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Objectives. Fetal sex determination with ultrasound (US) examination is indicated in pregnancies at risk of X-linked genetic
disorders or ambiguous genitalia. However, misdiagnoses often arise due to operator inexperience and technical difficulties while
acquiring diagnostic images. We aimed to develop an efficient automated US-based fetal sex classification model that can facilitate
efficient screening and reduce misclassification. Methods. We have developed a novel feature engineering model termed PFP-
LHCINCA that employs pyramidal fixed-size patch generation with average pooling-based image decomposition, handcrafted
feature extraction based on local phase quantization (LPQ), and histogram of oriented gradients (HOG) to extract directional and
textural features and used Chi-square iterative neighborhood component analysis feature selection (CINCA), which iteratively
selects the most informative feature vector for each image that minimizes calculated feature parameter-derived k-nearest
neighbor-based misclassification rates. The model was trained and tested on a sizeable expert-labeled dataset comprising 339
males’” and 332 females’ fetal US images. One transverse fetal US image per subject zoomed to the genital area and standardized to
256 x 256 size was used for analysis. Fetal sex was annotated by experts on US images and confirmed postnatally. Results. Standard
model performance metrics were compared using five shallow classifiers—k-nearest neighbor (kNN), decision tree, naive Bayes,
linear discriminant, and support vector machine (SVM)—with the hyperparameters tuned using a Bayesian optimizer. The PFP-
LHCINCA model achieved a sex classification accuracy of >88% with all five classifiers and the best accuracy rates (>98%) with
kNN and SVM classifiers. Conclusions. US-based fetal sex classification is feasible and accurate using the presented PFP-
LHCINCA model. The salutary results support its clinical use for fetal US image screening for sex classification. The model
architecture can be modified into deep learning models for training larger datasets.
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1. Introduction

Noninvasive fetal sex determination is feasible with maternal
transabdominal ultrasound (US) examination from about
the 12" week of gestation and becomes more reliable as fetal
sex organs mature. It is clinically indicated in pregnancies at
risk of X-linked genetic disorders or ambiguous genitalia.
Early sex classification has important implications for the
consideration of termination and hormone therapy to drive
differential sexual maturation. Manually assessed upward
and downward directions of the genital tubercle on the fetal
US are the earliest signs of the male and female sex, re-
spectively, that are best confirmed by later definitive de-
velopment of the phallus and labia [1-3]. Misdiagnoses often
arise due to malformed external genitalia, operator inex-
perience and/or fatigue, and unsuccessful attempts at
obtaining diagnostic images of the moving fetus that may
change its position variably within the uterus (which is
somewhat mitigated on three-dimensional ultrasound (US)
imaging) [4, 5]. These morphological, human, and technical
factors justify the need for and drive the development of the
automated computer-aided classification of fetal biophysical
signals that can be incorporated into efficient high-
throughput fetal sex screening to reduce misclassification
[6, 7]. Khanmohammadi et al. [6] reported a deep learning
model that attained 91.00% and 93.00% accuracies for fetal
sex determination with leave-one-out cross-validation and
hold-out method, respectively, on a dataset comprising 1000
phonocardiogram signals from the Shiraz University Fetal
Heart Sounds Database. Maysanjaya et al. [7] applied
learning vector quantization to 89 fetal US images and
attained a 0.05 learning rate but modest 63.00% accuracy for
sex classification. Aljuboori et al. [8] used a novel hybrid
filter and fuzzy C-mean based method to extract and select
features on 100 fetal US images to separate them into male
and female clusters, attaining superior 94.00% and 90.00%
accuracies, respectively. Of note, both US studies were based
on small datasets, which limits the generalizability of the
findings.
The novel sides of this model are highlighted below:

(i) A new fetus image dataset was collected to diagnose
the gender of the fetus.

(ii) Pooling functions are simple decomposition
models, and they have routing problem in machine
learning. A simple solution has been used to
overcome/solve this problem, and it is named
multiple average pooling.

(iil) A hybrid feature extractor has been presented in this
work. The proposed feature extractor generates both
shape and texture features from an image.

(iv) A new feature selector has been proposed, and this
feature selector is named CINCA since two feature
selection functions have been used together: Chi2
and iterative NCA.

(v) The classification results have been calculated using
five optimized classifiers to give a benchmark about
this dataset and our model.
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(vi) A new hand-modeled learning architecture has been
proposed to get high classification results with low
time complexity.

