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Graph-enabled Reinforcement Learning for Time
Series Forecasting with Adaptive Intelligence

Thanveer Shaik, Xiaohui Tao, Haoran Xie, Lin Li, Jianming Yong, and Yuefeng Li

Abstract—Reinforcement learning is well known for its ability
to model sequential tasks and learn latent data patterns adap-
tively. Deep learning models have been widely explored and
adopted in regression and classification tasks. However, deep
learning has its limitations such as the assumption of equally
spaced and ordered data, and the lack of ability to incorporate
graph structure in terms of time-series prediction. Graphical neu-
ral network (GNN) has the ability to overcome these challenges
and capture the temporal dependencies in time-series data. In
this study, we propose a novel approach for predicting time-series
data using GNN and monitoring with Reinforcement Learning
(RL). GNNs are able to explicitly incorporate the graph structure
of the data into the model, allowing them to capture temporal
dependencies in a more natural way. This approach allows
for more accurate predictions in complex temporal structures,
such as those found in healthcare, traffic and weather forecast-
ing. We also fine-tune our GraphRL model using a Bayesian
optimisation technique to further improve performance. The
proposed framework outperforms the baseline models in time-
series forecasting and monitoring. The contributions of this study
include the introduction of a novel GraphRL framework for time-
series prediction and the demonstration of the effectiveness of
GNNs in comparison to traditional deep learning models such as
RNNs and LSTMs. Overall, this study demonstrates the potential
of GraphRL in providing accurate and efficient predictions in
dynamic RL environments.

Index Terms—Graph Neural Networks, Reinforcement Learn-
ing, Intelligent Monitoring, Bayesian Optimization

I. INTRODUCTION

The emergence of Machine Learning (ML) in healthcare
signifies a paradigm shift towards automating clinician tasks
and augmenting patient care capabilities [1]. Amidst the evolv-
ing ML landscape, Federated Learning has gained traction
for preserving data privacy while constructing sophisticated
server models [2]. Reinforcement Learning (RL), another
ML strategy, has demonstrated substantial improvements in
prediction performance and decision-making tasks [3], [4].
RL’s application is particularly noteworthy in controlling au-
tonomous systems, such as robots and drones, training them to
make optimal decisions in real-time based on environmental
sensor data.
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Fig. 1: Graphical Abstract

In various sectors, including healthcare, traffic, and weather
forecasting, Early Warning Systems (EWS) play a pivotal
role. They analyze real-time monitoring data and issue alerts
for potential issues, facilitating proactive responses. RL-based
EWS can adapt over time, refining their predictions and sup-
porting clinical decision-making. This adaptability has proven
effective in applications like predicting hospital readmissions
and sepsis detection.

Time-series data modeling, vital in monitoring and predict-
ing future states, has seen advancements with deep learning
models like Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM) networks [5]. These models are
adept at capturing temporal dependencies, yet face limitations
in handling irregularly structured data and integrating complex
graph structures. This study introduces the GraphRL frame-
work, an innovative amalgamation of RL and Temporal Graph-
ical Convolutional Networks (T-GCN), aiming to surpass the
constraints of traditional deep learning models in time-series
prediction. GraphRL’s design facilitates handling complex
temporal structures and incorporates additional information
such as node and edge attributes, as depicted in Fig. 1. The
GraphRL framework’s core contributions include:
• A versatile framework capable of providing early warn-

ings and monitoring in complex settings.
• A customizable RL environment designed for effective

forecasting in dynamic domains like healthcare and traffic
systems.

• A novel approach to virtual monitoring of predicted
states in RL, enhancing decision-making and intervention
capabilities.

Our comparative analysis with state-of-the-art models across
various datasets showcases GraphRL’s superior performance,
underscoring its potential as a versatile solution for time-series
prediction challenges.

The paper is organized as follows: Section II reviews
existing literature on self-learning systems and prediction
tasks. Section III outlines the research problem. The proposed
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GraphRL framework and its algorithm are detailed in Sec-
tion IV. Section V describes the datasets and baseline models
used for evaluation. The performance of the predictive RL
environment and agent is compared with baseline models
in Section VI. Section VII discusses the fine-tuning of the
framework’s hyperparameters using Bayesian optimization.
The paper concludes in Section VIII.

II. RELATED WORKS

A. Self Learning Systems

Self-learning systems, particularly those utilizing Reinforce-
ment Learning (RL), have seen significant advancements in
various applications. For instance, Shin et al. [6] introduced
a dual-agent framework in mobile health, effectively demon-
strating user modeling and behavior intervention strategies.
This work underscores the potential of RL in personalizing
user experiences, a concept that aligns with our GraphRL
framework’s goal of adaptive learning in dynamic environ-
ments. Similarly, Taylor et al. [7] applied RL in model-
ing maladaptive eating behaviors, further showcasing RL’s
versatility in behavior prediction and modification. Chen et
al. [8] developed the MIRROR framework, emphasizing the
rapid learning capabilities of RL in human behavior modeling.
These advancements set a precedent for our work in complex
sequential decision-making tasks. Zhou et al.’s [9] CalFit app
and Li et al.’s [10] method in autonomous driving highlight
RL’s efficacy in personalized goal setting and complex urban
scenario navigation, respectively, which are foundational to
our GraphRL framework’s approach in handling dynamic and
intricate patterns in data.

