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A B S T R A C T   

Background: Epilepsy is one of the most common neurological conditions globally, and the fourth most common 
in the United States. Recurrent non-provoked seizures characterize it and have huge impacts on the quality of life 
and financial impacts for affected individuals. A rapid and accurate diagnosis is essential in order to instigate and 
monitor optimal treatments. There is also a compelling need for the accurate interpretation of epilepsy due to the 
current scarcity in neurologist diagnosticians and a global inequity in access and outcomes. Furthermore, the 
existing clinical and traditional machine learning diagnostic methods exhibit limitations, warranting the need to 
create an automated system using deep learning model for epilepsy detection and monitoring using a huge 
database. 
Method: The EEG signals from 35 channels were used to train the deep learning-based transformer model named 
(EpilepsyNet). For each training iteration, 1-min-long data were randomly sampled from each participant. 
Thereafter, each 5-s epoch was mapped to a matrix using the Pearson Correlation Coefficient (PCC), such that the 
bottom part of the triangle was discarded and only the upper triangle of the matrix was vectorized as input data. 
PCC is a reliable method used to measure the statistical relationship between two variables. Based on the 5 s of 
data, single embedding was performed thereafter to generate a 1-dimensional array of signals. In the final stage, 
a positional encoding with learnable parameters was added to each correlation coefficient’s embedding before 
being fed to the developed EpilepsyNet as input data to epilepsy EEG signals. The ten-fold cross-validation 
technique was used to generate the model. 
Results: Our transformer-based model (EpilepsyNet) yielded high classification accuracy, sensitivity, specificity 
and positive predictive values of 85%, 82%, 87%, and 82%, respectively. 
Conclusion: The proposed method is both accurate and robust since ten-fold cross-validation was employed to 
evaluate the performance of the model. Compared to the deep models used in existing studies for epilepsy 
diagnosis, our proposed method is simple and less computationally intensive. This is the earliest study to have 
uniquely employed the positional encoding with learnable parameters to each correlation coefficient’s embed-
ding together with the deep transformer model, using a huge database of 121 participants for epilepsy detection. 
With the training and validation of the model using a larger dataset, the same study approach can be extended for 
the detection of other neurological conditions, with a transformative impact on neurological diagnostics 
worldwide.   
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1. Introduction 

Epilepsy is a common neurological condition affecting over 65 
million people of all ages worldwide [1]. The Global Burden of Epilepsy 
Report estimates over 13 million disability-adjusted life years due to 
epilepsy each year, demonstrating that epilepsy is one of the top prior-
ities for improved care globally [2]. In particular, there is a huge 
disparity between healthcare outcomes related to epilepsy in high and 
low to middle-income countries: over 80% of the global 125 000 deaths 
per year related to epilepsy are in low and middle-income countries. 
Delays in diagnosis and inadequate access to treatment and monitoring 
are major challenges in epilepsy care worldwide, especially in low and 
middle-income countries with significant shortages of appropriately 
trained diagnostic and clinical staff. Thus efforts to improve access and 
quality of epilepsy diagnostics are of utmost importance to address this 
health inequity challenge [3]. 

Epilepsy is characterized by recurrent non-provoked seizures, rep-
resented by short, excessive discharges of electrical activity in the brain, 
that impact an individual’s behavior, awareness, cognition and/or 
motor control [4]. During a seizure, the normal balance between exci-
tation and inhibition in the brain is disrupted, which can be detected by 
electroencephalogram (EEG) recordings. There are multiple causes of 
such an imbalance [5]. Globally the leading diagnosable causes of epi-
lepsy are acquired causes, for example, cerebral infarcts or bleeds, tu-
mors or cerebral infections including intrauterine ‘TORCH’ (toxoplasma, 
rubella, cytomegalovirus, and herpes) infections, viral or bacterial 
meningitis and encephalitis and complications related to pregnancy and 
birth including hypoxia-ischemia related to perinatal complications [6]. 
However, it is now recognized that for a growing number of individuals, 
an underlying genetic cause can be identified: the highest genetic 
diagnostic yield is for developmental and epileptic encephalopathies 
(DEEs), which are defined by the International League Against Epilepsy 
as the fusion of severe epilepsy with an impact on development [7]. Over 
600 individual genes have been linked to epilepsy, with that number 
growing each week: many genes encode proteins important for neuronal 
development and synaptic function, such as ion channels [8]. 