Contributions of our proposal are as follows:

(i) In the literature, there are variable deep and
handcrafted models to achieve high classification
performance. In this work, a new generation patch-
based handcrafted features-based image classifica-
tion model has been proposed. The main objective of
this model is to use the effectiveness of exemplar
models like ViT and MLP-Mixer.

(ii) Our proposal (fixed-size patch-based gender clas-
sification) contains feature extraction, feature se-
lection, and classification phases. Each phase has
individual novelties. In medical images, local ab-
normalities are very valuable to extract important/
valuable information. Therefore, fixed-size patch-
based local feature generation has been used. Herein,
a hybrid handcrafted feature extractor has been used.
This feature extractor can create both textural and
shape features using LPQ and HOG together. To
remove the redundant features, a hybrid and itera-
tive feature selector has been proposed. By using
Chi2, the length of the features has been decreased in
a short time, and INCA chooses the best features. To
classify these selected features, a shallow classifier
has been used, and the parameters of this shallow
classifier have been tuned using Bayesian optimi-
zation. This model reached 99.11% classification
accuracy using a kNN classifier with tenfold cross-
validation. In view of this, we have proposed a
cognitive architecture since each phase has been
dedicated to attaining high classification perfor-
mance with a low time burden.

2. Materials and Methods

We performed a retrospective analysis of fetal US images
acquired from 671 pregnant women who underwent routine
second trimester US scans at the Adiyaman Maternity and
Children’s Hospital in Malatya, Turkey, between January
2021 and October 2021. Example images are shown in
Figure 1. Local ethics committee approval had been obtained
for the study, which was performed in accordance with the
Declaration of Helsinki.

Table 1 summarizes the demographic and clinical in-
formation of the analyzed subjects.

All transabdominal US studies were performed using a
Voluson P8 scanner (GE Healthcare, Milwaukee, Wisconsin,
USA) by a radiologist with five years’ fetal US experience
(EK). From the initial midsagittal plane with the fetus in the
neutral position, the probe was rotated to obtain the
transverse view of the fetal external genitalia (Figure 1),
which was zoomed in and enlarged. On the midsagittal view,
upward and downward directions of the genital tubercles are
the earliest signs of male and female fetuses, respectively [4].
A more mature male fetus would typically display a uniform
dome-shaped structure representing the fetal penis and fetal
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FIGURE 1: Examples of fetal ultrasound images showing transverse views of a 20-week female fetus (a) and an 18-week male fetus (b)

demonstrating labial folds and phallus, respectively (arrowheads).

TaBLE 1: Temperature and wildlife count in the three areas covered
by the study.

Age (years), mean + SD 2517 +£13.72
Obstetric data

Gravida, mean + SD 2.3+0.7
Parity, mean + SD 21+1.2
Abortus, mean + SD 0.9+0.6
Vaginal birth, n (%) 553 (82.4)
Caesarean section, n (%) 118 (17.6)

scrotum as well as a longitudinal midline echogenic line at the
base of the fetal penis [4], while a more mature female fetus
would typically display two or four parallel lines representing
the labia major and minor, which are best seen in the transverse
plane [4]. In this study, zoomed transverse images of the genital
area (n=671, one image per subject) were stored in JPEG
format for analysis and counterchecked by an obstetrician with
ten years’ experience (SK). After birth, each neonate’s sex was
confirmed from information on the birth certificate. In total,
there were 339 male and 332 female fetuses/neonates in the
study. The number of images used is tabulated in Table 2.

We aim to develop an effective feature engineering
model with an efficient handcrafted feature extraction ar-
chitecture that at the same time incorporates elements of
deep learning. A new hybrid feature selector, CINCA, is
proposed to select the most discriminative/meaningful
feature vectors to be fed to standard shallow classifiers.
Distinct phases of our PFP-LHCINCA model—feature ex-
traction, feature selection, and classification—are detailed in
the text below and illustrated in Figure 2.

The purpose is to extract comprehensive multilevel fea-
tures. First, all images are resized to 256 x 256 resolution. Next,
we apply fixed-size patch separation, a technique that has been
used in works like vision transformers [9], as well as global
average pooling, which mimics convolutional neural networks
[10], to create a multilevel feature extraction model. Each
image is divided to construct a pyramid of 2 x 2 (four), 4 x 4
(16), 8 x 8 (64), and 16 x16 (256) nonoverlapping blocks or
pooled images with decreasing size: 128 x 128, 64 x 64, 32 x 32,
and 16 x 16, respectively (P1, P2, P3, and P4 in Figure 2). The

TaBLE 2: Number of images used.