B. Early Detection of Patient Deterioration

In the healthcare domain, early detection of patient deterio-
ration is vital. Traditional vital signs monitoring, as discussed
by Asiimwe et al. [11] and evaluated by Scully et al. [12],
Baig et al. [13], and others, has laid the groundwork for our
study. These works highlight the importance of continuous
monitoring and early warning systems (EWS), which are
integral to GraphRL’s objective. The limitations in existing
methods, such as the need for manual calculations and the
inability to handle large, unstructured data effectively, are
addressed in our framework through the integration of GNNs,
which can process complex temporal data more efficiently.

C. Vital Signs Prediction

Vital signs prediction has been explored through various
machine learning models. Alghatani et al. [14] and Youssef et
al. [15] demonstrated the use of traditional machine learning in
mortality prediction and vital signs forecasting, respectively.
Harerimana et al.’s [16] work with multi-head transformers
and Xie et al.’s [17] DeepVS model highlight the potential of
deep learning in this domain. However, these methods often
assume equally spaced and ordered data and lack the ability to
incorporate complex graph structures, limitations our GraphRL
framework aims to overcome.

D. Temporal Graphical Convolutional Networks (T-GCN)
The integration of T-GCN within our GraphRL frame-

work is pivotal. T-GCNs, known for their ability to capture
temporal dependencies and complex relationships in graph-
structured data, offer significant enhancements in processing
time-series data [18]. This technology addresses limitations
in traditional deep learning models by effectively managing
irregular time intervals and integrating additional contextual
information (such as node and edge attributes) for richer data
representation [19]. The inclusion of T-GCN in GraphRL
allows for a more nuanced understanding and prediction of
dynamic systems [20], making it highly suitable for applica-
tions in healthcare monitoring, traffic forecasting, and weather
prediction. The capability of T-GCNs to handle non-linear and
complex temporal patterns [21] aligns with the core objectives
of GraphRL, pushing the boundaries of current self-learning
systems in real-world scenarios.

In summary, while existing works in self-learning systems,
patient deterioration detection, and vital signs prediction have
laid a strong foundation, our GraphRL framework aims to
address their limitations by introducing a novel approach that
combines the strengths of GNNs and RL. This approach allows
for a more sophisticated handling of temporal dependencies
and real-time monitoring, which is crucial in dynamic envi-
ronments such as healthcare, traffic management, and weather
forecasting.

The motivation behind the use of RL in our framework
primarily arises from the need to tackle the challenges of
multi-step time series prediction, where traditional supervised
learning approaches may encounter limitations. Although su-
pervised learning methods like GNN+Bert and GNN+TCN
are indeed common and effective for time series forecasting,
RL offers a unique advantage in dealing with situations
where errors can accumulate over time, especially in dynamic
environments. RL enables our predictive GraphRL Environ-
ment not only to forecast future states but also to actively
influence decision-making, a capability particularly valuable
in applications such as healthcare monitoring and the gaming
industry.

III. RESEARCH PROBLEM

The research problem addresses deep learning challenges
in predicting future states of a complex and dynamic Rein-
forcement Learning (RL) environment and adaptively learning
latent behavior patterns of data.

Definition 1 (Vital Parameters and Time-Series Forecast-
ing): In the context of our framework, we consider a set
V of n vital parameters, denoted as Vt = {v1, v2, . . . , vn},
which represent continuous time-series data reflecting the
health status of a subject S. These vital parameters are
dynamic and change over time, providing valuable insights
into the subject’s well-being. To facilitate time-series fore-
casting, we segment these continuous vital parameters into
time windows, denoted as T , which encompasses data points
from the past (Vt−2, Vt−1, Vt) and extends into the future
(Vt+1, Vt+2, . . . , Vt+n). Non-linear models are trained on his-
torical data within the time windows {Vt−2, Vt−1, Vt} to
predict future values {Vt+1, Vt+2, . . . , Vt+n}.
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Definition 2 (Learning Agents and Markov Decision Pro-
cess): Following the training phase, subject S is associated
with a group of learning agents that operate based on the
principles of the Markov Decision Process (MDP). This MDP
is a 5-tuple denoted as M = (S,A, P,R, γ), and it forms
the foundation for continuous monitoring and pattern learning
of the vital parameters Vt = {v1, v2, . . . , vn}. Here’s a
breakdown of each component:

• S represents a finite state space, where st ∈ S signifies
the state of an agent at a specific time t,

• A is the set of actions available to each agent, and at ∈ A
represents the action taken by the agent at time t,

• P is a Markovian transition function P (s, a, s′) that
quantifies the probability of the agent transitioning from
state s to state s′ while executing action a,

• R is a reward function R : S ×A → R that provides an
immediate reward R(s, a) for the action a performed in
state s,

• γ is a discount factor, ranging between 0 and 1, which
emphasizes immediate rewards over future rewards.

R(st, at) =

∞∑
t=0

γtrt, (1)

This equation returns the immediate reward R(s, a) for the
action taken in state s, as defined in Eq. 1.

