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ABSTRACT 
 
 
The pleiotropic effects of statins represent potential mechanisms for the treatment of end-

organ damage in hypertension. This study has investigated the effects of rosuvastatin in a 

model of cardiovascular remodelling, the DOCA-salt hypertensive rat. Male Wistar rats 

weighing 300-330g were uninephrectomized (UNX) or uninephrectomized and treated 

with DOCA (25 mg subcutaneously every fourth day) and 1% NaCl in the drinking 

water. Compared with UNX controls, DOCA-salt rats developed hypertension, 

cardiovascular hypertrophy, inflammation with perivascular and interstitial cardiac 

fibrosis, endothelial dysfunction and prolongation of ventricular action potential duration 

at 28 days. Rosuvastatin treated rats received 20mg/kg/day of the drug in 10% Tween 20 

by oral gavage for 32 days commencing 4 days before uninephrectomy. UNX and 

DOCA-salt controls received vehicle only. Rosuvastatin therapy attenuated the 

development of cardiovascular hypertrophy, inflammation, fibrosis and ventricular action 

potential prolongation, but did not modify hypertension or vascular dysfunction. We 

conclude that the pleiotropic effects of rosuvastatin include attenuation of aspects of 

cardiovascular remodelling in the DOCA-salt model of hypertension in rats without 

altering systolic blood pressure. 
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INTRODUCTION 

Although many drugs efficiently lower serum cholesterol levels, none have been more 

successful and well tolerated than the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-

CoA) reductase inhibitors. The statins, as they are more commonly known, reduce 

cardiovascular mortality in primary and secondary prevention trials of coronary heart 

disease in patients with high or moderate hypercholesterolaemia [1-5] and even normal 

cholesterol levels [1, 5, 6]. This clinical benefit of statins may occur relatively early after 

initiation of therapy [3-5] and before any regression in atherosclerotic plaques can be 

detected [7]. In addition, their effects differ from those observed after the reduction of 

plasma cholesterol levels by surgical therapy [8]. These findings suggest that statins work 

by mechanisms additional to a decrement in plasma lipid concentrations and 

atherosclerotic plaque prevention or regression. Such pleiotropic effects include 

inhibiting the thrombogenic response and reducing oxidative stress and inflammation [9].  

 

More recently, several studies have documented that the pleiotropic effects of statins 

extend to the prevention of pathological cardiovascular remodelling in animal models of 

human disease, such as rat models of post-infarct heart failure [10] and type II diabetes 

mellitus [11]. However, it is unclear whether these cardioprotective effects are shared by 

all statins. This is especially important, considering the highly varied chemical structures, 

physicochemical and pharmacokinetic/metabolic properties of the many members of the 

statin family [12, 13] and the documented differences not only in their lipid lowering 

potential, but also in their nonlipid effects, particularly cardiovascular hypertrophy [14-

16].  
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Rosuvastatin is a new synthetic and chemically distinct member of the statin family [13]. 

Clinical evidence has shown that rosuvastatin is the most effective statin with regards to 

lipid lowering [17]. However, whether rosuvastatin possesses the ability to exert similar, 

or more significant, beneficial effects on cardiovascular remodelling is yet to be 

established. There have been a number of publications showing rosuvastatin to be 

protective in cardiac ischemia-reperfusion injury models [18-20]. Consequently, we have 

investigated the potential pleiotropic effects of rosuvastatin on cardiovascular 

remodelling in the DOCA-salt model of hypertension in rats. 

 

METHODS 

Ethical Clearance 

All experimentation was approved by the Animal Experimentation Ethics Committee of 

The University of Queensland under the guidelines of the National Health and Medical 

Research Council of Australia. 