Male 339
Female 332
Total 671

original 256 x 256 images and all pooled images are each
decomposed into 16 x 16 images, i.e., a fixed-size patch, using
average pooling. By dividing the original 256 x 256 images and
all pooled images into 16 x 16 sized patches, the total number
obtained from this fixed-size division is 341
(=256 +64+16+4+1). LPQ [11, 12] and HOG [13] are then
applied to each of the 341 16 x 16 fixed-size patches to generate
both directional and textural features (256 LPQ and 36 HOG
features), which results in 341 feature vectors with a length of
292 (=256 + 36) each that are all concatenated to form a new
matrix to be input to the feature selector.

The pseudocode of the presented fetus image classifi-
cation model is given in Algorithm 1.

The pseudocode of this model is demonstrated in Al-
gorithm 1. The details about the used methods in our hand-
modeled architecture are given below.

HOG [13] is one of the widely used image descriptors in
the literature and has been used for human detection
problems. It is a histogram-based feature extraction func-
tion. Directions (angles) and gradients (magnitude) are used
to create a feature vector. Gradients have been calculated by
using Sobel kernels (it has been used for edge detection). It is
a very successful feature extractor for shape detection.

m =G, +G),

) )
o = arctan| =% ).
G,

Herein, m is the magnitude, « is the angel of gradients (di-
rections), and G, and G, are horizontal and vertical gradients.

LPQ [11, 12] is a commonly used textural feature ex-
tractor, and it is a local binary pattern (LBP) like an image
descriptor. The image is divided into NxM sized over-
lapping blocks in this method. Fourier transform and
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FIGURE 2: Schematic of the PFP-LHCINCA fetal ultrasound image sex classification model.

Input: Fetus image (FI)

Output: Results
(0) Load fetus image dataset.
(1) for k=1 to N do// N represent the number of images
2) Read each image.

(3) Resize image to 256 x 256 sized image.
(4) Apply multiple average pooling to image and obtain pooled structure.
S={Py, P,,...,P,}, wS = {256 x 256,128 x 128, ..., 16 x 16}
S is structure; wS defines the size of images.
(5) cnt = 1;
(6) for h=0 to 4 do
(7) for i=1 to wS(1) step 16 do
(8) for j=1 to wS(1) step 16 do
9) Dot = P (i i+ 15, j: j+15);
(10) Font = merge (HOG (Do), LPQ (p)):
11) cnt =cnt + 1;
12) end for j
13) end for i
(14) end for h
15) X (k,: ) =merge(f, fr---»f3a1)

(16) end for k

(17) Choose the best 1000 features from the X.
(18) Apply INCA to the selected 1000 features.
(19) Feed the selected features to classifiers.

ALGorITHM 1: Pseudocode of our proposal.



Contrast Media & Molecular Imaging

blurring methods have been used to generate effective
textural features.

HOG extracts shape-based features, and LPQ is a
commonly known/preferred textural feature extraction
function and generates textural features at space and fre-
quency domains. By using both of them, shape and texture
features have been generated. Herein, the fundamental
purpose of the used hybrid (HOG + LPQ) features extractor
is to generate both textural and directional features.

The generated directional (using HOG) and textural
(using LPQ) features are fed as input of Chi-square iterative
neighborhood component analysis (CINCA). The descrip-
tion of the CINCA selector is given in the next section.

We designed an efficient hybrid feature selection function
that incorporates Chi2 [14] and neighborhood component
analysis [15], which effectively selects features with the mini-
mum classification errors using weighted k-nearest neighbor
(kNN) [16]. The main objective of the presented CINCA se-
lector is to decrease the time complexity of the huge feature
vector since the Chi2 selector is one of the fastest (quick re-
sponse) feature selection functions in the literature [14]. First,
Chi2 is applied in the first layer to filter the top most valuable
1000 extracted features out of 99,572 (=341 x 292) extracted
features, which decreases the time burden/complexity of
downstream iterative feature selection processes considerably.
As neither Chi2 nor NCA per se can execute beyond a single
feature selection step, the 1000 selected features are fed to the
second layer composed of the INCA selector [17], which uses
feature parameters to calculate KNN misclassification rates to
iteratively narrow the selection to the optimal/best feature
vector with the lowest misclassification rate automatically using
tenfold cross-validation. Based on the novel hybrid feature
selection function CINCA, the most informative feature vector
in our experiment is the one with 498 features.

