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Abstract

Bayesian networks (BNs) are graphical probabilistic models used

for reasoning under uncertainty. These models are becoming increas-

ingly popular in a range of fields including engineering, ecology, com-

putational biology, medical diagnosis, and forensics. In most of these

cases, the BNs are quantified using information from experts, or from

users’ opinions. While this quantification is straightforward for one

expert, there is still debate about how to represent opinions from mul-

tiple experts in a BN. This paper proposes the use of a measurement
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error model to achieve this. The proposed model addresses the issues

associated with current methods of combining opinions such as the

absence of a coherent probability model, the loss of the conditional

independence structure of the BN, and the provision of only a point

estimate for the consensus. The proposed model is applied to a sub-

network (the three final nodes) of a larger BN about wayfinding in

airports. It is shown that the approach performs well when compared

to existing methods of combining opinions.

Keywords: Bayesian networks; measurement error model; wayfinding; ex-

pert opinions.

1 Introduction

Bayesian networks (BNs) have become a ubiquitous statistical tool for de-

scribing complex systems. A typical BN is based on a directed acyclic graph-

ical (DAG) model in which variables are represented as nodes and proba-

bilistically linked by a set of directed arcs. BNs are growing in popularity in

engineering (Trucco et al., 2008), ecology (Johnson, 2009), natural resource

management (Pollino et al., 2007), computational biology (Friedman et al.,

2000), medical diagnosis (Heckerman, 1990) and forensics (Taroni et al.,

2004). The application of BNs has also had an impact on their methodolog-

ical aspects, raising various issues that still need to be addressed adequately.

One of them is the way in which information from multiple experts, possibly
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with different opinions and levels of expertise, can be represented in a BN.

Common ways of addressing this issue include consensus building ap-

proaches such as the Delphi method (Dalkey & Helmer, 1963), averaging us-

ing the arithmetic mean (Beliakov et al., 2007; Burgman et al., 2011) or lin-

ear pooling (Cooke, 2008; French, 2011; Genest & Zidek, 1986), and Bayesian

approaches (French, 1985; Lindley, 1983; West, 1988; Winkler, 1968). These

are briefly discussed in Section 4.

In this paper, a BN is represented as a directed acyclic graph (DAG)

and the probabilities attributed to each node in the BN by each expert are

assumed to be observations of the underlying true probabilities, subject to

measurement error. The paper provides a review of measurement error mod-

els in the context of generalized linear random effects models and proposes

their use in representing the systemic variation in the probabilities assigned

by the experts. The novel use of measurement error models to combine ex-

pert opinions in BNs is the major contribution of the paper. Compared with

linear pooling, the proposed model has the advantage of following from a

coherent probability model and allowing for uncertainty, since the resulting

distribution is more informative than a point estimate.

The conditional dependencies imposed by the BN are reflected in the

associated precision matrices. The approach is then applied to a key sub-

network of a wayfinding Bayesian Network model (WBNM) (Farr et al.,

2014) that was developed to investigate the factors that influence effective
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wayfinding in airports. Previous wayfinding research has been split into two

distinct streams: research that investigated human factors such as cognition

to define issues such as cognitive mapping, information processing, memory

and spatial recognition (Gärling et al., 1984; Kuipers, 1978; Passini, 1981,

1984; Peponis et al., 1990; Timpf et al., 1992), and research that used envi-

ronmental factors to present mathematical measures such as the Visibility

Index (VI) (Braaksma et al., 1980; Dada & Wirasinghe, 1999; Tosic & Babic,

1984) and the inter-connection density (ICD) (O’Neill, 1991). The WBNM

combines these previously separate sets of factors into a single model via

a BN. Given their relevance, we have decided to concentrate on the final

nodes of those two streams and their influence on wayfinding. Therefore,

we apply the measurement error model to the subnetwork that relates the

final three nodes of the WBNM, i.e., Human Factors, Environmental Factors

and Wayfinding. The WBNM has been chosen since it is a real case study,

with a significant number of experts providing their opinions, whereas the

decision of concentrating on the three final nodes is justified not only by

computational constraints which would hinder how the proposed method

works if a larger number of nodes were used but also by the possibility of

getting extra insights about the influence of human and environmental fac-

tors on wayfinding. The structure of the WBNM was fixed in earlier studies

and not questioned by the experts: the combination of experts’ opinion on

structuring a BN is a very complex problem, well beyond the scope of the
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current paper.

The paper is structured as follows. In order to motivate the problem, the

wayfinding case study and the WBNM model are described in Section 2. In

Section 3 the basic properties of DAGs and BNs are presented, and existing

methods for combining information in BN are described in Section 4. Mea-

surement error and generalized linear models are presented in Sections 5 and

6, respectively. The proposed model is described in Section 7, illustrated for

a three node BN in Section 8 and applied to the WBNM subnetwork for

the wayfinding case study in Section 9. Finally, additional comments and

pointers for future research are discussed in Section 10.