 

DOCA-salt hypertensive rats 

Male Wistar rats weighing 300-330g (~8 weeks old) were obtained from the Central 

Animal Breeding House of The University of Queensland. All rats were 

uninephrectomied. This was done under anaesthesia with intraperitoneal tiletamine (25 

mg/kg) and zolazepam (25 mg/kg)(Zoletil®) combined with xylazine (10 mg/kg)(Ilium 

Xylazil®). Kidneys were visualised by a left lateral abdominal incision. The left kidney 

was removed after ligation of adjoining renal vasculature and ureter with sutures. The 
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capsule was removed from the left kidney, which was then weighed. Uninephrectomized 

rats were given either no further treatment (UNX rats) or 1% NaCl in the drinking water 

with subcutaneous injections of deoxycorticosterone acetate (DOCA; 25mg in 0.4ml 

dimethylformamide every fourth day) (DOCA-salt rats). Rosuvastatin-treatment groups 

received 20mg/kg/day rosuvastatin in 10% Tween 20 by oral gavage for 32 days 

commencing 4 days before uninephrectomy. UNX and DOCA-salt controls received 

vehicle only. Experiments were performed 28 days after surgery.  

 

Assessment of Physiological Parameters 

Systolic blood pressure was measured by tail-cuff plethysmography in rats lightly 

anaesthetised with intraperitoneal tiletamine (10 mg/kg) and zolazepam (10 mg/kg). Rats 

were euthanased with pentobarbitone (200 mg/kg ip). Blood was taken from the 

abdominal vena cava, just caudal to the insertion of renal veins, centrifuged and the 

plasma immediately frozen. Plasma sodium and potassium concentrations were measured 

by flame photometry. The heart was removed and weighed immediately after death and 

expressed as a ratio of the tissue weight (mg) to the total body weight (g). Plasma levels 

of total cholesterol were measured by The University of Queensland Veterinary 

Pathology Services, Brisbane, Australia. 

 

Isolated Langendorff heart preparation 

Rats were anaesthetized with sodium pentobarbitone (100 mg/kg ip) and heparin (200 IU) 

was administered via the femoral vein. After allowing two minutes for the heparin to 

circulate, the heart was excised and placed in cooled (0°C) crystalloid perfusate (modified 
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Krebs-Henseleit solution of the following composition in mM: NaCl 119.1, KCl 4.75, 

MgSO4 1.19, KH2PO4 1.19, CaCl2 2.16, NaHCO3 25.0, glucose 11.0). A cannula was 

then placed in the heart with its tip immediately above the coronary ostia of the aortic 

stump. The cannula was used to perfuse the heart in a non-recirculating Langendorff 

fashion at 100cm of hydrostatic pressure. The perfusate temperature was maintained at 

37°C and bubbled with 95%O2 / 5%CO2. The apex of the heart was pierced to facilitate 

thebesian drainage and paced at 250 bpm.   

 

Left ventricular developed pressure was measured using a balloon catheter inserted into 

the left ventricle through the mitral orifice.  The catheter was connected via a three-way 

tap to a micrometer syringe and to a MLT844 Physiological Pressure Transducer 

(ADInstruments) and PowerLab data acquisition unit (ADInstruments).  The outer 

diameter of the catheter was similar to the mitral annulus to prevent ejection of the 

balloon during the systolic phase.  After a 5-minute stabilization period, steady-state left 

ventricular pressure was recorded from isovolumetrically beating hearts.  Increments in 

balloon volume were applied to the heart with left ventricular end-diastolic pressure 

recorded at approximately 0, 5, 10, 15, 20 and 30mmHg. At the end of the experiment, 

the atria and right ventricle were dissected away leaving the left ventricle and septum, 

which were blotted dry then weighed.   

 

Myocardial diastolic stiffness was calculated as the diastolic stiffness constant (k, 

dimensionless), the slope of the linear relation between tangent elastic modulus (E, 

dyne/cm2) and stress (σ, dyne/cm2) [21].  
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Isolated thoracic aortic rings 

Thoracic aortic rings (approximately 4 mm in length) were suspended with a resting 

tension of 10 mN. Cumulative concentration-response curves were performed for 

noradrenaline and either acetylcholine or sodium nitroprusside in the presence of a 

submaximal (~70%) contraction to noradrenaline.  

 

Quantification of Left Ventricular Collagen 

Collagen content was determined by image analysis of picrosirius red-stained sections of 

the hearts [22]. In brief, transverse sections were stored initially in Telly’s fixative 

(100mL 70% ethanol; 5mL glacial acetic acid; 10mL formaldehyde) for 3 days, then 

transferred to modified Bouin’s solution (85 mL saturated picric acid; 5 mL glacial acetic 

acid; 10 mL 40% formaldehyde) for two days and then stored in 70% ethanol. 