The final classification phase is the simplest in our model.
Five standard shallow classifiers—kNN, linear discriminant
(LD), naive Bayes (NB), support vector machine (SVM), and
decision tree (DT)—are chosen, and their respective hyper-
parameters tuned using a Bayesian optimizer [18]. The results of
the PFP-LHINCA model with five classifiers are then compared.

A stepwise mathematical account of our PFP-LHCINCA
model is given below and implemented in the MATLAB
2021b environment (the parameter settings are summarized
in Table 2).

Step 1. Load the fetus US image dataset, and read each US
image.

Step 2. Apply image resizing to each image to set a size of
256 x 256.

Step 3. Decompose the image using four levels of average
pooling (multilevel decomposition) as given below.

P;=avp(Im,2' x2'), i€ ({1,2,3,4}. (2)
Herein, 2 x2, 4x4, 8x8, and 16 x 16 sized nonoverlap-

ping blocks are used to create decomposed images (P) using
average pooling (avp(.,.)). Im is the used fetal US image.

Step 4. Divide image (Im) and pooled images (P) into
16 x 16-sized patches.

pr =1Im(t: t+15,7: r + 15),
tef{l,17,...,241},

(3)
ref{l,17,...,241},
kefl,2,...,256},
ph+256 = Pl (t t+157r. r+ 15),
te{1,17,...,113},
(4)
re{l,17,...,113},
hell,2,... 64}
Duiazo = Py (8 £+ 15,12 7+ 15),
te{l,17,...,49},
(5)
re{l,17,...,49},
vel{l,2,...,16},
Peszze = P3(t: t+ 15,7 1+ 15),
te{1,17},
(6)
re{l,17},
ve{l,2,...,4},
D3 =Py (7)

In (4) to (8), the patch division process is defined, and
341 patches are obtained.

Step 5. Extract features from each patch.

f; = concat (LPQ(p;), HOG(p;)), j € {L,2,...,341},

(8)

where concat(.) is a concatenation function. Herein, 341
feature vectors are extracted by deploying LPQ and HOG
feature extraction functions together.

Step 6. Merge the created feature vector to obtain the final
feature vector.

X =concat(f, far o> f3a1)s (9)

where X is the merged final feature vector.

Step 7. Apply Chi2 feature selector to X, and calculate
qualified indices of X.

Step 8. Choose the most informative 1000 features from X
deploying the generated indices.

Step 9. Apply INCA to the 1000 features selected by Chi2.
INCA uses parameters (kNN is deployed as a misclassifi-
cation rate calculator, and the range of INCA is set at 100 to
1000) to select the optimal feature vector with the lowest
misclassification rate.
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TaBLE 3: MATLAB implementation and parameter settings of the PFP-LHCINCA model.
Method Parameter
256 x 256

Image resizing

Image decomposition

Patch division

LPQ and HOG feature extraction
Feature merging

Chi2

INCA

Average pooling with four levels using 2x2, 4x4, 8 x8, and 16 x16

16 x 16 sized patches

341 (256 LPQ and 36 HOG) features are extracted for each patch
The concatenation function is merged
The most informative 1000 features are selected
Range: [100, 1000]; error function: kNN with 10-fold CV. Herein, k is 1, the distance metric is

Euclidean, and weight is none

kNN: k=70, distance: correlation, weight: squared inverse
LD: discriminant type: linear, gamma: 0

Classifiers

NB: kernel: normal, support: unbounded

SVM: kernel function: Gaussian, box constraint: 3, kernel scale: 5.6
DT: split criterion: deviance, maximum number of splits: 51, surrogate: off

Bayesian optimizer

Acquisition function: expected improvement per second plus, iterations: 100

Predicted Class Predicted Class Predicted Class Predicted Class
Boy Girl Boy Girl Boy Girl Boy Girl
g 2 E g
©) O O &)
=] Boy 6 k= Boy 12 k= Boy 15 =] Boy 10
B & & B
=] =1 =3 =1
o o ] o
Girl 0 Girl 47 Girl 58 Girl 0
(a) (b) (o) (d)
Predicted Class
Boy Girl
2
©)]
=] Boy 310 29
&
=]
o
Girl 48 284

FiGgure 3: Confusion matrices of PFP-LHCINCA model by classifier type. KNN: k-nearest neighbor; LD: linear discriminant; NB: naive
Bayes; SVM: support vector machine; DT: decision tree. (a) kNN. (b) LD. (c) NB. (d) SVM. (e) DT.

Steps 7-9 constitute the proposed CINCA feature se-
lection function.