2 Case Study - The Wayfinding Bayesian Network

Model

Wayfinding is the ‘process of finding your way to a destination in a famil-

iar or unfamiliar setting using cues given by the environment’ (Farr et al.,

2012). It requires the successful interplay between human and environmen-

tal factors. Previous research on wayfinding has investigated this process

from one of two perspectives, namely either human or environmental fac-

tors. Studies of human factors have investigated issues such as memory,

cognitive mapping, spatial recognition, and information processing (Gärling

et al., 1984; Kuipers, 1978; Passini, 1981). Studies of environment factors
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have focused on measures related to the wayfinding process. For example,

the Visibility Index gives a measure of the ease of wayfinding to the value

of available sight lines in an environment (Braaksma et al., 1980; Dada &

Wirasinghe, 1999; Tosic & Babic, 1984) and the Inter-Connection Density

measures the complexity of a floor plan (O’Neill, 1991). The Wayfinding

Bayesian Network model (WBNM) (Farr et al., 2014) combined both the

human and environmental aspects into one BN model and investigated the

joint influence of these factors on effective wayfinding in airports.

The model was developed via focus groups composed of a multi-disciplinary

team with differing levels of air travel and airport experience, a review of the

wayfinding research (Farr et al., 2012), and from feedback from an audience

of airport operators and BN modelers (Farr et al., 2014). It was quantified

using a combination of data obtained from a focus group using the Delphi

method (Landeta, 2006), literature on wayfinding, and an online survey.

This survey was re-released to obtain more participants for this study and

the results from the 99 respondents were used (their values are provided in

the Appendix). The WBNM, shown in Figure 1, is comprised of five inter-

connected subnetworks, but we will concentrate just on three of them: one

(pink) that includes the human factors, one (light blue) the environmental

factors and one (orange) that connects these two subnetworks to the target

node representing the probability of effective wayfinding. The full network

comprises 49 nodes and 58 connections. The analysis described in this pa-
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per focuses on the subnetwork comprising the three primary nodes, namely

Human Factors, Environmental Factors and Wayfinding.

3 Bayesian Networks

A Bayesian Network (BN) is a graphical representation of the joint prob-

ability distributions of a set of variables (Pearl, 1985, 1986), and is used

for reasoning under uncertainty. A BN represents variables of interest as

nodes and the dependencies between the variables as arcs. The variables

underlying the nodes of the BN can be continuous, ordered or categorical,

or alternatively continuous variables can be discretised to allow for ease of

elicitation and computation (Korb & Nicholson, 2010). Examples of com-

mon discrete nodes are Boolean, ordered values, integer values and ranges

of values. The number of categories is usually chosen in light of the context,

desired inferences, available information and computational complexity. For

example, all of the nodes in the WBNM are binary, as described in (Farr et

al., 2014).

A BN with binary nodes is depicted in Figure 2. It is immediately obvi-

ous that this representation is equivalent to a directed acyclic graph (DAG),

comprised of nodes representing the variables of interest, arcs which show

the direct influences between these variables, prior probability tables for the

nodes that have no parents, and conditional probability tables (CPTs) for

the other nodes (Valtorta & Huang, 2008), like in Figure 2 (c).
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More precisely, for a directed acyclic graph given by G = (V,E), where

V is the set of nodes and E is the set of directed links between nodes, a joint

probability distribution P(XV) over the set of variables XV can be factorised

as

P(XV) =
∏
v∈V

P
(
XV|Xpa(v)

)
, (1)

where Xpa(v) is the set of parent variables of variable XV for each node v ∈ V.

This provides the defining property of a BN, i.e. the joint distribution of a

node is conditioned only on the parents of that node.

For the network shown in Figure 2(a) with the states listed in Figure 2(b),

the joint probability table given by P(A,B,C,D) would have 24 = 16 entries.

However, the constraints implied by the conditional independence struc-

ture in Figure 2(a) lead to P(A,B,C,D) = P(A)P(B)P(C|A,B)P(D|B,C),

which only contains 1 + 1 + 4 + 4 = 10 parameters.

Some terminology used in the BN literature and illustrated in Figure

2(a) is as follows (Korb & Nicholson, 2010). First, a node is a parent of a

child if an arc goes from the former to the latter; for example, nodes A and

B are the parents of C and nodes C and D are the children of B. Second,

if a directed chain of nodes exists, one node is an ancestor of another if it

appears earlier in the chain, and it is a descendant of another if it comes

later in the chain; for example, node D is a descendant of A. Third, a node

without parents is a root node, for example node A. Finally, a node without

children is a leaf node, for example node D.
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Figure 2: (a) A sample Bayesian Network, with 4 nodes of interest, (b) the
states of each of the variables, and (c) the underlying conditional probability
table for node C, given nodes A and B.