IV. GRAPHRL FRAMEWORK

To address the research problem, a novel graphical neu-
ral network (GNN) enabled reinforcement learning (RL)
framework is proposed. In the graph-enabled RL frame-
work(GraphRL), two GNNs are deployed: one for forecasting
time-series data and another for Q-function approximation as
shown in Fig. 2. The proposed framework is demonstrated in
Fig. 2 in which the interaction between an environment and an
AI agent is illustrated. As discussed in the research problem,
finite MDP is adopted to formulate the process of modelling
current and past states.

A. Predictive GraphRL Environment

The primary objective of the proposed study is to learn
from the past and current states of a dynamic environment
and predict the future states of the complex environment. To
achieve this objective, we propose a predictive monitoring
environment which is responsible for defining the observation
space with state sitϵS where i = 0, 1, 2, ...n, action space with
actions ajtϵA where j = 1, 2, 3, ...m, and rewards R for each
action taken by the agent as it transitions from a state st to
st+1 in a real-world scenario. For example, consider a subject
in a dynamic environment whose current state is denoted as
Vt = v1, v2, ..., vn at time t. Similarly, the subject holds
historical data of their state at times t−1, t−2, t−3, ..., t−n. In
traditional reinforcement learning formulations, the monitoring
environment is a static entity that cannot forecast future states,
which might affect the subjects in the environment.

1) T-GCN Forecast: Forecasting the future states of a
subject before a few time steps can revolutionise the most
dynamic industries such as gaming, healthcare, and so on by
identifying the deteriorating state of the subject in the environ-
ment. To predict the future state in a reinforcement learning
environment, a temporal graph convolutional network(T-GCN)
is adopted. The graphical network is trained with past and
current states at their timestamps in a supervised approach as
shown in Eq. 3. The training process also includes the features
leading to those states.

y = f(b+

n∑
i=1

vi.wi) (2)

y(v) =

n∑
i=1

Activation1(b+ wivi)

y(v) = Activation1(
eyi∑k
j=1 e

yj

)

(3)

Eq. 2 describes a basic neural network neuron, with y as
the output, f as the activation function, b as the bias, vi as the
input features, and wi as the weights; while Eq. 3 involves an
’Activation1’ function, computing a weighted sum of inputs
and normalizing these outputs, possibly into a probability
distribution, akin to a softmax function.

2) Static Spatial-temporal modelling: A two-layered graph-
ical network is adopted for Spatial-temporal modelling, a
spatial modelling layer is based on a graphical convolutional
network (GCN), and a temporal layer based on recurrent
neural networks (RNN) is configured. The spatial layer is
responsible to capture spatial features among nodes which are
input states sitϵS. This can be achieved by constructing Fourier
transform filter and it acts on the graph nodes and its first-order
neighbourhood. In this study, a static graph temporal signal is
adopted in which the node positions in the graph remain the
same and the label information is dynamic. The spatial layer
is to set the static graph with nodes as input states sitϵS. The
two-layered GCN model is defined in Eq. 4.

f(X,A) = σ(ÂRelu(ÃXW0)W1) (4)

Where X is the input matrix, A represents the graph
adjacency matrix, Â and Ã represent the preprocessing step
and self-connection structure respectively. W0,W1 represents
weights of the first and second layers of ST-GCN, and σ(·).
Relu() is an activation function.

Temporal modelling is based on the RNN variant gated
recurrent unit (GRU) [22] which has a simple structure and
faster training ability. In the GRU model, an update gate zt
controls the degree of information retrieved from the previous
state and a reset gate rt controls the degree of ignoring the
status information at the previous moment are configured as
shown in Eq. 5.
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Fig. 2: GraphRL Framework

zt = σg(Wz[f(Xt, A), ht−1] + bz)

rt = σg(Wr[f(Xt, A), ht−1] + br)

ĥt = ϕh(Wh[f(Xt, A), ht−1](rt ⊙ ht−1) + bh)

ht = zt ⊙ ht−1 + (1− zt)⊙ ĥt

(5)

xt : input vector, ht : output vector, ĥt : candidate activation
vector, zt : update gate vector, rt : reset gate vector, W,U, b :
parameter matrices and vector, σg : The original is a sigmoid
function, ϕh The original is a hyperbolic tangent.

In the training process, the T-GCN model predicts the future
states at time t+ 1, t+ 2, t+ 3, ..., t+ n as Ŷt and compares
with the real-data Yt. This determines the loss function of the
graph network [23] as shown in Eq. 6. To avoid over-fitting
problems in the training process, the loss function is optimised
with L2 regularisation Lreg and a hyperparameter λ.

loss = ||Ŷt − Yt||+ λLreg (6)

B. Predictive GraphRL Environment Algorithm

Algorithm 1 outlines the creation of the Predictive GraphRL
Environment, a crucial component of the proposed GraphRL
framework. This environment leverages the T-GCN, chosen
for its effectiveness in capturing spatial-temporal dynamics
essential for complex systems. The T-GCN’s ability to forecast
future states, in addition to analyzing current and historical
data, makes it invaluable for critical applications like health
monitoring and traffic management, where early detection
and timely response are key. A significant feature of this

Algorithm 1 Predictive GraphRL Environment
Ensure: Input: time series data D = {st−n, . . . , st−2, st−1, st}; a set of labels
K = {1, 2, . . . , K}

Ensure: Output: Predicted time series data of K, a set of labels, in the form of states
{st+1, st+2, st+3, st+4}

