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On the Capacity and Normalisation of ISI Channels
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Abstract— We investigate the capacity of various ISI channels
with additive white Gaussian noise. Previous papers showed
a minimum Eb/N0 of −4.6 dB, 3 dB below the capacity of
a flat channel, is obtained using the water-pouring capacity
formulas for the 1 + D channel. However, these papers did
not take into account that the channel power gain can be
greater than unity when water-pouring is used. We present a
generic power normalization method of the channel frequency
response, namely peak bandwidth normalisation, to facilitate the
fair capacity comparison of various ISI channels. Three types
of ISI channel, i.e., adder channels, RC channels and magnetic
recording channels, are examined. By using our channel power
gain normalization, the capacity curves of these ISI channels are
shown.

Index Terms— Capacity, Normalisation, ISI.

I. I NTRODUCTION

CALCULATING the capacity of various ISI channels has
been an interesting research topic for some time. For

calculation of the channel capacity, the unit energy impulse re-
sponse of the channel (unit energy normalisation) is commonly
used. For a flat channel, the transmit power to the receive
power ratio is unity when using unit energy normalisation
(UEN). However, the power gain can be greater than unity
when the water-pouring formulas are used to calculate the
capacity of ISI channels. In [1], a minimumEb/N0 of −4.6
dB was shown for the1 + D ISI channel, 3 dB below the
capacity of a flat channel. The authors made the statement
that “the ISI channel in this example is normalised with unit
energy and thus does not provide any power gain by itself”.
This paper did not take into account that the channel power
gain can be greater than unity for the1+D ISI channel when
using a water-pouring spectrum for the transmit power. Similar
results were obtained for the1−D Dicode channel in [2] and
in [3] [4] where capacity was plotted againstEs/N0.

In this paper, we examine the water-pouring capacity and
channel normalisation of ISI channels. When water-pouring is
used, the transmit power is not flat for a non-flat channel.
Significant portions of the transmit power is concentrated
near the peak of the channel frequency response. Since the
maximum power gain is different for various ISI channels, itis
not fair to compare the capacity of the unit energy normalised
channel when the water-pouring formulas are used. We present

Wei Xiang is with the Institute for Telecommunications Research, Uni-
versity of South Australia, Mawson Lakes SA 5095, Australia. E-mail:
wei@spri.levels.unisa.edu.au.

Steven S. Pietrobon is with the Institute for Telecommunications Research,
University of South Australia, Mawson Lakes SA 5095, Australia. He is also
with the Small World Communications, 6 First Avenue, Payneham South, SA
5070, Australia. E-mail:steven@sworld.com.au.

This work was carried out with financial support from the Commonwealth
of Australia through the Cooperative Research Centres Program. The material
in this paper will be presented in part at IEEE ICC2003, Anchorage, Alaska,
USA, May 2003.

a novel frequency response normalisation method which is
physically meaningful and suitable for generic ISI channels.
Compared to unit energy normalisation, our proposed channel
normalisation method ensures no particular channel model has
a gain over another one.

II. CAPACITY

For a flat additive white Gaussian noise (AWGN) channel,
it is well known that the capacity for this channel is

C = W log2

(

1 +
S

N

)

, (1)

whereC is the capacity in bit/s,W is the bandwidth in Hz
andS/N is the signal to noise ratio.

For any channel that has a non-flat frequency response, we
can use the water-pouring formulas to calculate its capacity.
There is also another method for water-filling using the Kuhn-
Tucker approach in [5]. According to the water-pouring theo-
rem, the capacity at costS of a channel with noise spectrum
N(f) and input filterH(f) is given in terms of a parameter
θ [6]–[8]

C(S) =
1

2

∫ +∞

−∞

max

[

0, log2

θ

N(f)/ |H(f)|2

]

df (2)

S =

∫ +∞

−∞

max

[

0, θ − N(f)

|H(f)|2

]

df, (3)

whereC(S) is the capacity in bit/s andS is the transmitted
power in Watts. Fig. 1 illustrates the water-pouring formulas.
The “water” poured into the shaded area is the transmit power
S. Note that|H(f)|2 represents the power gain with frequency
for the channel. For an active channel this gain can be greater
than unity, whereas it can be less than unity for a passive
channel.
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Fig. 1. Water-pouring illustration
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The m-tap ISI channel is usually modelled as

y(k) =
m−1
∑

i=0

h(i)x(k − i) + n(k), (4)

wherex(k) is the channel input,y(k) is the channel output,
n(k) is AWGN and the ISI channel is normalised using unit
energy so that

∑m−1

i=0
|h(i)|2 = 1.