Step 10. Optimize hyperparameters of the used DT [19], LD
[20], NB [21], kNN [16], and SVM [22, 23] classifiers by
deploying Bayesian optimizer. Herein, 10-fold cross-vali-
dation has been utilized as a validation model.

3. Results and Discussion

In this work/research, we used MATLAB 2021b program-
ming environment to realize our proposal. We used a simple
configured laptop, and this laptop has i7-7700 central
processing unit (CPU), 16 GB memory, and 256 GB solid-
state hard disk with Windows 10.1 ultimate operating sys-
tem. We used functions to create this hand-modeled image
classification model. The used functions were stored as m

files. Our model is a parametric model, and our used pa-
rameters are tabulated in Table 3.

To compare the performance of the PFP-LHCINCA
using the five different classifiers, standard performance
metrics—precision, recall, accuracy, and F1 score [24, 25]—
as well as the confusion matrices of every classifier are
presented. The mathematical definitions of these perfor-
mance metrics are given in the following equations:

racy = tp+in I
accuracy = print fpt fr (10)
recision = _tp (11)
P tp+ fp
__tp
recall = - (12)
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FIGURE 4: Receiver operating characteristic curves of the classifiers used in the model. AUC: area under curve; KNN: k-nearest neighbor; LD:
linear discriminant; NB: naive Bayes; SVM: support vector machine; DT: decision tree. (a) kNN, 0.99, (b) LD. (c) NB, 0.89. (d) SVM, 0.98. (e)

DT, 0.88.



TaBLE 4: Performance metrics of PFP-LHCINCA model by clas-
sifier type.

Classifier Accuracy (%) Precision (%) Recall (%) F1 score (%)

kNN 99.11 99.11 99.12 99.11
LD 91.21 91.70 91.15 91.43
NB 89.12 89.81 89.05 89.43
SVM 98.51 98.54 98.53 98.53
DT 88.52 88.66 88.49 88.58

kNN: k-nearest neighbor; LD: linear discriminant; NB: naive Bayes; SVM:
support vector machine; DT: decision tree.

recall x precision
Fl = 2o~ PECTOR, (13)
recall + precision

Herein, tp, tn, fp, and fn are the numbers of true positives,
true negatives, false positives, and false negatives,
respectively.

Confusion matrices and receiver operating characteristic
(ROC) curves comparing model performance with each
classifier are presented in Figures 3 and 4, respectively.
Furthermore, Table 4 indicates the overall classification
results of the proposed PFP-LHCINCA model.

This study observed good diagnostic performance for our
proposed PFP-LHCINCA model using a large fetal US image
dataset comprising 339 male and 332 female fetuses. In the
PFP-LHCINCA model, handcrafted feature engineering in-
volving both fixed-size patch and pyramidal feature gener-
ation architectures is used to generate 341 16 x 16 fixed-size
patches per standardized resized 256 x 256 zoomed image of
the fetal genital area. LPG and HOG extracted 292 features
from each patch, ie., 99,572 features per image. These
extracted features are merged into a new matrix which is then
fed to a new hybrid feature selection function CINCA, which
incorporates Chi2 to filter the top 1000 extracted features and
INCA to narrow the selection to the most informative feature
vector using iterative calculations of the feature parameter-
derived kNN misclassification rates. The optimal feature
vector possesses 498 features with minimum misclassification
(0.0149), which translates into 98.51% accuracy using the
kNN classifier (see Figure 5).

The optimal feature vectors from all image samples are
input into five standard shallow classifiers, including kNN,
with corresponding hyperparameters tuned using a Bayesian
optimizer. The best-performing kNN classification accuracy
improved from 98.51% (unadjusted) to 99.11% by tuning the
hyperparameters. In addition, our model has performed well
compared with other published methods for US-based fetal
sex classification (see Table 5).

As can be seen from Table 5, the proposed PFP-
LHCINCA attained over 99% classification accuracy using
simple methods together. Moreover, our proposal outper-
forms the other methods.

Many works have been carried out to evaluate the correct
determination of fetal gender by ultrasonography in preg-
nancy, and ultrasonographic examination is still the most
effective and accurate method. However, cases where parallel
lines cannot be clearly evaluated in the female gender can be
confused with parallel lines located in the scaling midline, or

Contrast Media & Molecular Imaging

S
> o
[N

o

=

&
—

Misclassification rate

—

498 600 700 800 900 1000
Features

FIGURE 5: Determining the optimal feature vector with the lowest
misclassification using an iterative neighborhood component
analysis.

