Chitra [35] 2 (Cavity, No cavity) 1900 AlexNet 96.08%
Leo and Reddy [36] 2 (Non-caries, Caries) 480 DNN 96.00%

Zhu et al. [38]
3 (Shallow caries,
Moderate caries,

Deep caries)
3127 CariesNet 93.61%

The proposed study 2 (Caries, Non-caries) 13,870 ResNet-50 92.00%

This study used a ResNet-50 pre-trained model for automated caries detection. The
proposed approach yielded 92.00% accuracy. Leo and Reddy [36] achieved 96% accuracy
with a Deep Neural Network (DNN) for a similar caries non-caries problem. However, their
result was based on only 480 images whereas ours was based on 13,870 images. Hence, our
network could extract knowledge from significantly more image data. This might lead to
better generalization, which has advantages during the practical deployment of the model.
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All other works listed in Table 3 focused on slightly different problems making a direct
comparison via performance measures infeasible. Huang and Lee [34] used ResNet-152
in their work and achieved an accuracy rate of 95.21% with 748 images. Lakshami and
Chitra [35] detected cavities in teeth images with an AlexNet-based model. Compared
to the studies listed in Table 3, we obtained higher accuracy and used a greater number
of images.

The advantages of our explainable model can be summarized as follows:

• Due to its explainable structure, it is simple to determine which areas the model focuses
on during the decision phase. As a result, it can assist dentists in their decision-making.

• Our developed automated system can assist junior or trainee dentists as an adjunct
tool to make an accurate diagnosis.

• Caries areas can be accurately determined using heat maps without any segmenta-
tion techniques.

• Clinical application of the software that can detect caries areas on the input panoramic
radiography image is achievable using the proposed approach, as illustrated in Figure 13.

Diagnostics 2023, 13, x FOR PEER REVIEW 12 of 14 
 

 

• Clinical application of the software that can detect caries areas on the input pano-

ramic radiography image is achievable using the proposed approach, as illustrated 

in Figure 13. 

The limitations of the proposed approach can be summarized as follows. First, label-

ling issues may arise during the collection of caries images due to individual errors made 

by experts. In this study, whole panoramic radiography images were manually acquired. 

As a result, data collection is time-consuming. Moreover, we used images from only 562 

subjects. In the future, we intend to increase the number of subjects and increase the num-

ber of classes. Furthermore, we will explore the possibility of using deep-learning-based 

approaches to detect teeth on whole panoramic radiography images automatically. The 

proposed model can be integrated into dental software and used in clinical settings. 

 

Figure 13. A clinical use case of the proposed caries detection model to automatically detect caries 

areas on the entire panoramic tooth image. 

5. Conclusions 

In this study, a deep-learning-based explainable approach for the automatic detec-

tion of dental caries using panoramic radiography images from 562 subjects was pro-

posed. Three popular pre-trained models were trained and tested. The ResNet-50 model 

yielded the highest accuracy of 92.00%, a sensitivity of 87.33%, and an F1-score of 91.61%. 

With this performance, it was the best among the tested models. The main limitation of 

this work is that we used images from only 562 subjects. The performance of the model 

can be improved by using images from more subjects. The Grad-CAM method was used 

to generate heat maps to visualize the regions upon which the model focused during the 

decision phase. Our results indicate that the model is highly reliable and focused on the 

correct areas during the decision-making stage. The proposed explainable deep learning 

model has the potential to be used in the early detection of dental caries, potentially lead-

ing to earlier treatment and better patient outcomes. The model may also be able to detect 

other dental problems, such as dental caries or periodontal disease, and could be used in 

conjunction with other diagnostic tools to provide a more comprehensive assessment of 

dental health. 

Author Contributions: Conceptualization, F.O. and O.Y.; methodology, F.O., O.K., O.Y., and M.Y.; 

software, O.Y., O.K., and M.Y.; validation, U.R.A., O.F., and T.T.Y.; formal analysis, M.A., Z.O., H.C., 

and F.S.; investigation, Z.O., M.A., and F.S.; resources, F.O. and T.T.Y.; data curation, Z.O., H.C., 

and M.A.; writing—original draft preparation, F.O., O.K., M.A., F.S., M.Y., H.C., and O.Y.; writing—

review and editing, F.S., O.F., T.T.Y., and U.R.A.; visualization, O.Y., O.K., F.O., and M.Y.; supervi-

sion, U.R.A., O.F., and T.T.Y. All authors have read and agreed to the published version of the man-

uscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: The study was conducted according to the guidelines of the 

Declaration of Helsinki and approved by the ethics committee of Firat University (18 March 2022), 

session numbered 2022/03-18. 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the 

study. 

Figure 13. A clinical use case of the proposed caries detection model to automatically detect caries
areas on the entire panoramic tooth image.

The limitations of the proposed approach can be summarized as follows. First, la-
belling issues may arise during the collection of caries images due to individual errors
made by experts. In this study, whole panoramic radiography images were manually
acquired. As a result, data collection is time-consuming. Moreover, we used images from
only 562 subjects. In the future, we intend to increase the number of subjects and increase
the number of classes. Furthermore, we will explore the possibility of using deep-learning-
based approaches to detect teeth on whole panoramic radiography images automatically.
The proposed model can be integrated into dental software and used in clinical settings.

5. Conclusions

In this study, a deep-learning-based explainable approach for the automatic detection
of dental caries using panoramic radiography images from 562 subjects was proposed.
Three popular pre-trained models were trained and tested. The ResNet-50 model yielded
the highest accuracy of 92.00%, a sensitivity of 87.33%, and an F1-score of 91.61%. With
this performance, it was the best among the tested models. The main limitation of this
work is that we used images from only 562 subjects. The performance of the model can
be improved by using images from more subjects. The Grad-CAM method was used to
generate heat maps to visualize the regions upon which the model focused during the
decision phase. Our results indicate that the model is highly reliable and focused on the
correct areas during the decision-making stage. The proposed explainable deep learning
model has the potential to be used in the early detection of dental caries, potentially leading
to earlier treatment and better patient outcomes. The model may also be able to detect
other dental problems, such as dental caries or periodontal disease, and could be used in
conjunction with other diagnostic tools to provide a more comprehensive assessment of
dental health.
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