1: Define forecast model← T −GCNModel
2: Train(forecast model)← forecast model(D)
3: {st+1, st+2, st+3, st+4} ← forecast model(predict)
4: Initialization : observation space = {sit ∈ S}, action space =
{at ∈ A}, rewardR

5: Set monitor length = N
6: if action is appropriate then
7: R← +reward
8: else
9: R← −reward

10: end if
11: monitor length← N − 1
12: st+1 ← st(monitor length)
13: if N = 0 then
14: done← True
15: else
16: done← False
17: end if
18: visualize(at, R, vital signs)
19: initial state← st[0] ▷ reset environment

algorithm is its reward mechanism, which is instrumental
in guiding the learning process. By awarding rewards based
on the suitability of the agent’s actions, the environment
ensures that the agent’s policy is aligned with the primary
objectives of accurate forecasting and effective intervention.
This design was motivated by the need for a proactive system,
capable of not only forecasting but also informing real-time
decision-making. The algorithm is meticulously structured to
set up the observation space, action space, and reward policy
based on predicted states. The initial lines (1-3) justify the
use of the T-GCN model, especially for its applicability in
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dynamic and nonlinear data contexts like vital sign monitor-
ing. The subsequent lines (4-5) are dedicated to initializing
the environment, forming the basis for RL-driven decision-
making. The reward policy, detailed in lines 6-10, aligns with
standard RL practices, promoting actions that yield beneficial
outcomes. Finally, lines 11-19 focus on continuous monitoring
and adaptation, a critical aspect for applications that demand
real-time responsiveness, such as in healthcare scenarios. This
algorithm represents a significant step in advancing the field
of RL, moving from passive observation to an active role in
shaping decisions.

C. GraphRL Agent

In this study, the Deep Q-Networks (DQN) algorithm is
used. The Deep Q-Networks (DQN) algorithm, developed by
Google’s DeepMind, was initially designed for playing Atari
games. This algorithm enabled the AI to learn game strategies
directly from visual input, without requiring pre-programmed
rules or prior game-specific training. In this algorithm, the
Q-Learning functions are approximated using the proposed T-
GCN model, and the learning agent is rewarded based on the
graph network prediction of the right action for the current
state.

1) Q-Function Approximation: T-GCN model used in this
study to approximate the Q-Function for each action in the
action space as shown in Fig. 2. The model is configured
with parameters such as the relu activation function, mean
square error as loss function, and Adam optimiser. The model
gets trained with the state and its corresponding action. The
learning agent performs an action atϵA for a transition from
state st to s

′

t and achieves a reward R for the action. In this
transition process, the maximum of the Q-function in Eq. 7
is calculated, and the discount of the calculated value uses
a discount factor γ to suppress future rewards and focus on
immediate rewards. The discounted future reward is added
to the current reward to get the target value. The difference
between the current prediction from the neural networks and
the calculated target value provides a loss function. The loss
function is a deviation of the predicted value from the target
value and it can be estimated from Eq. 8. The square of the
loss function allows for the punishment of the agent for a large
loss value.

Qπ(s, a) = Eπ

{ ∞∑
t=0

γtR(st, at, π(st))|s0 = s, a0 = a

}
(7)

loss = (R+ γ ·max(Qπ∗
(s, a))︸ ︷︷ ︸

target value

− Qπ(s, a)︸ ︷︷ ︸
predicted value

)2 (8)

2) Exploration and Exploitation: The concepts of explo-
ration and exploitation are at odds with each other. Exploration
involves randomly selecting actions that have not been per-
formed before to uncover more possibilities and enhance the
agent’s understanding. Exploitation, on the other hand, entails
selecting actions based on past experiences and knowledge to

maximize rewards. To balance the trade-off between explo-
ration and exploitation, different strategies such as the greedy
algorithm, epsilon-greedy algorithm, optimistic initialization,
and decaying epsilon-greedy algorithm are employed. This
study proposes controlling the exploration rate by multiplying
the decay by the exploration rate. This approach reduces the
number of explorations during execution as the agent learns
patterns and maximizes rewards to achieve high scores. As
the T-GCN model is retrained with previous experiences in
the replay, the decay is multiplied by the exploration rate
depending on the agent’s ability to predict the right actions.
All these parameters are defined as hyper-parameters for DQN
learning agents.

Algorithm 2 Learning Agent
1: Initialize γ, ϵ, ϵdecay, ϵmin,memory = ∅, batch size
2: Define model← T −GCN model
3: memory ← append(st, at, R, st+1)
4: if np.random.rand() < ϵ then ▷ Exploration
5: action value← random(at)
6: else ▷ Exploitation
7: action value← model.predict(st)
8: end if
9: minibatch← random(memory, batch size)

10: for st, at, R, st+1, done in minibatch do
11: target← R
12: if not done then
13: target← R + γ ·max(model.predict(st+1))
14: end if
15: target f ← model.predict(st)
16: target f [at]← target
17: model.fit(st, target f)
18: end for
19: if ϵ ≥ ϵmin then
20: ϵ← ϵ · ϵdecay

21: end if

3) GraphRL Agent Algorithm: Algorithm 2 introduces the
GraphRL Agent, presents the functionality of the GraphRL
Agent within a complex action-state environment, utilizing T-
GCN for Q-function approximation. This integration enables
effective handling of spatial-temporal data complexities, en-
hancing decision-making. The algorithm’s design is founded
on a strategic balance between exploration and exploitation,
achieved via an epsilon-greedy strategy, crucial for adaptive
learning and continual improvement in decision-making. It
starts with initializing key parameters (Line 1), defining a
T-GCN model for handling complex data structures (Line
2), and storing memories for experience replay (Line 3).
The agent’s learning process involves iterative learning from
minibatches of experiences, computing target Q-values, and
adjusting its policy (Lines 8-21), with a dynamic adjustment
of the exploration rate (Lines 16-18). The predict() function,
pivotal in the exploitation phase, utilizes the T-GCN model’s
predictions to guide actions, showcasing the algorithm’s ad-
vanced approach in navigating dynamic environments through
a blend of exploration and strategic exploitation.