 

Sections were subsequently embedded in wax and sliced into 10 µm sections. These were 

stained with picrosirius red (0.1% Sirius Red F3BA in picric acid). Slides were left in 

0.2% phosphomolybdic acid for 5 minutes, washed, left in picrosirius red for 90 minutes, 

then in 1 mM HCl for 2 minutes and 70% ethanol for 45 seconds. The stained sections 

were mounted with Depex and visualized using a Biorad MRC-1024 confocal laser-

scanning microscope with a Red/Texas Red filter with excitation at 568 nm and green 

emission at 609 nm. Images were acquired with an objective lens of 40x magnification 

and quantified using NIH-image software (National Institute of Health, USA). At least 4 
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areas from each heart were analysed and collagen levels expressed as a percentage of red 

area in each image. 

 

Histological collagen results were confirmed by hydroxyproline assay adapted from 

Stegemann and Stalder [23]. Approximately 2.5 and 5.0 mg samples of thoracic aorta and 

left ventricle respectively were dried for 6 hours at 40oC. Tissues and standards were then 

hydrolyzed in 6N HCl at 107oC for 18 hours. The acid was blown off by compressed air 

and the hydrolysate reconstituted in distilled water. Chloramine T reagent was added to 

each sample for the oxidation step to progress, followed by Ehrlich’s reagent to enable 

chromophore development. Absorbance of each sample was read at 550nm in a 

spectrophotometer and hydroxyproline content established from a standard curve.  

 

Width of Media in Thoracic Aorta 

The width of the media in the thoracic aorta of rats was measured by image analysis of 

picrosirius red-stained sections. Section preparation, staining, image acquisition and 

analysis were similar to those mentioned above. Three different areas of each aorta were 

measured and the results averaged. 

 

Immunofluorescence of ED-1 positive cells in the Left Ventricle 

Briefly, 5 µm thick sections were initially incubated with primary antibodies for rat 

macrophages (ED1; Serotec mouse anti-rat ED1 diluted 1:15). Omission of primary 

antibodies, and staining with an irrelevant mouse immunoglobulin of the same isotype, 

served as negative controls. Samples were then incubated with IgG-fluorescein 
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conjugated secondary antibody (Chemicon; diluted 1:200). Sections were counterstained 

with propidium iodide, mounted and visualized with a confocal laser-scanning 

microscope. A zero to four grading scale was used to classify the extent of ED-1 positive 

monocyte/macrophage infiltration in the left ventricle. 0 = no inflammatory cells present; 

1 = low level of inflammatory cells throughout the left ventricle; 2 = moderate levels of 

inflammatory cells throughout the left ventricle and concentrated in mild scarring; 3 = 

high levels of inflammatory cells throughout the left ventricle and concentrated in 

moderate scarring; 4 = high levels of inflammatory cells throughout the left ventricle and 

concentrated in heavy scarring. 

 

Microelectrode studies of isolated left ventricular papillary muscles 

Electrophysiological recordings of cardiac action potentials were obtained by 

microelectrode single cell impalements of ex vivo left ventricular papillary muscles. Rats 

were euthanased by carbon dioxide inhalation with subsequent exsanguination. The heart 

was removed and placed in chilled Tyrode’s physiological salt solution (in mM: NaCl 

136.9, KCl 5.4, MgCl2.H2O 1.0, NaH2PO4.2H2O 0.4, NaHCO3 22.6, CaCl2.2H2O 1.8, 

glucose 5.5, ascorbic acid 0.3, Na2-EDTA 0.05) bubbled with 95%O2 / 5%CO2, where 

the left ventricular papillary muscles were promptly dissected out. A stainless steel hook 

was placed through the valvular end of the papillary muscle, and a 30G needle was used 

to fix the apical end. The needle was subsequently embedded into a rubber base placed in 

a 1.0mL experimental chamber continuously perfused with carbogenated, warm 

(35±0.5oC) Tyrode’s solution at ~3 mL/min. The hook was attached to a modified sensor 

element (SensoNor AE801) connected to an amplifier (World Precision Instruments, 
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TBM-4). The muscle was stretched slowly to the required preload (3-5mN). Papillary 

contractions were induced by field stimulation (Grass SD-9) via electrodes on each side 

of the muscle (stimulation frequency 1 Hz; pulse width 0.5 ms; stimulus strength 20% 

above threshold). 