The BN representation also allows for a reduction in the time needed to

compute the marginal probabilities, which is the most common operation un-

dertaken on a BN (Pearl, 1986; Valtorta & Huang, 2008). When new knowl-

edge is obtained, beliefs are updated in a straightforward manner (Lauritzen

& Richardson, 2002). Software such as Hugin (www.hugin.com), GeNIe &

SMILE (www.bayesfusion.com), and Netica (www.norsys.com/netica.html)

are able to perform these updates in an efficient manner.
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4 Current Approaches for Combining Information

in Bayesian Networks

Using opinions from multiple sources or experts to parameterise a BN is

standard practice, particularly in situations where data are not available.

This however raises the problem of how these opinions should be combined

and used in a BN. Linear pooling (McConway, 1981) is a common way of

combining the probabilities obtained from multiple experts or sources. The

probability of an event X, say, is approximated by averaging n conditional

probabilities P (X|Ei) = Pi(X), provided by different sources of informa-

tion or experts Ei, 1 = 1, . . . , n, without knowing the joint model given by

P (P (X|E1), . . . , P (X|En)). The probabilities in question are calculated by:

P (X) =
n∑
i=1

λiPi(X) (2)

where λi are positive weights given to each of the n experts and
∑n

i=1 λi = 1.

Although the weights λi can sometimes be determined empirically given

suitable data, they are often prescribed a priori based on the problem-

specific context. In the case study considered in this paper, each expert is

given equal weighting, based on the premise that the wayfinding process is

quite a person-specific experience so all experiences were considered equally
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valuable. Thus λi = 1/n and

P (X) =

n∑
i=1

Pi(X)/n.

Two kinds of linear pooling can be used to combine expert opinions for

use in Bayesian Network models (Farr et al., 2018). Prior Linear Pooling

describes the process by which elicited probabilities are pooled within each

node and the resultant conditional probability tables are then propagated

through the network to find the marginal probabilities for the nodes of in-

terest. In contrast, Posterior Linear Pooling describes the process of quan-

tifying and computing the BN for each expert separately, and the marginal

probability distributions for the final nodes in the n BNs are then pooled.

Thus in prior linear pooling, Equation (2) is applied to each node separately

in order to combine the opinions provided by the n experts into a pooled

probability table for that node, whereas, in posterior linear pooling, Equa-

tion (2) is applied to combine the n marginal probability tables for the final

nodes of the BN.

Despite the conceptual simplicity of linear pooling, there are some serious

drawbacks to this approach (Genest & Zidek, 1986). Firstly, pooling only

gives a point estimate for the consensus, losing the variety of opinions across

the experts. Secondly, pooling, particularly when used with BNs, does not

follow from a coherent probability model (de Finetti, 1964). That is, linear
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pooling can be considered an estimator if each observation is normally dis-

tributed and independent. The posterior mean is the sample average, and

this implies that the errors are normally distributed. However, in the cases

considered here the data are discrete and often binary, so they cannot be

generated by a normal distribution (without substantive assumptions) and

no coherence can exist. Hence it follows that linear pooling cannot follow

from a coherent probability model. Thirdly, as illustrated in the case study

below, the different linear pooling methods can result in different outcomes

for the nodes of interest. Finally, the conditional independence structure of

the BN is not reflected in the way in which the expert opinions are combined,

particularly in the case of prior linear pooling.

As an example of the last point, say node X influences node Y and

each node has the states ‘T’ and ‘F’. If n experts provide their opinions,

there would be n probabilities for P (X = T), P (X = F), P (Y = T|X =

T), P (Y = T|X = F), P (Y = F|X = T), and P (Y = F|X = F). By

applying prior linear pooling, the average for each of these probabilities is

found, however these are not a reflection of what was originally given by

the experts. That is, when the initial expert opinions were obtained, the

4 probabilities, P (Y = T|X = T), P (Y = T|X = F), P (Y = F|X = T),

and P (Y = F|X = F), were given as conditional probabilities. By pooling

these probabilities, the conditional independence structure is lost. This is

illustrated in Table 1 where a toy example is shown. Here, the pooled
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probabilities from five experts are combined via prior linear pooling in a

BN. These values can be markedly different from the original probabilities

given by the experts questioned, particularly if experts have very different

opinions. Considering P (Y = T), for example, prior pooling gives a value

of 0.5944, whereas 0.62 is obtained when using posterior pooling.

Table 1: Example: comparison among elicited and pooled proba-
bilities in a BN, based on five experts Ei, i = 1, ..5.

