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ABSTRACT 

 

Floods are frequently occurring natural disasters that can cause significant damage to 

human lives, natural resources, and the civil infrastructures. The devastating impacts 

of flood events warrant the need to develop innovative means of both monitoring and 

forecasting of flood events to assist in reducing the damage caused by such events. In 

this research project, new mathematical methods designed to provide an objective 

explanation of the progression and forecasting of future flood events in Fiji are 

explored. Firstly, a flood monitoring tool known as the Flood Index (𝐼𝐹), is used to 

study flood events that occurred in Fiji over the period 1991-2019. 𝐼𝐹 is generally 

recognized as an objective means to determine the flood state solely based on rainfall 

datasets. In addition, the 𝐼𝐹 makes it possible to mathematically derive the duration, 

severity, and the intensity of flood situations. In this research study, the flood events 

identified for nine study sites in Fiji are quantified using 𝐼𝐹, and their duration, severity, 

and intensity (based on IF derived from rainfall dataset) were successfully determined. 

Next, the convolutional version of Long Short-Term Memory Network (ConvLSTM), 

which is a hybrid deep learning algorithm integrating LSTM and CNN (Convolutional 

Neural Network) algorithms, is used to develop a flood forecasting system. The newly 

designed deep learning model (i.e., ConvLSTM) uses significant lagged 𝐼𝐹 values and 

the antecedent rainfall dataset as a predictor (or input) variable, in order to forecast the 

𝐼𝐹 value at the 1, 3, 7 and the 14 day ahead timescales, to depict the progression of a 

likely flood event after torrential rainfall events. When compared with the benchmark 

predictive models, the objective model (i.e., ConvLSTM) reveals a superior 

performance, and thus demonstrates good forecasting accuracy of a likely flood event. 

The final objective of this research project is to develop a Decision Support System 

(DSS) as a convenient digital platform to compute both the daily and the hourly flood 

monitoring and forecasting indices using Streamlit software as the systematic 

platform. The study adopts Streamlit, as it is a platform that can be used to easily build 

data-driven, web-based applications using the Python programming language. The 

proposed DSS platform is able to provide a portable online interface required to build 

and evaluate ConvLSTM predictive model for daily and hourly flood forecasting 

systems. The proposed methodologies in this project were shown to be significantly 
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innovative in terms of flood monitoring and forecasting with a focus on their 

applications to the Fiji Islands where natural disasters such as tropical cyclones are 

likely to bring flood inundations almost every year and pose serious community risk. 

The results presented in this research study is expected to be an important step-forward 

in the development of both mathematical and artificial intelligence (AI) based flood 

monitoring and forecasting systems to address flood impacts and community risk 

management. An AI-based decision support system is also expected to become 

valuable for meteorologists, government, disaster management committees and other 

climate risk decision makers to be better prepared for future flood risk, particularly, by 

developing better strategies to mitigate the harmful impacts of flood events, and 

consequently, use such systems to lives and infrastructure. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

Floods are one of the most commonly occurring natural disasters (Doocy et al. 2013). 

Severe flood situations usually result in the loss of lives and damages to infrastructure 

which causes a significant economic impact. The unpredictable behavior of floods 

results in a challenging problem for meteorological organizations, hydrological system 

modelers and national disaster management experts. However, advanced statistical 

approaches and Artificial Intelligence (AI) techniques can be used to develop practical 

tools for flood risk monitoring and forecasting, respectively. These tools would assist 

communities to be better prepared for potential flood situations and apply effective 

risk mitigation strategies in a timely manner. As such, it has become increasingly 

important to apply emerging technologies to develop new cost-effective and efficient 

flood monitoring and forecasting systems that can be used to save lives and resources. 

The Flood Index (𝐼𝐹) (Deo et al. 2015) and Water Resources Index (𝑊𝑅𝐼) (Deo, Byun, 

et al. 2018) are two flood monitoring tools that largely rely on accumulated rainfall 

data to quantify flood situations. Out of these two indices, the 𝑊𝑅𝐼 is normally used 

for hourly flood monitoring and 𝐼𝐹 is applied for daily monitoring of floods. However, 

both of these tools are in line with the rationale by (Lu 2009), which states that apart 

from precipitation, other hydrological conditions such as evaporation, transpiration, 

seepage and surface run-off needs to be considered for a flood monitoring index. 𝐼𝐹 

and 𝑊𝑅𝐼 have been applied at various places around the globe and have shown to 

deliver highly accurate results (Deo et al. 2014, 2015; Deo, Adamowski, et al. 2018; 

Deo, Byun, et al. 2018). Therefore, using 𝐼𝐹 and 𝑊𝑅𝐼 in this study is expected to 

provide a more effective assessment of the duration, severity, and intensity of past 

floods in the country.  

Moreover, apart from analyzing previous flood events, it is extremely important to be 

able to forecast future flood situations. However, developing early flood warning 

systems have been a challenge as the development of such systems require several 

technologies and expertise in a wide array of areas (Krzhizhanovskaya et al. 2011). 

Such challenges are more evident in developing countries where scientific research is  
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limited. Therefore, a cost-effective solution with readily available technology is 

required for an early flood forecasting system in these countries. Over the years, 

several AI-based approaches have been used for flood forecasting (Campolo et al. 

1999; Nayak et al. 2005; Tran & Song 2017). These AI-based methods are cost-

effective and have been able to deliver good forecasting performance. Consequently, 

efficient, and cost-effective early flood warning systems can be developed by using 

the latest AI techniques and mathematical flood monitoring tools. 

Furthermore, since the mid 1970’s, Decision Support Systems (DSS) have been 

developed in several studies, which addressed various areas of flood risk management 

(Loucks & Da Costa 1991; Simonovic 1999; Ahmad & Simonovic 2006; Mahmoud & 

Gan 2018). Despite this, a DSS that is based on mathematical flood monitoring tools 

such as 𝐼𝐹 and hourly 𝑊𝑅𝐼 have not been built till date. As stated, 𝑊𝑅𝐼 is based on a 

similar rationale as the  𝐼𝐹, but can be used to monitor flood situations at hourly 

timescales (Deo, Byun, et al. 2018). Therefore, as these mathematical tools have 

shown good performance in quantifying flood situations, development of a data driven 

DSS that uses these tools is expected to enable a cost-effective approach for 

monitoring and forecasting flood situations. Consequently, the proposed DSS would 

also make it easy for organizations to use mathematical flood monitoring and 

forecasting tools. 

1.2 Statement of the Problem 

Flood events can cause significant damages to infrastructure, ecology, human lives, 

economic strength and several other tangible and intangible resources (Messner & 

Meyer 2006). It is one of the most common forms of natural disasters in many areas 

around the globe such as the study area for this research, Fiji. This South Pacific island 

nation has faced some of the severest floods in the past (Yeo & Blong 2010; Brown et 

al. 2016). It is estimated that the damage caused by the January 2012 floods totaled 

around 48.6 million FJD for the Ba and Penang river catchments combined (Brown et 

al. 2016). These are huge costs for low-income countries such as Fiji. Brown et al. 

(2016) stated that due to changes in climate, such disasters are expected to be more 

severe in the future and this will cause more damages. Therefore, there is an urgent   
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need to develop innovative and cost-effective tools using emerging technologies that 

can assist stakeholders to be better prepared for flood events and therefore possibly 

mitigating the harmful impacts resulting from such natural disasters. 

1.3 Research Questions 

The following research questions are designed in accordance with the objectives of 

this MSCR study: 

(1) Can we develop a flood monitoring system to investigate the duration, severity 

and intensity of flood events that have occurred in the Fiji Islands over a thirty-

year period (1990-2019) and how this information can be used for better 

disaster risk management?  

(2) How can the occurrence of future flood events be forecasted using an AI-based, 

deep learning-based approach and how accurate will these flood predictions be 

in ensuring an accurate flood warning system be implemented for community 

risk management in Fiji?  

(3) Will a Decision Support System (DSS) to assist in computing mathematical 

flood monitoring indices and providing means of forecasting these indices be 

useful for flood risk mitigation and will it increase the usage of mathematical 

and AI-based models for flood monitoring and forecasting?  

This project will answer the above questions using flood monitoring indices, to study 

previous flood events in Fiji. Following this, the flood indices will be used with an AI-

based approach including deep learning algorithms to forecast the future occurrence 

of flood events. Finally, a new DSS will be developed for flood monitoring and 

forecasting to answer the third research question 

1.4 Aims and Objectives 

The aim of this research project is to develop data driven flood monitoring and AI-

based flood forecasting tools and test its application on various flood prone sites in 

Fiji. These tools are expected to be helpful for relevant organizations in 

mathematically quantifying previous floods and forecasting the possible occurrences  
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of future flood situations. Hence, to achieve the key aim, the objectives of this research 

is to: 

1. Develop the relevant programming codes required to calculate the flood 

monitoring index, 𝐼𝐹, based on effective precipitation, 𝑃𝐸 and water resources 

index, 𝐴𝑊𝑅𝐼. Furthermore, the flood index will be used to derive the duration, 

severity and intensity of all flood events that occurred during the study period 

using the computed 𝐼𝐹 for various sites in the Fiji Islands. 

[The outcomes of Objective 1 have been published in Stochastic 

Environmental Research and Risk Assessment journal] 

2. Use ConvLSTM hybrid deep learning algorithm and develop a cost-effective 

early flood warning system. Furthermore, to compare the performance of the 

ConvLSTM model with CNN-LSTM, LSTM and SVR and determine the 

suitability of the objective model in forecasting floods at 1, 3, 7 and 14 day 

ahead timescales.  

[The outcomes of this Objective 2 have been published in IEEE Access journal]   

3. Build a robust online DSS that can be used to compute daily and hourly flood 

monitoring indices. In addition, the DSS was expected to have interfaces for 

easily building and testing daily and hourly flood forecasting AI-based models.  

[The outcomes of this Objective 3 will be submitted to Stochastic 

Environmental Research and Risk Assessment journal]   

The journal paper resulting from the completion of objective one has been published 

in Stochastic Environmental Research and Risk Assessment 

(https://doi.org/10.1007/s00477-020-01899-6) and the paper produced for completing 

objective two has been published in IEEE Access 

(https://doi.org/10.1109/ACCESS.2021.3065939). The journal paper produced for 

completing objective three will be submitted to Stochastic Environmental Research 

and Risk Assessment. 

1.5 Thesis Layout 

This thesis has been organized into seven chapters as follows: 

Chapter 1 This chapter provides background about the research, discusses the  
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statement of problem, presents the research questions, and outlines the 

main objectives of the study. 

Chapter 2 This chapter provides the literature review for the study and presents 

details of the concepts and tools used during this research. 

Chapter 3 This chapter discusses the study sites, data and provides an overall 

overview of the experimental methods used in this research. The 

content presented in this chapter lays the foundations for the following 

chapters. 

Chapter 4 This chapter presents a published journal article. The paper presented 

is titled “Development of Flood Monitoring Index for daily flood risk 

evaluation: case studies in Fiji” (https://doi.org/10.1007/s00477-020-

01899-6) and was published in the journal, Stochastic Environmental 

Research and Risk Assessment. It addressed objective one of this study. 

Chapter 5 This chapter also presents a published journal article. The paper 

presented is titled “Designing Deep-based Learning Flood Forecast 

Model with ConvLSTM Hybrid Algorithm” 

(https://doi.org/10.1109/ACCESS.2021.3065939) and was published in 

the journal, IEEE Access. It addressed objective two of this study. 

Chapter 6 This chapter presents a journal article which will be submitted to 

Stochastic Environmental Research and Risk Assessment. The paper 

presented is titled “A Web-based Flood Monitoring and Forecasting 

Decision Support System with Streamlit Online Platform”. This paper 

addressed objective three of this study. 

Chapter 7 This chapter concludes the thesis by presenting a summary of the study, 

listing the limitations, and by providing recommendations for future 

works. 
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CHAPTER 2: LITERATURE REVIEW 

 

This section discusses the literature review for this thesis. It has been divided into 

several sections, with each section elaborating on a specific important concept used 

for this research. 

2.1 Flood Monitoring 

Over the years, several mathematical tools have been developed for monitoring floods 

using mathematical means and rainfall data. These include the 𝐼𝐹, 𝑊𝑅𝐼, Standardized 

Precipitation Index (𝑆𝑃𝐼) (Seiler et al. 2002), Available Water Resources Index 

(𝐴𝑊𝑅𝐼) (Byun & Lee 2002), Weighted Average of Precipitation (𝑊𝐴𝑃) (Lu 2009) 

and the Standardized WAP (𝑆𝑊𝐴𝑃) (Lu et al. 2013). Among these tools, the tool 

which is one of the most common is the 𝑆𝑃𝐼. However, the major drawback of using 

this approach for this study was its incapability to quantify floods for short time periods 

(e.g., daily timescales) (Lu 2009). In addition, other hydrological conditions which are 

important for a flood monitoring tool such as evapotranspiration and seepage is not 

considered by 𝑆𝑃𝐼. Hence due to these factors, 𝑆𝑃𝐼 was not suitable for flood 

monitoring in this study as the monitoring of floods at daily and hourly timescales was 

required for the purposes of this research. 

Furthermore, two of the standardized tools that are useful for monitoring floods at 

daily timescales include the 𝐼𝐹 and 𝑆𝑊𝐴𝑃. These indices are the normalized version 

of Effective Precipitation (𝑃𝐸) (Byun & Chung 1998) and 𝑊𝐴𝑃, respectively and both 

of these follow the rationale presented by (Lu 2009). This rationale states that the 

occurrence of a flood on any day is dependent on the antecedent and current days 

precipitation. This was also stated by (Ma et al. 2014) in terms of considering the 

remaining volume of water after a flood for the assessment of floods. In addition, the 

effect of earlier days rain on current days flood gradually decreases due to different 

hydrological conditions. These include conditions such as percolation and 

groundwater flow (Lu 2009). As shown in Figure 2.1, this rationale is used by 𝑃𝐸. 

Moving on, one of the major drawbacks of 𝑆𝑊𝐴𝑃 is that is has not been widely applied 

for flood monitoring. On the other hand, 𝐼𝐹 has been tested for its applicably at many  
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places with different environmental conditions (Nosrati et al. 2010; Deo, Adamowski, 

et al. 2018). Therefore, using 𝐼𝐹 for daily flood monitoring in this research is expected 

to produce better and more accurate results. 

Moreover, the tool which is based on a similar principle as the 𝐼𝐹, but can be used for 

flood monitoring at hourly timescales using earlier hours rainfall data is the 𝑊𝑅𝐼. The 

only drawback of this index is that is has not been widely applied in various studies. 

However, during its usage for monitoring floods in South Korea and Australia, it was 

seen to be a good statistic of flood situations at hourly timescales (Deo, Byun, et al. 

2018). Consequently, due to this and the underlying principle of the 𝑊𝑅𝐼, it is selected 

to be applied and evaluated for the hourly flood monitoring tasks during this research. 

 

Figure 2.1: Demonstration of Rationale used by 𝑃𝐸 (Depleting Water Resources 

after Over time due to Several Hydrological Conditions) 

2.2 Flood Forecasting 

There are several AI-based tools that have been developed in the recent years for 

forecasting floods. These tools have made used of various techniques with machine 

learning and deep learning approaches to forecast floods. Some examples of these 

methods include a river flood forecasting neural network model by Campolo et al. 

(1999), Support Vector Machine (SVM) based method by (Han et al. 2007), deep 

learning approach using RNN (Recurrent Neural Network) and LSTM (Long Short- 
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Term Memory) network by (Tran & Song 2017) and Artificial Neural Network (ANN) 

deep approach for decentralized flood forecasting by (Sit & Demir 2019). Hence, these 

examples clearly demonstrate the ability of AI-based methods for flood forecasting. 

Consequently, using flood monitoring tools such as 𝐼𝐹 and 𝑊𝑅𝐼 with AI approaches 

to forecast floods is expected to open a new means of forecasting floods using 

timeseries data. 

Furthermore, it is expected that using hybrid deep learning approaches that combines 

multiple deep learning algorithms for specific forecasting tasks should deliver better 

performance when compared with standalone machine and deep learning algorithms. 

Some of the examples of hybrid deep learning algorithms include CNN-ELM (Duan 

et al. 2018) which combines Convolutional Neural Network (CNN) and Extreme 

Learning Machine (ELM) algorithms, DNN-BTF (Wu et al. 2018) which used Deep 

Neural Networks (DNN), RNN and CNN for improving prediction performance, and 

ConvLSTM (Kim et al. 2017) which combined CNN and LSTM. In terms of individual 

algorithms from this list, LSTM has been previously used to forecast floods and has 

also shown good performance for time-series forecasting (Yunpeng et al. 2017; Siami-

Namini et al. 2018). Consequently, using ConvLSTM, which is a hybrid deep learning 

model, and a variant of LSTM is expected to provide better accuracy and performance 

when forecasting floods using timeseries data. 

2.3 Online Flood Decision Support System 

According to Eom and Kim (2006), research involving DSS’s can be classified into 

three general categories. These include studying the reference disciplines, theory 

building and application development. In addition, an interdisciplinary research 

approach is required for developing DSS’s, involving fields such as computer science, 

statistics and knowledge engineering (Eom 1999). Over the years, several DSS’s with 

the purpose of flood management and related decision making has been developed. 

These include the DSS developed by (Ahmad & Simonovic 2006) for assisting during 

the various phases of flood management and the operational DSS developed by (Todini 

1999). However, a DSS that uses flood monitoring indices such as 𝐼𝐹 and 𝑊𝑅𝐼 for 

monitoring and forecasting floods at daily and hourly timescales is not available. 