1.1. Current diagnostic methods 

The prompt and correct diagnosis of epilepsy is imperative for 
effective treatment and monitoring. The primary diagnostic method for 
epilepsy is the recording and characterization of electroencephalogram 
(EEG) signals. Additionally, neuroimaging, for example, structural and 
functional neuroimaging techniques such as magnetic resonance imag-
ing (MRI), computed tomography (CT), positron emission tomography 
(PET), single-photon emission computed tomography (SPECT) scans are 
helpful in identifying underlying structural abnormalities, and a screen 
of blood, urine and cerebrospinal fluid, as well as increasingly genetic 
tests, are often employed to identify the underlying cause for epilepsy 
[9]. The process of acquiring EEG signals is noninvasive and relatively 
inexpensive [10]. The accurate analysis of EEG signals requires high 
sensitivity, given, for example, that individual epileptic spikes, reflect-
ing electrical imbalances, last only about 20–70 ms [11]. However, the 
major challenge in epilepsy diagnosis lies with the limited numbers of 
trained diagnostic and clinical neurological experts, especially in 
developing countries, who have the appropriate skills to accurately 
interpret EEG signals to ensure correct diagnoses are made in a timely 
manner so that appropriate anti-seizure medications can be started and 
treatment monitored. Hence, there is an urgent need for the automatic 
analysis of EEG signals to mitigate the challenges of supporting, facili-
tating and expediting the diagnosis of epilepsy in all countries world-
wide [12]. 

1.2. Related work using traditional machine learning techniques with EEG 
signals 

Recently, machine learning techniques are emanating as crucial 
supportive tools in the automated diagnosis of EEG signals [13]. For 
instance, Acharya et al. [14] explored various types of entropy-based 
features with seven conventional classifiers for detecting seizures. In 
another study, Chen et al. [15] investigated eight different types of en-
tropy features for the classification of ictal, inter-ictal, and normal EEG 
classes and achieved an accuracy of 99.5%. In a different study, Selva-
kumari et al. [16] similarly investigated the entropy feature, root mean 
square, variance, and energy features. A classification accuracy of about 
96% was obtained with the support vector machine (SVM) and naïve 
Bayesian classifiers. Other authors have zealously explored other ap-
proaches; for instance, Satapathy et al. [17] developed the SVM and 
neural network classifiers using different kernel methods for seizure 
detection. The performance of each classifier was assessed using ma-
jority voting, wherein the SVM classifier was reported to be more 
capable than other networks. Contrastingly, Subasi et al. [64] investi-
gated a hybrid approach involving the SVM classifier, genetic algorithm, 
and particle swarm optimization for seizure detection. While an 
impressively high accuracy of about 99.4% was achieved, the authors 
concur that the proposed method is time-consuming due to the classifier 
needing to train the dataset twice, for the SVM with genetic algorithm 
and particle swarm optimization, respectively. In a recent study, Tasci 
et al. [13] proposed a novel hypercube-based feature extraction tech-
nique for extracting seven feature vectors. The most discriminatory 
features were selected using the neighbourhood component analysis 
selector, wherein the best features were fed to the k-nearest neighbor 
classifier, with the leave one subject out cross-validation strategy. The 
authors reported a high classification accuracy of about 88%. More 
studies on the successful implementation of conventional 
machine-learning techniques for epilepsy detection are discussed in the 
article by Tasci et al. [13]. While many articles on machine learning 
techniques are being employed for seizure detection [65], Natu et al. 
[18] contended that implementing advanced deep learning methods 
mitigates the challenges posed by traditional machine learning algo-
rithms due to the reduced computational complexity of deep models. 

Deep learning methods combine feature extraction and classification 
processes, unlike conventional classifiers, reducing computational cost 
and complexity. For these reasons, deep learning models are favored 
over conventional classifiers. Table 1 summarizes recent studies (past 
five years; 2019–2023) that employed deep learning methods for epi-
lepsy detection. 