For example, the spectrum of the 2-tap 1+D ISI channel is

H(f) =







1√
2

[

1 + e−j2πfT
]

;−W ≤ f ≤ W

0 ;−W > f > W
(5)

where T is the symbol period and with perfect Nyquist
signaling2WT = 1. The AWGN spectrum isN(f) = N0/2
Watt/Hz. For|f | ≤ W we have|H(f)|2 = 1 + cos(πf/W ).
The frequency responses of the 3-tap and 4-tap ISI channels
are |H(f)|2 = ((1 + 2 cos(πf/W ))2/3 and |H(f)|2 =
2 cos2(πf/W ) + 2 cos3(πf/W ), respectively. We plot the
frequency responses of these three ISI channels in Fig. 2 with
W = 1 Hz. Note that the peak of the frequency response is
equal tom, the number of tap settings.
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Fig. 2. Frequency response of three adder channels.

To determine the integration range for a givenθ, we let
θ = N(w)/|H(w)|2, wherew are the “bowl” edges. For the
1 + D channel we have the edges at−w andw where

θ =
N0/2

1 + cos(πf/W )
, (6)

and (2) and (3) can be simplified into

C(S) =
1

2

∫ +w

−w

log2

[

2θ(1 + cos (πf))

N0

]

df (7)

S = 2wθ − N0W

π
tan

( πw

2W

)

. (8)

For (7), the appropriate change of variables and the utili-
sation of [9, integrals 4.292.1 and 4.292.3] will yield closed
form solutions forω = 1/2 and ω = 1. For other values of
ω, numerical integration is used to plot the capacity curve.
We have that the energy per bit at capacity isEb = S/C(S)
and normaliseW to 1 Hz andN0 to 1 W/Hz. We plotC(S)
versusEb/N0 in Fig. 3. Also plotted are the capacities of the

3-tap ISI, 4-tap ISI and flat AWGN channel. Note that the
frequency responses of the three ISI channels are normalised
with unit energy. As can be seen, the minimumEb/N0 for the
1+D channel is−4.6 dB, 3 dB below that of the flat channel
of −1.6 dB. With a few more derivations, it can be shown that
the minimumEb/N0 using water-pouring isln(2)/|H(fp)|2
where fp is the frequency at which|H(fp)|2 is maximum.
For an m-tap adder channel, this gives a minimumEb/N0 of
ln(2)/m when all the taps are equal.
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Fig. 3. Capacity of adder channels with unit energy normalisation.

For the 1 + D channel with unit energy normalisation,
the maximum output to input power ratio is 2, although the
average power gain over the whole frequency is 1. When the
transmitter uses a water-pouring spectrum, a significant portion
of the power is concentrated near the peak of the impulse
response of the ISI channel. For the1 + D channel, it is the
maximum output to input power ratio of 2 that accounts for
the 3 dB “gain” in the low-rate Shannon limit, relative to that
of the flat channel with the unit energy frequency response.

The problem of conventional unit energy normalisation for
ISI channels is that it neglects the fact that the maximum power
gain can be greater than unity, and thus does not provide a
fair capacity comparison for generic ISI channels. As can be
shown, the minimumEb/N0 of an m-tap channel can be minus
infinity when m goes up to infinity. Thus, it is not fair to
compare the water-pouring capacity of a 2-tap channel with a
maximum power gain of 2 with that of a 3-tap channel with
a maximum power gain of 3. Therefore, a more well rounded
power normalisation than unit energy normalisation is needed
for the fair comparison of the capacities among generic ISI
channels.

III. N ORMALISATION

A general communication system is depicted in Fig. 4.
The transmit powerST is

ST =

∫ +∞

−∞

max

[

0, θ − N(f)

|H(f)|2

]

df, (9)

The receive powerSR is given by

SR =

∫ +∞

−∞

max
[

0, θ |H(f)|2 − N(f)
]

df, (10)
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Fig. 4. Block diagram of ISI communications system

The channel power gain is defined asSR/ST . For a non-ISI
channel or an ISI channel using a flat transmit power spectrum,
the channel power gain is

SR

ST

=

∫ +∞

−∞

|H(f)|2 df, (11)

which is usually normalised to unity.
However, for an ISI channel it is a function ofθ. One should

be aware that the channel gain can be greater than unity in
frequency ranges near the peak of the frequency response.
One should therefore look only atST as that allows us to
determine total transmit power without having to worry about
θ.