Consequently, the development of such DSS is expected to provide a convenient and 

cost-effective means of analyzing and forecasting floods.  
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Web-based DSS’s, despite its challenges, have a number of advantages including 

being platform independent, distributed and accessibility from remote locations that 

has internet connectivity (Bhargava et al. 2007). Furthermore, in recent years, several 

technologies have been developed to build powerful web applications. These include 

PHP (Welling & Thomson 2003), JavaScript (Crockford 2008) and ASP.Net 

(Galloway et al. 2012). However, these tools are not fully suitable for data driven 

applications. A platform that can be used to build data driven web-based applications 

easily and quickly is Streamlit (Streamlit 2021). This platform allows the user to use 

Python programming language (Sanner 1999) which is a popular language for data 

analysis, machine learning and data visualization. Hence, a Streamlit based DSS for 

providing means of monitoring and forecasting floods would enable an innovative 

means for flood risk mitigation. 

2.4 Summary 

In summary, for monitoring of floods, 𝐼𝐹 and 𝑊𝑅𝐼 appears to be better indices for 

daily and hourly monitoring of floods, respectively. These indices take antecedent 

rainfall and other hydrological conditions such as percolation, surface run-off and 

evapotranspiration into consideration to deliver accurate flood analysis results. When 

it comes to forecasting floods and developing early warning systems for floods, deep 

learning approaches such as CNN and LSTM have shown to produce better results 

when compared with the conventional machine learning models. Therefore, using the 

ConvLSTM hybrid deep learning model to forecast floods will provide better 

forecasting ability. In addition, developing an online DSS that uses rainfall-based flood 

monitoring tools to analyze and forecast floods will be a cost-effective means for flood 

management and risk mitigation. Furthermore, the online capability of this system will 

allow users to easily access and use the platform. These works are expected to be a 

novel and innovative means for analyzing and forecasting flood situations which will 

assist decision makers prepare efficient plans for flood mitigation, evacuation, and 

disaster risk management.  
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CHAPTER 3: DATA, STUDY AREA AND METHODS 

 

This chapter presents the study area, data and methods used during this research.  

The emphasis of this research is on Fiji, which is an island nation in the southwest 

Pacific (Lal 1992). The Fiji group consists of 332 islands (110 inhabited) and has an 

area of 18,000 km2. The country has a population of less than a million and majority 

of the people live on Viti Levu and Vanua Levu, which are the two largest islands 

among the group of islands (Government of Fiji 2017). Furthermore, Yeo et al. (2007) 

stated that floods are a serious threat to Fiji and that over the recent decades, the 

number of floods occurring in the country has increased. Two of the priorities for 

improving management of flood risk in the Pacific is to invest in early warning systems 

and improve capabilities for emergency management (Yeo et al. 2017).  Therefore, it 

became increasingly important to develop and apply cost-effective and innovative 

methods to reduce the impact of floods on lives and infrastructure in Fiji and other 

Pacific island countries.  

Adding on, due to the study area being small, majority of the flood prone areas of the 

country are covered during this research. The daily and hourly rainfall data for various 

sites around Fiji are successfully obtained from the Fiji Meteorological Services. Prior 

to discussing the new methods of flood monitoring that has been explored in this 

research, it is worth to mention that currently the tool that is used in Fiji for flood and 

rainfall analysis is the 𝑆𝑃𝐼 (Nawai et al. 2015; Fiji Meteorological Service 2018). The 

following contents have been divided into three subsections. Each subsection will 

briefly discuss the study area, data, and methods specific to completing each of the 

three objectives of the research. A detailed overview of the study area and 

methodology for these objectives has been discussed in the published and submitted 

journal papers presented in chapters 4, 5, and 6 of this thesis for objectives 1, 2 and 3, 

respectively.  

3.1 Objective 1: Daily Flood Monitoring using 𝑰𝑭  

Study Area and Data: Daily rainfall data from 1st January 1990 to 31st 

December 2019 (30 Years) for eleven areas around Fiji was successfully  
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obtained. These areas included Ba, Labasa, Lautoka, Nadi, Nausori, Navua, 

Rakiraki, Savusavu, Sigatoka, Suva, and Tavua. However, since Navua and 

Tavua had lots of missing data, they are not used during the experiments. The 

other sites had fewer missing data, and these are filled using the calendar mean 

before using it in the computations. While addressing this objective, the major 

town and city centers of the Fiji group are covered. 

Methodology: The platform used to develop the code for obtaining the 𝐼𝐹 is 

MATLAB (MathWorks 2019). Once the missing data was filled using calendar 

means, the first variable to compute is the 𝑃𝐸. 𝑃𝐸 provides the sum of the 

accumulated rainfall over an annual period (365 days), with the effect of 

antecedent day’s rainfall on current day’s 𝑃𝐸 gradually decreasing based on a 

time-dependent reduction function (Byun & Chung 1998). The first metric 

derived from the 𝑃𝐸 is the 𝐴𝑊𝑅𝐼, which is obtained simply by dividing the 𝑃𝐸 

over the combined weight (𝑊) of an annual cycle. Finally, the most useful 

metric, 𝐼𝐹, which is the normalized form of 𝑃𝐸 is derived. Once the 𝐼𝐹 has been 

computed, the onset, end, duration, severity, and intensity of floods that had 

occurred during the study period is determined.  

3.2 Objective 2: Daily Flood Forecasting using ConvLSTM 

Study Area and Data: The nine sites used for objective one is also used for 

objective two. However, in terms of data, apart from raw daily rainfall data, 

the computed 𝐼𝐹 from the results of objective one is also used. These are the 

two features to be used as inputs for the forecasting model. The other computed 

data from objective one (𝑃𝐸   and 𝐴𝑊𝑅𝐼) was also tested for its applicability in 

the forecasting model but is removed after the feature selection process. 

Methodology: The daily flood monitoring results which was obtained when 

addressing objective one is used to develop a deep ConvLSTM (Xingjian et al. 

2015) based flood forecasting system. The purpose of the model is to forecast 

future 𝐼𝐹 values based on lagged 𝐼𝐹 and rainfall data. Partial Autocorrelation 

Function (PACF) is used to choose the number of lagged days to be used by 
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the model and prior to training the model, the input data is scaled to be between 

0 and 1. Furthermore, the programming language used for developing the 

models is Python (Sanner 1999). Three other benchmark models are developed 

using CNN-LSTM (Livieris et al. 2020), LSTM (Le et al. 2019) and SVR 

(Drucker et al. 1997) and their performance in terms of forecasting accuracy is 

evaluated and compared against the objective model. The models are trained 

using various combinations of hyperparameters until the model performance is 

optimum. Once the models are developed, their performance with both the 

training and testing data is thoroughly evaluated using several statistical score 

metrics. 

3.3 Objective 3: Decision Support System for Flood Monitoring 

and Forecasting 

Study Area and Data: The proposed DSS is to be used for both daily and 

hourly flood monitoring and training and testing flood forecast models. The 

daily rainfall data was available for the nine sites from previous objectives. 

However, for hourly flood monitoring and forecasting, rainfall data from 

various sites in Fiji was obtained at 10-minute intervals for the period starting 

from 1st January 2014 to 31st December 2019. These datasets are added at 

hourly intervals to get rainfall amounts at hourly timescales. Once the proposed 

DSS is developed, the daily and hourly data from three sites, Ba, Nadi and 

Rakiraki, are used to test its practical application, performance, and accuracy. 

Methodology: Streamlit online platform, which uses Python programming 

language, is used to build a DSS to compute the daily 𝐼𝐹 and hourly 𝑊𝑅𝐼. The 

proposed DSS also provides an interface for building and testing ConvLSTM 

based models to forecast future 𝐼𝐹 and 𝑊𝑅𝐼 values as a means of developing 

AI-based flood forecasting models. The theoretical monitoring and forecasting 

approaches used by the proposed DSS is like the approaches used when 

addressing objectives one and two. This has been demonstrated in Figure 3.1, 

which shows the link between the methods and results of the first two 

objectives of this research being used for completing this objective (Objective 

3). Consequently, the proposed DSS is built to be a generic system that can  
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be easily used to apply mathematical flood monitoring tools at any location, 

using only daily or hourly rainfall data. 

 

Figure 3.1: Link between Methods and Results of Objectives One and 

Two being Used to Complete Objective Three 
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CHAPTER 4: FLOOD MONITORING SYSTEM DESIGN 

AND IMPLEMENTATION 

 

Foreword 

In this chapter, a copy of the paper with the title “Development of Flood Monitoring 

Index for daily flood risk evaluation: case studies in Fiji”, which is published in the 

journal, Stochastic Environmental Research and Risk Assessment has been presented. 

In the paper, the code for obtaining the 𝐼𝐹 was developed and applied to nine sites 

around Fiji Islands to mathematically quantify the floods that occurred in those regions 

over a 29-year period (1991-2019). Using the computed daily 𝐼𝐹, the duration, severity, 

and intensity of the floods during the analysis period was successfully determined. The 

results illustrated that floods are common throughout the country and they usually 

occurred during the November to April wet season in the country. Furthermore, this 

study also established  𝐼𝐹 as a cost-effective and accurate mathematical tool for daily 

flood monitoring in island nations. The results obtained in this study are useful for 

governments, organizations, and individuals in Fiji. These outcomes can assist them 

in building efficient flood risk mitigation strategies and mitigate the impacts of future 

floods that the country faces. 
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Abstract
Both fluvial and pluvial floods are a common occurrence in Fiji with fluvial floods causing significant economic conse-

quences for island nations. To investigate flood risk and provide a mitigation tool on daily basis, the Flood Index (IF) is

developed based on the rationale that the onset and severity of an event is based on current and antecedent day’s

precipitation. This mathematical methodology considers the notion that the impact of daily cumulative precipitation on a

particular flood event arising from a previous day’s precipitation, decreasing gradually over time due to the interaction of

hydrological factors (e.g., evaporation, percolation, seepage, surface run-off, drainage, etc.,). These are accounted for,

mathematically, by a time-reduction weighted precipitation influencing the magnitude of IF . Considering the duration,

severity and intensity of all identified events, the applicability of IF is tested at 9 study sites in Fiji using 30-year

precipitation datasets (1990–2019) obtained from Fiji Meteorological Services. Newly developed IF is adopted at flood

prone sites, with results demonstrating that flood events were common throughout the country, mostly notable between

November to April (or the wet season). Upon examining the variations in daily IF , the flood properties were determined,

showing that the most severe events generally started in January. Flood events with the highest severity were recorded in

Lautoka [IaccF (flood severity) � 149:14, ImaxF (peak danger) � 3:39, DF (duration of flood) � 151 days, tonset (onset date)

¼ 23rd January 2012], followed by Savusavu ðIaccF � 141:65; ImaxF � 1:75;DF � 195 days; tonset ¼ 27th November 1999Þ
and Ba ðIaccF � 131:57; ImaxF � 3:13;DF � 113 days; tonset ¼ 9th January 2009Þ. The results clearly illustrate the practi-

cality of daily IF in determining the duration, severity, and intensity of flood situation, as well as its potential application to

small island nations. The use of daily IF to quantify flood events can therefore enable a cost-effective and innovative

solution to study historical floods in both developing and first world countries. Our methodology is particularly useful to

governments, private organizations, non-governmental organizations and communities to help develop community-ami-

cable policy and strategic plans to prepare for flood impacts and undertake the necessary risk mitigation measures.
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1 Introduction

Floods are a common occurrence in most parts of the

globe. More than two billion people were affected by

floods between 1998 and 2017 (Wallemacq and House

2018). Adding on, floods resulted in 142,088 deaths and

amounted to a total of 656 billion USD in economic losses

for the 20-year period. In contrast to first world countries,

the effects of such disasters are more devastating in

developing countries (Keoduangsine et al. 2014). Fiji,

which is a developing country has faced some of the

severest floods in the past. One of the worst disasters that

the country faced was the 1931 hurricane and flood in

which at least 225 people lost their lives (Yeo and Blong

2010). It is estimated that the damage caused by the Jan-

uary 2012 floods totalled around 48.6 million FJD for the

Ba and Penang river catchments combined (Brown et al.

2016). These are significant losses for a country with a

GDP of less than 6 billion USD (The World Bank Group

2019) and a population of less than a million. According to

Brown et al. (2016), floods will be more frequent and

severe in the future, resulting in increasing annual losses

due to climate change. Therefore, this brings up the need to

develop and apply innovative and cost-effective solutions

that can assist to mitigate the impacts caused by floods in

developing countries such as Fiji.

Subsequently, scientific tools with practical applications

in the 21st century are necessary considering the current

trends of water resources (Yevjevich 1991). Over the years,

there have been many flood monitoring methods that have

been used to quantify flood events including the Stan-

dardized Precipitation Index (SPI) (Seiler et al. 2002),

Weighted Average of Precipitation (WAP) (Lu 2009) and

the Flood Index (IF) (Deo et al. 2015). These methods have

been used to monitor floods at different places around the

globe and have been accepted as suitable tools for flood

monitoring. Such quantification of floods assists in under-

standing more about these floods and helps in better deci-

sion making in the future. Consequently, using historical

precipitation data for the flood prone areas in Fiji, flood

monitoring indices could be used to examine the duration,

severity and intensity of flood events that have occurred in

these areas, in the past. Yet, a key drawback of these

widely used methods for flood analysis and monitoring is

that they largely rely on total rainfall data therefore its

practicality needs to be investigated before

implementation.

The SPI (McKee et al. 1993) was initially developed for

drought assessments but many studies have used it for

monitoring floods (Guerreiro et al. 2008; Seiler et al. 2002;

Wang and Cao 2011). SPI makes use of historical precip-

itation data to determine if a year is a flood or drought year

for that area. However, monitoring floods and droughts for

a short timescale is not possible using SPI because it does

not consider the previous day’s precipitation. For instance,

if there was no rainfall for a short period (for example, less

than a week), the index will classify the period as a drought

even if there was heavy precipitation on the days which led

to a flood prior to that short period. Therefore, due to the

inability of SPI to monitor flood situations for short time-

scales, the daily monitoring of the start, duration and

strength of floods, which is required for this study, is not

possible using SPI (Lu 2009). In addition, SPI does not

consider other factors such as percolation, evaporation and

surface run-off which are critical hydrological conditions

to be considered when monitoring floods.

The fluctuations of remaining volumes of water due to

heavy precipitation over time should be considered for

assessing the possibility of floods (Ma et al. 2014). The

extent of a flood is based on the current day and antecedent

days’ precipitation whereby the impact from the previous

day’s precipitation gradually decreases due to factors such

as evapotranspiration, percolation, groundwater flow and

surface runoff (Lu 2009). Two of the monitoring indices

which account for the previous days precipitation are the

WAP (Lu 2009) and IF (Deo et al. 2015). Both WAP and IF
can be used for monitoring floods on shorter time scales

(example daily) and considers other hydrological condi-

tions such as evaporation and surface run-off, which is not

accounted for by SPI (Lu 2009). Consequently, in terms of

evaluating flood properties at short timescales based on

rainfall, WAP and IF appears to be a better option when

compared with the commonly used SPI.

IF is a standardized metric which makes use of Effective

Precipitation PEð Þ. PE is deduced from daily rainfall by

placing emphasis on recent precipitation, based on a time-

dependent reduction function (Byun and Chung 1998; Deo

et al. 2014). When compared with WAP and its standard-

ized version, SWAP (Lu et al. 2013), IF has been more

widely applied at various places around the globe to

determine the duration, severity and intensity of flood

events at short timescales (Deo et al. 2014, 2015, 2018a;

Nosrati et al. 2010). Also, unlike WAP, the computation of

IF also does not require parameters that needs to be chosen

empirically (Lu 2009). As IF has been more widely applied

and tested when compared to WAP and its due to its ability

to monitor flood events on a daily basis while accounting

for various hydrological factors, IF was selected as the

suitable flood monitoring tool to be used in this research.

SPI is the tool that has been generally used for analysis

of rainfall and floods in Fiji (Fiji Meteorological Service

2018; Nawai et al. 2015). Therefore, an index which con-

siders previous days’ precipitation and other hydrological

factors has not been used to monitor floods in the country

till date. Therefore, using IF to quantify floods will be an
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innovative and highly accurate method to determine the

duration, severity, and intensity of previous flood events in

Fiji Islands. This study is expected to provide results that

can be used to analyse past floods in the country and

potentially allow for better flood related decision making in

the future.

The main objectives of this paper are threefold:

i. To compute Effective Precipitation PEð Þ, and succes-

sively determine Available Water Resource Index

(AWRI) and Flood Index IFð Þ.
ii. To apply IF at various study sites in the Fiji Islands.

iii. To investigate the duration, severity and intensity of

flood events that have occurred at the study sites from

1991 to 2019.

Moving forward, this paper is structured as follows.

Firstly, the study area and the characteristics of the rainfall

data obtained for the computations will be discussed. Then,

the methods used in computing the IF will be specified.

After this, the results will be presented and discussed.

Finally, the conclusion will report the key insights from the

results and state the usefulness of IF as a tool for moni-

toring flood events.

2 Materials and methods

2.1 Study area

This paper has been focused on the Fiji Islands. The group

of islands are in the south-west Pacific Ocean and has an

oceanic tropical climate. The location of the South Pacific

Convergence Zone (SPCZ) has a great influence on Fiji’s

rainfall and climate (Feresi et al. 2000). The country

experiences higher than expected rainfall during the La

Niña years, which leads to regular flooding, particularly

through the wet season (Fiji Meteorological Service 2018).

The Fiji group consists of more than 300 islands spread

over 1.3 million square kilometres of the South Pacific

Ocean (Feresi et al. 2000). Multiple areas from the two

largest islands (Viti Levu and Vanua Levu) have been

covered in this paper. 87% of the total land area is covered

by these two islands (Feresi et al. 2000). As the study

region is small and floods are common in most parts, it was

possible to cover most major towns and cities of the

country during this research. Figure 1 shows the map of the

study area and labels the respective sites.

2.2 Dataset

The daily rainfall data for Labasa, Savusavu, Rakiraki,

Tavua, Lautoka, Nadi, Ba, Navua, Suva, Nausori and

Sigatoka from January 1990 to December 2019 (30 years)

were successfully obtained from the Fiji Meteorological

Service. Table 1 summarizes the relevant metadata of

rainfall dataset and the respective study sites. The calendar

means imputation method was used to fill-in the missing

data. The standard data period used in the computations

was from 1st January 1990 to 31st December 2019.