4) Implementation Algorithm: Algorithm 3 serves as the
comprehensive implementation of the GraphRL framework,
intricately combining the Predictive GraphRL Environment
(Algorithm 1) with the GraphRL Agent (Algorithm 2). This
pivotal algorithm orchestrates the real-time interactions be-
tween the agent and the environment, thus forming the op-
erational core of the framework. It outlines the simulation
scope, input parameters (subjects C, vital signs V , and episodes
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Algorithm 3 Proposed GraphRL Framework Implementation
Require: Input:
C = {1, 2, . . . , C}: set of subjects
V = {1, 2, . . . , V }: set of vital signs
M = {1, 2, . . . ,M}: number of episodes

Ensure: Output: Rewards achieved by Agents in each episode.
1: env ← ForecastingEnvironment() ▷ Algorithm 1
2: agent← LearningAgent() ▷ Algorithm 2
3: for episode m ∈ M do
4: state← env.reset()
5: score← 0
6: for time in range(timesteps) do
7: at ← agent.action(st)
8: st+1, R, done← env.step(at)
9: agent.memorize(st, at, R, st+1)

10: st ← st+1

11: if done then
12: print(m, score)
13: break;
14: end if
15: end for
16: agent.replay(batch size)
17: end for

M), and the output in the form of cumulative rewards. The
initialization phase prepares the environment env and the agent
for interaction. The episodic loop, encompassing the agent’s
action-response cycle, is vital for continuous learning and
adaptation. Crucial to this process is the memorize() function,
which stores experiences for later recall during experience
replay, allowing the agent to learn from past actions and refine
its decision-making strategy. This algorithm thus encapsulates
the dynamic and iterative nature of the GraphRL framework,
highlighting the importance of memory and experience in the
realm of advanced reinforcement learning, and showcasing its
functionality in complex, evolving environments.

D. Bayesian Optimisation

Bayesian optimisation is a global optimisation method that
uses a probabilistic model to guide the search for the optimal
solution. The model is updated as new data points are sampled
and evaluated, allowing the algorithm to improve its predic-
tions over time by fine-tuning the Lreg , λ and minimising the
loss function defined in Eq. 6. The basic idea behind Bayesian
optimisation is to model the objective function, f(x), as a
Gaussian process (GP). The GP model is used to predict the
objective function value at any point x, given the observations
of the function at other points. The prediction is given by
the posterior distribution of the GP, which is a Gaussian
distribution with mean and variance given by Eq. 9.

µ(x) = k(x,X)T (K + σ2I)−1y

σ2(x) = k(x, x)− k(x,X)T (K + σ2I)−1k(X,x)
(9)

Where X is the matrix of previously sampled points, y is the
vector of corresponding function values, K is the Gram matrix
of the covariance function evaluated at X, and σ2 is the noise
level in the function evaluations. The next point to sample
is chosen based on an acquisition function, which balances
the trade-off between exploration and exploitation. Common
acquisition functions include the probability of improvement
and the expected improvement. Given a set of observed points
(X,y) and a Gaussian process prior, Bayesian optimisation
seeks the point x* that minimises the loss function value, given

by Eq. 10. The optimisation process continues iteratively,
sampling new points and updating the GP model until a
stopping criterion is met.

EI(x) = E[max(0, f(x)− f(x∗))] (10)

Where x* is the current best point.

V. EXPERIMENT

The primary objective of this study is to overcome deep
learning challenges such as the assumption of equally spaced
and ordered data [24] and the lack of ability to incorporate
graph structure where the data has a complex temporal struc-
ture [25]. These challenges are particularly relevant in domains
such as health, weather, and traffic where it is important to
analyze temporal patterns and make accurate forecasts for
early warning systems. However, traditional deep learning
models often fail to capture these complex patterns, limiting
their effectiveness in these critical domains.

The proposed GraphRL framework is evaluated on three
different forecasting applications: heart rate prediction, traffic
forecast, and weather forecast. The framework predicts future
events in the form of states and optimizes actions based on
those predictions. The observation space is customized for
each application and actions for the agent are pre-defined.
The agent receives a reward for correctly predicting a state and
communicating with the relevant team. The proposed approach
is a generic framework that can be applied to monitor and
predict time-series data and train an RL agent to learn the
latent patterns of the monitoring process. The baseline models
for comparison include traditional deep learning models such
as GRU, LSTM, and RNNs.

