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Abstract
Extreme weather (high rainfall and temperatures) and challenging soils are sources

of uncertainties in the use of current crop models that have been developed for

more favorable environments. This may limit their applicability to guide and support

decision making for the development of new agricultural regions in tropical environ-

ments. We evaluated the accuracy of the Agricultural Production Systems Simulator

(APSIM) framework in representing yield and development of a range of crops across

multiple locations in the Northern Territory of Australia, a tropical region with large

potential for agricultural development. Observations of yield, biomass, and phenol-

ogy for a range of crops from 28 experiments undertaken at three locations were

compiled and used to develop simulations undertaken using APSIM version 7.10.

Model performance varied with coefficients of determination and concordance corre-

lation coefficients ranging from 0.36 to 0.98 and 0.37 to 0.93, respectively. Instances

where model performance was less than ideal were associated with conditions pre-

senting a limited number of observed values. Deviations by the model from yield

observations were larger for situations with high-yielding crops and low daily max-

imum temperatures during vegetative growth stages. Deviations in phenology were

larger for conditions associated with water and N stress. APSIM was capable of rep-

resenting the yield, biomass, and development of cereal and pulse crops and can be

used with confidence to assist the expansion of agriculture in tropical environments

such as the Northern Territory of Australia.

1 INTRODUCTION

Agricultural development and intensification provide local

and regional economic benefits while driving an increase in

the global food supply. A region currently undergoing agri-

cultural development and intensification on a wide scale is

the Northern Territory of Australia. This region has long been

Abbreviations: APSIM, Agricultural Production Systems Simulator; CCC,

concordance correlation coefficient; RMSE, residual mean square error.
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suggested as a new field crop region (Ash et al., 2017; Chap-

man et al., 1996) to complement its well-established extensive

grazing sector. Multiple attempts have been made to establish

a field cropping industry in the region with limited success

to date (Cook, 2009). The Northern Territory has significant

water resources and soils suitable for cropping that make the

region attractive for agricultural development (CSIRO, 2009;

Northern Australia Land and Water Taskforce, 2009; Wilson

et al., 2009). Furthermore, opportunities to develop both local

and export-based markets and processing are driving renewed
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interest in its agricultural development (Ash et al., 2017). To

facilitate a transition from pastoral-based agriculture to large-

scale cropping that minimizes the risks for producers and their

financiers and avoids the failures of the past will require the

rapid development of experience and understanding of crop

growth and performance in locations where this experience is

limited to a few years of experimental work (Ash et al., 2017).

Cropping systems modeling has a key role to play in guid-

ing this development; however, before a crop model can be

applied with confidence, it should be evaluated for the envi-

ronmental conditions it is to be used under. This is to ensure it

appropriately represents crop growth in these conditions (Bel-

locchi et al., 2010). Tropical environments can present some

unique challenges to crop models (Rötter et al., 2018), such as

extremes in temperatures during key growth stages, challeng-

ing soils, and extreme rainfall events (and associated nitrogen

[N] leaching).

Cropping systems modeling and their derivative decision

support tools have a key role in extending the limited field

research by analyzing scenarios over long time periods to

develop a full picture of crop performance and potential risks

and challenges (McCown, 2002; Whitebread et al., 2010).

Major cropping system models have a primary development

and testing history focused on temperate and subtropical envi-

ronments. The Agricultural Production Systems Simulator

(APSIM) (D. P. Holzworth et al., 2014) is a farming systems

model used worldwide to examine broad-acre, mixed, and

smallholder farming systems. It provides the analytical core

of several decision support tools (e.g., Hochman et al., 2009;

Phelan et al., 2018) that enable farmers to develop their under-

standing of crop growth and forecast crop yield in response to

growing conditions. It has been shown to effectively represent

crop growth and development across a broad range of environ-

ments and production systems (Kisaka et al., 2016; Pembleton

et al., 2013; Shukr et al., 2021), under a range of different

cropping inputs and systems (Kisaka et al., 2016; Gaydon

et al., 2021; Probert et al., 1998) and climate scenarios (Morel

et al., 2021; Pembleton et al., 2016, 2020). Evaluation of

the model in tropical environments, while promising, has to

date been primarily limited to rice (Oryza sativa L.), cot-

ton (Gossypium hirsutum L.), and sugar cane (Saccharum
officinarum L.) crops under specific production conditions

(Gaydon et al., 2017; Meier & Thorburn, 2016; Radanielson

et al., 2018; Rhebergen & Yeates, 2023).