 

The muscle was allowed to equilibrate for 30 minutes then impaled with a microelectrode 

(World Precision Instruments, filamented borosilicate glass, outer diameter 1.5 mm) with 

a tip resistance of 5-15 MΩ when filled with 3M KCl. Perfusion and recording then 

continued for another 30 minutes. Action potential parameters measured were action 

potential duration (APD) at 20%, 50% and 90% of repolarization (APD20, ADP50 and 

APD90 respectively), action potential amplitude and resting membrane voltage. The 

reference electrode was a Ag/AgCl electrode. A Cyto 721 electrometer (World Precision 

Instruments) was used to record bioelectrical activity. All signals were recorded via a 

PowerLab 4S data acquisition unit (ADInstruments). Data were acquired, derived and 

analysed using Chart 4.3 software (ADInstruments). 

 

Data analysis 

All results are given as mean ± SEM. The negative log EC50 of the increase in force of 

contraction in mN was determined from the concentration giving half-maximal responses 

in individual concentration-response curves. These results were analysed by one-way 

analysis of variance followed by the Bonferroni post test to determine differences 

between treatment groups; p<0.05 was considered significant. 
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Drugs 

Deoxycorticosterone acetate, acetylcholine, sodium nitroprusside and noradrenaline were 

purchased from Sigma Chemical Company, St Louis, MO, USA. Rosuvastatin calcium 

was provided by AstraZeneca, U.K.. Noradrenaline, sodium nitroprusside and 

acetylcholine were dissolved in distilled water; deoxycorticosterone acetate was 

dissolved in dimethylformamide with mild heating.  

 

RESULTS 

Control and rosuvastatin-treated UNX rats gained similar weight over the 4 week 

protocol. Both DOCA-salt groups, on the other hand, failed to gain body weight in this 

period (Table 1). The systolic blood pressure of DOCA-salt rats rose significantly at 2 

weeks and even further at 4 weeks (Table 1). Rosuvastatin treatment had no effect on this 

developing hypertension in DOCA-salt rats. UNX rats exhibited no alterations in blood 

pressure (Table 1). Total plasma cholesterol concentration was significantly augmented 

in DOCA-salt rats, while rosuvastatin treatment normalized this parameter in these rats 

(Table 1). The concentration of plasma sodium was unaltered amongst the four rat 

groups; however, plasma potassium concentration was decreased in both control and 

treatment DOCA-salt groups (Table 1). 

 

DOCA-salt animals exhibited an increase in left ventricular mass that was attenuated by 

rosuvastatin treatment (Table 1). Fibrosis following an increased infiltration of 

inflammatory cells is characteristic of the DOCA-salt rat left ventricle [24]. We have 

shown that the left ventricular tissue of DOCA-salt animals exhibited considerable ED1-
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positive inflammatory cell infiltration compared to UNX controls, and this inflammation 

was prevented by rosuvastatin (Figure 2). The left ventricular tissue of DOCA-salt 

control rats was also found to be substantially fibrosed, as evidenced by a significant 

increase in both interstitial and perivascular left ventricular collagen area compared with 

UNX controls (Figure 1). Rosuvastatin treatment was successful in attenuating the 

increase in interstitial collagen area (Figure 1). The drug also normalized the perivascular 

collagen area of DOCA-salt rats (Figure 1). An alternative measure of cardiac fibrosis, 

hydroxyproline content, was also elevated in the left ventricle of DOCA-salt control rats 

in comparison to UNX animals (Figure 1). Once again, rosuvastatin treatment reduced 

this indicator of cardiac fibrosis (Figure 1). The isolated perfused hearts of DOCA-salt 

control rats exhibited an increased diastolic stiffness constant compared to UNX animals. 

Rosuvastatin treatment of these animals normalized this measure of cardiac stiffness 

(Table 1). 