However, IF was calculated from 1991 as antecedent pre-

cipitation of 365 days was required in the calculations.

Furthermore, to accommodate for leap years (366 days),

the rainfall amount for February 29th was added to March

1st. Two sites, Tavua and Navua, were excluded from

further analysis because data was not available for the

entire period and that could have affected the comparison

results.

2.3 Flood Index computation

MATLAB (MathWorks 2019) was chosen as the software

package to develop the flood index and perform the rele-

vant computations in this study.

The following steps were taken to obtain the IF . The first

step was to calculate the Effective Precipitation (PE). PE is

determined using a time-dependent reduction function and

is the sum of the precipitation for current and antecedent

days (Byun and Chung 1998). In the calculation of the PE

for a particular day, the precipitation of the antecedent days

is also considered, but with reduced weights. Therefore, if

365 days prior precipitation is to be considered, the influ-

ence of precipitation from 1 day prior would be 100%, for

2 days prior would be 85%, 77% for 3 days prior and

eventually approximately 0.0423% for the precipitation

that occurred 365 days prior (Deo et al. 2018a). This

concurs with the rationale of Lu (2009) which states that

due to conditions such as evaporation, seepage, and runoff,

the influence of previous days precipitation on current days

water balance gradually decays. The essence of this method

is that the recent most precipitation is assigned more

weight which essentially has more effect on the current

weather than the ones occurring in the past. Therefore, as

this mathematical model accounts for the daily depletion of

water due to various hydrological conditions, it assists in

the accurate monitoring of flood situations. The current

day’s PE is determined using the following equation:

PEi
¼

XD

N¼1

PN
m¼1 Pm

N

" #
1�m� 365ð Þ ð1Þ

where Pm is the recorded rainfall for any day, m and N is

the duration of the antecedent period (365 days).

After the PE was calculated, the AWRI value was

obtained. AWRI is the combined precipitation ðPÞ over an
annual cycle and used weight ðWÞ (Byun and Lee 2002).

As presented in Eq. (2), the mathematical equation for
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obtaining the AWRI is simpler than rainfall-runoff models

and this makes it more advantageous in the assessment of

water reserve balances (Deo et al. 2018a). Generally, a

larger magnitude of AWRI that is higher than the normal

implies a surplus of water resources and the likelihood of a

flood situation (Han and Byun 2006).

AWRI ¼ PE

W
ð2Þ

W ¼
Xn¼D

n¼1

1

n
ð3Þ

where D is the duration of the antecedent period (365 days)

and n will range from 1 to D (365).

Flood Index (IF) is the normalized version of PE. If IF
for a day is greater than zero ðIF [ 0Þ, it is generally

regarded as a flood situation. However, the criteria to

classify a flood situation can be delineated to capture better

precision. For all IF [ 0, the are many flood events that

have insignificant impacts, hence a low severity flood

occurs when IF is between 0 and 1. To account for higher

significant floods, the classification measure is to be

adjusted. For instance, to only account for extreme floods,

IF [ 2 benchmark is used to classify such flood situations.

Table 2 shows the different categories for classification of

floods that can be used on the basis of earlier studies by

Deo et al. (2015). This flexible criterion makes IF advan-

tageous overusing raw values of PE or AWRI in deter-

mining a flood situation. In Eq. (4), which shows the

mathematical formula of obtaining the IF ,
2019
1991P

max
E and

r 2019
1991P

max
E

� �
are the means and standard deviations of

yearly maximum daily Effective Precipitation for the

1991–2019 period.

IF ¼ PE � 2019
1991P

max
E

r 2019
1991P

max
E

� � ð4Þ

In accordance with the running-sum methodology by

Yevjevich (1967), the following mathematical approaches

to derive the severity, duration and intensity of flood sit-

uations from computed values of IF was presented by Deo

et al. (2015). The severity of the flood IaccF

� �
is the sum of

positive IF from the first day of the flood situation (tonset),

until the last day (tend). The duration of flood ðDFÞ are the

Fig. 1 A map of Fiji showing the different study sites
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number of days between the start and end dates of the flood

situation. The flood intensity ðImaxF Þ, which is the peak

danger during the flood situation is the maximum IF during

the flood period. Equations (5–7) presents the mathemati-

cal equations to calculate these metrics. When computing

these metrics, the first and the last day of the flood situation

can be adjusted based on the severity levels in Table 2.

IaccF ¼
Xt¼tend

t¼tonset

IFi
where IFi

[ 0 ð5Þ

DF ¼ tend � tonset ðdaysÞ ð6Þ
ImaxF ¼ max IFð Þtonset�tend

ð7Þ

The process of obtaining the IF is illustrated in Fig. 2.

Furthermore, the results shown in Fig. 3 for one of the sites

demonstrates the practicality of using the IF in computing

the different flood properties.

3 Results and discussion

The practicality of the daily IF is graphically evaluated as

in Fig. 3. Accordingly, the flood events that occurred from

the 8th to the 16th of January 2009 were quantified (Office

of the Prime Minister 2009). This was initially done for the

location, Ba as it was one of the highly impacted sites. The

results obtained with the benchmark for a flood situation

being IF [ 0, shows that the onset of the flood was the 9th

of January and the end was the 1st of May, totalling a

duration of 113 days and severity of 131.57, with the peak

danger being 3.13. However, even though the area was in

flood situation for 113 days, the impact of the flood situ-

ation was severe for 27 days, from the 11th of January to

the 6th of February. Adding on, the severity of the flood

was extreme only for 16 days from 11th to the 26th of

January. These results showed the practicality of the IF in

determining the duration, severity and intensity of flood

situations and its ability to categorize the severity of flood

situations.

The flood situation for the other eight sites for the same

period (first 180 days of 2009) were then determined. As

shown in Fig. 4, the duration, severity, and intensity of the

floods in all these sites were different. This showed that

even though the study area is small with most study sites

being close by, there is a need to study the flood situation in

all these areas separately. An analysis of the results illus-

trates that floods which started in January 2009 were only

severe in the western side of the main island (Viti Levu) of

Fiji [Ba (IaccF � 131:57), Rakiraki (IaccF � 33:22), Lautoka

(IaccF � 35:87), Nadi (IaccF � 35:85) and Sigatoka

(IaccF � 128:59)]. The northern areas of the second main

island (Vanua Levu) [Labasa (IaccF � 6:91) and Savusavu

(IaccF � 6:76)] had low severity while the severity in the

central division [Nausori (No Floods) and Suva

(IaccF � 0:03)] was very low. Adding on, only the floods in

Ba and Sigatoka reached extreme peak severity. The floods

in other areas of the western division reached severe peak

danger.

Table 1 Characteristics of the raw dataset for the different study sites (Source: Fiji Meteorological Services)

Site name

(A–Z)

Location Data range Missing

data (%)

Average recorded

P (mm)

Maximum recorded

P (mm)

Ba 17.53 �S, 177.66 �E (01/01/1990, 31/12/2019) 1.15 6.23 500.00

Labasa 16.43 �S, 179.36 �E (01/01/1990, 31/12/2019) 2.36 5.94 272.40

Lautoka 17.62 �S, 177.45 �E (01/01/1990, 31/12/2019) 1.46 5.44 390.60

Nadi 17.78 �S, 177.44 �E (01/01/1990, 29/02/2020) 0.02 5.43 356.20

Navua 18.22 �S, 178.17 �E (01/01/1992, 01/12/2019) 6.35 9.75 255.00

Nausori 18.03 �S, 178.56 �E (01/01/1990, 29/02/2020) 0.24 8.02 260.00

Rakiraki 17.39 �S, 178.07 �E (01/01/1990, 31/12/2019) 0.23 6.29 450.40

Savusavu 16.78 �S, 179.34 �E (01/01/1990, 31/01/2020) 1.08 5.64 243.00

Sigatoka 18.14 �S, 177.51 �E (01/01/1990, 30/11/2019) 5.34 4.79 183.00

Suva 18.13 �S, 178.45 �E (01/01/1990, 29/02/2020) 0.12 8.17 272.00

Tavua 17.44 �S, 177.86 �E (01/01/1990, 31/03/2009) 19.25 4.99 404.60

Table 2 Classification of severity of flood based on the value of IF

Flood Index Measure Severity category

IF � 0 Very low (drought)

IF [ 0 Low

IF � 1 Moderate

IF � 1:5 Severe

IF � 2 Extreme
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The frequency of flood events during the 29-year period

differed slightly for the nine sites. Figure 5 shows this

distribution. The frequency of flood situations with differ-

ent severity levels is also compared in this graph. It shows

that even though there are many flood situations, only a

handful of them are severe. For instance, Suva recorded 38

flood events during the study period but only 2 of them

were severe. Labasa and Lautoka recorded 45 and 42 flood

situations, respectively. Out of these, there was only one

severe flood situation in Labasa and only two in Lautoka.

Furthermore, when considering total number of flood sit-

uations for all study sites, out of the 352 flood situations,

there were only 8 events during the 29-year period that

reached extreme severity and 32 reached severe severity.

Most tropical cyclones and hurricanes in Fiji occur

between November to April. These events sometimes also

take place in October and May (Campbell 1984). Floods

are more likely to occur during this period as well. This is

shown in Fig. 6, which illustrates that most of the severe

flood situations started between January and May. As the

highest number of floods had started in the first few months

of the year, this shows the need for effective flood risk

mitigation strategies to be implemented for these months.

On the other hand, no severe flood events were recorded to

have started between June and December and no floods

started in August and September during the study period.

The flood preparation strategies for the next wet season can

potentially be developed during these months as there is a

low probability that resources will need to be diverted for

flood damage rehabilitation during this period.

Based on Fig. 7, the severity of floods which started

from November to April is also quite high when compared

to the other months of the year. It is interesting to note that

the severity of flood events which commenced in January

IaccF � 1277
� �

is higher than the combined severity of flood

events starting in the other months ðIaccF � 1130:79Þ. Fur-
thermore, the combined severity of floods starting in

months apart from November to April period is very low

IaccF � 66:12
� �

. Figure 8 presents the combined flood

severity for each year during the 29-year period. Significant

severity in floods are were seen in 1997, 2000, 2002, 2014,

2017, 2018 and 2019. However, floods were most severe in

1999, 2008, 2009 and 2012.

The peak severities as demonstrated in Fig. 9 shows that

the floods starting from January till April reach higher

peaks when compared to other months. It is observed from

the graph that the highest peak was reached in the month of

January (ImaxF � 3:39). This is followed by March

(ImaxF � 3:21) and April (ImaxF � 2:55). The amount of

rainfall during flood situations is also highest during these

months. This trend is depicted in Fig. 10. It shows the total

amount of rainfall during flood events per month and the

maximum amount of rainfall during a flood situation that

started during that month. The floods which started in

January had a total of 36,725 mm of rainfall. This is fol-

lowed by flood situations starting in March and April,

which experienced a total of 18,542 mm and 11,536 mm of

rainfall, respectively. The maximum amount of rainfall for

a flood situation was recorded for a flood event which

started in January (2504 mm). This measure was also fol-

lowed by March (994.2 mm) and April (692 mm).

Figure 11 compares the severity of floods based on the

geographical divisions in Fiji. This has been done by get-

ting the sum of severity for all flood events at each division

and then evaluating the mean of the combined severity

based on the number of sites at each division. Ba, Lautoka,

Nadi, Sigatoka and Rakiraki which lie in the western

division had the highest average combined severity. This

was followed by the northern division which consist of

Labasa and Savusavu. Average severity of floods was the

Fig. 2 Process of obtaining the Daily Flood Index

Fig. 3 Flood Index applied to 2009 floods in Ba. It shows how the

index is used to determine the duration, severity, and intensity of

floods
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Fig. 4 Flood Index monitored for different parts of Fiji from 1st January 2009 to 30th June 2009 (180 days)

Fig. 5 Frequency of flood

occurrences based on severity

levels at the 9 sites between

1991 and 2019

Fig. 6 Frequency of flood

situations per month based on

severity for the 9 sites combined

between 1991 and 2019
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lowest in the central division. Suva and Nausori are part of

the central division. It is interesting to note that the central

division generally experiences more rainfall when com-

pared to the western and northern division, but the severity

of flood is the lowest in this area. Furthermore, the average

maximum peak severity during a flood situation in the

western division was 2.89. This measure was 2.12 in the

northern division and 2.25 in the central division. This

illustrates that when compared with flood events in the

northern and central division, the floods of the western

division reach higher peak danger.

The statistics of the severest floods that occurred at each

of the 9 study sites during the study period has been pre-

sented in Table 3. It presents the five-number summary for

the P, AWRI and IF for the severest flood at each site. The

flood with the highest IaccF has been classified as the most

severe. It can be evaluated from these results that in all

areas, the severest flood started between November and

Fig. 7 Monthly combined

severity of flood situations for

the 9 sites between 1991 and

2019

Fig. 8 Yearly combined

severity of flood situations for

the 9 sites between 1991 and

2019

Fig. 9 Monthly peak flood

severity of floods between 1991

and 2019

Fig. 10 Monthly total and

maximum precipitation during

flood situations
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April. The severest flood at five out of the nine sites started

in January. The highest amount of rainfall during a flood

situation was recorded for Ba followed by Rakiraki and

Lautoka. Apart from Savusavu, the severest flood for each

site occurred after the year 2008. Lautoka recorded the

maximum peak danger among these events with a value of

3.39 for the January 2012 flood. Nadi’s severest flood also

started in January 2012 and reached a peak danger of 2.53.

The highest mean IF was during the Ba flood

Mean IF � 1:16ð Þ and the lowest average was during the

Suva flood Mean IF � 0:69ð Þ. The flood events prior to

2010 mostly coincide with the list of flood situations in Fiji

between 1840 and 2009 presented by McGree et al.

Figure 12 shows the distribution of the IF and AWRI for

the major floods in each area in the form of box plots. It

shows that only the severest floods in Ba, Lautoka and

Rakiraki reached extreme severity IF � 2ð Þ. The distribu-

tion shows that the median IF was around 1 (Low–

Moderate) for most of the flood situations. The peak danger

values from Table 2 are mostly identified as outliers in the

box plot, with the exclusion of flood events in Labasa,

Nausori and Savusavu, which have no outliers. The AWRI

for all the flood situations approximately ranged between

Fig. 11 Average flood severity for the different geographical divi-

sions in Fiji

Table 3 Statistics of the severest flood event for each of the 9 study sites

Statistic Minimum Lower quartile, Q1 Median, Q2 Upper quartile, Q3 Maximum Mean, l Standard

deviation, r

Ba (January 2009) P 0.00 0.00 3.20 16.40 500.00 20.28 56.07

AWRI 689.44 848.76 919.27 1046.13 1419.60 960.16 163.68

IF 0.00 0.69 0.99 1.53 3.13 1.16 0.70

Labasa (January 2008) P 0.00 0.00 2.25 15.90 225.80 15.19 30.43

AWRI 654.26 733.97 777.95 842.47 920.00 787.38 67.91

IF 0.03 0.45 0.67 1.01 1.41 0.72 0.35

Lautoka (January 2012) P 0.00 0.00 0.61 8.50 362.60 16.58 48.13

AWRI 610.39 690.84 785.50 878.15 1343.04 822.12 173.43

IF 0.01 0.38 0.82 1.25 3.39 0.99 0.80

Nadi (January 2012) P 0.00 0.00 0.20 9.38 291.90 16.00 42.25

AWRI 607.99 699.08 779.10 852.60 1122.86 790.92 120.59

IF 0.02 0.46 0.85 1.21 2.53 0.91 0.59

Nausori (April 2019) P 0.00 0.40 1.10 11.00 132.40 17.50 34.05

AWRI 721.89 755.10 813.28 885.76 964.83 824.28 75.02

IF 0.05 0.39 0.99 1.74 2.55 1.10 0.77

Rakiraki (March 2012) P 0.00 0.00 0.00 3.50 450.40 17.34 64.32

AWRI 685.83 788.55 893.57 1070.38 1516.77 947.32 203.02

IF 0.00 0.40 0.81 1.49 3.21 1.01 0.78

Savusavu (November 1999) P 0.00 0.00 1.00 12.75 170.30 11.60 24.00

AWRI 522.97 577.97 613.20 656.35 749.08 617.75 53.40

IF 0.00 0.42 0.69 1.02 1.73 0.73 0.41

Sigatoka (January 2009) P 0.00 0.00 0.80 11.00 183.00 11.98 26.55

AWRI 469.86 582.69 614.40 648.03 771.33 611.17 69.48

IF 0.03 0.83 1.05 1.29 2.16 1.03 0.49

Suva (February 2014) P 0.00 0.20 6.00 11.45 206.60 19.22 39.17

AWRI 719.48 753.55 781.52 812.42 923.31 787.68 42.48

IF 0.06 0.38 0.64 0.92 1.95 0.69 0.39
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500 and 1500 mm. The maximum AWRI was recorded at

Rakiraki and the minimum at Sigatoka. However, these

have been classified as outliers in the box plot. Savusavu,

Suva and Sigatoka generally have a smaller AWRI range

when compared to the other sites. Rakiraki has the biggest

range, followed by Ba and Lautoka.

Table 4 consists of a set of sub tables that lists the 10

severest flood events for each of the nine sites that occurred

during the study period. The classification of floods in this

table has been done with the criteria IF [ 0. It clearly

shows the onset date, severity, peak danger, duration, total

AWRI, total precipitation and maximum AWRI for the

nine sites. The flood situations for each site are ranked

according to their severity with 1 being the most severe and

10 being the least severe. The flood and water intensive

properties can be extracted from these tables for further

analysis. A brief analysis of the three most severe flood

events at each study site has been discussed as well.

The analysis of floods in Ba (Table 4(a)) indicate that

the town faced its severest floods in 1999, 2009 and 2012.

All these floods started in January and the one in 2009 was

the severest and the one which started in 1999 was the least

severe. The 2009 flood has been described previously in

Fig. 3. The 2012 flood lasted for 118 days. Interestingly,

this duration was longer than that of the severest flood

whereby the flood lasted for 113 days. The severity of the

2012 flood was 74.03 and it reached a peak danger of 1.95.