2. Methodology 

Recurrent neural networks are widely recognized as a state of the art 
techniques in sequence modeling and transduction intricacies [57]. 
Recurrent networks work by considering the symbol locations of the 
input and output sequences. These networks produce a series of hidden 
states ht, as a function of the preceding hidden state, ht− 1, and in the 
input for position t, as they arrange the positions to steps during 
computation [57]. Recent work has achieved substantial improvements 
in computational efficiency through factorization tricks [58] and con-
ditional computation [59] hence enhancing the performance of models 
due to the second-mentioned factor. However, despite these improve-
ments, the basic limitation of sequential computations still remains. 

Attention mechanisms have become an essential element of persua-
sive sequence modeling and transduction models in innumerable tasks, 
enabling the modeling of dependencies without consideration of the 
distance in the input or output structures [60]. Hence, such attention 
mechanisms are usually employed in combination with a recurrent 
network. To mitigate the challenges of recurrent models, Vaswani et al. 
[57] proposed a unique Transformer model, which works entirely based 
on the attention mechanism to generate global dependencies between 
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Table 1 
Summarized studies that employed deep learning methods with EEG signals for 
epilepsy detection.  

Author, year Features and 
methods 

Participant/ 
data 
information 

Findings/Results 

Yao et al. [19], 
2019  

• Independently 
recurrent neural 
network  

• Extraction of 
spatial and 
temporal features 

686 EEG 
recordings from 
23 subjects; 
CHB-MIT 
database 

The proposed 
approach 
outperforms 
current 
techniques 

Avcu et al. [20], 
2019  

• SeizNet 
(Convolutional 
neural network)  

• Implementation of 
baseline classifier 
using spectrum 
band power 
features with 
support vector 
machines  

• Leave-one-out 
cross validation 
technique 

EEG data from 
29 paediatric 
patients; KK 
Woman’s and 
Children’s 
Hospital 

SeizNet 
outperforms the 
baseline classifier 
with a higher 
sensitivity of 
95.8% and 17% 
false alarm per 
hour. 

Yao et al. [21], 
2019  

• Integration of 
recurrent neural 
network and 
attention 
mechanism  

• Leave-one-out 
cross validation 
technique 

EEG data from 
CHB-MIT 
dataset 

Average 
sensitivity, 
specificity, 
precision: 88.8%, 
88.60%, 88.69% 
respectively. 

Lesmantas et al. 
[22], 2019  

• Convolutional 
neural network 
(CNN)  

• Phase locking 
value, entropy, 
energy features  

• Area under the 
curve 

EEG data from 
Temple 
University 
Hospital 

Sensitivity, 
specificity: 68%, 
67% respectively 

Covert et al. 
[23], 2019  

• Temporal graph 
convolutional 
network  

• Five performance 
metrics 

Scalp EEG data 
from 1063 
patients 

Proposed model 
performs as well 
as other state-of- 
the-art models. 

Hussein et al. 
[24], 2019  

• Deep long short- 
term memory 
model  

• Fully connected 
layer for extraction 
of robust EEG 
features  

• SoftMax layer for 
prediction 

5 different sets 
of EEG datasets 
from Bonn 
University EEG 
database 

Accuracy, 
sensitivity, 
specificity: 100% 
respectively 

Hossain et al. 
[25], 2019  

• Deep CNN  
• Extraction of 

spatial and 
temporal features  

• Correlation maps 
to link spectral 
amplitude features 
to output data 

EEG dataset of 
23 patients from 
Boston 
University 
Hospital 

Accuracy, 
sensitivity, 
specificity: 
98.05%, 90,% 
91.65% 
respectively 

Emami et al. 
[26], 2019  

• Patient-specific 
autoencoder 
model  

• Error in 
segmentation of 
images used for 
seizure detection 

EEG dataset 
comprising 24 
test subjects 

Sensitivity (22 
test subjects): 
100% 
Proposed model 
performed better 
than 
commercially 
available 
software for half 
the subjects. 

San- Segundo 
et al. [27], 
2019  

• CNN  
• EEG signal 

transformations 
such as Fourier, 

Bern-Barcelona 
EEG, Epileptic 
seizure 

Proposed method 
yielded an 
increase in 
accuracies for  

Table 1 (continued ) 

Author, year Features and 
methods 

Participant/ 
data 
information 

Findings/Results 

wavelet, empirical 
model 
decomposition 

recognition 
datasets 

seizure versus 
non-seizure 
classification. 