E1 E2 E3 E4 E5 Pooled Value

P (X = T) 0.8 0.7 0.6 0.8 0.5 0.68

P (X = F) 0.2 0.3 0.4 0.2 0.5 0.32

P (Y = T|X = T) 0.6 0.7 0.6 0.8 0.4 0.62

P (Y = F|X = T) 0.4 0.3 0.4 0.2 0.6 0.38

P (Y = T|X = F) 0.5 0.3 0.6 0.5 0.8 0.54

P (Y = F|X = F) 0.5 0.7 0.4 0.5 0.2 0.46

P (Y = T) 0.58 0.58 0.6 0.74 0.6 0.594

An alternative approach, proposed in this paper, is to consider a mea-

surement error model for combining expert opinions for use in BNs. The

approach uses the posterior probabilities ascribed to each node in the BN,

which are computed from the prior information given by each expert. These

observed probabilities are assumed to be noisy ‘measurements’ of the true

probabilities, and allow the representation of the systematic variation due

to experts. This is described in more detail in Section 7.
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5 Measurement error models

In almost all fields of statistical modelling, there is measurement error in

the data generating process, such that the observations of a variable X,

say, vary from the underlying true value. The reasons for this variation can

include inaccuracies in the recording device, potential bias or misclassifica-

tion due to the study design, data collection practicalities in observational

or experimental studies, and errors in data input. These errors can induce

random or systemic variation and, if ignored, the parameter estimates and

confidence intervals in statistical models can suffer from serious biases (Muff

et al., 2015). If information about the errors induced in the measurement

process is available, it may be useful to include them directly into the model.

Information derived from experts can also be seen as a form of measurement

error, in that the quantitative information elicited from each expert can be

considered as a noisy realisation of an underlying common value.

There is a large literature on frequentist methods for addressing mea-

surement error in regression (Carroll et al., 1999, 2006; Gustafson, 2003)

and a growing literature on Bayesian methods for this issue (Muff et al.,

2015; Richardson & Gilks, 1993; Stephens & Dellaportas, 1992). Bayesian

approaches provide a natural framework for the inclusion of measurement

errors, since discrepancies between observed and true values of a variable

can be considered as, and described through, prior distributions and the lin-

ear predictors can then be written in terms of the true values. In addition,
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a Bayesian model has been argued to be more straightforward to implement

via Markov chain Monte Carlo (MCMC) than analogous frequentist models

via Expectation-Maximisation (EM) (Carroll et al., 2006).

6 Generalised linear models: a baseline case

A generalised linear model (GLM) extends linear regression by relating the

linear model to the response variable via a link function and allowing the

magnitude of the variance of each measurement to be a function of its pre-

dicted value (Nelder & Wedderburn, 1972). Assuming that there are n ob-

servations in a GLM, the data would be (y, z,x), where the response variable

is given by y = (y1, ..., yn)T, the covariate matrix of dimension n × p for p

error-free covariates is given by z = (z1, ..., zp), and x = (x1, ..., xn)T is

the single error prone covariate whose true values are unobservable. In the

case study, this can be applied to the n expert opinions used to quantify

the BN. Generalisation to multiple error prone covariates can be achieved

by assuming that y comes from the exponential family with mean given by

µi = E(yi|xi), and is linked to the linear predictor ηi via

µi = h(ηi),

ηi = β0 + βxxi + z[i,]βz, (3)
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where h(·) is a known response function, β0 is the intercept, βx is the fixed

effect for the error prone covariate x, and z[i,] is a 1 × p vector with corre-

sponding vector of fixed effects given by βz. By letting w = (w1, ..., wn)T be

the observed version of the true, but unobservable, covariate x, it is possible

to formulate the classical measurement error model.

6.1 Classical measurement error model

The classical measurement error model assumes that the covariate x can only

be observed by a proxy w such that w = x+u. The error vector is given by

u = (u1, ..., un)T, the components of which are assumed to be independent

and normally distributed with mean = 0 and common variance τ−1u , say

(Muff et al., 2015). In a regression setup, if the error term u is assumed to

be independent of the true covariate x, any of the other covariates z and

the response y, then y and w are conditionally independent given z and x.

This means that, given the true covariate x and covariates z, then having

w provides no further information about the response variable, y (Carroll

et al., 2006; Muff et al., 2015).

6.2 Measurement error models and Bayesian Networks

To our knowledge, there is no published literature on using measurement

error models to combine expert opinions in Bayesian Networks. The closest

work has been by Marella & Vicard (2013), in which a mixed measure-
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ment error model was proposed and an Object Oriented Bayesian Network

(OOBN) (Koller & Pfeffer, 1997) framework was used to implement the

model. OOBNs are an extension of BNs where, instead of a node represent-

ing only a variable of interest, it can also contain nodes that are instances of

other networks. The OOBN paradigm allows for hierarchical definition and

construction of a BN by using network classes. The measurement model

proposed in Marella & Vicard (2013) describes the relationship between an

observed and a true category in a questionnaire survey. The results from

the measurement model are then used in an OOBN which is then used to

represent, in a single model, the entire survey process.