 

Electrophysiological studies of isolated papillary muscles revealed no difference in 

resting membrane potential and action potential amplitude between UNX and DOCA-salt 

rats (Table 2). DOCA-salt rats showed significant electrical remodelling, manifested as 

prolonged action potential durations at 20%, 50% and 90% of repolarization (APD20, 

APD50 and APD90) (Table 2, Figure 4). Rosuvastatin treatment significantly attenuated 

this prolongation of APD90, but not APD20 or APD50 (Table 2, Figure 4). 

 

The thoracic aorta media width of DOCA-salt rats was found to be significantly increased 

compared to UNX rats, with rosuvastatin therapy attenuating this vascular hypertrophy 
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(Table 1). In contrast, the hydroxyproline content of these vessels was similar among 

groups (Table 1). Vascular smooth muscle dysfunction was evidenced by the reduced 

contractile response to noradrenaline, as well as the decreased relaxant response to 

sodium nitroprusside in isolated thoracic aortic rings of DOCA-salt rats compared to 

UNX controls (Figure 3A and C). There was also an increased potency of noradrenaline-

induced contraction in these rings (Figure 3A). Relaxant responses to acetylcholine were 

also reduced in hypertensive rats compared to their normotensive controls (Figure 3B). 

Rosuvastatin was without effect on these reduced responses to noradrenaline, sodium 

nitroprusside and acetylcholine in DOCA-salt rats (Figure 3A, B and C). Drug therapy 

augmented aortic responses to acetylcholine in UNX animals (Figure 3B). 

 

DISCUSSION 

Rats represent an excellent model for studying the pleiotropic effects of statins, as their 

lipid profile has been demonstrated to be refractory to statin therapy [25] and, in 

comparison to humans, their plasma lipid levels are relatively low. In the current study, 

we investigated the effects of a new HMG-CoA reductase inhibitor, rosuvastatin, on 

cardiovascular remodelling in the DOCA-salt model of hypertension in rats. We show for 

the first time that rosuvastatin attenuated left ventricular fibrosis, hypertrophy, 

inflammation and action potential prolongation and aortic medial hypertrophy, without 

antihypertensive action in this rodent model of end-organ damage. 

 

Statins have been reported to reduce blood pressure in a randomized, double-blind 

crossover trial in humans (pravastatin) [26] and hypertensive rodent models (simvastatin 
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and lovastatin) [27, 28], including DOCA-salt hypertensive mice (lovastatin) [29]. We, 

on the other hand, found that rosuvastatin was without effect on DOCA-salt-induced 

hypertension in rats. This difference may be related to model and species differences or 

the relative hydrophilicity of rosuvastatin limiting its uptake through their plasma 

membrane. However, independent of any anti-hypertensive effect, rosuvastatin attenuated 

the increase in left ventricular mass and medial hypertrophy of the thoracic aorta 

associated with DOCA-salt treatment. In the genetically hypertensive (GH) rat, 

fluvastatin had no effect on blood pressure, but significantly remodelled the mesenteric 

resistance and basilar arteries by reducing medial cross-sectional area and increasing 

lumen size [30]. Furthermore, long-term administration of simvastatin to rats with aortic 

stenosis inhibited left ventricular hypertrophy without effect on the elevated carotid mean 

arterial pressure [31]. Taken together, these data support the notion that a reduction of 

blood pressure is not the primary factor involved in the inhibitory effect of statins on 

cardiovascular hypertrophy. 

 

In the current study, rosuvastatin therapy reduced left ventricular monocyte infiltration. 

Such infiltration has been demonstrated to participate in the initiation and progression of 

cardiovascular pathology in the DOCA-salt model [24, 32]. HMG-CoA reductase 

inhibitors modulate several different components of the inflammatory cascade, 

particularly those involving leucocyte-endothelium interactions, such as the down 

regulation of cell adhesion molecule expression [9]. Indeed, rosuvastatin inhibited 

endothelial cell surface expression of the adhesion molecule P-selectin, and thus 
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attenuated leukocyte rolling, adherence and transmigration in normocholesterolaemic rat 

mesenteric venules [33]. 