Akut [28] 2019  • Wavelet based 
deep learning 
method for feature 
extraction  

• 2-class and 3-class 
classifications 

EEG dataset Accuracy: 100% 
Proposed model 
is more accurate 
than current 
state-of-the-art 
methods 

Turk & Ozerdem 
[29] 2019  

• Scalogram based 
CNN  

• Continuous 
wavelet transform 

Bonn University 
EEG database 

Proposed method 
is efficient is 
discerning EEG 
signals of 
different classes. 

Liu & Woodson 
[30] 2019  

• CNN  
• Single channel 

EEG 

Publicly 
available 
dataset: 5 sets 
consisting of 
100 single 
channel EEG 
segments of 
23.6 s 

Accuracy: >90% 

Tian et al. [31], 
2019  

• Deep multi-view 
feature extraction  

• Fast Fourier 
Transform and 
wavelet packet 
decomposition  

• CNN  
• Multi-view rule- 

based classifier 

EEG dataset Proposed method 
yields an 
improved 
classification 
accuracy of at 
least 1% 
compared to 
prevalent feature 
extraction 
methods. 

Cao et al. [32], 
2019  

• CNN  
• Mean amplitude of 

spectrum map  
• Adaptive and 

discriminative 
feature weighting 
fusion 

CHB-MIT EEG 
database 

Proposed 
algorithm yields 
superior results 
than other 
existing 
algorithms. 

Boonyakitanont 
et al. [33], 
2019  

• Convolution 
neural networks  

• Artificial neural 
networks  

• Concatenation of 
dominant features 

CHB-MIT EEG 
database 

Both models 
yielded a high 
accuracy of about 
97%, with ANN 
generating more 
dominant 
features than 
CNN and CNN 
yielding a slightly 
higher accuracy 
than ANN. 

Craley et al. 
[34], 2019  

• Hybrid 
probabilistic 
graphical model 
convolutional 
neural network  

• Clinically 
pertinent 
information 
retained through 
the latent PGM 
prior 

Clinical EEG 
data from 
hospitals 

Proposed system 
generates better 
results than 
existing systems 

Lu & Triesch. 
[35], 2019  

• CNN with residual 
connections  

• Model trained 
using raw EEG 
data 

EEG datasets 
from Bonn 
University and 
Bern-Barcelona 

Developed model 
achieved an 
accuracy of 99%. 

Wei et al. [36], 
2019  

• CNN  
• Merger of 

increasing and 
decreasing 
sequences  

• Wasserstein 
Generative 
Adversarial Nets 

CHB-MIT EEG 
database 

Proposed data 
augmentation 
technique 
increases the 
model’s 
sensitivity and 
specificity from 
70.68% to 

(continued on next page) 
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Table 1 (continued ) 

Author, year Features and 
methods 

Participant/ 
data 
information 

Findings/Results 

data augmentation 
technique 

92.03%–72.11% 
and 95.89% 
respectively. 

Meisel et al. 
[37], 2019  

• Multimodal 
wristband sensor 
data  

• Recording of 
physiological 
parameters from 
epilepsy patients  

• CNN  
• Leave-one-out 

validation 

Sensor data 
from 50 patients 
with epilepsy 

Proposed method 
achieved an 
accuracy of 
86.3% and paves 
the way towards 
developing easier 
and non-invasive 
methods for 
seizure risk 
assessments in 
epileptic patients. 

Roy et al. [38], 
2019  

• Recurrent neural 
network, 
ChronoNet  

• 1D convolution 
layers, deep gated 
recurrent unit 

TUH Abnormal 
EEG Corpus 
dataset 

Proposed 
technique yields 
an accuracy of 
90.6%. 

Karim et al. [39], 
2019  

• Autoencoder deep 
model  

• Energy spectral 
density function 

Medical EEG 
waveform 
datasets 

Proposed 
technique lowers 
the processing 
time of model and 
increases 
accuracy, 
yielding an 
accuracy of 
100%. 

Fukumori et al. 
[40], 2019  

• Neural networks  
• Data-driven filter 

bank with 
supervised 
learning  

• Area under the 
receiver operating 
characteristic 
curve 

Clinical EEG 
data (15 833 
epileptic spike 
waveforms) 
from 50 patients 

Proposed method 
yielded an area 
under the 
receiver 
operating 
characteristic 
curve of about 
0.97. 