When dealing with real channels, it is common to normalise
the frequency response so that the maximum value is unity.
Thus, we shall also normalise the power frequency to unity.
This ensures that the minimumEb/N0 is always−1.6 dB.

The questions then remains as to what frequency normal-
isation to use. The technique should be applicable to finite
bandwidth schemes such as m-tap ISI channel models and
channel models with infinite bandwidths. For many non-flat
channels, the “bandwidth” of the channel is usually given at
the −3 dB (0.5) edges. We could also normalise the channel
such that

∫ +∞

−∞
|H(f)|2df = 2. The former is simpler for

channels with infinite bandwidths and the latter is simpler for
m-tap ISI channels. Since our ultimate aim is to find capacities
of real channels, we have chosen the former since it is more
realistic. That is, we shall normalise the frequency response
such that the−3 dB bandwidth is 1 Hz. We shall call this
peak bandwidth normalisation (PBN).

Given the frequency response of an m-tap ISI channel with
unit energy normalisation|H(f)|2, the frequency response
with peak bandwidth normalisation|G(f)|2 is

|G(f)|2 =
1

M

∣

∣

∣

∣

H

(

f

n

)
∣

∣

∣

∣

2

, (12)

where M is the maximum value of|H(f)|2 and n is the
scaling factor which makes the−3 dB bandwidth of|G(f)|2
equal to 1. Normalisation by the maximum value ensures the
channel maximum power gain is unity. Thus, no particular
channel has a gain over another channel in the frequency
ranges where the transmit power is concentrated. Fig. 5 shows
the frequency responses of the channels in Fig. 2 after applying
the proposed peak bandwidth normalisation.

Note that if a flat transmit power spectrum is used we have
SR/ST = 1/M with peak bandwidth normalisation, where
the transmit bandwidth is from -n to n Hz. This is not a fair
comparison where flat transmit power is used. Thus, when
using flat transmit power, the unit energy spectrum should
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Fig. 5. Normalised frequency response of adder channels.

be used to calculate the information rate of the channel.
For water-pouring though, we believe the peak bandwidth
spectrum is a more fair basis of comparison.

IV. N UMERICAL RESULTS

In this section, we present numerical simulation results for
the capacities of three types of ISI channels, namely the adder
channels, RC channels and magnetic recording channels.

Fig. 6 showed the capacities of the three adder ISI channels,
C(S) in bit/s. We haveM = 2, 3, and 4 andn = 2, 3.2201
and 4.3918 for the 2, 3, and 4-tap adder channels.

An important point to note in Fig. 5 is that at highEb/N0

the water-pouring capacity is greater than the flat channel
capacity. This is directly due to the bandwidth expansion of
the ISI channels at highEb/N0, even though for the1 + D
channel for example,

∫ +∞

−∞
|G(f)|2df = 2 is the same as for

the flat channel. The transmit power after peak bandwidth
normalisationS′ is

S′ =

∫ +∞

−∞

max

[

0, θ − N(f)

(1/M)|H(f/n)|2
]

df (13)

= Mn

∫ +∞

−∞

max

[

0,
θ

M
− N0/2

|H(F )|2
]

dF, (14)

where F = f/n and dF = (1/n)df . The capacity power
C(S′) after peak bandwidth normalisation is

C(S′) =

∫ +∞

−∞

max

[

0, log2

(θ/M)|H(f/n)|2
N0/2

]

df (15)

= n

∫ +∞

−∞

max

[

0, log2

(θ/M)|H(F )|2
N0/2

]

dF. (16)

Dividing (14) by (16), we have

S′

C(S′)
= M

S

C(S)
. (17)

Therefore, the curves in Fig. 6 are shifted byM to the
right from the curves in Fig. 3. However, the capacityC(S′)
is increased byn. As shown later, when the actual bandwidth
efficiency is taken into account,C(S′)/w′ = C(S)/w. That
is, the ISI capacity is always below flat channel capacity.
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Fig. 6. Capacity in bit/s of adder channels.