Early versions of the APSIM model were evaluated for one

location in the Northern Territory (Carberry et al., 1996).

However, there has been considerable development of the

framework since this evaluation (described in Keating et al.

[2003] and D. P. Holzworth et al. [2014]), and this model

is being applied to guide government policy and industry

development (CSIRO, 2018). Therefore, a new evaluation is

required so the APSIM framework can be used with confi-

dence and to identify areas that require further development

Core Ideas
∙ The accuracy of crop models for environments fre-

quented by challenging weather and soils is rarely

reported.

∙ We showed that the Agricultural Production Sys-

tems Simulator (APSIM) performs well in one

such environment, the Northern Territory of Aus-

tralia.

∙ APSIM can be used with confidence in environ-

ments with challenging weather and soil condi-

tions.

effort. Effort has begun on this for cotton (Rhebergen &

Yeates, 2023) but so far, no evaluation has been undertaken

for the other crops of interest.

The study reported here describes an evaluation of the

APSIM model for its ability to represent crop growth and

yield in the Northern Territory of Australia. Specifically, it

evaluates the models’ accuracy in representing the yield and

growth of the field crops maize (Zea mays L.), sorghum

[Sorghum bicolor (L.) Moench], rice (Oryza sativa L.), soy-

bean [Glycine max (L.) Merr.], and mungbean [Vigna radiate
(L.) R. Wilczek]. These crops have been identified due to local

interest and supply into feedlots, potential to develop and sup-

ply export markets into Asia, suitability for the climate, and

fit within a crop rotation with cotton. This study also inves-

tigates if extreme weather events and soil resources supply

influence the accuracy of APSIM to identify priorities for

future development.

2 MATERIALS AND METHODS

2.1 Crop growth, phenology, and yield data
collation

Data relating to the yield, growth, and phenology of maize,

sorghum, rice, soybean, and mungbean were collated from

three locations in the Northern Territory (Figure 1). These

datasets were identified through internet searchers (using

www.google.com.au and www.scholar.google.com.au/) with

the search terms of the crops name and Northern Territory

between October and November 2020. Before a dataset was

included, it was confirmed that limitations that the APSIM

framework cannot represent (pests, diseases, and nutrient

limitations other than N) were not reported as impacting

crop growth. The data consisted of a mixture of experiments

reported in peer-reviewed publications, reports to industry,

and research project reports. The datasets included replicated
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F I G U R E 1 Map of the Northern Territory, Australia, with collection locations from which the validation data was sourced from (●: Douglas

Daly, ▲: Katherine, ■: Tortilla Flats).

experiments and unreplicated demonstration crops. Data were

extracted directly from tables and by manually digitizing

figures. If data were part of a time series, all data points in

the time series were extracted. All crops other than soybeans

were represented over at least two different locations and in at

least two different datasets. A summary of the data is provided

in Table 1 with further details provided in Table S1.

2.2 Simulation of crops

Maize, sorghum, rice, soybean, and mungbean crops were

simulated with corresponding crop modules within APSIM

version 7.10. No modifications were made to each crop repre-

sentation in the model. Metrological inputs for the simulations

were sourced from the Scientific Information for Land Own-

ers database (www.longpaddock.qld.gov.au/silo) as patched

point datasets (Jeffrey et al., 2001) of observations at each

location. A summary of this data is presented in Table 2. Soil

profile descriptions for each location (Table 3) information

was sourced from literature and the comprehensive descrip-

tion of agricultural soils in the region reported by Hill et al.