TaBLE 5: Comparison of PFP-LHCINCA model with published
results of other ultrasound-based fetal sex classification methods.

Best accuracy

Study Method Dataset (%)
. 64
Maysanjaya Lee}rmpg vector males
et al. [7] quantization, ;}rﬂﬁaal 25 63.0%
vector quantization f |
emales
Fuzzy C-mean,
discrete wavelet 50
Aljuboori transform, local males 94.0%
et al. [8] binary pattern, 50 ’
median, Laplacian  females
filters
Pyramidal fixed-size
patch division, local
phase quantization
and histogram of 0
oriented gradients 339 99-11% (kNN
PFP- males  classifier tuned

LHCINCA based feature 332
extraction, hybrid females
Chi2 and iterative
neighborhood
component analysis

feature selection

with Bayesian
optimizer)

incorrect gender determination can be made by mixing the
umbilical cord with the penis, which is quite common. The
most important reasons for this are the more time spent on
the evaluation of organs and fetal development in detailed
ultrasonographic screening or pregnancy examination, the
fetal mobility, or the inability to obtain the desired fetal
position. Detection of fetal sex with artificial intelligence
methods with such high accuracy rates can be beneficial for
both radiologists and obstetricians, and it can be very helpful
in responding correctly to parental demands by eliminating
bias and facilitating objective evaluation.
The highlights of this research are as follows:

(i) A new US-based fetus sex classification model, PFP-
LHCINCA, that has attained excellent performance
using handcrafted features is presented.
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(ii) The model employed a novel feature extraction
architecture that deployed fixed-size patch division
and average pooling, combined with shallow feature
extractors LPQ and HOG to generate comprehen-
sive multilevel features efficiently.

(iii) The model accuracy rates are 88% or better when
combined with five standard shallow classifiers with
hyperparameters tuned using a Bayesian optimizer.
Best accuracy rates are obtained with SVM and kNN
classifiers (>98%).

(iv) While we have used 16 x 16 fixed-size patches (in-
spired by vision transformers [9]) with four de-
composition levels using average pooling, these
parameters are modifiable. In this respect, the
proposed architecture is an extendable computer
vision model.

(v) A hybrid feature selection function, CINCA,
combining Chi2 and INCA, has been presented; it
automatically selected the most informative feature
vector with the lowest kNN misclassification rate
derived from input feature parameters.

(vi) As the feature extraction phase has adapted ele-
ments inspired by deep learning models, i.e., fixed-
size patch division and average pooling-based image
decomposition, and the feature selection and clas-
sification phases can execute autonomously, the
model architecture can be modified into new deep
learning models for training larger datasets.

In the real-world applications, we can propose a new
intelligent application to detect genders. Our proposed
method can be applied to a big image dataset. All phases will
be implemented in the training phase, and the optimized
parameters will be obtained. In the testing phase, only
feature extraction phase will be implemented to generate
features of the testing observation. By using the calculated
indices in the training phase, the features are selected, and by
using the optimized parameters, classification will be
conducted.

4. Conclusions

An automated US-based fetal sex classification method that
has been trained and tested on a new large US image dataset
is presented in this work. The novel image classification
architecture deployed fixed-size patch division and average
pooling-based image decomposition. This model created 341
patches, and handcrafted features were extracted from each
patch using LPQ and HOG descriptors together. A hybrid
CINCA function chooses the most valuable feature vectors,
and the classification ability of these features is tested using
five shallow classifiers. Hyperparameters of these classifiers
are tuned using Bayesian optimization. The optimized kNN
classifier, SVM, LD, NB, and DT attained classification ac-
curacy of 99.11%, 98.51%, 91.21%, 89.12%, and 88.52%,
respectively. Moreover, the AUC values of these classifiers
on ROC analyses range from 0.88 to 0.99. SVM and kNN
classifiers also attain 100% recall for detecting female fetuses.

These salutary results demonstrate the feasibility and ac-
curacy of our proposed PFP-LHCINCA model, which
support its use for fetal sex classification with US images in
the clinic.

We plan to acquire a larger fetal US dataset, which will
allow training and testing using deep models. By training a
deep learning network on the extensive ultrasound dataset,
the calculated weights can be used to transfer learning and
develop a new fully automated fetal sex classification ap-
plication that can provide real-time online triage and alert
when embedded directly on ultrasound imaging devices.
Moreover, our other future intention is to develop an in-
telligent assistant to help operator doctors in operations.
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