Choi et al. [41], 
2019  

• Multi-scale 3- 
dimensional CNN 
with deep neural 
network  

• Short Time Fourier 
Transform for 
extraction of 
spectral features  

• Extraction of 
spatial and 
temporal features 

CHB-MIT & 
Seoul National 
University 
Hospital Scalp 
EEG databases 

Developed model 
yielded an 
accuracy of 
99.4%. 

Liu et al. [42], 
2019 

•6 conventional 
machine learning 
models 
•3 deep neural 
networks 
•Area under the 
curve 

Epileptic seizure 
recognition 
dataset (4097 
EEG readings 
from 500 
patients) 

Ensemble 
classifiers, 
random forest 
and gradient 
boosting 
classifiers yielded 
an accuracy 
above 95%. Deep 
learning models 
outperformed 
machine learning 
models in multi- 
label 
classification 
tasks. 

Zhao et al. [43], 
2020  

• CNN (one 
dimensional)  

• Two, three, and 
five class 
classifications of 
EEG signals 

EEG dataset 
from Bonn 
University (five 
different sets of 
EEG signals) 

Developed model 
achieved a high 
accuracy of 
97.63%–99.52% 
for 2 class, 
96.73%–98.06% 
for 3 class and 
93.55% for 5 class 
classifications.  

Table 1 (continued ) 

Author, year Features and 
methods 

Participant/ 
data 
information 

Findings/Results 

Pisano et al. 
[44], 2020  

• CNN  
• Detection of 

nocturnal frontal 
lobe epilepsy  

• Cross-patient 
seizure detection 
model  

• Transfer learning 

Datasets from 
epilepsy centers 
in Coimbra, 
Portugal and 
Freiburg 
Germany 

Proposed system 
yields an 
accuracy of about 
94%. 

Gao et al. [45], 
2020  

• CNN  
• Conversion of EEG 

signals to power 
spectrum density 
energy diagrams  

• Classification of 
four epileptic 
states 

CHB-MIT EEG 
data 

Proposed method 
achieved an 
accuracy of over 
90%. 

Zhou & Li [46] 
2020  

• CNN  
• Extraction of 

nonlinear features 
(entropies) from 
EEG signals input 
to radial basis 
function model 

EEG dataset 
from Bonn 
University 

Recommended 
algorithm has 
been proven to 
have a high 
epileptic signal 
recognition rate. 

Jaoude et al. 
[47], 2020  

• CNN  
• Nested 5-fold 

cross-validation  
• Receiver operating 

characteristic 
curve 

Intracranial EEG 
recordings from 
46 epileptic 
patients 

An area under the 
curve (close to 1) 
was achieved. 

Sui et al. [48], 
2021  

• Time-frequency 
hybrid network  

• Short-Time Fourier 
Transform  

• Fusion of time- 
frequency features 
and feature maps 

Bern-Barcelona 
IEEG dataset 

Recommended 
method discerns 
focal from 
nonfocal EEG 
signals with an 
accuracy of 
94.3%. 

Malekzadeh 
et al. [49], 
2021  

• Tunable Q- 
Wavelet Transform 
for signal 
decomposition  

• Extraction of 
statistical, 
frequency and 
nonlinear features  

• CNN- recurrent 
neural network- 
based model  

• 10-fold cross- 
validation 

EEG datasets 
from Bonn and 
Freiburg 

Proposed method 
yielded the 
highest accuracy 
of 99.7% for the 
Bonn dataset. 

Sahani et al. 
[50], 2021  

• CNN  
• Optimized 

variational mode 
decomposition  

• Multi-kernel 
random vector 
functional link 
network  

• Improved particle 
swarm 
optimization to 
compute values of 
band-limited 
intrinsic mode 
functions  

• Ten-fold cross- 
validation 
technique 

Bonn 
University, 
New-Delhi 
single-channel 
EEG, Boston 
Children’s 
Hospital, Boston 
Children’s 
Hospital 
Multichannel 
Scalp EEG 
datasets 

Proposed method 
has obtained a 
classification 
accuracy of 100% 
for the datasets. 