The water-pouring capacities plotted in Fig. 3 assume that
the bandwidth is equal toW which is normalised to 1 Hz.
However, if the transmitter uses the water-pouring spectrum,
then we can normalise the capacity with the actual bandwidth
used. In Fig. 7, we plot the bandwidth efficiencyC(S)/w
(bit/s/Hz) wherew is the “bowl” edge. For 3-tap and 4-tap
channels, the side lobes are not included for high SNR as
bandwidth efficiency is reduced due to the large increase in
bandwidth. That is, the maximum integration limits were set
to -2.1467 to 2.1467 for the 3-tap peak bandwidth channel and
-2.1959 to 2.1959 for the 4-tap peak bandwidth channel.
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Fig. 7. Bandwidth efficiency in bit/s/Hz of adder channels.

Three types of RC channels were considered in this re-
search,i.e., the 1/(1 + f2) channel, the1/(1 + f4) channel
and the1/(1 + f6) channel. The impulse responses of these
channels are plotted in Fig. 8. Note that the−3 dB bandwidth
is normalised to 1 Hz. The RC name comes from the fact that
these channels can be modelled by resistor capacitor networks.

Figs. 9 and 10 show the capacityC(S) in bit/s and the
bandwidth efficiency in bit/s/Hz of the RC channels.

For RC channels, as the channel frequency spectrum be-
comes more square, the capacity approaches that of the flat
channel.
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Fig. 8. Normalised frequency response of RC channels.

−2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
b
/N

0
(dB)

C
ap

ac
ity

 C
(S

):
 b

it/
s

1/(1+f2)
1/(1+f4)
1/(1+f6)
non−ISI

Fig. 9. Capacities C(S) in bit/s of RC channels.

Also considered are the Dicode (1−D), PR4 (1−D2) and
EPR4(1 − D)(1 + D2) magnetic recording channel models.
The unit energy frequency responses are|H(f)|2 = 2(1 −
cos(πf/W )), 2(1−cos2(πf/W )), and2(1−cos(πf/W ))(1+
cos2(πf/W )), respectively. For partial response channels,
inputs are constrained to the set of−1, 1. The input can
be spectrally shaped by using precoding. Since water-pouring
assumes Gaussian inputs, the capacities in this paper are upper
bounds to the binary input capacity. In [10], an expectation-
maximization method was proposed to find tight lower bounds
on the capacities of Markov sources over partial response
channels.

Fig. 11 shows the frequency responses of the partial re-
sponse (PR) channels with unit energy normalisation. Fig. 12
shows these frequency responses with peak bandwidth nor-
malisation. We haveM = 2, 2 and 2.3704 andn = 2, 2
and 2.3901 for the Dicode, PR4, and EPR4 channel models,
respectively.

Fig 13 shows the capacityC(S) in bit/s of the partial
response channels using UEN. The Dicode and PR4 capacities
are the same. However, the EPR4 capacity is quite different.
The capacity and bandwidth efficiency of partial response
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Fig. 10. Bandwidth efficiency C(S)/w in bit/s/Hz of RC channels.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

Frequency

A
m

pl
itu

de

Dicode
PR4   
EPR4  

Fig. 11. Frequency response of PR channels.
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Fig. 12. Normalised frequency response of PR channels.

channels using PBN are shown in Figs. 14 and 15. One
can notice both the capacity curves and bandwidth efficiency
curves are very close to each other after applying the pro-
posed power normalisation. We see that UEN gives different
capacities for different channel models, whereas PBN gives
similar capacities for different channel models. For instance,

Dicode, PR4 and EPR4 are three different models of the same
physical magnetic recording channel. We believe the three
channel models should have similar capacities since they are
modelled for the same physical channel. That is, PBN gives
us similar capacities for the same physical channel, compared
to UEN which can give quite different capacities for channel
models of the same physical channel.
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Fig. 13. Capacities C(S) in bit/s of PR channels using UEN.
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Fig. 14. Capacities C(S) in bit/s of PR channels using PBN.

V. CONCLUSIONS

The unit energy normalised channel frequency response has
an average power gain of unity over the whole bandwidth
of the channel. That is not a problem when the frequency
response is flat or the transmitter uses a flat power spectrum.
However, the channel gain can be greater than unity when
water-pouring is used to calculate the channel capacity.