Approximately, 2259.93 mm of rainfall was recorded

during this flood period. The duration of the 1999 event

was 112 days with severity 51.09 and it reached peak

danger of 1.19. Approximately, 2104.4 mm of precipitation

was recorded during this flood. All the 10 severest floods in

Ba started between January and May and on average, the

ones which started in January were the most severe.

As seen in Table 4(b), the most significant flood event

recorded in the town of Labasa reached total severity of

101.19 and lasted for 140 days. This flood started in Jan-

uary 2008 and reached a peak danger of 1.41. Approxi-

mately, 2127.2 mm of rainfall was recorded during this

event. The second severest flood at this site occurred in

February 2002 and reached a peak severity of 1.8. The total

severity of this event was 34.1 and this event lasted for

Fig. 12 Box plot of the Flood

Index and AWRI for the

severest flood event recorded at

each site based on Table 2
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Table 4 Analysis of 10 severest flood situations for (a) Ba, (b) Labasa, (c) Lautoka, (d) Nadi, (e) Nausori, (f) Rakiraki, (g) Savusavu, (h) Si-

gatoka, (i) Suva from 1991 to 2019

Site Onset date

tonset

Severity

IaccF

Peak

danger ImaxF

Duration

(days)

Total AWRI

(mm)

Total precipitation

(mm)

Maximum

AWRI

(a) Ba

1 9-1-2009 131.57 3.13 113 108,498.30 2292.00 1419.60

2 25-1-2012 74.03 1.95 118 98,504.41 2259.93 1143.55

3 18-1-1999 51.09 1.19 112 89,016.81 2104.40 967.28

4 22-2-2008 21.58 0.82 66 50,464.86 980.20 878.65

5 24-3-2007 7.19 0.89 18 14,068.33 359.50 895.58

6 8-3-1997 5.70 0.95 17 13,030.82 399.90 909.57

7 29-1-2008 4.94 0.49 19 14,230.87 502.10 803.51

8 28-1-1997 3.68 0.71 13 9805.91 347.90 854.61

9 5-3-2011 3.30 0.40 17 12,470.94 260.00 781.24

10 18-2-2011 1.76 0.42 8 5916.71 234.30 786.18

(b) Labasa

1 14-1-2008 101.19 1.41 140 110,233.00 2127.2 920.00

2 20-2-2002 34.10 1.80 52 40,273.33 877.40 994.02

3 15-2-2017 27.98 1.04 54 40,395.16 994.20 848.96

4 6-4-2000 23.24 1.29 46 34,296.49 682.70 896.02

5 4-2-2006 20.21 1.06 39 29,175.15 728.40 852.53

6 17-4-1997 15.54 1.14 37 26,980.84 547.30 866.71

7 4-4-2018 13.21 1.17 24 18,102.58 498.30 872.86

8 5-3-1997 7.16 0.82 20 14,344.65 413.30 806.31

9 13-1-2009 6.91 0.94 14 10,407.04 388.10 828.90

10 31-3-1995 4.54 0.51 15 10,600.17 252.60 747.25

(c) Lautoka

1 23-1-2012 149.14 3.39 151 124,140.4 2504.00 1343.04

2 18-1-1999 41.95 1.34 72 52,868.45 1449.90 898.66

3 10-1-2009 35.87 1.79 60 44,255.15 1197.10 997.00

4 25-1-1997 9.88 0.93 23 16,125.25 491.20 809.24

5 12-3-2009 7.92 0.52 40 26,034.53 441.10 720.70

6 7-3-1997 6.94 0.86 18 12,448.88 298.00 793.48

7 22-2-2008 6.05 0.59 21 14,078.19 319.40 735.71

8 16-4-1999 5.84 0.59 24 15,857.69 273.70 735.01

9 31-1-2008 3.52 0.41 16 10,491.25 314.00 696.77

10 6-3-2011 3.09 0.34 19 12,221.40 315.30 681.09

(d) Nadi

1 23-1-2012 116.60 2.53 128 101,237.80 2048.30 1122.86

2 27-1-1999 40.45 1.18 103 70,536.55 1399.80 845.92

3 8-1-2009 35.85 1.76 63 45,417.79 1318.30 964.49

4 3-3-2017 16.77 1.04 38 26,400.97 534.70 818.15

5 11-3-2000 11.09 0.86 34 22,820.32 481.70 779.66

6 7-2-2017 7.97 0.65 22 14,928.24 626.80 738.18

7 7-6-2012 7.61 0.86 25 16,667.72 311.90 781.26

8 26-2-1993 7.00 0.85 22 14,730.79 731.30 778.09

9 7-3-1997 5.79 0.89 15 10,251.57 377.80 787.18

10 4-4-2016 5.33 0.89 14 9552.28 362.20 786.65

(e) Nausori

1 16-4-2019 36.35 2.55 33 27,201.38 577.60 964.83

2 19-1-2019 20.52 1.35 32 24,946.59 656.50 848.60
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Table 4 (continued)

Site Onset date

tonset

Severity

IaccF

Peak

danger ImaxF

Duration

(days)

Total AWRI

(mm)

Total precipitation

(mm)

Maximum

AWRI

3 21-4-2002 16.28 1.25 26 20,231.53 391.50 838.77

4 17-12-2016 7.48 1.09 11 8616.91 372.80 823.48

5 9-12-1999 6.90 0.93 11 8560.06 257.40 807.26

6 5-4-1993 6.86 0.91 14 10,708.43 216.70 805.39

7 2-1-1993 5.49 1.67 10 7706.65 325.20 879.94

8 12-3-1993 3.68 0.88 8 6096.06 273.90 802.45

9 3-4-2002 3.54 0.43 16 11,820.88 237.80 758.87

10 26-3-2019 3.13 1.03 7 5325.35 136.70 817.24

(f) Rakiraki

1 28-3-2012 69.85 3.21 69 65,364.81 1196.40 1516.77

2 16-1-2008 66.82 1.48 109 91,992.43 1762.10 1068.36

3 4-3-1997 45.33 1.54 95 76,834.75 1468.90 1083.74

4 9-1-2009 33.22 1.76 57 47,661.10 1277.50 1141.15

5 24-1-2012 25.43 1.01 57 45,644.09 1102.40 947.62

6 28-4-2000 15.41 0.72 44 34,140.72 692.00 872.53

7 30-1-1997 4.02 0.76 13 9948.46 337.00 882.66

8 9-3-2000 3.43 0.48 17 12,537.72 333.80 810.74

9 16-2-2011 3.22 0.50 14 10,427.80 338.70 815.59

10 17-6-2000 2.92 0.40 16 11,719.36 233.80 789.89

(g) Savusavu

1 27-11-1999 141.65 1.73 195 120,460.60 2261.70 749.08

2 14-4-1997 35.89 2.44 52 31,876.56 691.00 842.04

3 15-1-2008 28.78 1.75 47 28,331.59 729.30 751.33

4 23-6-2008 10.40 0.95 27 15,472.41 294.80 646.92

5 10-1-2009 6.76 0.88 17 9770.38 437.30 638.39

6 9-4-2008 4.98 0.77 18 10,060.12 217.00 623.49

7 13-5-2008 4.68 0.59 17 9497.20 221.70 599.88

8 21-2-2002 4.15 0.54 21 11,518.62 354.40 593.70

9 7-3-1991 3.98 0.50 15 8361.13 247.70 588.50

10 29-1-2009 3.05 0.41 16 8761.42 202.00 576.56

(h) Sigatoka

1 8-1-2009 128.59 2.16 125 76,395.63 1497.39 771.33

2 14-1-2008 102.54 1.43 138 78,766.74 1418.20 667.53

3 29-3-2012 43.69 1.61 57 32,723.18 615.40 693.16

4 18-3-2000 35.32 1.46 65 35,264.69 634.20 671.84

5 26-3-2018 34.55 1.55 56 30,965.17 588.10 684.26

6 30-1-2012 18.96 0.81 49 25,501.07 496.50 580.92

7 10-2-2017 17.23 0.95 45 23,393.47 549.53 600.34

8 26-2-2014 9.19 0.49 37 18,530.93 401.17 535.05

9 13-2-2018 9.07 0.47 34 17,115.92 429.00 531.96

10 9-2-2000 8.11 0.66 26 13,255.84 275.20 559.54

(i) Suva

1 26-2-2014 32.62 1.95 47 37,021.16 903.30 923.31

2 24-3-1993 22.72 1.44 36 28,111.03 565.90 868.86

3 18-4-2019 21.49 1.76 29 22,990.68 511.40 902.80

4 2-2-1991 12.52 1.09 28 21,305.83 454.40 831.07

5 31-3-2012 11.40 0.82 28 21,185.44 456.80 800.92

6 16-5-2014 9.83 1.40 17 13,177.47 372.00 864.67
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52 days. Other notable floods occurred at this site in 2000,

2006 and 2017 and reached peak dangers of 1.29, 1.06 and

1.04, respectively. Apart from the severest flood, all other

flood situations recorded accumulated rainfall of less than

1000 mm. The 10 severest flood events at this site started

during the first 5 months of the year.

As per Table 4(c), the severest flood in the city of

Lautoka started in January 2012 and amounted to a total

severity of 149.14 and reached extreme peak severity of

3.39 during the 151 days of flood situation. This was also

the severest flood event for the 29-year period among all

the study sites. During this event, approximately, 2504 mm

of rainfall was recorded. The next severest flood at this site

occurred in January 1999 and reached peak danger of 1.34

while experiencing total rainfall of about 1449.9 mm. This

event lasted for 72 days and had a combined severity of

41.95. The January 2009 floods at this site had a duration of

60 days and reached peak danger of 1.79. This event had a

total severity of 35.87 and recorded approximately

1197.1 mm of rainfall. All the 10 severest floods at this site

started between December and April.

The most severe floods in Nadi are listed in Table 4(d).

The site’s severest flood occurred in January 2012 and

lasted for 128 days. The accumulated severity during this

period was 116.6 and an extreme peak danger of 2.53 was

reached. Approximately, 2048.3 mm of precipitation was

recorded during this event. The second most severe flood

for Nadi started in January 1999 and had a duration of

103 days during which it reached a peak severity of 1.34

and combined severity of 41.95. In January 2009, the site

recorded a flood situation that lasted for 63 days and

reached peak danger of 1.76. It had a severity of 35.85.

Based on Table 4(e), the severest flood in Nausori lasted

for only 33 days but reached extreme peak danger of 2.55

and had a total severity of 36.35. This event started in April

2019. The second most severe flood in the area had a

duration of 32 days. This flood reached peak severity of

1.35 and had a combined severity of 20.52. This flood

occurred in January 2019. Another notable flood in Nausori

occurred in April 2002 which had a duration of 26 days

and reached peak danger of 1.25. The total severity of this

flood event was 16.28. Approximately, 577.6 mm,

656.5 mm and 391.5 mm of rainfall was recorded for these

three flood situations, respectively.

Table 4(f) lists the severest floods in Rakiraki. The

March 2012 flood was the severest for the area. The flood

lasted for 69 days and reached peak danger of 3.21. It had a

combined severity of 69.85 and recorded approximately

1196.4 mm of precipitation during the flood situation. The

second and third severest floods in the area had a duration

of 109 days and 95 days, respectively. The former had a

combined severity of 66.82 and reached peak danger of

1.48 while the latter had a total severity of 45.33 and

reached peak severity of 1.54. These two flood events

started in January 2008 and March 1997 and recorded

rainfall amounts of about 1762.1 mm and 1468.9 mm,

respectively.

The severest flood event in Savusavu had the longest

duration amongst all sites during the 29-year period. As

shown in Table 4(g), the flood started in November 1999

and lasted for 195 days, during which it had reached a peak

danger of 1.73 and recorded total severity of 141.95.

Approximately, 2261.7 mm of rainfall was recorded during

this flood situation. The second most severe flood in the

area reached extreme peak danger of 2.44 during the

52 days period. This event, which started on April 1997,

recorded approximately 691 mm of rainfall, and had a

severity of 35.89. The January 2008 flood event lasted for

47 days and reached peak danger of 1.75. This event had a

severity of 28.78 and total rainfall of about 729.3 mm.

The most severe flood events in Sigatoka started in

January 2009, January 2008, and March 2012. The January

2009 flood lasted for 125 days, reached peak danger of

2.16 and had a combined severity of 128.59. Approxi-

mately, 1497.39 mm of rainfall was recorded during this

period. The 2012 flood event had a duration of 138 days

and reached a peak severity of 1.43 while amounting to a

total severity of 102.54. This event recorded about

1418.2 mm of rainfall. The flood which started in March

2012 experienced approximately 615.4 mm of precipita-

tion during the 57 days and reached peak danger of 1.61.

This flood situation had a severity of 43.69. The list of the

20 severest flood events in Sigatoka is presented in

Table 4(h).

Table 4 (continued)

Site Onset date

tonset

Severity

IaccF

Peak

danger ImaxF

Duration

(days)

Total AWRI

(mm)

Total precipitation

(mm)

Maximum

AWRI

7 2-12-1999 6.29 0.70 16 12,081.88 402.10 788.44

8 21-4-2002 5.82 0.78 20 14,880.44 335.40 797.02

9 19-4-2007 4.69 0.84 14 10,483.14 288.40 804.03

10 4-5-2007 3.54 0.91 8 6083.63 141.60 811.52
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Based on Table 4(i), the severest flood in Suva started in

February 2014 and lasted for 47 days. This flood had a total

severity of 32.62 and reached peak severity of 1.95.

Approximately, 903.3 mm of rainfall was recorded during

this event. The second most severe flood started in March

1993 and had a severity of 22.72 and reached a peak danger

of 1.44. This event lasted for 36 days and experienced

approximately 565.9 mm of rainfall. The April 2009 flood

in Suva had a duration of 29 days during which it recorded

about 511.4 mm of rainfall. This event had a severity of

21.49 and peak danger of 1.76.

Table 5 lists the flood situations with extreme severity

during the 29-year period. These are flood situations which

have IF [ 2. Flooding’s of 2009 and 2012 were the most

extreme. Significant damages were caused by floods during

these years (Lal 2009; Yeo 2013). Labasa and Suva did not

record any extreme flood events. The duration of extreme

floods in Savusavu, and Sigatoka was low as well. The

most extreme flood events occurred in Ba, Lautoka, Nadi

and Rakiraki and all these sites are in the western side of

Fiji. The Ba and Lautoka floods were extreme for 16 and

18 days singly while the Nadi and Rakiraki floods were

extreme for 8 and 9 days, respectively.

As shown in Fig. 13, the seasonality of rainfall and

AWRI was investigated for each of the nine study sites.

This was done by obtaining the daily average precipitation

and daily average AWRI for the 29 years for each study

site. All sites exhibited a generally similar pattern whereby

there is a higher occurrence of rainfall and greater AWRI

values in the first few months and the last 2 months of the

year. The sites in the western side of Fiji generally expe-

rience less rain the middle of the year when compared to

the other sites. It can also be seen that Suva and Nausori

experiences consistent rain almost throughout the entire

year and generally have higher AWRI. It is interesting to

note that the rainfall pattern in Savusavu is quite similar to

the central division and the rainfall pattern in Labasa

resembles more closely to the western division even though

both Labasa and Savusavu are on the same island in the

northern division.

The results obtained in this study for the nine study sites

used IF , which is the normalized form of AWRI. As pre-

sented in these results, IF made it easier to determine a

flood situation when compared to AWRI or raw precipita-

tion data. This is because a simple condition IF [ 0, can be

used to classify a flood situation. Such a condition cannot

be used with AWRI and raw precipitation values. The

comparison of determining flood based on the two can be

done using Figs. 4 and 13. In Fig. 4, IF and P for the first

180 days of 2009 are plotted for each site and in Fig. 13,

average AWRI and average P for the 29-year period for

each site are plotted.

4 Conclusion

The Flood Index IFð Þ was successfully computed and the

duration, severity and intensity of flood events that

occurred between 1991 and 2019 for the nine sites in Fiji

was determined and analysed. IF was determined to be a

good measure to monitor flood events based on its ability to

accurately determine flood situations in different parts of

Fiji. The capability to categorize a flood event based on the

value of IF allowed the classification of flood severity as

either low, moderate, severe, or extreme.

Results showed that severe floods in the country were

more likely to occur between November to April, which is

also the wet/cyclone season in Fiji. Most of the severe

floods in the western side of Fiji occurred in the month of

January. Overall, the severity of floods in January were

high as well. This shows that effective flood preparation

and risk mitigation strategies need to be implemented for

these months. Likewise, almost all the study sites experi-

enced high rainfall during these months. To add on, on

average, floods in the western side of Fiji were more severe

and reached greater peak dangers showing the vulnerability

of the sites in this region to floods.

A major outcome of this research was presenting the

water and flood intensive properties of the 10 severest flood

events for each site. Statistics such as these and the eval-

uation of the severest flood at each site during the study

period can be further explored by relevant organizations to

get more insights on previous flood situations. These

insights on past events can be explored to make informed

decisions regarding future flood threats. Furthermore, as

mentioned previously, the method presented in this study

uses a time-dependent reduction function to account for

physical and geographical factors that contribute to a flood

situation, and even though this method has been accepted

to be fairly accurate, further studies are required to test the

various time reduction functions against how they reduce

PE by experimental methods. In addition, studies on how a

physical rainfall-run off model can be connected to further

improve the time factor could assist in enhancing the pre-

sented method further.