7 Proposed Model

For exposition and without loss of generality, consider a BN in which each

node is binary, so that the information provided by the expert is in the

form of the probability associated with one of the outcomes of the node. A

measurement error model is proposed to treat the experts’ probabilities for a

node as observations of the underlying true probabilities, subject to systemic

variation. While the focus of this work is primarily on the situation where

consensus or agreement is formed simultaneously for multiple nodes in a BN,

it is noted that a random effects model can be applied when considering only

a single node.

In order to pool the probabilities on the correct 0 to 1 scale, a Beta
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distribution for the response variable is used since it is more suitable as

a data generating mechanism than the Gaussian error distribution implied

by the linear pooling estimator. This is similar to the work of Ferrari &

Cribari-Neto (2004) and Figueroa-Zúñiga et al. (2013), where the response

variable is assumed to be beta distributed with the mean and the precision

parameter modeled using fixed and random effects.

For the univariate model, where the consensus is formed for a single node

of interest, consider

pi ∼ Beta(ai, bi), (4)

where pi is the marginal probability for expert i = 1, ..., n. To allow for

variation between experts, we take

logit

(
ai

ai + bi

)
= logit

(
ai
bi

)
= µ+ εi,

where µ ∼ N(0, τ−1µ ),

εi ∼ N(0, τ−1ε ),

where the hyperparameters τµ and τε are specified according to the problem.

Since the expected value of the logit term equals 0, this implies that

ai = bi, so an alternative construction is to consider a distribution symmetric
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around pi = 1/2 and impose a prior on ai + bi,

ai + bi ∼ Gamma(α0, β0) (5)

where, as above, the hyperparameters α0 and β0 are problem-specific.

An analogous multivariate measurement error (MME) model can be de-

veloped when forming consensus for multiple nodes in a BN. Consider

pij ∼ Beta(aij , bij), (6)

where pij is the marginal probability for expert i = 1, ..., n at node j =

1, ...,m. A multivariate Gaussian random effect for each expert can be

used since the probabilities ascribed by experts to each node are treated as

observations of the underlying true probabilities, which are closer around a

mean value. To allow for extra variation due to the heterogeneity between

experts, an independent random effect εi = (εi1 . . . εim) for each expert i

was added and a vague normal prior given to the mean, so
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logit

(
aij

aij + bij

)
= µj + εij ,

where µj ∼ N(0, τ−1µ ),

εi ∼ N
(
0m,Q

−1) , i = 1, ..., n

aij + bij ∼ Gamma(ατ , βτ ). (7)

The structure of the random effect term, ε, is such that ε = Rs, where

R is the Cholesky decomposition of the precision matrix Q and s is a vector

of iid standard normals, that is s = N(0, I). By definition, if ε = Rs for s iid

normals, then ε has the precision matrix such that Q = (RRT )−1 (Eaton,

2007). This implies that, if R has the correct sparsity required, then Q will

also have the correct sparsity structure (Rue & Held, 2005). This is an indi-

rect way in which to put a prior on precision matrices with a fixed sparsity

structure, or equivalently, on Gaussian distributions with the right condi-

tional independence structure. Applying this to the multivariate model, it

follows that ε ∼ N(0m,RRT ). Hence, similarly, by finding R, we are able

to give Q the right structure that reflects the conditional independence of a

BN.
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8 The three node MME Model

In this section, we illustrate the use of a measurement error model for com-

bining experts’ opinions in a three node BN corresponding to the subnetwork

of the WBNM described in Section 2. This provides sufficient opportunity

to demonstrate the feasibility and utility of the approach in a simple, but

significant, case. Recall that the subnetwork is structured as two root par-

ent nodes, Environmental Factors (E) and Human Factors (H), connected

by directed arcs to the child leaf node of Wayfinding (W), as depicted in

Figure 3.

Following from the model described in the previous section, we observe

that the precision matrix Q of the random effect, εi, gives information

about the conditional probabilities and ensures that the expert opinions flow

through the BN (here from Human and Environmental Factors to Wayfind-

ing), as shown in (8). The proposed model allows also for the combination

of all the opinions, so that all of them will count. If reordering of the in-

dependent expert opinions occurs, coherence is maintained and there will

not be an impact on the result of the model. Additionally, Q allows the

model to ‘borrow strength’ from other parts of the model (Tukey, 1974).

That is, information from one node can be used to inform other nodes as

information is able to travel up and down the levels of the hierarchy (Efron,

2010). The issue of ensuring that the conditional independence structure

of the BN is reflected when combining expert opinions is addressed by the
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Figure 3: The sparsity structure of the precision matrix, Q. The structure
of this matrix reflects the conditional independence structure of the final 3
nodes of the WBNM.

precision matrix Q. In order for the consensus model to be consistent with

the BN structure, the conditional independence structure of the Gaussian

random effect was forced to mirror that of the BN. This forces a sparsity

structure on the precision matrix Q, such that Qij 6= 0 iff node i depends

on node j in the BN.