With peak bandwidth normalisation proposed in this paper,
the maximum channel power gain is normalised to 1 and the
−3 dB (0.5) bandwidth of the channel frequency response is
normalised to 1 Hz. Thus when water-pouring is performed,
no particular ISI channel has a gain over another one. This
normalisation can be used as a criterion of fair capacity
comparison among generic ISI channels.
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Fig. 15. Bandwidth efficiency C(S)/w in bit/s/Hz of PR channels using PBN.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Alex Grant and Prof.
Paul Siegel for their discussions and comments.

REFERENCES

[1] Y.-J. A. Zhang and X.-G. Xia, “Joint turbo and modulated code encoding
decoding for ISI channels,” inProc. IEEE Int. Symp. Inform. Theory,
Washington, DC, USA, p. 266, June 2001.

[2] H. D. Pfister, J. B. Soriaga, and P.H. Siegel, “On the achievable informa-
tion rates of finite state ISI channels,” inProc. GLOBECOM 2001, vol.
5, San Antonio, TX, USA, Nov. 2001, pp. 2992 -2996.

[3] D. Arnold and H. Loeliger, “On the information rate of binary-input
channels with memory,” inProc. IEEE Int. Conf. Commun., vol.9, pp.
2692-2695, Helsinki, Finland, June 2001.

[4] P. O. Vontobel and D. M. Arnold, “An upper bound on the capacity
of channels with memory and constraint input,” inProc. IEEE Inform.
Theory Workshop, pp. 147-149, Cairns, Australia, Sept. 2001.

[5] T. M. Cover and J. A. Thomas,Elements of Information Theory. New
York: Wiley, 1991.

[6] R. M. Gray, “On the asymptotic eigenvalue distribution ofToeplitz
matrices,”IEEE Trans. Inf. Theory, vol. IT-18, pp. 725-730, Nov. 1972.

[7] B. S. Tsybakov, “On the transmission capacity of a discrete-time Gaussian
channel with filter,”Prob. Peredachi Informatzii, pp. 78-82, 1970.

[8] R. E. Blahut, Principles and Practice of Information Theory. Mas-
sachusetts: Addison-Wesley, 1987.

[9] I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and
Products. New York: Academic Press, 1980.

[10] A. Kavcic, “On the capacity of Markov sources over noisychannels,”
in Proc. GLOBECOM 2001, vol. 5, San Antonio, TX, USA, Nov. 2001,
pp. 2997-3001.

Wei Xiang (S’01) was born in Jingdezhen, China in 1975. He received the
B.Eng. and M.Eng. degrees in electronic engineering from the University of
Electronic Science and Technology of China in 1997 and 2000,respectively. In
July 2000, he was awarded an international postgraduate research scholarship
to study towards a Ph.D. degree in the Institute for Telecommunications
Research, University of South Australia. He is currently a member of
Cooperative Research Centre for Satellite Systems (CRCSS).

His research interests include joint source-channel coding and decoding,
wireless multimedia communications and error control coding.

Steven S. PietrobonDr. Pietrobon was born in Naracoorte, South Australia
on 5 October 1963. He received the B.Eng. and M.Eng. degrees in electronic
engineering from the South Australian Institute of Technology (SAIT, now
University of South Australia), Adelaide, South Australiain 1986 and 1989,
respectively, and the Ph.D. degree in electrical engineering from the University
of Notre Dame, Notre Dame, Indiana, U.S.A., in 1991. He received a SAIT
Medal for outstanding academic achievement for his B.Eng. degree.

In 1991 he joined the Australian Space Centre for Signal Processing,
University of South Australia as a Research Fellow. In 1993 he was awarded
a three year Australian Postdoctoral Research Fellowship at the University
of South Australia. In 1997 he started his own business “SmallWorld
Communications” developing error control decoders for programmable gate
arrays. Dr. Pietrobon also became Adjunct Research Fellow atthe Institute
for Telecommunications Research, University of South Australia in 1997. In
2000 he was promoted to Adjunct Senior Research Fellow. From 1996-1999
he was a Coding Theory and Techniques Editor for the IEEE Transactions on
Communications. He is currently a member of the organising committee of
the IEEE 2004 International Symposium on Spread Spectrum Techniques and
Applications. His research interests include convolutional, trellis, and turbo
coding and implementation of Viterbi, trellis, MAP, and turbodecoders.