A key benefit is that the methods applied in this study

can easily be replicated in studying flood events in other

small Pacific Island countries which are resource con-

strained and face huge flood risks. Furthermore, it will also

be interesting to monitor flood events in these countries on

hourly timescales such as a recent study performed in

Brisbane, Australia (Deo et al. 2018b). However, this study

in Fiji and other Pacific Island nations is subjected to the

availability of hourly rainfall data for different sites, which

ae rather difficult to collect in developing nations. Overall,

the results presented in this paper can be used by the
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government, organizations, and individuals to better pre-

pare for floods and to develop efficient flood mitigation

strategies that will help to save lives, money, and other

resources. To conclude, based on the performance of IF in

determining the duration, severity and intensity of flood

situations, the index can be accepted as a viable and cost-

effective tool for monitoring floods.
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Fig. 13 Daily average rainfall

(precipitation) and daily average

AWRI for the nine study sites

from 1991 till 2019

Table 5 Analysis of flood situations with extreme severity at the 9 study sites from 1991 to 2019

Site Onset date

tonset

Severity

IaccF

Peak danger

ImaxF

Duration

(days)

Total AWRI

(mm)

Total precipitation

(mm)

Maximum

AWRI

Ba 11-1-2009 38.86 3.13 16 20,086.07 1236.30 1419.60

Labasa No extreme floods

Lautoka 30-3-2012 49.27 3.39 18 21,626.62 692.70 1343.04

Nadi 31-3-2012 18.63 2.53 8 8649.45 326.50 1122.86

Nausori 23-4-2019 13.71 2.55 6 5635.16 213.60 964.83

Rakiraki 1-4-2012 22.52 3.21 9 11,997.25 564.10 1516.77

Savusavu 4-5-1997 4.60 2.44 2 1647.83 148.00 842.04

Sigatoka 11-1-2009 2.11 2.11 1 763.85 183.00 763.85

15-1-2009 4.32 2.16 2 1541.56 84.30 771.33

Suva No extreme floods
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CHAPTER 5: FLOOD FORECASTING SYSTEM 

DESIGN AND IMPLEMENTATION 

 

Foreword 

In this chapter, a copy of the paper with the title “Designing Deep-Based Learning 

Flood Forecast Model with ConvLSTM Hybrid Algorithm”, which is published in the 

journal, IEEE Access has been presented. In the paper, a hybrid deep learning 

algorithm known as ConvLSTM which combines LSTM and CNN algorithms was 

used to develop a flood forecasting model. The predictive model uses lagged 𝐼𝐹 and 

rainfall data to forecast 𝐼𝐹 at future timescales. The developed model was evaluated 

using several statistical score metrics and generally showed fine performance for 

forecasting 𝐼𝐹 at 1, 3, 7 and 14 day ahead forecast horizons. In addition, when the 

performance of the objective model was compared with the benchmark models that 

were build using LSTM, CNN-LSTM and SVR algorithms, the performance of the 

former was more superior for all forecast horizons and all study sites. Based on the 

results, it can be established that the proposed ConvLSTM flood forecasting system 

which is presented in this paper is a cost-effective and efficient means of flood 

forecasting that can be used for community flood risk mitigation in Fiji and around the 

globe.  
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ABSTRACT Efficient, robust, and accurate early flood warning is a pivotal decision support tool that can
help save lives and protect the infrastructure in natural disasters. This research builds a hybrid deep learning
(ConvLSTM) algorithm integrating the predictive merits of Convolutional Neural Network (CNN) and Long
Short-TermMemory (LSTM)Network to design and evaluate a flood forecasting model to forecast the future
occurrence of flood events. Derived from precipitation dataset, the work adopts a Flood Index (IF ), in form
of a mathematical representation, to capture the gradual depletion of water resources over time, employed
in a flood monitoring system to determine the duration, severity, and intensity of any flood situation. The
newly designed predictive model utilizes statistically significant lagged IF , improved by antecedent and
real-time rainfall data to forecast the next daily IF value. The performance of the proposed ConvLSTM
model is validated against 9 different rainfall datasets in flood prone regions in Fiji which faces flood-driven
devastations almost annually. The results illustrate the superiority of ConvLSTM-based flood model over the
benchmark methods, all of which were tested at the 1-day, 3-day, 7-day, and the 14-day forecast horizon. For
instance, the RootMean Squared Error (RMSE) for the study sites were 0.101, 0.150, 0.211 and 0.279 for the
four forecasted periods, respectively, using ConvLSTM model. For the next best model, the RMSE values
were 0.105, 0.154, 0.213 and 0.282 in that same order for the four forecast horizons. In terms of the difference
inmodel performance for individual stations, the Legate-McCabe Efficiency Index (LME)were 0.939, 0.898,
0.832 and 0.726 for the four forecast horizons, respectively. The results demonstrated practical utility of
ConvLSTM in accurately forecasting IF and its potential use in disaster management and risk mitigation in
the current phase of extreme weather events.

INDEX TERMS ConvLSTM, deep learning, flood forecasting, flood index, flood risk management.

I. INTRODUCTION
Early detection of natural disasters such as floods can greatly
assist humans in reducing the extent of the damage caused by
such events. In the Fiji Islands, where this study is focused,
recent flood events resulted in major damages amounting to
millions of dollars [1]. The loss of at least 225 lives during
the 1931 flood event in Fiji was primarily due to the unavail-
ability of efficient flood warning systems [2]. Although there
have been improvements in early warning systems since then,
many other emerging technologies, which are somewhat con-
strained in developing nations, have strong potential to deliver

The associate editor coordinating the review of this manuscript and

approving it for publication was Bo Pu .

robust and cost-effective solutions for disaster risk and flood
event management.

One simple, yet a robust mathematical tool used to deter-
mine the flood state at a particular time for a given area is
the Flood Index (IF ) [3]. This approach represents the stan-
dardized form of ‘Effective Precipitation’ (PE ) based on the
rationale that a flood event on any particular day is dependent
on the current and the previous day’s precipitation with the
effect of previous day’s precipitation on current day’s flood
state gradually reducing due to the effect of hydrological fac-
tors [4]. IF has been applied at various locations globally and
is generally accepted as an accurate data-driven mechanism
to monitor flood state and, to determine the duration, severity,
and intensity of flood situations [5]–[8]. However, as a flood
monitoring index, IF cannot be currently used to determine
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the flood state ahead of time unless a predictive model for
this index is built and tested. If a model is successful in
predicting the flood event, the exploration of its predictive
skill for multiple forecast horizons is paramount so that early
warning of the flood state can be dissimilated, setting up flood
risk mitigation and adaptation measures. This is the subject of
the present research paper.

To make practical use of IF in forecasting future flood
situations, an Artificial Intelligence (AI) based predictive
model can be developed to accurately forecast the future
values of IF based on antecedent (lagged) values over a
given period. Notably, AI models have shown good poten-
tial in forecasting floods based on metrics other than IF ,
with continuous improvement in AI-based methods over the
past decade. A study on classifying flood severity based on
weather radar and rainfall data showed that Artificial Neu-
ral Network (ANN) which is an AI-based machine learning
algorithm, had good potential to deliver major improvement
in the speed compared with conventional hydraulic simula-
tors [9]. A more recent AI approach that uses representation
learning with several levels of feature representation is deep
learning [10]. One popular deep learning approach used for
time-series forecasts is Long Short-Term Memory Network
(LSTM) [11]. LSTM is a type of Recurrent Neural Network
(RNN) that can address the vanishing gradient problems
in RNNs [12]. This approach has been applied in applica-
tions e.g., short-term fog forecasting and language process-
ing [13], [14]. When LSTM was compared with ANN, the
former performed better and was relatively stable to simulate
rainfall-runoff process [15]. Therefore, when compared with
conventionalmachine learning algorithms such asANN, deep
learning LSTM seems to be a better option to forecast flood
events especially using time-series flood monitoring data,
such as the current research using IF.

In AI-based methods, multiple deep learning models are
normally integrated to deliver a better performance accuracy.
One common model known to provide effective performance
when combined with LSTM is Convolutional Neural Net-
work (CNN) [16]. In Liu, et al. [17], a ConvLSTM module
was used to predict short-term traffic flow, combining con-
volution and LSTM models, outperforming the benchmark
models. ConvLSTMwas applied for precipitation nowcasting
to show excellent performance [18]. These studies generally
illustrate the good performance of ConvLSTM compared
with others in similar machine learning problems. It is thus
expected that ConvLSTM may deliver a better performance
in forecasting future flood events using daily IF and rainfall
data but no previous study has built this approach into real-
time, multiple-step flood prediction problems.

As an AI-based deep learning model has not been used
to forecast floods using IF , this novel technique adopted to
forecast the occurrence of future events is expected to provide
an alternative to traditional mathematical means such as using
the Standardized Precipitation Index (SPI) for early flood
warnings [19]. The cost-effectiveness and accuracy of deep
learning approaches explored in this paper, is also expected

to provide a suitable tool for efficient flood forecasting in
developing and developed nations.

By making significant contribution to disaster risk miti-
gation, the purpose of this article is to design an AI-based
predictive model trained as a practical and highly accurate
tool in forecasting the onset of flood state using daily IF and
precipitation data. The research objectives, which advance the
application of data-driven methods, make significant contri-
butions to flood forecasting and mitigation, as follows:

(1) Build flood monitoring and validation system by deriv-
ing daily IF from rainfall data obtained from Fiji Meteoro-
logical Service at nine flood-prone sites in Fiji over a 30-year
period.

(2) Develop multi-step predictive model using ConvL-
STM, as an objective model, with alternative methods of
LSTM, CNN-LSTM and SVR that can also determine the
flood state at 1-day, 3-day, 7-day, and 14-day forecast
horizons.

(3) Evaluate the performance of predictive models using
a diverse range of statistical score metrics, infographics, and
visual analysis of forecasted and ground-truth dataset.

(4) Compare the evaluation results of objective model
with benchmark models and elaborate on the suitability of
the ConvLSTM model in accurately forecasting future flood
situations.

The structure of the paper is as follows. In next section, the
related works are presented. Then in section 3 this research
presents the problem and motivation for this study and a
theoretical overview of ConvLSTM and IF . In section 4,
this study presents experimental methods where the study
area and data used for this study are presented briefly. Next,
the method employed to develop flood forecast models are
explained. After this, the results are presented, and this is
followed by the discussion of the limitations, practicality,
and contributions of the proposed method. Finally, the paper
concludes by presenting insights from this study.

II. RELATED WORKS
Over the years, several data-driven early flood forecasting
systems have been developed. These have made use of
machine learning algorithms to develop models that show
promising results. Some of these studies are presented in this
section.

In one of the earliest examples, Campolo, et al. [20]
developed a neural network river flood forecasting model
illustrating promising results at short timescales. However,
a rapid decrease in forecasting performance was evident with
a longer time horizon. Another short-term flood forecast-
ing approach was presented by Nayak, et al. [21] using
neuro-fuzzy technique. The results illustrated the viabil-
ity of their models for short-term river flow forecasting.
Moving on, Han, et al. [22] applied Support Vector Machine
(SVM) for flood forecasting. However, they mentioned that
although their objective model performed better than the
benchmarkmodels, it required considerable amount of efforts
to ensure the better performance of the objective model
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Sit and Demir [23] explored the use of artificial deep neural
networks for flood prediction andmentioned the usefulness of
neural networks for flood forecasting using time-series data.

The approaches presented so far have made use of conven-
tional machine learning to forecast flood situations. A study
by Tran and Song [24], however, used deep learning algo-
rithms i.e., RNN and LSTM to forecast water levels as a
practical means to develop a solution for flood forecasting
in urban areas. Their results indicated that all deep learning
models had high accuracy. Therefore, in this paper, hybrid
deep learning approaches are used to forecast floods at both
short and long timescales, expecting that these newly devel-
oped models are a step forward in data-driven-based early
flood warning systems.

III. METHODOLOGY
A. PROBLEMS AND MOTIVATIONS
Owing to the insidious and ‘creeping’ nature of flood events,
designing robust systems for early flood warnings is a chal-
lenge. This is because the design of early warning systems
requires expertise in different technologies [25]. It is under-
standable that this could be a bigger challenge for developing
nations e.g., Fiji. Therefore, a cost-effective solution that
requires a minimum investment in such technologies is desir-
able for flood forecasting purposes. The new flood modeling
method presented in this research will address these prob-
lems. A data-driven model that requires only the daily rainfall
data to deliver an accurate result is expected to be a cost-
effective solution for nations with limited resources where
technological advancements has not penetrated yet. Further-
more, another motivation behind this study is the recurrent
destructions that flood events have caused in the present study
area over many years. Through this study, the authors hope
to develop and validate a new flood forecasting model that
can be used to mitigate the impact of floods not only in
island nations but also elsewhere by enabling the people and
organizations to be better prepared for future flood events.

B. THEORETICAL OVERVIEW
To date, there are only a handful of flood monitoring indices
that can determine the flood state for any day based on
antecedent day’s rainfall [3], [26]. These are categorised into
data-driven mathematical models and have generally been
accepted to produce accurate results. As mentioned previ-
ously, IF is adopted for this study as it conforms to the
rationale of Lu [26]. Basically, IF uses current and antecedent
day’s rainfall data to determine the flood state of current
day. The contributory influence of previous day’s precipita-
tion on current day’s possibility of a flood decreases gradu-
ally in agreement with a time-dependent reduction function.
Through this, the flood index can account for the loss of
water due to hydrological factors e.g., evaporation, percola-
tion, evapotranspiration and surface run-off [3]. This makes
the flood index a practical tool to determine the flood state
solely using daily rainfall data that is advantageous in regions

without sophisticated flood monitoring technologies. In a
previous paper, IF applied in Fiji was shown to be an effective
tool for flood monitoring at short timescales [7]. In many
other related works [4]–[6], [27], [28], IF has already been
adopted for floodmonitoring studies but none of these studies
have built a deep learning forecast model using the IF . Hence
IF -based data-driven models trained over multiple forecast
horizons, as undertaken in this study, is a proactive step in
estimating the flood extent of any day-ahead period, based
on which flood risk mitigation and disaster response can be
implemented.

The objective model in this study adopts hybrid ConvL-
STM algorithm, a dual combination of deep learning method.
ConvLSTM is a hybrid variant of LSTM architecture that
uses convolutional operators instead of matrix multiplication
for its input to the state and the state-to-state transition.
This enables the algorithm to handle spatiotemporal data
and determine the upcoming state(s) of a particular cell in
grids using local neighbours’ inputs and previous states [18].
Equations 1 to 5, retrieved from earlier studies of Medel [29]
and Xingjian, et al. [18], expresses the operational mecha-
nisms of ConvLSTM. In these equations, ‘∗’ and ‘◦’ denotes
convolution operator and Hadamard product, respectively.
The i, f and o represents each timestamp’s input, forget and
output gates, separately. H denotes each timestamp’s hidden
state, C represents each timestamp’s cell outputs, and X
denotes all the inputs. The activation is denoted by σ while
W is used to denote the weighted connections between the
states.

it = σ (Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi) (1)

ft = σ
(
Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf

)
(2)

Ct = ft ◦ Ct−1+it ◦ tanh (Wxc ∗ Xt+Whc ∗ Ht−1+bc) (3)

ot = σ (Wxo ∗ Xt +Who ∗ Ht−1 +Wco ◦ Ct + bo) (4)

Ht = ot ◦ tanh (Ct) (5)

Theoretical explanations of benchmark models,
LSTM [30], CNN-LSTM [31] and SVR [32] (Support Vector
Regression), are available in studies elsewhere.

C. OVERVIEW OF THE PROPOSED PREDICTIVE MODEL
In previous sub-sections, an overview of IF and ConvLSTM
is provided. In this section the overall architecture of the
proposed model is presented. As evident in Figure 1, the main
information needed to build the predictive model is daily
rainfall. The antecedent raw rainfall data and rainfall derived,
daily IF data are used as two inputs to the selected algorithm.
The algorithm is used to forecast IF for 1-, 3-, 7- and 14-day
forecast horizons.

IV. EXPERIMENTS
A. STUDY AREA
The focus of this study is on towns and cities in Fiji. The
Fiji group covers an area of 18,270 km2 in the South Pacific
Ocean [33]. Fiji has an oceanic tropical climatewith the South
Pacific Convergence Zone (SPCZ) having a strong influence
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FIGURE 1. Overview of proposed experimental architecture.

on the climate of this small island nation [34]. The wet season
in Fiji is usually between November and April and during
this time, the SPCZ is positioned over Fiji. As heavy rain
is experienced during this time, this results in regular flood
situations around the flood prone areas in the country [35].
This study covers nine towns and cities from the two largest
islands in Fiji. These are Viti Levu and Vanua Levu and they
have an area of 10,400 and 5,540 km2, respectively [34].
As seen in Figure 2, due to the small area of the Fiji group,
this study has covered most of the major towns and cities of
the archipelagic nation.

B. DATASET
The daily rainfall data for eleven sites from 1st January
1990 to 31st December 2019 (30 Years) was successfully
acquired from Fiji Meteorological Services. These sites are
illustrated in the map from Figure 2. During data pre-
processing, the following actions were taken for simpler com-
putations and more accurate results. Firstly, calendar mean
was used to fill in the values for missing data points. Two
sites, Navua and Tavua, which had high proportion of missing
values, were excluded.

These two sites did not record precipitation for extended
duration of the study period. For leap year the rainfall for 29th

of February was added to 1st March following other works
[6], [27], [28]. This resulted in all years having 365 data
points to facilitate the computation of IF . To visualize, in
Figure 3, the trend of precipitation using data from Ba site
over a 30-year period is presented.

C. FLOOD INDEX COMPUTATION
The computation of IF and relevant metrics associated with
IF was performed using MATLAB [36] software. In comput-
ing the IF , the first step was to obtain Effective Precipitation
(PE ) [4]. The mathematical formula used to obtain the PE is
presented in equation 6. In this equation, N is the duration
of antecedent period and Pm is the recorded precipitation for
daym.PE accounts for the depleting earlier days precipitation
using a time-dependent reduction function. Moving on, once
the PE is computed, it can be used to get the Available Water
Resource Index (AWRI ) [37]. The AWRI is obtained simply

by dividing the PE over the accumulative weight (W ) of
the antecedent period and this is shown in equation 7. Next,
the IF is calculated [3]. As shown in equation 9, IF is the
standardized version of PE . In this equation, σ (20191991

¯PmaxE )
and 2019

1991
¯PmaxE denote the standard deviation and mean of

the yearly maximum daily PE during the study period. The
duration, severity and intensity of floods can be successively
determined using equations presented in earlier studies [7].