The structure of the precision matrix, Q, is constructed to reflect the

conditional independence structure of these nodes, as shown in Figure 3.

This requires the construction of R, the Cholesky decomposition of

Q. This is where the expert priors on Q are used. Recall that in (6),

logit
(

aij
aij+bij

)
= µj + εij . It is possible to write εi = Rs, which leads to

logitµH = µH + β1εW + εH

logitµE = µE + β2εW + εE

logitµW = µQ + β3εH + β4εE + εW


, (8)

where µH , µE , and µW are the mean opinions for nodes H, E, and W respec-
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tively and εH , εE , and εW are the random effect associated with the expert

opinions for nodes H, E, and W respectively. The β terms give a measure

of how much of the random effect comes from the other nodes. That is, β1

says how much noise from W influences H, β2 is a measure of how much

W influences E, and β3 and β4 gives the size of the influence of H and E

respectively on W.

In vector form, this gives

logitµX = µX + Rs,

where R is given by

R =


τ
−1/2
H 0 β1τ

−1/2
W

0 τ
−1/2
E β2τ

−1/2
W

0 0 τ
−1/2
W

 ,

with τX ∼ Gamma(1, 5 × 10−5) and βX ∼ N(0, 5 × 10−5). Since Q =

(RRT )−1 (Eaton, 2007), this gives the precision matrix as

Q =


τH 0 −β1τH

0 τE −β2τE

−β1τH −β2τE β21τHτ
2
W + β22τEτ

2
W + τW

 .

It should be noted that if all of the β’s are zeros, then the random effects
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εH , εE , and εH are independent and Q is a diagonal precision matrix.

9 Results

The MME model given by Equation (6) was applied to the final three nodes

of the WBNM. As discussed in Section 2, the dataset used for the analysis

(available in the Appendix) comprised the set of opinions elicited from the

n = 99 experts about the states ‘Good’, ‘Good’ and ‘Effective’ for the Hu-

man Factors, Environmental Factors and Wayfinding nodes respectively. A

Gamma(1, 0.1) distribution was specified for the prior on the terms a + b,

in line with the ambition to have proper but relatively uninformative priors.

This was justified by calculating an approximate 95% interval for the antic-

ipated values for pi implied by this prior, obtained by taking the 2.5% and

97.5% quantiles for the prior, letting ai = bi, and undoing the logit trans-

formation. The obtained interval was 0.53 to 1, which was considered to be

reasonable. Proper but relatively uninformative priors were also specified

for µ and ε, with τ−1µ = 104 producing a diffuse distribution on µ and hence

an almost uniform distribution on pi, and (aτ , bτ ) = (1, 5 × 105) produc-

ing a distribution for ε that reflected a relatively small contribution of the

measurement error to the overall value of pi.

The analysis was undertaken using the R package Integrated Nested

Laplace Approximation (R-INLA) (Rue et al., 2009). R-INLA allows full

Bayesian inference to be performed on a class of latent Gaussian models
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(LGMs) including spatial models, geostatistical models, generalised linear

mixed models, and generalised additive models (Martins et al., 2013). It

utilises deterministic Laplace approximations by fitting Gaussian conditional

posteriors via an optimisation step for LGMs. The approximation can also

be used in a nested framework and provides a faster and more accurate al-

ternative to simulation-based Markov chain Monte Carlo (MCMC) schemes

(Martins et al., 2013). The multivariate model given by (6) and its appli-

cation to the final three nodes of the WBNM is a good candidate for using

R-INLA due to the sparsity of Q and the ability to perform fast, easy and

accurate computation for this class of problem. The R-INLA code used for

the analysis is provided in the Appendix.

The resulting distributions from the MME model are shown by the solid

black line in Figure 4. For comparison, prior and posterior linear pooling

were also performed using the same BN and dataset. The results are also

shown in Figure 4, with the distributions depicted in blue and red, respec-

tively.

The results for both pooling methods are almost identical for the Human

and Environmental Factor nodes at 0.708 and 0.768 respectively, with the

MME model mean differing in both cases at 0.715 and 0.7587 for the re-

spective nodes. The posterior pooling result and the MME model mean for

the Wayfinding node are almost the same at 0.755, and are different to the

prior pooling result which is 0.752. This may be due to the fact that both
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Figure 4: The results of the implementation of the MME model (solid black
line), prior linear pooling (dashed blue line), and posterior linear pooling
(solid red line) on the final 3 nodes of the Wayfinding Bayesian Network
Model.
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the MME model and the posterior pooling follow the conditional indepen-

dence structure of the BN, whereas the prior pooling method does not. By

using the MME model it is possible to obtain a distribution for the nodes of

interest. This is more informative than a point estimate like that obtained

using the pooling methods as it describes the uncertainty associated with

the estimates.