 

Inflammation has also been shown to play a role in long-term pathological cardiovascular 

changes, such as matrix accumulation [34]. Hence the anti-fibrotic properties of 

rosuvastatin in DOCA-salt rats, manifest as reduced LV collagen and hydroxyproline 

contents and diastolic stiffness (an indirect measure of total collagen), may in part be due 

to a direct inhibitory effect of the drug upon monocyte/macrophage infiltration. This is 

supported by Ammarguellat and co-workers [24], who have identified inflammatory 

mediators as a major component of cardiac remodelling and critical to the progression of 

cardiac fibrosis in this model of mineralocorticoid-induced hypertension. Furthermore, 

Kagitani et al. [32] showed that tranilast, an anti-inflammatory drug, suppressed 

myocardial fibrosis via inhibition of cytokines, such as monocyte chemotactic protein-1 

and interleukin-6, and monocyte/macrophage infiltration in DOCA-salt rats. Taken 

together, these results suggest that pharmacological attenuation of the inflammatory 

response by rosuvastatin may, in part, be responsible for preventing myocardial fibrosis 

in DOCA-salt rats. This effect may also potentially translate to fibrosis-associated 

abnormalities, such as diastolic stiffness. Our previous studies with L-arginine, the NO 

precursor, and A-127722, a selective ETA-receptor antagonist, have shown attenuation of 

inflammatory cell infiltration, myocardial collagen deposition and diastolic stiffness [35, 

36]. 
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Action potential prolongation is a common electrophysiological disturbance in 

hypertrophied myocardium [37] and this includes DOCA-salt animals [38]. We show an 

approximate 2-fold increase in APD90 as a result of mineralocorticoid and salt treatment. 

It appears that depression of the calcium-independent transient outward K+ current (Ito) is 

responsible for the majority of this prolongation observed in DOCA-salt ventricular 

myocytes; an absence of enhanced Ito channel expression concurrent with hypertrophy 

resulted in a reduced channel density per unit surface area [38]. Furthermore, regression 

of LV hypertrophy in DOCA-salt rats normalized the Ito current and APD [38]. Thus, the 

observed attenuation of cardiac action potential prolongation by rosuvastatin is most 

likely secondary to its amelioration of left ventricular hypertrophy in these rats. This is 

supported by recent work from our laboratory demonstrating improvement in cardiac 

action potential prolongation in association with pharmacologic-induced regression of 

left ventricular hypertrophy in DOCA-salt rats [35, 36]. 

 

Hypercholesterolaemia has been shown to induce endothelial dysfunction, an attribute of 

the initial stages of atherosclerosis [39]. It is not surprising then that statins have been 

shown to be useful in the reversal of endothelial dysfunction, as documented with non-

invasive techniques [40-42]. This effect, however, may also be partly independent of a 

reduction in cholesterol levels [41]. Nonetheless, DOCA-salt rats develop endothelial 

dysfunction because of severe hypertension, rather than lipid disorders. In the current 

study, rosuvastatin was without effect on endothelial dysfunction in DOCA-salt animals. 

This may be attributed to species differences and variation in the capacity of statins to 

penetrate vascular cell membranes, but it is also conceivable that blood pressure lowering 
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may be a prerequisite for the improvement of endothelial dysfunction in DOCA-salt 

hypertension. However, it is difficult to make a clear distinction on this anomaly, as a 

result of the reduced relaxant response to sodium nitroprusside, as well as noradrenaline, 

in DOCA-salt rats, indicating a primary dysfunction of vascular smooth muscle. 

Rosuvastatin did, however, improve endothelium-dependent acetylcholine-induced 

vascular relaxations in normotensive UNX rats. 

 

The exact mechanism by which rosuvastatin attenuates cardiovascular remodelling in 

DOCA-salt animals is beyond the scope of this study. However, in addition to cholesterol 

reduction, HMG-CoA reductase inhibition also decreases mevalonate synthesis leading to 

changes in isoprenoid metabolism [43]. Because isoprenoid intermediates are important 

factors for the post-translational modification, maturation and membrane translocation of 

various regulatory proteins, such as the low molecular weight GTP-binding proteins of 

the Ras superfamily [44], it is possible that rosuvastatin-induced attenuation of 

cardiovascular remodelling is mediated by modifying the downstream products of 

cholesterol and, hence, mevalonate metabolism. In support of this, statins have been used 

to establish the functional involvement of the mevalonate pathway and these G-proteins 

in the regulation of cardiac myocyte [45], fibroblast [46] and vascular smooth muscle cell 