PEi =
∑D

N=1

[∑N
m=1 Pm
N

]
(1 ≤ m ≤ 365) (6)

AWRI =
PE
W

(7)

W =
∑n=D

n=1

1
n

(8)

IF =
PE − 2019

1991
¯PmaxE

σ (20191991
¯PmaxE )

(9)

D. PREDICTIVE MODEL DESIGN
To develop an AI-based flood forecast model, Python [38]
programming language was used. As Python offers an effi-
cient environment for machine learning data analysis, it was
selected to design the forecast model [39]. Some machine
learning packages for Python included Scikit-Learn [40],
Tensorflow [41] andKeras [42], as these are popular packages
solving machine learning problems that have also been used
in previous studies to build efficient forecast models [43]. The
scope of this study was to develop flood-forecasting models
using deep ConvLSTM models and to compare the suitabil-
ity of the algorithm in forecasting of flood situations using
daily IF .
Prior to data pre-processing, analysis of available data was

done. The IF for all the nine study sites were analysed. Firstly,
theD’Agostino’s K2 Test (DKT) [44] was done to perform the
statistical normality (or otherwise) test. The results showed
that none of the data were Gaussian. Next, the Dickey-Fuller
Test (DFT) [45] was performed to test for stationarity in
data. The IF data were stationary for all study sites. The
next step for data analysis was to figure out the number
of lag inputs that would be significant for the time-series
forecasting. Partial Autocorrelation Function (PACF) was
used for this purpose. After the impact of other variables are
eliminated, the supplementary information given by lagged
data is explained by PACF [46]. As seen in Table 1, two and
three days of lagged inputs were significant for five and four
study sites, respectively. This table also presents the results
of other data analysis.

In the data pre-processing stage, the data was divided into
training, validation, and testing subsets. 29 years (10,585 data
points at daily time-steps) of IF were calculated for each study
site. The features used as model inputs included antecedent
IF and precipitation. 80% of these data were assigned for
model training with 20% of the training data used for model
validation purposes. The remaining data were used for testing
the model’s implementation. As there is no specific rule for
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FIGURE 2. Map of the Fiji Islands showing study sites where the ConvLSTM model was developed.

FIGURE 3. Daily Rainfall for the study site (Ba) over 1991 to 2019.

the splitting ratio, the study adopted 80% for training data
based on a study that used a similar ratio [47]. To verify
this ratio, the effect of having 10%, 20% and 30% of data
in the testing set was later compared. Upon comparison,
all three ratios had relatively similar performance, and this
verified the adoption of 20% of data as testing data during
the experiments.

The ConvLSTM model type used for the experiment was
Multiple Input Multi-Step Output model [48]. As more than
one feature was to be used as input and the model had to
forecast IF at multiple forecast horizons, the Multiple Input

TABLE 1. Results from statistical tests.

Multi-Step Output model was determined to be the most
suitable for this use case. The data were first structured to
make them appropriate for Multiple Input Multi-Step Output
supervised learning. Input feature set consisted of IF and P
at t − 1 and the target consisted of IF at t . After this, all
variables in these data were scaled between [0, 1]. Scaling
these data before running the model led to an improvement
in speed and accuracy during training and testing phases.
Next, the data were reshaped to the format to be accepted
by the predictive model. This shape was adjusted based on
forecast horizon for which the model was being built for and
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TABLE 2. Optimal parameters of the developed model.

TABLE 3. Architecture of the deep learning models.

the number of lagged days considered. Once the data was
prepared, the models were trained using different combina-
tions of hyperparameters. These combinations of parameters
were adjusted manually until the most optimal set of hyper-
parameters were attained. As the same set of parameters were
the most optimal for all sites and horizons, this assisted in a
more effective comparison of the performance of the models
at different forecast horizons.

Table 2 presents optimal parameters of all models.
Table 3 shows the architecture of deep learning models.
The objective model, ConvLSTM consisted of three feature
layers. The first was a ConvLSTM2D layer with 128 filters
and rectified linear unit (ReLU) as the activation function.
The second layer was a flattening layer, and the final layer

was a dense layer. As the inputs consisted of only two fea-
tures, this simple configuration was enough to achieve the
optimal model. Furthermore, a batch size of 100 was chosen,
with Adam as the optimizing algorithm.

Several statistical metrics were used for thorough eval-
uation of models developed in this study. These perfor-
mance metrics included Root Mean Squared Error (RMSE),
Pearson’s Correlation Coefficient (r), Mean Absolute Error
(MAE), Coefficient of Determination (r2), Willmott’s Index
(Index of Agreement; d), Nash-Sutcliffe Efficiency Index
(NSE), and Legate-McCabe Efficiency Index (LME). Apart
from Sci-Kit Learn, two other Python packages, HydroE-
val [49] and HydroErr [50] were used to apply these per-
formance metrics. The mathematical representation of these
metrics is presented from Equations 10 to 15, respectively.

RMSE =

√∑n
i=1 (Si − Oi)

2

n
(10)

r =

∑n
i=1 (Oi − Ō)(Si − S̄)√∑n

i=1 (Oi − Ō)
2
√∑n

i=1 (Si − S̄)
2

(11)

MAE =
1
n

∑n

i=0
|Si − Oi| (12)

d = 1−

∑n
i=1 (Si − Oi)

2∑n
i=1 (

∣∣Si − Ō∣∣+ ∣∣Oi − Ō∣∣)2 (13)

NSE = 1−

∑n
i=1 (Si − Oi)

2∑n
i=1 (Oi − Ō)

2 (14)

LME = 1−

∑n
i=1 |Si − Oi|∑n
i=1 |Oi − Ō|

(15)

where S is the forecasted value of IF , S̄ is the mean of the
forecasted values of IF , O is the observed value of IF and
Ō is the mean of the observed values of IF .

E. RESULTS
This section presents the results of performance evaluation
of AI-based models (ConvLSTM, CNN-LSTM, LSTM and
SVR) adopted to forecast future flood situations in Fiji,
and these are shown for different flood forecasting periods
(i.e., 1-day, 3-day, 7-day, and 14-day). The evaluation results
from four forecast horizons and nine study sites expectedly
verifies the robustness of the objective ConvLSTM model in
forecasting future flood situations. The results are aggregated
to enable the paper to deliver an extensive comparative out-
come for all locations and forecast horizons.

To begin with, the results from the nine sites were averaged
so that the performance of themodels can be easily compared.
The performance evaluation of the models using RMSE and
MAE is presented in Table 4. It can be clearly seen from
this table that ConvLSTM demonstrated the minimum errors
when compared with the benchmark models for all the four
forecast horizons. In addition, as expected, the error measure
increases as the forecasting period increases. For instance,
the average RMSE for 1-day forecasting using ConvLSTM
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TABLE 4. The performance of ConvLSTM with benchmark models in
terms of average RMSE and MAE for nine sites for 1-day, 3-day, 7-DAY,
and 14-day flood forecasting.

FIGURE 4. The performance of ConvLSTM with benchmark model in terms
of average LME for nine sites for 1-day, 3-day, 7day and 14-day Flood
Forecasts.

was 0.101, whereas for 14-days, it was 0.279. Similar trend is
seen with MAE. Therefore, based on RMSE and MAE mea-
sures, the performance of ConvLSTM for flood forecasting
is the optimal. This is followed by LSTM, CNN-LSTM and
SVR.

In accordance with Equation (15) LME was used to eval-
uate the accuracy of models. Figure 4 illustrates average
LME for all sites at all forecast horizons. Again, these results
clearly demonstrated the better performance of ConvLSTM.
The performance of the objective model is significantly better
than the other models for all the forecast horizons. However,
like error measures, the accuracy of all the models decrease
as the forecast horizons is extended to 14-days. Also, after
ConvLSTM, the best performing models in terms of LME
were LSTM, CNN-LSTM and SVR, respectively. As seen
in Figure 4, for the benchmark models, LSTM and CNN-
LSTM’s performance were reasonable but the performance
of SVR was below 0.5 for all the forecast horizons.

In addition to the results from the aggregated data being
used to show the show the performance of the four algo-
rithms at the four forecast horizons, the LME analysis for
Rakiraki site is presented in Table 5 to compare if the

TABLE 5. Comparing the performance of ConvLSTM with the benchmark
models in terms of LME for Rakiraki site for 1-day, 3-day, 7-DAY, and
14-day flood forecasting.

FIGURE 5. Evaluating the performance of ConvLSTM using average r, NSE
and d values for 1-day, 3-day, 7-day and 14-day Flood Forecasting.

model performances are similar with non-aggregated data.
This table shows similar trends in performance as with the
aggregated data whereby ConvLSTM performs the best for
all forecast horizons, followed by LSTM, CNN-LSTM and
SVR. Also, as the forecast horizons increases, the perfor-
mance accuracy drops. As the trends and measures with the
non-aggregated data is close to the aggregated data, it verifies
the use of aggregated data when presenting the performance
evaluation results.

Based on the previous results, it can be clearly established
that ConvLSTM performs the best out of the four models.
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FIGURE 6. (a) Actual versus 1 -day forecasted IF for Ba Site using ConvLSTM. (b) Actual versus 3-day forecasted IF for Ba Site
using ConvLSTM. (c) Actual versus 7 -day forecasted IF for Ba Site using ConvLSTM. (d) Actual versus 14 -day forecasted IF for Ba
Site using ConvLSTM.
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FIGURE 7. (a) Model Loss for 1 -Day IF Forecasting using ConvLSTM for Ba Site. (b) Model Loss for 3-Day IF Forecasting using ConvLSTM for Ba Site.
(c) Model Loss for 7 -Day IF Forecasting using ConvLSTM for Ba Site. (d) Model Loss for 14 -Day IF Forecasting using ConvLSTM for Ba Site.

Next, r, NSE and d were used to further evaluate the per-
formance of ConvLSTM for flood forecasting. As seen
in Figure 5, for all the forecast horizons, the measures of r,
NSE and dwere greater than 0.93, 0.85 and 0.95, respectively.
This clearly shows that ConvLSTM can be used to forecast
IF at longer timescales without a significant impact on its
performance. Considering that only two features are used
for building the forecasting model, these results illustrated
the good performance of the model despite the usage of few
variables.

Moving on, Figures 6 a-d shows the graphical view of
1-day, 3-day, 7-day, and 14-day IF forecasting using testing
results from Ba site and ConvLSTM algorithm. This view
assists in understanding how close the forecasted values of IF
are with the actual values. As the forecast horizons increase,
the difference in the forecasted and actual values of IF
also increased. However, even with this increase, the graphs
clearly illustrate that the forecasted results are very close to
the actual IF for all the forecast horizons.

Finally, the model loss in terms of Mean Squared Error
(MSE) during training and validation of the ConvLSTM
for 1-day, 3-day, 7-day and 14-day flood forecasting using
data from Ba site is presented in Figures 7 a-d, respectively.

As seen in these figures, the models achieve minimum train-
ing and validation losses in less than 5 epochs. This is poten-
tially due to only two features being used for the forecasting
task. This further affirms the results, which showed good
performance of the ConvLSTM model. Despite having only
two input features, the proposed hybrid deep learning IF
forecastingmodel, i.e., ConvLSTM, provided very good fore-
casting performances at four forecasting horizons that can
serve as the core of an early flood warning system.

F. DISCUSSION
The results presented in the previous section illustrate the
feasibility of the ConvLSTM based IF forecasting model to
determine the possibility of flood situations at 1, 3, 7 and
14 day ahead forecast horizons. In this section, the limita-
tions, restrictions, and recommendations for future research
regarding the proposed flood forecast system is presented.

To begin with, one of the major limitations of this study
is that the predictive model that was developed during this
research only used two input features. Even though, only
two features were used, good forecasting performance was
achieved, it is expected that adding more useful features as
input will assist in developing a more robust model with
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better forecasting accuracy at extended forecast horizons. It is
recommended in future studies, that the model is enhanced by
identifying and applying additional relevant features.

Another limitation of the study is in terms of the IF. IF has
been previously applied in Fiji and has shown suitability as a
means of quantifying floods [7]. Therefore, it was acceptable
to develop IF based forecasting system for Fiji. However, for
areas where the suitability of IF has not been established yet,
the forecasting method presented in this paper may not be
appropriate for those areas. It is recommended that during the
application of the proposed method in new study areas the
suitability of IF for that location should be evaluated before
the development of the forecasting model.

Furthermore, another limitation is in terms of applying the
proposed model at the study site for regular flood forecasting.
Even though it is expected that the model can be easily
incorporated into the workflow replacing classical forecast-
ing techniques, the major challenge surrounding this would
be regularly obtaining accurate data and finding expertise to
implement these advanced techniques in the relevant organi-
zations. Therefore, it is recommended that in future research
more user-friendly tools for flood forecasting be developed
and other deep learning and machine learning algorithms be
tested for IF forecasting. The results from this research can
be set as a comparison benchmark for the newly buildmodels.

V. CONCLUSION
In this paper, a hybrid deep learning based flood forecasting
approach was presented. This novel approach made use of
daily lagged IF and precipitation time series data to determine
flood situations at multiple forecast horizons. The practicality
of the model was tested using datasets from nine locations in
Fiji. Among the deep learningmodels evaluated, ConvLSTM,
which was the objective model showed the best performance.
The following are the main contributions of this paper:

1. This research was the first to use IF with a hybrid deep
learning algorithm to develop an AI-based model for
flood forecasting.

2. The robustness of the objectivemodel, ConvLSTM,was
presented during this research whereby it illustrated
better performance when compared with deep learning
(LSTM and CNN-LSTM) andmachine learningmodels
(SVR) for 1-day, 3-day, 7-day and 14-day flood situa-
tion forecasting using datasets from nine sites.

3. Using various statistical score metrics, the accuracy of
the model for multi-step flood situation forecasting was
clearly established.

4. The application of the model at various sites in Fiji
illustrated the practicality of the approach in accurately
forecasting floods at multiple timescales in a cost-
effective manner.

To conclude, the approach presented in this paper could be
further enhanced to forecast flood situations at hourly time
scales. Accurate forecasting at shorter timescales is expected
to result in more time for informed decision making by gov-
ernments, organizations, and individuals to be better prepared

for flood situations and therefore saving lives and protecting
infrastructure resources.
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CHAPTER 6: DECISION SUPPORT SYSTEM DESIGN 

AND IMPLEMENTATION 

 

Foreword 

In this chapter, a copy of the paper with the title “A Web-based Flood Monitoring and 

Forecasting Decision Support System with Streamlit Online Platform”, which will be 

submitted to the journal, Stochastic Environmental Research and Risk Assessment, is 

presented. In the paper, a platform that is used for developing data-driven web 

applications and is known as Streamlit is used to develop a DSS. The proposed DSS 

consisted of four modules. These modules were built for easily computing daily and 

hourly flood monitoring indices and building the respective flood forecasting models 

using ConvLSTM hybrid deep learning algorithm. The practicality of the proposed 

DSS was tested using data from three sites in Fiji. The results indicated that the DSS 

is able to accurately determine the characteristics of floods using the monitoring 

indices. Moreover, the proposed DSS is also able to build robust flood forecasting 

models using the default parameters set for the ConvLSTM models in the system. The 

proposed DSS is expected to allow more organizations to easily apply flood 

monitoring indices for monitoring past flood events and assist in building AI-based 

models for forecasting future flood situations. 
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Abstract 

 
Availability of user-friendly and robust system for monitoring and forecasting flood situations 

are effective scientific contrivances of flood risk mitigation. In this research, Streamlit an 

enigmatic-free tool is adopted to purposely develop a web-based data-driven application with 

Python programming to build a new Decision Support System (DSS) for flood risk mitigation. 

The DSS is a user-friendly system tailored to compute the metrics, and further analyse the 

proposed Flood Index (𝐼𝐹) and Water Resources Index (𝑊𝑅𝐼) from rainfall data including the 

training and testing of Artificial Intelligence (AI) based models to forecast the daily and hourly 

𝐼𝐹 and 𝑊𝑅𝐼 values, enabling the decision-makers to continuously monitor the progression of a 

flood event. In the proposed DSS, both the 𝐼𝐹 and 𝑊𝑅𝐼 are mathematically based metrics 
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previously used to determine the characteristics of a flood event. The newly proposed DSS 

consists of four distinct modules: the first and second module computes and visualizes the 𝐼𝐹 

and 𝑊𝑅𝐼, respectively, utilising only the rainfall as an input variable. The third and fourth 

module is used to build and optimize a convolutional neural network version of Long Short- 

Term Memory Network (i.e., ConvLSTM) deep learning model that is suited for daily and 

hourly flood risk forecasting. The proposed platform is tested using datasets from three flood 

prone sites in Fiji Islands. The system reveals its successful capability to compute flood metrics 

in a fast, efficient, and user-friendly manner, including its predictive modelling skill to be 

capitalised as a robust forecast system for both 𝐼𝐹 and 𝑊𝑅𝐼. The results indicate good 

performance of the proposed DSS, particularly for flood risk monitoring and forecasting in 

regions where the flood management is an important task for community risk reduction, flood 

risk policy devising and other decision-making in a natural disaster or extreme weather events. 

Keywords  Decision Support System, Flood Risk Forecasting, Flood Index; Flood 

Monitoring; Water Resource Index 

1 Introduction 

 
User-friendly Decision Support Systems (DSS) for flood risk mitigation are useful decision- 

making tenets in analysing flood events and developing efficient damage reduction and risk 

mitigation strategies to address future disaster threats. A risk evaluation system is termed as a 

DSS if designed to support key decision-making tasks, such as, but not limited to platforms like 

the geographical information system, software agents, and analytical processing systems 

(Power, 1997). Over the past years, DSS has gained prominence in several areas of flood risk 

management (Ahmad & Simonovic, 2006; Mahmoud & Gan, 2018; Simonovic, 1999) but 

many of these physical systems based on satellites, remote sensing and radar meteorology 

capabilities are data expensive and overly complex in their technical and physical requirements. 