To investigate if a small sample size has an impact on the results, the

MME model and the posterior pooling were implemented for n = 15 ran-

domly selected data points for the final three nodes of the WBNM. The

distribution for the MME model is shown in Figure 5 as the solid black line,

with the pooled results shown as the solid red line. For all three nodes, the

MME model and the posterior pooling results were comparable. Given the

choice of which method to use, the MME model would still be preferable

to posterior pooling for the reasons noted earlier. That is, it follows from

a coherent probability model, the resulting distribution is more informative

than a point estimate, and it allows for uncertainty.

Using the same subset of 15 data points, the univariate model given by

(4) was also implemented for each of the 3 final nodes of the WBNM. This

method is easier to implement than the MME model since the conditional

independence structure of Q does not have to be calculated. That is, the

β’s in Equation (8) are zero and Q is a diagonal matrix. The results of

the implementation of this model are shown by the dashed lines in Figure
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Figure 5: The results from an implementation of the MME model (solid
black line), posterior pooling (red line), and the univariate model applied to
each node (dashed black line) on n = 15 randomly selected data points.
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5. For each of the three nodes, the probability mass for the MME model

resulted in both better location and a more conservative spread than that

of the univariate model. This is because the MME model is able to borrow

strength from other nodes in order to better inform the model.

10 Discussion

The MME model proposed in this paper addresses the issues associated with

the current pooling methods used for combining expert opinions in Bayesian

networks. Namely the issues are that pooling, when used with BNs, does

not follow from a coherent probability model, the conditional independence

structure of the BN is not followed, particularly in the case of prior pooling,

and pooling only gives a point estimate for the consensus. The MME model

overcomes these issues by using a measurement error model to treat each

of the probabilities ascribed by experts to each node as observations of the

underlying true probabilities that are subject to systemic variation due to

experts.

The systemic variation is modelled through the random effect term, εi,

which contains the precision matrix Q. By ensuring the correct structure

and sparsity of Q, the conditional independence of the BN is reflected in the

model. Additionally, Q also contains information regarding the conditional

probabilities in the BN and as such addresses the issue of coherence. Finally,

by using a measurement error approach, it is possible to obtain a distribution
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for each state and node of interest. This makes it possible to obtain a

measurement with uncertainty for any marginal probability of interest rather

than just a point estimate.

It must be noted that since expert opinions may not necessarily follow

the measurement error model (for example, the experts questioned may all

be biased), this uncertainty cannot be taken on face value. Keith (1996), for

example, argues against the aggregation of opinions or, at least, the over-

aggregation of opinions. This is particularly relevant to situations where

opinions may be biased or extreme, since the combined distributions of the

opinions may bear no similarity to the true distribution of the probabilities.

The MME model can be modified to cater for issues such as expert

weighting and outlier detection. Expert information can be differentially

weighted in the BN through the weights λi in Equation (2) or by imposing

a differential inflation factor on the variances of the expert-specific priors in

Equations (4) and (6). In this case study, all experts were weighted equally.

Outlier detection can be incorporated by considering the conditional pre-

dictive ordinate (CPO) values (Geisser, 1980), which is a tool for detecting

observations that are fitted poorly by a given model. In this case, it would

measure how well an expert is predicted from the other experts. The CPO

expresses the posterior probability of observing the value i when the model

is fitted to all data except i. Very low CPO values imply that i is an outlier

and an influential observation (Gelfand, 1996).
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The MME model could also be extended to include bias and additional

covariates. In the case study, if there was an interest in investigating the

effect of experienced (E) and inexperienced (I) travellers, the overall mean

for node j, µj , in the model given by (6) could be modified as follows,

µI ∼ N(µj − δI , σ2I ),

µE ∼ N(µj + ηE , σ
2
E),

where µI and µE are the means for inexperienced and experienced travellers

respectively, σ2I and σ2E are the variances for inexperienced and experienced

travellers respectively, and δI and ηE represent the impact of inexperienced

and experienced travellers respectively on the overall mean, µj .

As discussed earlier, there is a strong connection between generalised

linear models and measurement error ones and it could be worth fitting a

generalised multivariate regression model and comparing the results with the

ones in the current paper. We believe that the sparsity structure of the BNs

makes our approach more suitable but we leave the practical comparison to

future work.

Finally, it has to be noted that the method proposed here to obtain the

correct conditional independence structure in the Gaussian random effect is

hard to extend to more complicated networks. If more than three nodes were

to be investigated, the use of G-Wishart priors for Q, which are restrictions
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of Wishart random variables to the subspace of matrices with the correct

sparsity structure, has to be undertaken (Lenkoski, 2013). Recent results

have derived direct samplers for G-Wishart random variables, which makes

them practical in this application (Lenkoski, 2013; Wang & Li, 2012). An

extension to more than three nodes means that an MCMC scheme rather

than INLA would be used to perform the inference.