Peng et al. [51], 
2021  

• Fourier neural 
network  

• CNN  
• Estimation of 

spectral power 
ratios of raw 
recordings 

Intracranial and 
scalp EEG 
datasets 

Recommended 
method has 
proven to achieve 
higher 
performance and 
generalization as 
compared to 

(continued on next page) 
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the input and output while avoiding recurrence. The Transformer model 
is advantageous and lauded for its ability to accommodate much more 
parallelization, reaching a new avant-garde in translational quality after 
being trained for only 12 h on eight P100 graphics processing units. 
Imbued by the success of Vaswani et al. [57], the Transformer model 
was employed in this study with a unique methodology. 

2.1. Data acquisition 

The EEG signals used in this study were acquired from 35 channels 
encompassing the parietal, temporal, frontal, occipital, frontopolar, 
central and auricular regions, using the standard 10–20 electrode posi-
tion system with a sampling frequency of 500 Hz. These 8.5 min long 
EEG recordings were obtained from 71 healthy subjects and 50 epileptic 
patients. More information regarding the demographic properties of 
participants can be retrieved from this link in the published article by 

Tasci et al. [13]. 

2.2. Preparation of training data 

The EEG signals from all 35 channels were used for training the 
model. For each training iteration, 1-min-long data were randomly 
sampled from each participant. This allows the model to generalize 
better with an effect akin to augmentation. Thereafter, each 5-s epoch 
was mapped to a matrix (12 × 35 x 35) using Pearson Correlation Co-
efficient (PCC) [61]. The PCC method is useful in describing the rela-
tionship between two variables [61]. PCC measures the strength and 
direction of correlation between two variables, measured on an interval 
scale [62]. While Pearson’s Correlation aims at drawing a best-fit line 
through the data of two variables, Pearson’s Correlation Coefficient, 
denoted by r, specifies how far the data points are from the best-fit line. 
The PCC is used based on four assumptions; (i) the two variables are 
measured at the interval or ratio scale, (ii) a linear relationship exists 
between the two variables, (iii) there should be zero significant outliers 
within the data that do not follow the standard pattern, (iv) the data 
should generally be normally distributed [62]. Hence, for a given 
bivariate set (x1, y1), (x2, y2), …., (xn, yn), Pearson’s Product Moment 
Correlation Coefficient (r) is expressed as Sxy

SxSy 
wherein r is defined as the 

Pearson’s Product Moment Correlation Coefficient, Sxy refers to the 
covariance of x and y values and Sxand Sy refer to standard deviations of 
x and y values, respectively. The bottom part of the triangle was dis-
carded and only the upper triangle of the matrix was vectorized as input 
(12 × 595). Thereafter, single embedding was performed based on the 5 
s of data to generate a 1-dimensional array of signals. In the final stage, a 
positional encoding with learnable parameters was added to each cor-
relation coefficient’s embedding before being fed to the developed deep 
model, as input data, for the classification of signals. 

2.3. Proposed transformer model 

The encoder stack of the Transformer model was developed based on 
the Multi-Head and Feedforward mechanisms. The multi-Head self- 
attention mechanism was developed using seven heads and a dropout of 
0.3. The Feedforward mechanism was developed using the dense layer 
(85), gelu activation function, followed by another dense layer (85). The 
classifier component in the model was developed using the global max 
pooling layer and dense layer (1) with a sigmoid activation function. The 
signals were classified as normal or epilepsy thereafter. The Transformer 
model was developed and trained using 100 epochs with a batch size of 
30, binary cross entropy loss function and Adam optimization algorithm 
[63] with a learning rate of 1e-5. The proposed technique and developed 
model is explicitly shown in Fig. 1. 

3. Classification results 

As a small dataset was used in this study, the acquired data was split 
into training and testing data, wherein 90% of the data was used for 
training and 10% was used for both testing and validation. The accu-
racy, sensitivity, specificity and positive predictive values were used to 
assess the performance of the Transformer model. Table 2 shows the 
classification results of the model. The table shows that high classifica-
tion accuracy, sensitivity, specificity and positive predictive values of 
85%, 87%, 82% and 87% were obtained for the classification of healthy 
and epileptic EEG signals. Confusion matrix obtained using the proposed 
Transformer model is shown in Fig. 3. 