A. Datasets

The GraphRL framework’s testing with datasets from
healthcare, traffic, and weather domains was a deliberate
strategy to assess its versatility and robustness in handling
diverse time-series data. The choice of these varied domains
was intended to demonstrate the framework’s adaptability
and efficacy in different contexts. Each domain poses unique
challenges: healthcare data’s complexity and sensitivity, traf-
fic data’s dynamic patterns requiring real-time analysis, and
weather data’s intricate interplay of environmental factors.
Successfully navigating these distinct datasets underscores the
framework’s capability for widespread real-world application.
Additionally, using datasets from different fields facilitates a
thorough evaluation of the framework, ensuring its versatility
and effectiveness across various problem types and data struc-
tures. This comprehensive approach is vital for a tool designed
for extensive applications in data analysis and prediction.
Three datasets utilized for evaluating the GraphRL framework
as shown in Fig. I, each from a different domain: health-
care, traffic, and weather. In healthcare, the WESAD dataset,
containing electrocardiogram (ECG) and photoplethysmogram
(PPG) data from 17 participants, offers a rich source of
biometric time-series data for pattern recognition analysis.
The Los Angeles (LA) Traffic dataset, sourced from the Los



7

Angeles Department of Transportation (LADOT), provides
real-time urban traffic data like traffic counts and speeds, while
the Large-Scale Traffic and Weather Events (LSTW) dataset,
with data across the United States, uniquely combines traffic
conditions and weather events, posing a multifaceted challenge
for the framework.

TABLE I: Datasets
Dataset Domain Key Features Statistics Suitability

WESAD
[26] Healthcare

Physiological data
(ECG, PPG),
motion data
(accelerometers)

17 participants

Rich biometric time-series
data, ideal for testing pattern
recognition in health-related
data.

LA
Traffic
[27]

Traffic
Traffic counts,
speeds,
travel times

Data from
LADOT

Real-time urban traffic data,
useful for analyzing and
predicting dynamic traffic flows.

LSTW
[28] Weather Traffic conditions,

weather events

Data across
the United
States

Combines traffic and weather
data, challenging the framework
to handle complex, multifactorial
scenarios.

B. Baseline Models

In our study, we selected three baseline models for com-
parison, each epitomizing state-of-the-art approaches in multi-
agent forecasting, graph neural networks, and traffic pre-
diction. These models were chosen based on their innova-
tive methodologies and proven effectiveness in areas closely
aligned with our research objectives.
• ELMA Method [29]: Developed by Li et al. [29],

the ELMA method utilizes graph neural networks for
forecasting multi-agent activities, particularly adept at
handling spatiotemporal data. Its novelty lies in the use of
energy-based learning, making it an excellent benchmark
against our framework, which similarly leverages graph-
based techniques in complex environments.

• Self-Supervised Technique [30]: This technique is pio-
neering in self-supervised learning for predicting multi-
agent driving behavior. Its relevance to our study comes
from its focus on behavior prediction in diverse scenarios,
using self-supervised domain knowledge—an advanced
trend in multi-agent learning.

• Internet Traffic Prediction Study [31]: It involves
internet traffic prediction using distributed multi-agent
learning, employing LSTM and GRU models. GRU’s
superior performance in their study provides a valuable
point of comparison for our research, which focuses on
sophisticated learning techniques in traffic prediction.

Each of these models represents a significant stride in their
respective fields. Their selection for comparison in our study
is justified by their alignment with our research goals and their
benchmark status in handling complex, dynamic datasets. By
comparing our GraphRL framework against these models, we
aim to demonstrate our approach’s novelty and effectiveness
in diverse real-world applications.

C. Evaluation Metrics

Mean Absolute Error (MAE) is a widely-utilized regression
metric that gauges the average magnitude of errors between
predicted and actual values in a dataset. It is calculated
by averaging the absolute differences between these values,
yielding a singular metric. Root Mean Squared Error (RMSE)

TABLE II: Performance of the proposed framework in health
forecasting

15 Min 30 Min 45 Min 60 Min

ELMA [29]
MAE 6.2 6.2 6.2 6.13

MAPE 13.91 13.91 13.91 13.91

RMSE 8.75 8.75 8.75 8.67

GRU [30]
MAE 0.95 0.95 0.97 0.98

MAPE 5.47 5.48 5.51 5.5

RMSE 1.25 1.25 1.27 1.28

GRU-Based

Multi-Agent [31]

MAE 1.02 1.02 1.25 1.65

MAPE 8 3.47 4.53 5.27

RMSE 2.46 2.58 2.69 3.09

GraphRL (Ours)
MAE 0.56 0.87 0.68 0.7

MAPE 2.8 2.9 2.65 3.98

RMSE 1.18 1.47 1.3 1.32

is another prominent regression metric, assessing the average
magnitude of differences between predicted and actual values.
RMSE is computed as the square root of the mean of these
squared differences. Mean Absolute Percentage Error (MAPE)
represents yet another regression metric, quantifying the aver-
age absolute percentage error between predicted and actual
values. It is derived by averaging the absolute differences
between these values, expressed as a percentage of the actual
values. Conversely, Cumulative Rewards is a performance
metric specific to reinforcement learning. It measures the total
rewards an agent accumulates over a specified timeframe or
across a set number of actions, calculated by summing all
rewards received during this period.

In the context of the experiments conducted for this study,
Python version 3.7.6 served as the programming environment,
with the deployment of several packages including Tensor-
Flow, Keras, OpenAI Gym, and stable baselines3.