(2011). Soil conditions were initialized based on informa-

tion provided with the datasets or where information was not

available, running the simulation as a fallow from the previ-

ous crop as reported with the dataset. Management operations

(cultivation, fertilizer inputs, and irrigation practices) were

informed from what was reported with the datasets. Crop

cultivar characteristics were input from the model crop spe-

cific parameters library for existing cultivars parameterized

in APSIM, and for varieties not in APSIM, we selected the

existing cultivar with the closest matching characteristics par-

ticularly in terms of maturity type. Model outputs evaluated

were crop yield, biomass, the days after sowing for flower-

ing and maturity growth stages, and stress factors (a range

from 0 to 1, where 0 is fully stressed and 1 is no stress).

For all crops, the water stress factor on leaf expansion was

output (lestrs, swdef_expan, swdef_expan, sw_stress_expan,

and sw_stress_expan for rice, maize, sorghum, soybean, and

mungbean, respectively). For N stress in rice, the N stress fac-

tor on leaf growth (rnstrs) was output, while for the other

crops, the N stress factor on photosynthesis (nfact_photo,

nfact_photo, n_stress_photo, and n_stress_photo for maize,

sorghum, soybean, and mungbean, respectively) was output.

2.3 Evaluation of model performance

Modeled and observed data were compared as scatter plots

with the observed values on the y axis and the modeled values

on the x axis (Piñeiro et al., 2008). Furthermore, to highlight

the magnitude of differences between average measured and

modeled data for all crops and locations, a Bland–Altman

plot was drawn (Martin Bland & Altman, 1986). These plot
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T A B L E 3 Soil properties used for the simulation of the crops at Katherine, Tortilla Flats, and Douglas Daly, Northern Territory.

Depth (cm)
Bulk density
(g/cm3)

Air dry water
content (mm/mm)

Lower limit
(mm/mm)

Drained upper
limit (mm/mm)

Saturated water
content (mm/mm)

Katherine
0–15 1.402 0.066 0.131 0.251 0.441

15–30 1.460 0.099 0.124 0.250 0.419

30–60 1.577 0.099 0.099 0.259 0.375

60–90 1.504 0.119 0.119 0.240 0.402

90–120 1.549 0.119 0.119 0.262 0.386

120–150 1.604 0.119 0.119 0.268 0.365

150–180 1.514 0.119 0.119 0.265 0.399

180–300 1.514 0.119 0.119 0.265 0.399

Tortilla Flats
0–15 1.473 0.044 0.133 0.240 0.385

15–30 1.530 0.050 0.149 0.249 0.373

30–45 1.548 0.058 0.175 0.273 0.374

45–60 1.555 0.064 0.193 0.291 0.376

60–80 1.564 0.066 0.199 0.298 0.374

80–100 1.573 0.067 0.200 0.300 0.372

Douglas Daly
0–15 1.554 0.045 0.090 0.311 0.383

15–30 1.768 0.074 0.093 0.253 0.303

30–60 1.589 0.197 0.197 0.320 0.370

60–90 1.719 0.197 0.197 0.271 0.321

90–120 1.635 0.197 0.197 0.250 0.353

the difference between observed and modeled values against

the average of these two values. This visualizes if there is

any relationship between the difference between observed and

modeled values and the overall magnitude of these values.