[47] mitogenesis. Furthermore, data suggests that Ras upregulation contributes to the 

development of DOCA-salt hypertension and associated reno-vascular hypertrophy and 

interstitial fibrosis [48] and this G-protein has also been implicated in the 

mineralocorticoid-induced mitogenesis of fibroblasts [49]. 
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An elevated total cholesterol concentration has been demonstrated previously with 

DOCA-salt treatment in rats [50], and our results confirm this. The exact mechanism 

behind this elevation is unclear, but HMG-CoA inhibition by rosuvastatin normalized 

plasma levels in our rats, suggesting increased endogenous cholesterol synthesis. 

Whether these raised cholesterol levels and their subsequent abrogation by rosuvastatin 

had any effect on cardiovascular remodelling in this model is unlikely, but cannot be 

ruled out. 

 

CONCLUSION 

In conclusion, we show for the first time that rosuvastatin attenuates cardiovascular 

remodelling, especially aortic medial thickening, myocardial inflammation and fibrosis, 

left ventricular hypertrophy and action potential prolongation, in DOCA-salt hypertensive 

rats without lowering blood pressure. These findings indicate the pleiotropic effects of 

the statins in rats that could explain, at least in part, improvements in survival and quality 

of life observed in patients treated with statins. Furthermore, the actions of rosuvastatin 

on cardiac remodelling may represent potential applications of statins beyond lipid 

lowering and atherosclerosis prevention or regression. Future studies using a therapeutic 

approach, that is a reversal protocol by commencing treatment after the onset of disease, 

are necessary to show the clinical relevance of these findings. 
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Table 1: Physiological parameters in UNX, DOCA-salt and RSV-treated rats. 
 

DATA UNX UNX+RSV DOCA-salt DOCA-
salt+RSV 

Initial Body 
Weight (g) 

314±3 
(n=10) 

316±3 
(n=10) 

316±4 
(n=12) 

317±3 
(n=12) 

Final Body 
Weight (g) 

404±7 
(n=10) 

410±6 
(n=10) 

316±7* 
(n=12) 

335±7* 
(n=12) 

0 week Systolic 
Blood Pressure 

(mmHg) 

123±6 
(n=10) 

121±4 
(n=10) 

126±5 
(n=9) 

118±4 
(n=8) 

2 week Systolic 
Blood Pressure 

(mmHg) 

123±6 
(n=10) 

117±4 
(n=10) 

160±9* 
(n=9) 

155±10* 
(n=8) 

Final Systolic 
Blood Pressure 

(mmHg) 

122±4 
(n=10) 

118±3 
(n=10) 

188±3* 
(n=9) 

194±7* 
(n=8) 

LV+septum 
Weight (mg/g) 

1.86±0.04 
(n=10) 

1.92±0.04 
(n=10) 

3.07±0.14* 
(n=12) 

2.68±0.10*#

(n=10) 
Plasma 

Cholesterol 
Concentration 

(mM/L) 

2.0±0.1 
(n=7) 

1.8±0.1 
(n=7) 

5.1±0.5* 
(n=7) 

1.9±0.3#

(n=7) 

Plasma Na+ 
Concentration 

(mM) 

130.4±1.1 
(n=10) 

130.1±0.3 
(n=10) 

136.3±0.8 
(n=10) 

133.5±1.0 
(n=10) 

Plasma K+ 
Concentration 

(mM) 

4.2±0.3 
(n=10) 

4.0±0.2 
(n=10) 

2.2±0.1* 
(n=10) 

2.1±0.3* 
(n=10) 

Diastolic 
Stiffness 

Constant (κ) 

21.4±0.4 
(n=10) 

21.9±0.4 
(n=9) 

24.9±0.4* 
(n=12) 

21.5±0.5#

(n=7) 

Aortic Media 
Thickness (µm) 

84.1±1.4 
(n=7) 

82.5±1.6 
(n=10) 

114.8±4.8* 
(n=11) 

100.8±4.0*# 
(n=7) 

Aortic 
Hydroxyproline 

Content 
(µg/mg) 

15.6±0.7 
(n=9) 

15.3±0.5 
(n=9) 

15.4±0.4 
(n=10) 

15.2±0.4 
(n=10) 

*p<0.05 compared to UNX, #p<0.05 compared to DOCA-salt 
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Table 2: Cardiac electrophysiological parameters in UNX, DOCA-salt and RSV-treated 
rats. 
 