VI. RESULTS AND ANALYSIS

In this section, the proposed framework performance in
terms of time series forecasting and RL monitoring is com-
pared to the baseline models in each application.

A. Predictive GraphRL Performance

Healthcare Forecasting: The proposed framework is eval-
uated to monitor health status by predicting future vital signs
such as heart rate. Based on the sensor data and other clinical
parameters such as ECG, Respiration, the time series predic-
tion of the heart rate is conducted. The predicted values of
heart for the next one hour are break-down into different time
intervals (15 minutes, 30 minutes, 45 minutes, 60 minutes).
Each of these time interval values acts as an observation for
the GraphRL agent to monitor and communicate with the
appropriate emergency team. The observation space of the vital
sign, action space of different emergency teams and rewards
for the agent actions in the predictive GraphRL environment
are defined based on the modified early warning scores
(MEWS) [32]. For the evaluation process, the WESAD dataset
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TABLE III: Performance of the proposed framework in traffic
forecasting

15 Min 30 Min 45 Min 60 Min

ELMA [29]
MAE 6.73 6.73 6.73 6.72

MAPE 6.73 15.14 15.14 15.07

RMSE 6.72 9.4 9.4 9.39

GRU [30]
MAE 1.04 1.04 1.04 1.04

MAPE 6.04 6.01 5.96 6.1

RMSE 1.36 1.36 1.36 1.36

GRU-Based

Multi-Agent [31]

MAE 1.85 1.85 1.96 1.82

MAPE 6.07 5.7 4.93 6.07

RMSE 2.88 3.21 3.43 3.54

GraphRL (Ours)
MAE 0.65 0.78 0.64 0.8

MAPE 4.1 7.85 5.65 7.99

RMSE 1.27 1.22 1.26 1.41

is adopted to conduct time series forecasting of heart rate.
The proposed T-GCN in the predictive GraphRL environment
performs better than the other baseline frameworks ELMA,
GRU, and GRU-Based Multi-Agent as shown in Tab. II. It
achieves the lowest MAE, MAPE and RMSE values in all the
time intervals.

Traffic Forecasting: The goal of the proposed framework
is to predict traffic using the predictive GraphRL environment.
The system takes in data with the following features: Even-
tId, Type, Severity, TMC, Description, StartTime, EndTime,
TimeZone, LocationLat, LocationLng, Distance, AirportCode,
Number, Street, Side, City, County, State, and ZipCode. The
observation space includes the current traffic state, which
is represented by the traffic events and their severity in
a particular region. The actions referred to possible traffic
management strategies, such as altering traffic light timings or
changing the speed limit. The rewards are defined based on the
efficiency of the chosen strategy, such as reduced travel time
or decreased congestion. For all the baseline models and the
proposed framework, the MAE, MAPE, and RMSE values are
reported for forecasting at 15, 30, 45, and 60-minute intervals.
As shown in Tab. III, T-GCN outperforms the other models for
all the forecasting intervals with the lowest MAE, MAPE, and
RMSE values. The second-best performer is the GRU-Based
Multi-Agent model, followed by GRU and ELMA.

Weather Forecasting: In weather forecasting, the goal of
the proposed framework is to use past weather data to predict
future weather events and to optimise actions based on those
predictions. In the predictive environment, the observation
space is configured based on both the traffic and weather
events datasets, including the event type, severity, start time,
end time, location (latitude and longitude), and timezone.
The actions represent the decisions the RL agent can take
based on the observation space. For example, the agent could
decide to issue a warning or alert for severe weather, adjust
traffic signals or road signs, or change the speed limit on
certain roads. The agent could receive a reward for correctly
predicting severe weather and issuing a timely warning. Using

TABLE IV: Performance of the proposed framework in
weather forecasting

15 Min 30 Min 45 Min 60 Min

ELMA [29]
MAE 6.69 6.69 6.69 6.65

MAPE 6.69 15.02 15.02 14.99

RMSE 6.69 9.39 9.39 9.34

GRU [30]
MAE 1.03 1.03 1.04 1.04

MAPE 5.96 5.94 5.93 6.02

RMSE 1.36 1.35 1.36 1.36

GRU-Based

Multi-Agent [31]

MAE 1.65 1.65 1.85 2.02

MAPE 7.32 4.71 4.89 5.86

RMSE 2.76 2.99 3.16 3.43

GraphRL (Ours)
MAE 0.61 0.83 0.66 0.75

MAPE 3.95 5.88 5.15 7.99

RMSE 1.23 1.12 1.28 1.26

TABLE V: Proposed GraphRL Performance

AI Agents WESAD LAM Traffic
Forecasting

US Weather
Forecasting

Q Learning 43130 28840 39480

PPO 39480 33945 29480

A2C 41195 22845 40615

Double DQN 42615 25600 33945

DDPG 44600 34590 39945

DQN 41986 35219 40985

GraphRL 48790 36195 53145

the proposed GraphRL framework allows modelling the rela-
tionships between different weather events and their impact on
traffic in a more efficient way than traditional machine learning
methods. The GraphRL agent learns from these relationships
to make better decisions and improve its predictions over
time. Comparing the different models, T-GCN had the best
performance across all metrics and different time intervals:
15, 30, 45, and 60 minutes, followed by GRU-Based Multi-
Agent, GRU, and ELMA. The results show that the T-GCN
model had the lowest MAE, MAPE, and RMSE values for all
forecasting intervals, indicating its superior forecasting perfor-
mance compared to the other models as shown in Tab. IV.