4. Discussion 

From the classification results, it is evident that the Transformer 
model for the classification of healthy and epileptic EEG signals yielded 
a high classification accuracy of 85%. Although we used the same 

Table 1 (continued ) 

Author, year Features and 
methods 

Participant/ 
data 
information 

Findings/Results 

previous 
methods. 

Islam et al. [52], 
2022  

• Epileptic-Net deep 
model  

• Convolutional 
blocks  

• Hypercolumn 
methods 

EEG dataset 
from Bonn 
University 

Proposed 
technique yields a 
high accuracy of 
about 99% in all 
classification 
tasks with the 
highest (99.8%) 
in three-class 
classification of 
signals. 

Gramacki & 
Gramacki [53] 
2022 

•CNN 
•Sliding window 
design 
•Five-fold cross- 
validation 

79 neonatal EEG 
recordings with 
seizure 
annotations 

Highest 
classification 
accuracy between 
96% and 97% was 
achieved. 

Chen et al. [54], 
2023  

• CNN  
• Extraction of 

nonlinear features 
(entropies)  

• Decomposition of 
signals using 
Discrete Wavelet 
Transform  

• Random forest 
algorithm for 
feature selection 

Bonn University 
and New Delhi 
EEG datasets 

Proposed model 
yielded the 
highest accuracy 
of 100% with the 
New Delhi 
dataset. 

Ilias et al. [55], 
2023 

•CNN 
•Pretrained models 
•Short-time Fourier 
transform for 
conversion of signals 
to images 
•Gated multimodal 
unit 

EEG dataset 
from Bonn 
University 

Recommended 
method achieves 
comparable 
results to existing 
methods. 

Chanu et al. [56] 
2023  

• Self-organizing 
neural network 
and multilayer 
perceptron hybrid 
model  

• Genetic algorithm  
• Discrete wavelet 

transform  
• Clustering 

technique 

EEG dataset 
from Bonn 
University 

Proposed method 
yielded a high 
accuracy of 
99.2%. 

This work  • Transformer deep 
model  

• Pearson 
Correlation 
Coefficient  

• Positional 
encoding 

EEG data from 
71 healthy 
subjects, 50 
epileptic 
patients 

Proposed 
method yielded 
a high accuracy 
of 85%.  
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epilepsy dataset as Tasci et al. [13], it is observable that we have 
employed a different approach from the authors. While the authors 
employed a novel hypercube-based feature extraction technique for the 
extraction of feature vectors, they employed the conventional k-nearest 

neighbor classifier for the classification task. In contrast, we have 
employed a novel deep learning technique involving the transformer 
model and achieved a comparable classification accuracy. This proves 
that our proposed method is remarkable as deep learning models such as 
the Transformer model can be trained faster due to the automatic 
extraction of features compared to conventional classifiers such as the 
k-nearest neighbor. From Table 1, it is evident that Hussein et al. [24], 
Hossain et al. [25], Akut et al. [28], Liu & Woodson [30], Boonyakita-
nont et al. [33], Lu & Triesch. [35], Roy et al. [38], Karim et al. [39], 
Choi et al. [41], Haotian et al. [40], Wei et al. [36], Gao et al. [45], Sui 
et al. [48], Malekzadeh et al. [49], Mrutyunjaya et al. [48], Rashed et al. 
[50], Islam et al. [52], Gramacki et al. [53], Chen et al. [54], Chanu et al. 
[56] had obtained higher classification accuracies (above 85%). 

Fig. 1. Proposed EpilepsyNet model.  

Table 2 
Classification results obtained for the proposed EpilepsyNet model.  