In this paper, we have focussed on a three node sub-graph of the full

wayfinding Bayesian network. The methods described in this paper would,

theoretically, scale up to a problem of that size. As with many multivari-

ate models, we are defeated by an explosion in the number of parameters.

For a Bayesian network with n nodes and nc connections, then fitting the

multivariate measurement error model proposed in Section 3 requires the es-

timation of n+nc precision parameters and n intercepts. This is significantly

smaller than the number of precision parameters needed for the MME model

without the conditional independence assumptions; for the full wayfinding

network, the number of precision parameters is reduced from 1125 to 107.

Unfortunately, with only 99 data points, it is not feasible to fit a model of

this complexity to the current data set.
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Appendix

Dataset for the three nodes of the Wayfinding BN Model

The following dataset was used for the case study analysis. The values

represent the probabilities assigned by each of the 99 experts to the three

nodes, Environmental Factors (ef), Human Factors (hf) and Wayfinding

(wf).

• ef : .77., .77., .77., .77., .77., .76., .77., .77., .77., .77., .77., .77., .77.,

.77., .77., .77., .77., .77., .77., .77., .77., .77., .76., .77., .77., .76., .77.,

.77., .77., .77., .77., .77., .77., .77., .78., .77., .75., .76., .75., .78., .77.,

.76., .77., .77., .77., .77., .75., .77., .77., .77., .76., .76., .77., .76., .77.,

.77., .77., .77., .76., .77., .76., .77., .77., .77., .76., .76., .77., .76., .76.,

.77., .77., .77., .77., .77., .77., .77., .77., .77., .77., .77., .76., .77., .77.,

.77., .77., .77., .77., .77., .77., .77., .76., .76., .76., .77., .76., .77., .76.,

.77., .77., .76

• hf : .71., .67., .75., .77., .42., .56., .74., .84., .75., .66., .72., .51., .69.,

.72., .47., .77., .71., .65., .73., .76., .66., .69., .78., .74., .68., .78., .79.,

.70., .74., .77., .84., .38., .72., .66., .84., .77., .77., .35., .77., .76., .81.,

.68., .77., .77., .78., .70., .25., .38., .78., .78., .57., .75., .74., .59., .78.,

.76., .78., .53., .39., .77., .80., .88., .83., .96., .71., .78., .77., .78., .58.,

.77., .44., .84., .78., .39., .64., .84., .77., .54., .80., .77., .81., .90., .86.,

.83., .63., .78., .89., .65., .83., .75., .74., .57., .67., .81., .35., .84., .82.,
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.79., .74., .70

• wf : .65., .65., .58., .76., .83., .75., .70., .80., .71., .81., .71., .79., .84.,

.83., .69., .77., .76., .65., .71., .76., .79., .72., .78., .83., .72., .78., .82.,

.81., .71., .82., .78., .72., .83., .71., .83., .71., .70., .69., .60., .68., .88.,

.67., .79., .91., .59., .61., .91., .87., .74., .74., .88., .73., .81., .85., .63.,

.79., .63., .83., .95., .72., .75., .74., .70., .72., .84., .64., .83., .74., .79.,

.77., .80., .75., .83., .80., .86., .73., .75., .80., .62., .75., .58., .81., .82.,

.83., .92., .75., .73., .68., .74., .61., .70., .91., .95., .71., .86., .75., .33.,

.75., .61., .57

R-INLA code

The following code indicates the workflow and includes the model calls to

R-INLA.

#Install packages "INLA" from "http://www.r-inla.org/download"

#Get and process data and adjacency matrix

formula = Y -1 + Node.Name + f(Expert.No,model="iid") + f(Node.No,

model="bym2",graph=adj)

result = inla(formula,data=data,family=c("beta","binomial"), Ntrials

= data$n,control.fixed=list(prec.intercept=0.1,prec=0.1), verbose=

FALSE,control.predictor = list(compute=T, link=1))

#Plot the required marginal posterior probabilities
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#Fit the model without random effects and compare the IQRs

formula2 = Y -1 + Node.Name

result2 = inla(formula2,data=data,family=c("beta","binomial"), Ntrials

= dat$n,control.fixed=list(prec.intercept=0.1,prec=0.1), verbose=FALSE,

control.predictor = list(compute=T, link=1))

print((result$summary.fitted.values”0.975quant”[5000 : 5050]−
result$summary.fitted.values"0.025quant"[5000:5050])/

(result2summary.fitted.values"0.975quant"[5000:5050]-

result2summary.fitted.values"0.025quant"[5000:5050]))

#Plot the different posterior consensus probabilities for the individual

nodes
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