These issues may limit the applicability of existing DSS in smaller economies or island nations 

(e.g., the Fiji Islands) where such infrastructure and scientific resources may not be available. 

In addition, the adoption of a DSS to investigate problems associated with water resources are 

being developed since the mid-1970’s (Loucks & Da Costa, 1991). However, a DSS that utilizes 

rainfall-derived daily and hourly flood monitoring indices, and has the ability to delineate the 

onset, progression and rapidly evolving characteristics of a future flood event has not yet been 

developed although these types of indices have demonstrated a good performance in quantifying 

a flood situation. Therefore, developing a new DSS that is able to continuously monitor, 

visualize, and implement a built-in artificial intelligence AI-based method to forecast a flood 

event by using an objective flood monitoring index can be a cost-effective approach for flood 

risk mitigation. 

There currently exist several mathematically based flood indices (e.g., the one in the 

proposed DSS platform) that need to utilise only the rainfall data to quantify an incoming flood 

situation. Some of these indices include the Available Water Resource Index (AWRI) (Hi- 

Ryong Byun & Lee, 2002), the Flood Index (𝐼𝐹) (Ravinesh C. Deo, Byun, Adamowski, & Kim, 

2015), the Weighted Average of Precipitation (WAP) (Lu, 2009), the Standardized WAP 

(SWAP) (Lu et al., 2013) and the Water Resources Index (𝑊𝑅𝐼) (R. C. Deo, Byun, Kim, & 

Adamowski, 2018). Many of these tools are mathematically based approaches that have 

generally been accepted as suitable methods for monitoring the flood risk (Ravinesh C Deo et 

al., 2018; Moishin, Deo, Prasad, Raj, & Abdulla, 2020; Nosrati, Saravi, & Shahbazi, 2010). 

However, these approaches are currently not widely adopted in real-time by disaster risk 

management organizations. The possible reasons for this, off course, stems from a potential 

lack of interest driven by the complexities in developing a program or code to compute such 

metrics and an apparent lack of a forecast model utilising the metrics for risk prediction. To 

address such deficits, new research that can implement a consolidated DSS platform while also 



computing and visualizing the flood risk situation both in current time (i.e., for the purpose of 

now-casting) and at a future period (i.e., for forecasting) can lead to a better practical system 

for its use in real-time. This research aims to build such a DSS platform to encourage disaster 

management organizations in its greater adoption and the use of such user-friendly 

mathematical tools to quantify, analyse and model flood situations in different nations, and 

extreme weather contexts. 

According to Jansen (1998), the success of any software-based decision tool is 

dependent on a good graphical user interface (GUI) design. Hence, providing a user-friendly 

GUI for the proposed DSS is necessary task to encourage greater usage and ongoing 

improvements in the system and the continuity of usage by relevant end-user organizations. In 

this research, we have identified one software-based decision tool with a quick and easy 

platform for conversion of data-driven applications into the GUI-based web applications, is 

Streamlit (Streamlit, 2021). Streamlit has been employed to share various data-driven 

applications. It is scripted in Python programming language (Sanner, 1999) and is freely 

available as a web system. Having a DSS for flood risk monitoring and forecasting as a web- 

based application can eliminate the need to install various programs on every computer while 

also having a similar speed and interactivity as an installed program (Zepeda & Chapa, 2007). 

This study therefore adopts Streamlit as a portable platform to build an easily accessible DSS 

for flood risk mitigation. The outcomes are expected to make it easy for government 

organizations, or individuals working in disaster management to access a user-friendly flood 

monitoring, analysing and forecasting system. 

Among the various other flood monitoring tools, the 𝐼𝐹 used in this study is considered 

to be a robust flood metric risk tool that has been applied at various places globally (Australia 

(Ravinesh C. Deo et al., 2015), Bangladesh (Ravinesh C Deo et al., 2018), Fiji (Moishin et al., 

2020), and Iran (Nosrati et al., 2010)). It had shown good performance for daily monitoring of 



a flood event. In its own right, the 𝐼𝐹 is considered as a normalized form of the Effective 

Precipitation (𝑃𝐸) (Hui-Ryong Byun & Chung, 1998). 𝑃𝐸 is designed to use the current and the 

previous day’s precipitation to quantify an emerging flood situation, with the impact of an 

antecedent day’s precipitation taken to be gradually decreasing based on a time-dependent 

reduction function by implementing the rationale of other researchers e.g., Lu (2009) that 

postulate that the rainfall of a previous day contributes to the flood in a current day, but the 

effect of the previous day’s rainfall should gradually decline due to hydrological conditions 

such as drainage, seepage, surface run-off, evaporation and percolation within the soil layer, in 

accordance with rainfall run-off models. Furthermore, another index that is based on a similar 

principle but can be used for flood risk monitoring over hourly timescales, is the 𝑊𝑅𝐼 (R. C. 

Deo et al., 2018). In its initial research work, the 𝑊𝑅𝐼 has been applied at two study locations 

in Australia and South Korea; concluding its capability as a versatile indicator of an emerging 

flood situation (R. C. Deo et al., 2018). Therefore, due to the wide applicability of the 𝐼𝐹 for 

daily flood risk monitoring, and the capability of 𝑊𝑅𝐼 for hourly flood risk monitoring, this 

paper, for the first time, aims to select these metrics to be implemented within a Streamlit 

platform to enable its computation, visualization, modelling, and practical representation in the 

proposed DSS platform. 

Moving on, apart from monitoring a flood event, it is equally important for any 

proposed DSS platform to be able to provide added advantage to build and test a future flood 

forecast model. Such models would enable efficient flood warning in a flood-prone region and 

therefore enable an early evacuation of communities in danger of a possible flood threat (Chau, 

Wu, & Li, 2005). Over the years, several deep learning and machine learning algorithms have 

been used for flood forecasting. For instance, in a study by Elsafi (2014), an Artificial Neural 

Network (ANN) method was used for flood forecasting in Sudan, and in another study, a neuro- 

fuzzy model was developed by Nayak, Sudheer, Rangan, and Ramasastri (2005) for river flow 



forecasting. In a study by Le, Ho, Lee, and Jung (2019), the Long Short-Term Memory (LSTM) 

Network method was applied for 1-, 2- and 3-day flood flow forecasting in Vietnam. These 

methods have illustrated the possibility of using an AI approach for the forecasting of a flood 

event. Furthermore, in a previous study, the ConvLSTM hybrid deep learning model was 

proposed whereby the lagged 𝐼𝐹 and precipitation was used to forecast the future 𝐼𝐹 values as a 

method for daily forecasting of a flood situation (Moishin, Deo, Prasad, Raj, & Abdulla, 2021). 

However, such forecasting models are yet to be developed for hourly timescales, which are 

crucial for short-term and near real-time decision-making tasks in natural disaster management 

situations. In addition, a versatile flood monitoring and forecasting DSS platform using any of 

these tools (i.e., IF, & WRI) is currently not available. Since these tools can help decision-

makers in determining the state of a flood event more accurately than just using rainfall dataset, 

there exist research gaps to combine the IF and WRI with AI-based techniques to develop quick 

and efficient flood forecasting models that can predict both the hourly and daily onset, 

progression and features of an emerging flood situation. 

A set of popular AI algorithms previously used to model time series data include the 

LSTM, ANN, and Convolutional LSTM methods (Babu & Reddy, 2014; Liu, Zheng, Feng, & 

Chen, 2017). Out of these, the ConvLSTM is considered to be a hybrid deep learning method 

that combines two deep learning algorithms i.e., Convolutional Neural Network (CNN) 

(Albawi, Mohammed, & Al-Zawi, 2017) and LSTM (Hochreiter & Schmidhuber, 1997). When 

this hybrid algorithm was used for the nowcasting of precipitation, researchers found the method 

outperformed the benchmark models including the fully connected LSTM (FC-LSTM) and 

ROVER algorithm (Xingjian et al., 2015). In addition, when comparing the ConvLSTM with 

the Bi-directional LSTM for short-term traffic flow prediction against the existing traditional 

approaches, the former methods resulted in a much better performance (Liu et al., 2017). Also 

as mentioned previously, when the ConvLSTM was used for 𝐼𝐹 forecasting at a 



daily scale, this method showed a superior performance (Moishin et al., 2021). Therefore, due 

to the robustness of algorithm, this study has utilized ConvLSTM in the proposed DSS platform 

to build and optimize daily and hourly flood forecasts. 

The overarching aim of the study is to build and evaluate a user-friendly web based DSS 

application capable of calculating four of the robust daily and hourly flood monitoring indices. 

In addition, AI approaches are to be built into the same DSS to allow the users to develop flood 

forecasting models using the results from the flood monitoring computations. The proposed 

DSS is expected to be useful for meteorological organizations and disaster management bodies 

to be able to quantify flood situations mathematically. Based on these proposed outcomes, the 

objectives of this research are as follows: 

1. To develop a user-friendly web based DSS that can be used to compute robust flood 

monitoring indices such as 𝑃𝐸, 𝐴𝑊𝑅𝐼, 𝐼𝐹 and 𝑊𝑅𝐼. 

2. To build into the proposed DSS, an interface that can be used to build and test the AI- 

based daily and hourly flood forecasting models. 

3. To test the practicality of the proposed DSS for real-world application by using data 

from Ba, Nadi and Rakiraki, which are three flood-prone areas in Fiji. 

Hence, the paper presents the study area, data and methodology used for developing and 

testing the flood monitoring and forecasting DSS platform. It then evaluates the practical 

application of the DSS and analyses the accuracy of the results obtained using test data. Then 

further analysis of limitations, recommendations, benefits, and constraints of the proposed DSS 

is discussed. Finally, the paper concludes by presenting the key insights from the study. 

2 Materials and Methodology 

 
2.1 Study Area and Data for Testing the Proposed DSS 



Three flood prone sites from Fiji Islands, Ba, Nadi, and Rakiraki were selected to test 

the proposed flood monitoring and forecasting DSS. These three sites are highlighted in the 

map shown in figure 1. Daily and 10-minute rainfall data were obtained from the Fiji 

Meteorological Services. The data period was from 1st January 1990 to 31st December 2019 

and from 1st January 2014 to 31st December 2019 for the daily and 10-minute rainfall data, 

respectively. Necessary routine data pre-processing steps were taken to ensure that correct 

inputs were used to calculate the flood monitoring indices. Firstly, for the daily rainfall data, 

calendar mean was used to fill in the missing values. Once these missing values were computed, 

the rainfall for 29th of February was added to the 1st of March to accommodate for leap years 

as the daily flood monitoring tool used for this study considered 365 days of antecedent 

precipitation. These two operations were automated and built into the proposed DSS. 

 

 
Figure 1 - Study Sites Highlighted (With Red Dots) from the Map of Fiji 

 

Secondly, for the 10-minute datasets, the missing values were filled by averaging the 

respective hourly rainfall. This was done manually due to the small number of missing values. 

Once the missing data were filled, the 10-minuted data set was converted to hourly by summing 

up the 10-minute precipitation at hourly intervals. To illustrate the characteristics of the rainfall 



data obtained, Figures 2 and 3 show the daily and hourly rainfall data trends for Nadi site, 

respectively. 

 

 
Figure 2 - Daily Rainfall Trend for Nadi Site from 1st January 1990 to 31st December 2019 

 

 

 
Figure 3 - Hourly Rainfall Trend for Nadi Site from 1st January 2014 to 31st December 2019 

 

2.1 Overview and Development of the Proposed DSS 

 
Streamlit, which uses Python (Sanner, 1999) programming language, was used for 

developing the proposed web-based flood monitoring and forecasting DSS. The proposed DSS 

is to be used for daily and hourly monitoring of floods and for building and optimizing AI- 

based models for daily and hourly flood situation forecasting. The flood monitoring indices to 

be computed in the proposed platform were 𝐼𝐹 and 𝑊𝑅𝐼 for daily and hourly flood monitoring, 

respectively. As mentioned earlier, these robust indices are based on the rationale that flood on 

any day is dependent on the current and earlier days rainfall, with the impact of earlier days 

rainfall on current days flood situation steadily declining based on a time-dependent reduction 

function due to the interaction of hydrological factors such as seepage and evapotranspiration 

(Ravinesh C. Deo et al., 2015; Lu, 2009). Figure 4 shows an overview of the proposed DSS. It 



can be seen from this figure that the proposed DSS consists of four modules (Labelled M1- 

M4). The details of these modules have been presented in the following sections. 

 

 
Figure 4 - Overview of the Proposed DSS 

 

2.1.1 Module 1 - Daily Flood Monitoring 

 
To calculate the daily 𝐼𝐹, first the 𝑃𝐸 needs to be calculated (Hui-Ryong Byun & Chung, 

1998). Then the 𝑃𝐸 is normalized to get the final 𝐼𝐹 measure. The mathematical methods to 

compute these daily flood monitoring indices have already been presented comprehensively in 

previous studies and therefore, it is not presented here (Ravinesh C Deo et al., 2018; Moishin 

et al., 2020). When computing the 𝐼𝐹, antecedent rainfall of 365 days is usually considered, and 

the index can determine the duration, severity, and intensity of flood situations mathematically. 

As seen in figure 4, the proposed DSS only requires the user to upload a CSV file containing 

the date and the respective daily rainfall amount in mm. Once the file is uploaded, the user can 

select the date range to be used during the computations. In addition, at least ten years of data 



is needed to be used in the computations and the DSS will not perform the computations if the 

data period is less than ten years. The DSS converts all date strings to date format and then 

splits each date into day, month, and year, to accommodate for different date formats. If a date 

format is unrecognized, the system is expected to throw an error. Therefore, the user is expected 

to ensure that correct data file is uploaded to get the most accurate results. Next, the DSS then 

computes the 𝑃𝐸, 𝐴𝑊𝑅𝐼 and 𝐼𝐹. Once these are computed, the platform derives the history of 

floods and performs some basic analyses. The results produced by the DSS are available for 

download, which the user can then use to perform advanced analytics and make flood risk 

mitigation related decisions. 

2.1.2 Module 2 - Hourly Water Resources Index 

 
In terms of the short-term hourly 𝑊𝑅𝐼, equation 1 presents the mathematical overview 

of its computation, based on a previous study (R. C. Deo et al., 2018). In this equation, D 

represents the number of antecedent hours to consider during the computation. For instance, if 

𝑊𝑅𝐼24−ℎ𝑟−𝑆 was being computed, the rainfall for the past 24 hours would be considered. The 

proposed DSS, which is developed in this study, computes 𝑊𝑅𝐼24−ℎ𝑟−𝑆 , 𝑊𝑅𝐼48−ℎ𝑟−𝑆, 

𝑊𝑅𝐼72−ℎ𝑟−𝑆, and 𝑊𝑅𝐼96−ℎ𝑟−𝑆. Through the accumulation of previous days rainfall, 𝑊𝑅𝐼 can 

convert hourly rainfall into non-zero values, especially for the longer time horizons. This makes 

the index more advantageous over raw rainfall data being used for evaluating flood risk (Deo, 

R. C. et al. 2018). In the proposed DSS, the user is only required to upload a CSV file consisting 

of the hourly rainfall with its corresponding date and hour, and like the daily flood monitoring 

module, the date range to be used for the computations can be selected. The DSS then computes 

the 𝑊𝑅𝐼24−ℎ𝑟−𝑆,  𝑊𝑅𝐼48−ℎ𝑟−𝑆, 𝑊𝑅𝐼72−ℎ𝑟−𝑆, and 𝑊𝑅𝐼96−ℎ𝑟−𝑆 and produces a downloadable file 

that the user can use to perform more analytics and make relevant disaster mitigation decisions. 
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2.1.3 Module 3 and 4 – Building Flood Forecast Models 

 
Once the daily or hourly flood monitoring computation is completed and the results file 

is obtained, it can be used to build and test the respective forecasting models using the proposed 

DSS. When the user uploads the results file and adjusts the hyperparameters, the DSS platform 

uses ConvLSTM algorithm to build the forecasting models. For forecasting future values of 

𝐼𝐹, the system uses antecedent rainfall and 𝐼𝐹 and for forecasting 𝑊𝑅𝐼, antecedent 𝑊𝑅𝐼96−ℎ𝑟−𝑆 

is used as the feature to forecast future 𝑊𝑅𝐼96−ℎ𝑟−𝑆 values. The general architecture of the daily 

and hourly forecast models used by the proposed DSS is presented in Table 1. The default 

parameters and features for daily forecasting are based on an earlier study by Moishin et al. 

(2021). To select the default parameters and features for hourly forecasting, a series of 

operations were performed using data from three various sites for three forecast horizons. Apart 

from adjusting the parameters, the user is also required to enter the forecast horizon and number 

of lagged days or hours to be used by the predictive model. An advanced user can use tools 

such as the Partial Autocorrelation Function (PACF) to identify the lagged timesteps. Once the 

parameters are set and the data file is uploaded, the platform starts training and testing the 

model. Once the model training has completed, the platform displays the performance of the 

model using the testing data in terms of six statistical score metrics. These include the Mean 

Absolute Error (𝑀𝐴𝐸), Root Mean Squared Error (𝑅𝑀𝑆𝐸), Legate McCabe Efficiency Index 

(𝐿𝑀𝐸), Pearson’s Correlation Coefficient (𝑟), Nash-Sutcliffe Efficiency Index (𝑁𝑆𝐸) and 

Willmott’s Index (𝑑). Using these measures, the user can decide on whether ConvLSTM 

algorithm is suitable for their use case in building a flood forecasting model. 