Performance parameters (%) Healthy class Epilepsy class 

Accuracy 85 85 
Sensitivity 87 82 
Specificity 82 87 

Positive predictive value 87 82  
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However, these authors had employed the CNN likewise, wherein the 
Transformer model was uniquely employed only in our study. In our 
study, we have converted the acquired EEG signals to a 2-dimensional 
image using the correlation plot. The signals were then fed to the 
developed deep Transformer model for classification. The conversion of 
EEG signals to 2-dimenional image is a crucial step in finding the cor-
relation present in the signals. This helps the Transformer model in 
classifying the EEG signals according to the physiology of classes. We 
have obtained high performance due to the presence of the attention 
module present in our developed model. The subtle changes in the EEG 
are picked up by the proposed correlation plot coupled with the 
Transformer model to yield high performance. Furthermore, while these 
authors had developed CNNs of a few layers, the unique deep Trans-
former model was developed using a single transformer encoder module 
and is hence both less computationally intensive and expensive to 
develop as compared to the CNNs or recurrent neural networks 
employed in existing studies. This proves that our proposed method is 
superior as compared to the deep models used in Table 1 for epilepsy 
diagnosis. Fig. 2 shows the accuracy plot of the Transformer model. 
From the Figure, it is apparent that the model generally learns the data 
well, as the accuracy versus epoch plots for both training and validation 
converge well. The convergence is less stronger after 20 epochs probably 
due to the small dataset used for training. Fig. 3 depicts the confusion 
matrix of the developed model. From the matrix it can be gathered that 
very low misclassification rates of 13% and 18% were obtained for the 
classification of healthy and epilepsy classes, respectively. Hence, both 
the accuracy plot and confusion matrix serve as an attestation to the 
good performance of the Transformer model developed in this study. 
The advantages and limitations of our study are discussed below. 

4.1. Advantages 

1. A high accuracy of 85% was achieved by using only a single trans-
former encoder module.  

2. This is the earliest study that employed the deep Transformer model 
(EpilepsyNet) using a huge database of 121 participants for epilepsy 
detection.  

3. A unique method was employed to add a positional encoding with 
learnable parameters to each correlation coefficient’s embedding. 

4. The proposed system is accurate and may be useful to health pro-
fessionals managing epileptic patients. 

5. Proposed system is both less computationally intensive and expen-
sive to develop as compared to the deep models used in existing 
studies.  

6. The proposed system is novel and the EEG signals used for this work 
is available at 

https://www.kaggle.com/datasets/buraktaci/turkish-epilepsy. 

4.2. Limitations  

1. The deep Transformer model was developed using a small number of 
epileptic patients.  

2. Validation of the results in larger datasets may be needed before the 
proposed system can be clinically accepted widely. 

For future work, we intend to analyze epileptic EEG signals from 
larger datasets. The developed model could be better trained and vali-
dated using a larger dataset for wider clinical acceptance. Furthermore, 
training and validating the model with larger data would make it more 
robust, thus enabling it to be employed for detecting other neurological 
disorders. 

5. Conclusion 

Epilepsy is a common neurological disorder that impacts the quality 
of one’s life significantly. Presently, the paucity in neurologist di-
agnosticians and a global inequity in access to epilepsy diagnostics 
warrants the need for accurate interpretation of epilepsy. Existing clin-
ical and traditional machine learning diagnostic methods exhibit limi-
tations. Thus, there is a compelling need to develop reliable and accurate 
automated systems using deep learning models, for epilepsy detection 
and monitoring. Hence, this study used EEG signals from 35 channels to 
train our novel model. For each training iteration, 1-min-long data were 
randomly sampled from each participant. Thereafter, each 5-s epoch 
was mapped to a matrix using the Pearson Correlation Coefficient, 
wherein the bottom part of the triangle was discarded and only the 
upper triangle of the matrix was vectorized as input. Based on the 5 s of 
data, single embedding was performed thereafter to generate a 1-dimen-
sional array of signals. In the final stage, a positional encoding with 
learnable parameters was added to each correlation coefficient’s 
embedding before being fed to the developed deep Transformer model, 
as input data, for the classification of signals. The k-fold (k = 10) cross- 
validation technique was used to evaluate the model’s performance. 
High classification accuracy, sensitivity, specificity and positive pre-
dictive values of 85%, 82%, 87%, and 82% were achieved, respectively. 
Our proposed method is both accurate and robust since ten-fold cross- 
validation was employed for the evaluation of the model’s performance. 
It also presents as a less computationally intensive and expensive 
method for epilepsy diagnosis, in comparison to the deep models used in 
existing studies. This is the earliest study to have uniquely employed the 
positional encoding with learnable parameters to each correlation co-
efficient’s embedding, with the deep Transformer model using a huge 
database of 121 participants for epilepsy detection. With the training Fig. 2. Accuracy plot of Transformer model.  

Fig. 3. Confusion matrix of Transformer model.  
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and validation of the model using a larger dataset, the same study 
approach can be extended to detect other neurological conditions [66]. 
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