DATA UNX UNX+RSV DOCA-salt DOCA-
salt+RSV 

Resting Membrane 
Potential (mV) 

-76±4 
(n=6) 

-75±3 
(n=6) 

-68±2 
(n=6) 

-70±2 
(n=7) 

Action Potential 
Amplitude (mV) 

97±2 
(n=6) 

92±3 
(n=6) 

93±2 
(n=6) 

89±2 
(n=7) 

APD20 (ms) 8.7±0.3 
(n=6) 

6.9±0.3 
(n=6) 

18.2±2.7* 
(n=6) 

14.4±2.1 
(n=7) 

APD50 (ms) 18.9±0.9 
(n=6) 

17.0±0.9 
(n=6) 

47.7±5.1* 
(n=6) 

35.6±4.0* 
(n=7) 

APD90 (ms) 46.0±1.0 
(n=6) 

51.4±3.9 
(n=6) 

114.4±2.9* 
(n=6) 

95.2±3.1*#

(n=7) 

*p<0.05 compared to UNX, #p<0.05 compared to DOCA-salt 
APD20, APD50 and APD90 = Action potential duration at 20%, 50% and 90% of 
repolarization respectively 
 
 
 



                                              

FIGURE 1 
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FIGURE 2 



FIGURE 3 
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FIGURE 4 
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FIGURE 1: Representative picrosirius red stained confocal images of left ventricular 
interstitial collagen from UNX control (A), rosuvastatin-treated UNX (B), DOCA-salt 
control (C), and rosuvastatin-treated DOCA-salt (D) rats (magnification 40x). Graphical 
representations of left ventricular interstitial collagen area (E), perivascular collagen area 
(F) and hydroxyproline content (G). (* p < 0.05 vs UNX; # p < 0.05 vs DOCA-salt). 
 
FIGURE 2: Representative confocal images of left ventricular tissue showing 
immunofluorescent ED-1 positive monocyte/macrophages in UNX control (A), 
rosuvastatin-treated UNX (B), DOCA-salt control (C), and rosuvastatin-treated DOCA-
salt (D) rats (magnification 20x). Graphical representation of ED-1 positive 
monocyte/macrophage left ventricular infiltration grading. (* p < 0.05 vs UNX; # p < 
0.05 vs DOCA-salt). 
 
FIGURE 3: Concentration-response curves to noradrenaline (A) for UNX control (filled 
squares, -log EC50 7.0±0.1, n=12), rosuvastatin-treated UNX (open squares, -log EC50 
7.1±0.1, n=13), DOCA-salt control (filled triangles, -log EC50 7.9±0.1*, n=11) and 
rosuvastatin-treated DOCA-salt (open triangles, -log EC50 7.9±0.1*, n=11) rats. 
Concentration-response curves to acetylcholine (B) for UNX control (filled squares, -log 
EC50 6.6±0.1, n=11), rosuvastatin-treated UNX (open squares, -log EC50 6.8±0.1, 
n=12), DOCA-salt control (filled triangles, -log EC50 6.5±0.1, n=12) and rosuvastatin-
treated DOCA-salt (open triangles, -log EC50 6.6±0.1, n=11) rats. Concentration-
response curves to sodium nitroprusside (C) for UNX control (filled squares, -log EC50 
7.4±0.1, n=12), rosuvastatin-treated UNX (open squares, -log EC50 7.3±0.1, n=13), 
DOCA-salt control (filled triangles, -log EC50 7.1±0.1, n=13) and rosuvastatin-treated 
DOCA-salt (open triangles, -log EC50 7.1±0.1, n=9) rats. (* p < 0.05 vs UNX; # p < 0.05 
vs DOCA-salt). 
 
FIGURE 4: Representative cardiac action potential recordings from UNX control 
(green), rosuvastatin-treated UNX (blue), DOCA-salt control (red) and rosuvastatin-
treated DOCA-salt rats (black). Action potential prolongation can be observed in DOCA-
salt controls and this can be attenuated by rosuvastatin treatment. 
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