Table 1 - General Architecture of the ConvLSTM Model Implemented in the Proposed 

 
Platform  

Model Model Training Parameters Default Value Adjustable Range 

Daily Testing Data Split Ratio 0.2 [0.01, 0.99] 

 
Validation Data Split Ratio 0.2 [0.01, 0.99] 

 
ConvLSTM Filters (Layer 1) 128 [8, 512] 

 
Activation ReLU - 

 
Optimizer Adam - 

 
Batch Size 100 [1, 1000] 

 
Epochs 50 [1, 1000] 

Hourly Testing Data Split Ratio 0.1 [0.01, 0.99] 

 
Validation Data Split Ratio 0.2 [0.01, 0.99] 

 
ConvLSTM Filters (Layer 1) 256 [8, 512] 

 
ConvLSTM Filters (Layer 2) 128 [8, 512] 

 
ConvLSTM Filters (Layer 3) 64 [8, 512] 

 
Activation ReLU - 

 
Optimizer Adam - 

 
Batch Size 100 [1, 1000] 

 
Epochs 75 [1, 1000] 

 

3 Analysis of Practical Application 

 
The proposed DSS was tested for its practical application using data from three flood 

prone sites in Fiji. The newly developed DSS platform, operating under Streamlit, can be 

accessed using the following link: https://bit.ly/32R7NqA. The results from these tests 



performed on the DSS has been used to evaluate the system’s performance and accuracy in the 

next section. 

3.1 Overview of the DSS Interface 

 
Firstly, the user interface of the proposed DSS is analysed. When the user accesses the 

platform’s home page, a description of the platform is presented, as seen in Figure 5. This page 

also presents related research papers that led to the development of the system and has a 

disclaimer at the bottom. These descriptions and listings demonstrate the authenticity of the 

platform to the users and gives them a fair understanding of the purpose of the proposed DSS. 

In addition, the simple navigation menu on the left of the page allows the user to access 

different modules of the proposed DSS. The location of this navigation menu is consistent 

across all the pages of the platform. 

Furthermore, figures 6 and 7 show the daily and hourly flood monitoring pages of the 

proposed DSS, respectively. The user interface for these modules is simple and the user only 

needs to upload the required data file and select the date range to perform the computations. 

During the computation, the progress is shown on the left side bar, and once the computation 

is completed, the result file is available for download and simple analyses are presented on the 

page. This simple interface is expected to increase the usage of 𝐼𝐹 and 𝑊𝑅𝐼 for monitoring 

floods mathematically at daily and hourly timescales, respectively. 

In terms of the daily and hourly flood forecast model development modules, figures 8 and 9 

show the respective web pages. As seen in these figures, the DSS platform provides the user a 

range of options to configure the hyperparameters of the ConvLSTM algorithm. The purpose 

of these options is to allow the user to easily determine if ConvLSTM is the suitable algorithm 

for their use cases. Apart from setting the parameters, the user also has the flexibility to set the 

number of lagged timesteps and forecast horizon. The data file required for these modules are 



the results file obtained from the flood monitoring sections of this DSS platform. Once the 

model is trained, the results in terms of statistical score metrics with the testing data are 

presented. 



 
 

Figure 5 - Home Page of the Proposed DSS Platform 



 

 

Figure 6 – Daily 𝐼𝐹 Computation Page in the Proposed DSS 
 

 

 

 
 

Figure 7 – Hourly 𝑊𝑅𝐼 Computation Page in the Proposed DSS 



 
 

Figure 8 – Daily 𝐼𝐹 Forecast Model Development Page in the Proposed DSS 
 

 

Figure 9 – Hourly 𝑊𝑅𝐼 Forecast Model Development Page in the Proposed DSS 

 

3.2 DSS Performance Analysis 

 
In this section, the results obtained from the proposed DSS platform are used to evaluate 

the performance and accuracy of the system. To comprehensively present the results using data 

from all sites, the performance of each module in the proposed DSS is presented using one of 

the three study sites. Firstly, the daily rainfall data from Rakiraki site is used to evaluate the 

results obtained from the daily flood monitoring module of the proposed DSS. Based on the 



results obtained from the module, the details of the five severest floods between 1991 and 2019 

at Rakiraki site, derived using daily 𝐼𝐹 is presented in Table 2. It can be seen in this table that 

the severest flood recorded had reached a peak severity of 3.21. Furthermore, the area was in a 

flood state for 69 days and experienced 1196.40mm of rainfall during the flood period. The 

graphical representation of this flood event is shown in Figure 10. Such representation, which 

can be easily made using the results produced by the proposed DSS, makes it easier to interpret 

the computed 𝐼𝐹. 

Table 2 - Flood Properties of the Five Severest Floods at Rakiraki site, Fiji Islands. 
 

 
No. Onset End Duration 

 

(Days) 

Severity AWRI Precipitation 

 

(mm) 

Maximum 

 

AWRI 

Peak 

 

Severity 

1 28-03-2012 04-06-2012 69 69.85 65364.81 1196.40 1516.77 3.21 

2 16-01-2008 04-05-2018 109 66.82 91992.43 1762.10 1068.36 1.48 

3 04-03-1997 06-06-1997 95 45.33 76834.75 1468.90 1083.74 1.54 

4 09-01-2009 06-03-2009 57 33.22 47661.10 1277.50 1141.15 1.76 

5 24-01-2012 21-03-2012 57 25.43 45644.09 1102.40 947.62 1.01 
 
 

Next, the hourly rainfall data from Nadi site is used to evaluate the 𝑊𝑅𝐼 results obtained 

from the hourly flood monitoring module of the proposed DSS. Fiji faced a severe storm in 

2016, Tropical Cyclone Winston (Robie & Chand, 2017). It caused damages and flooding 

across many areas in the country. The cyclone made landfall in Fiji on the 20th of February in 

2016 and therefore this period is used to demonstrate the flood situation at Nadi site using 

𝑊𝑅𝐼24−ℎ𝑟−𝑆. As seen in figure 11, 𝑊𝑅𝐼 results derived from the proposed DSS is accurately 

able to determine the state of flood in Nadi from the first day of the disaster. It also illustrates 

that the area was in a severe flood risk for about 50 hours. This conforms with the reports of 

high amounts of rainfall being recorded at the site and flood warnings being issued during these 



periods (Davies, 2016). Hence, these reports confirmed the accuracy of the proposed DSS and 

the suitability of 𝑊𝑅𝐼 for hourly flood monitoring. 

Furthermore, as stated, the daily forecasting approach used in the respective module of 

the proposed DSS, was based on the findings presented by Moishin et al. (2021). To show the 

performance of this module in the proposed system, the computed daily 𝐼𝐹 results from Nadi 

site is used. The performance of the model is evaluated using default parameters in the DSS at 

1-, 3-, 7- and 14 day forecast horizons. The results, in terms of 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸, is presented 

in Figure 12. It can be seen that the forecasting errors are minimum for 1-day forecasting and 

as the forecast horizons increase, the error measures also increase. However, the RMSE and 

MAE errors do not exceed 0.25 and 0.14, respectively. This indicates that despite the decrease 

in performance, there is not a significant drop in performance at longer forecast horizons. 

Consequently, it illustrates the robustness of the model for forecasting floods at daily 

timescales. It also illustrates the suitability of the default parameters set in the proposed DSS. 

 
 

 

Figure 10 - Graphical Representation of the Severest Flood at Rakiraki Site using 𝐼𝐹 



 
 
 

 
 
 

Figure 11 - Evaluating WRI at Nadi Site from 20th February 2016 to 26th February 2016 
 

 
 

 
Figure 12 - Evaluating Daily 𝐼𝐹 Forecasting Performance using Data from Nadi Site in terms 

of 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 at 1-,3-,7-, and 14-day Forecast Horizons 

Next, to present the hourly forecasting module of the proposed DSS, 𝑊𝑅𝐼 results 

obtained using hourly rainfall data from Ba site is used. When the model was trained and tested 

with the default parameters, it showed good performance. This is presented in Figure 13, 

whereby the performance of the model with the testing data is evaluated using 𝑑, 𝑁𝑆𝐸 and 

𝐿𝑀𝐸. All three metrics show good performance of the model for 1, 3 and 6 hour forecast 



horizons. In addition, like daily flood forecasting, when the forecast horizon is increased, there 

is a decrease in performance. However, this decrease in performance is not massive as the 

measures for 𝑑, 𝑁𝑆𝐸 and LME remains very high with values greater than 80 %. Therefore, 

these results illustrated the robustness of the 𝑊𝑅𝐼 for hourly flood forecasting. It also showed 

the suitability of the default hyperparameters used by the DSS to achieve this task. 

 
 

Figure 13 – Evaluating Hourly 𝑊𝑅𝐼 using data from Ba Site in terms of 𝑑, 𝑁𝑆𝐸 and 𝐿𝑀𝐸 for 

1-, 3-, and 6-hour Forecast Horizons 

4 Discussion 

 
The accuracy and robustness of the proposed DSS has been presented in the previous 

section. In this section, the limitations, benefits, and constraints of the proposed DSS are 

presented. Some relevant recommendations for future works are also discussed. Firstly, one of 

the major limitations of the system is in terms of the time taken for the algorithm in the DSS to 

compute the 𝐼𝐹. Currently, significant amount of time is required for this computation to 

complete and therefore this may not be feasible for real-time operations. This time is dependent 

on the processing speed of the computer the user uses to access the platform. Hence, it is 

recommended that in future research, the algorithm is further optimized to allow for faster and 



efficient computations whereby less compute resources are used. This optimization of the 

algorithm should further encourage the application of 𝐼𝐹 for daily flood monitoring and assist 

in quicker flood related decision making. 

Moving on, a limitation associated with 𝑊𝑅𝐼 is discussed. The 𝑊𝑅𝐼 used in the 

proposed DSS is not standardized and therefore, it is difficult to compare the different severity 

levels of floods, as it is possible with 𝐼𝐹. Therefore, it is recommended that in future studies, a 

standardized version of 𝑊𝑅𝐼 is developed. This will allow for better classification of flood risks 

and make it easier for users of the tool to make relevant flood risk mitigation decisions. In 

addition, a standardized index will also enable effective comparison of different flood events at 

different sites. This should also allow for the adoption of 𝑊𝑅𝐼 for hourly flood monitoring at 

more locations around the globe. Furthermore, the flood forecasting models developed with the 

standardized index is expected to be more useful for better prediction of the extent of flood risk 

expected. 

The next limitation is associated with the ConvLSTM models used for daily and hourly 

flood forecasting in the proposed DSS. When selecting the default parameters, the model had 

to be run multiple times and continuous adjustment of the hyperparameters was needed to 

ensure the most effective performance. Some of the benchmark models did not require this 

amount of optimization. However, eventually, the best performance was achieved with 

ConvLSTM and therefore it was selected to be the default model in the proposed DSS. It is 

recommended that in future studies other machine and deep learning models are tested for daily 

and hourly flood forecasting. 

In addition, currently the DSS only trains the ConvLSTM model and presents the 

performance metrics. Therefore, the platform itself cannot be used to show flood forecast 

results but can only be used to train the models and show the performance in terms of statistical 



score metrics. Therefore, it is recommended that in future research, capabilities are built into 

the DSS so that the user can enter lagged data manually and the DSS can present the forecast 

results without having to train the model every time. This was not possible with the version of 

Streamlit used for this research as the developed models could not be saved for future use (The 

Keras command “model.save()” did not work in the live version but if researchers modify the 

code and run on their machines, they will be able to save the developed models using that 

command). If this capability can be developed for the live version in future research, it will 

further increase the usefulness of the proposed DSS. 

Furthermore, a constraint of the proposed DSS is that it is web based and therefore 

internet connection is required to access the modules. Nevertheless, this constraint is also a 

benefit as the proposed DSS is not platform dependent and can be accessed on any device with 

a web browser and stable internet connection, irrespective of the operating system. To add on, 

another benefit of the DSS is that it will be open source and therefore users and developers can 

access the programming codes and make changes to the system to improve its features, enhance 

its interface or assist in fixing bugs found in the system after deployment. Consequently, having 

the programming codes open to the public will enable organizations to audit the code prior to 

usage in their organizations. 

5 Conclusion 

 
In this study, a web based DSS platform was developed using Streamlit and Python as 

a means of easily computing the daily and hourly flood monitoring indices. The indices used 

in the platform for daily and hourly flood monitoring were 𝐼𝐹 and 𝑊𝑅𝐼, respectively. Two other 

modules that were built into the proposed DSS were interfaces for building and optimizing 

ConvLSTM models for daily and hourly flood forecasting. The developed DSS can be accessed 

using the following link: https://bit.ly/32R7NqA. During this research, this 



proposed DSS was developed, comprehensively evaluated, and the results have been presented 

in this paper. 

The main contributions of this paper are as follows: 

 
1. This study was the first to develop a web based DSS for computing daily 𝐼𝐹 and hourly 

 

𝑊𝑅𝐼. 
 

2. This study builds on previous study where ConvLSTM was used for daily flood 

forecasting by proposing a similar approach for hourly flood forecasting using 𝑊𝑅𝐼 in 

the proposed DSS. 

3. The DSS was tested using data from three flood prone sites in Fiji and these showed the 

accuracy and robustness of the proposed DSS in terms of mathematical flood 

monitoring and for building flood forecast models. 

4. The proposed DSS is open source. Therefore, other researchers and access the source 

codes and make further improvements to the DSS or customize it for their research 

needs. 

To conclude, the DSS developed during this study is expected to provide an easy means of 

computing flood monitoring indices at daily and hourly timescales. In addition, the proposed 

system also allows users to easily build and test ConvLSTM-based models for flood forecasting 

and decide whether the ConvLSTM-based model will be suitable for their use case. Finally, it 

is expected that the proposed DSS shall make it convenient for more organizations to apply 

data-driven mathematical indices for daily and hourly flood monitoring and forecasting. 
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CHAPTER 7: SYNTHESIS AND CONCLUSION 

 

7.1 Summary of Research 

To summarize, this research has achieved three objectives. Firstly, 𝐼𝐹 was first used as 

a tool for evaluating the past floods at nine sites around Fiji over a 29-year period. The 

duration, severity and intensity of these floods were successfully determined and 𝐼𝐹 

was accepted as an accurate means of mathematically assessing flood situations at 

short timescales in Fiji. Next, 𝐼𝐹 was used to develop a robust time-series based flood 

forecasting model using a hybrid deep learning algorithm, ConvLSTM. The developed 

flood forecasting model was evaluated to be a robust means of forecasting occurrences 

of future flood events for up to 14-day forecast horizons. When compared with the 

benchmark models, the ConvLSTM objective model showed better performance at all 

study sites and forecast horizons. Finally, using the principles and theory from the first 

two objectives, an online DSS was developed using the Streamlit platform for easily 

computing flood monitoring indices and building flood forecast models using the 

ConvLSTM algorithm. Once developed, the proposed DSS was tested for its practical 

application using data from three areas in Fiji. 

7.2 Contributions and Novelty 

This research has made significant contributions to knowledge and has presented a 

novel method of forecasting occurrences of future flood situations. In this section some 

of these are highlighted. Firstly, this study was the first to apply 𝐼𝐹, which is a daily 

flood monitoring index that uses rainfall data and considers depleting water resources 

due to several hydrological factors to quantify floods in Fiji. Such a mathematical 

method was not previously used for analyzing floods in the country. Secondly, using 

daily 𝐼𝐹 as a means of forecasting floods was also not done prior to this research. In 

this study, 𝐼𝐹 was used to develop deep learning models that can forecast floods at 

multiple forecast horizons and study areas.  

In addition, to build the forecasting models, the objective model chosen was 

ConvLSTM. ConvLSTM is a new hybrid deep learning algorithm that combines 

LSTM and CNN, which are two of the most popular deep learning algorithms, with  
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LSTM being a well-tested model for timeseries forecasting. When the predictive 

capabilities of multiple deep learning methods are combined, it is likely to perform 

better than standalone deep learning or conventional machine learning models. 

Moving on, ConvLSTM can be implemented as a black box model whereby the inner 

workings of the model is not required to be known. To add on, the steps to develop 

ConvLSTM model, as discussed in Chapter 5, is similar to how any machine learning 

model is developed, with slight variations in some steps such as parameter setting.  

Furthermore, the performance of the model was tested using data from various sites in 

Fiji. This was significant because this was the first-time flood forecasting models were 

developed for Fiji using hybrid deep learning methodology. Finally, one of the major 

contributions of this research was the development of the web based DSS for 

computing flood monitoring indices and building flood forecast models. This DSS 

would allow users to perform the methodologies applied in this research conveniently 

and get results quicker, without the need to develop any programming codes. 

7.3 Limitations and Recommendations  

The objectives of this research have been successfully completed. However, there are 

some limitations that could be addressed in future studies. The general limitations of 

the study are mentioned in this section as the limitations associated with addressing 

specific objectives have already been discussed in the papers, presented from chapters 

4-6 of this thesis. To begin with, one of the main limitations is that the forecasting 

model developed in this study only uses two features to perform the forecasting task 

for daily flood forecasting and only one feature for hourly flood forecasting model. In 

future studies, more useful features could be identified and that would further enhance 

the performance and robustness of the proposed model. Furthermore, adding more 

useful features could also improve the forecasting abilities of the model for longer 

forecast horizons. To add on, studies are recommended that can forecast floods more 

than 14 days prior to a flood situation.  

Moreover, other deep learning and machine learning algorithms can be tested for its 

applicability for forecasting future values of 𝐼𝐹 and 𝑊𝑅𝐼. In this research, comparison 

of the performance of the objective model was only done with three other algorithms.  
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Therefore, in future research more algorithms can be tested for its ability to accurately 

forecast 𝐼𝐹 and 𝑊𝑅𝐼. Furthermore, the focus of most of the tasks was on Fiji. 

Therefore, it is highly recommended that the methods applied in this study are 

replicated and enhanced to develop flood monitoring and forecasting tools in other 

developed and developing countries. The proposed DSS can be used for easily 

achieving this. As the source code for the DSS is openly available, future researchers 

can easily modify the code and enhance the performance and address the limitations 

of the proposed DSS.  

To conclude, as the methods presented in this research are cost-effective and largely 

rely on only rainfall data, it is particularly useful for flood prone areas that do not have 

the financial and scientific means of investing in advanced flood monitoring and 

forecasting systems. Adding on, further research is recommended on the approaches 

presented in this study so that the methods can be further enhanced and improved. 

Finally, it is expected that more developing countries would use the means of flood 

analysis and forecasting that has been presented in this research for flood risk 

mitigation.  
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