B. GraphRL Agent Performance

The proposed RL agent was enabled with T-GCN and its
performance is compared with other traditional RL agents
as shown in Tab. V. The table provides a comparison of
different AI agents and their performance on three different
datasets: WESAD, LAM Traffic Forecasting, and US Weather
Forecasting. The performance of each agent is measured by
a score, which is the total score achieved by the agent on
the task over ten episodes. From the table, it can be seen
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that the proposed GraphRL agent is the most efficient agent
on the WESAD dataset, as it scored the highest score. The
DDPG and Q-Learning agents have the second-highest score
on the WESAD dataset. On the LAM Traffic Forecasting
dataset, the Q-Learning agent scored the lowest, and the
proposed GraphRL agent scored the highest. On the US
Weather Forecasting dataset, the A2C agent scored the lowest,
while the GraphRL agent scored the highest. The GraphRL
agent has outperformed other RL agents in all three predictive
and monitoring applications.
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·104
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e
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Weather

Fig. 3: GraphRL Agent Rewards Distribution

The performance of the GraphRL agent is measured by the
episode score, which appears to be the total score achieved by
the agent after a certain number of episodes. The breakdown
of the proposed agent’s score in each episode of the three
applications is presented and compared in Fig. 3. The agent’s
performance on the WESAD dataset is relatively consistent,
with the scores fluctuating between 32245 and 57280. On the
LAM Traffic Forecasting dataset, the agent’s performance is
relatively inconsistent, with the scores fluctuating between -
11845 and 46295. On the US Weather Forecasting dataset,
the agent’s performance is also relatively inconsistent, with
the scores fluctuating between -6765 and 58530. This incon-
sistency of the scores is due to the exploration rate where the
algorithm tries exploring all the actions randomly instead of
using T-GCN model predictions.

VII. BAYESIAN OPTIMISATION RESULTS
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Fig. 4: Bayesian optimisation of α for GraphRL Agent

The results of Bayesian optimisation for the proposed
GraphRL agent using different values of the learning rate
parameter, α, during different episodes are shown in Fig. 4.
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Fig. 5: Bayesian optimisation of γ for GraphRL Agent

The values in the y-axis of the line chart represent the scores
or rewards obtained by the agent during each episode. It can be
observed that the performance of the agent varies for different
values of alpha. For example, in episode 1, the agent performs
better with alpha = 0.001 (20630) compared to the other
values. Similarly, in episode 10, the agent performs better with
alpha = 0.001 (97380) compared to the other values. These
results suggest that the optimal value of alpha for the agent is
α = 0.001, and Bayesian optimisation can be used to find the
best value of alpha for a given task.

These results in Fig. 5 show the performance of an RL
agent using temporal GCN for Q function approximation,
using different values of the discount factor gamma. As we
can see, the performance varies greatly depending on the value
of the gamma chosen. A high value of gamma (0.95) results
in poor performance, while lower values (0.75) result in better
performance. This suggests that a lower discount factor is more
appropriate, as it gives more weight to immediate rewards and
less to future rewards. It also suggests that there is an optimal
value of gamma, which would need to be further explored
through more extensive experimentation.

VIII. CONCLUSION

The GraphRL framework, introduced in this study, embod-
ies an innovative amalgamation of T-GCN and RL. It is specif-
ically engineered to augment the prediction of future states
in dynamic environments. Rigorous evaluations, utilizing an
array of datasets such as WESAD, LA Traffic Forecasting, and
US Weather Forecasting, have substantiated the framework’s
enhanced performance compared to conventional RL agents.
Nonetheless, it is imperative to acknowledge that the efficacy
of GraphRL is significantly contingent upon the caliber of
the input data and necessitates substantial computational re-
sources. The framework’s reliance on data of high quality
and structure constitutes a considerable limitation, with its
accuracy and effectiveness being closely bound to the data’s
integrity. Additionally, the computational requisites, predomi-
nantly due to the T-GCN model integration, present challenges
in scalability and broader applicability.

Future enhancements of the GraphRL framework will be
directed towards surmounting these constraints and broaden-
ing its functional scope. Prospective developments entail the
incorporation of spatial data processing, aimed at bolstering
the framework’s analytical prowess, particularly in processing
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data with spatial or geographical dimensions. Investigating
a spectrum of graph-based models could yield insights for
enhancing both the efficiency and efficacy of the framework.
Furthermore, the exploration of real-time adaptive learning
strategies presents a promising avenue for subsequent research.
Such advancements are anticipated to enable the framework to
dynamically adapt to evolving data patterns and environmental
shifts. In summation, the GraphRL framework signifies a sub-
stantial advancement in the domain of time-series prediction
and monitoring. Its adeptness in managing complex temporal
data surpasses traditional RL methodologies, heralding inno-
vative applications in sectors such as healthcare, traffic man-
agement, and environmental forecasting. As the framework
undergoes continued refinement and evolution, it is positioned
to emerge as an instrumental component in the progression of
predictive analytics and intelligent monitoring systems, with
extensive applicability across diverse fields.
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