These plots also include, as horizontal lines, the mean differ-

ence between observed and modeled values and two standard

deviations above and below the mean (referred to as the limits

of agreement). Based on the guidance provided in Tedeschi

(2006), a statistical evaluation of model performance was

undertaken by calculating the coefficient of determination

(R2; the amount of variance accounted by a linear regres-

sion is fitted to the data), concordance correlation coefficient

(CCC; a simultaneous measure of accuracy and precision of

the model), residual mean square error (RMSE; a measure

of the spread in the residual errors), mean bias (the average

difference between the observed values and modeled values),

and bias correction factor (an indication as to the agreement

between the line of best fit and a 1:1 line) for the relation-

ship between observed and modeled data. To assess if model

performance was influenced by the availability of water or N

(as a method to assess the performance of the soil module

in supplying these resources), the difference between mod-

eled and observed values was color scaled and then plotted

against the model stress factors for the impact of N stress on

the x axis and water stress on the y axis. To assess if the

results of extreme weather events (such as lodging, leach-

ing, and disease from intense rainfall and heat stress, pollen

sterility, and high water use) influenced the deviation of the

model from observed yields, daily rainfall and temperature

values were plotted against the difference between the mod-

eled and observed yields. All graphical and statistical analyses

were undertaken using R version 4.2.0 (R Core Team, 2022)

with the epiR (Stevenson et al., 2022), colourvalues (Cooley,

2020), and viridis (Garnier et al., 2021) packages.

3 RESULTS

3.1 Model performance for individual
crops

The plots presented in Figure 2 show that sorghum yield was

reasonably well predicted for the limited (n = 3) dataset from

Katherine. The data points from Douglas Daly were clus-

tered between observed yields of 2.5 and 5.0 t/ha and modeled

yields of 4.5 and 5.5 t/ha. This highlights a general overpre-

diction of sorghum yield for this location with a generally low

R2, CCC, and bias correction, a mean bias of −1.0 t/ha, and
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PEMBLETON AND RADANIELSON 1363

F I G U R E 2 Modeled versus observed sorghum yield and days to anthesis in the Northern Territory of Australia. The broken diagonal line

represents 1:1 fit (i.e., y = x) while the solid line represents the line of best fit between the modeled data observed data. CCC, concordance

correlation coefficient; RMSE, residual mean square error.

an RMSE greater than 1 t/ha. While there was a limited range

in sorghum phenology observations in the datasets, a general

good agreement was observed between modeled and observed

days from sowing to anthesis. This resulted in a CCC of 0.7

and a bias correction of 0.98. As indicated by the mean bias on

average, the model values were 0.70 days behind the observed

days to anthesis.

While there was general agreement between observed and

modeled yields for soybean, there was considerable variation

around the 1:1 fit (Figure 3). This resulted in a R2, RMSE,

CCC, and bias correction of 0.48, 0.81, 0.63, and 0.90 t/ha,

respectively. Soybean yield was generally overpredicted with

a mean bias of −0.40 t/ha. Days from sowing to anthesis of

soybeans were predicted with marginal accuracy. The primary

driver of this were two very late maturing cultivars. For these

two cultivars, the model predicted 80 days from sowing to

maturity where they were ca. 50 days to achieve anthesis.

These two simulations were associated with exposure to water

stress (see below). This resulted in an average overprediction

of days to anthesis of 3.6 days. When these two data points

were excluded from the analysis, the validation statistics were

improved to an R2 of 0.97, a mean bias of−0.2 days, an RMSE

of 1.04 days, a CCC of 0.98, and a bias correction of 1.0.

Interestingly, despite this deviation in days from sowing to

anthesis for these two cultivars, the model predicted their days

to maturity with an acceptable accuracy. There was a consider-

able improvement in the summary statistics for soybean days

to maturity compared to days to anthesis with R2 increasing

from 0.77 to 0.89, RSME decreasing from 9.25 to 5.7 days,

the CCC increasing from 0.68 to 0.90, and the bias correction

increasing from 0.77 to 0.96.

Maize yield was well predicted across both the Katherine

and Douglas Daly locations (Figure 4). This was reflected in

the summary statistics with an R2 of 0.77, an RSME of 1.82

t/ha, a CCC of 0.86, a mean bias of 0.4 t/ha, and a bias correc-

tion of 0.8. Points at the lower end of the graph (less than 6 t/ha

of modeled yield) exclusively came from experiments with

relatively low N fertilizer applications (less than 180 kg N/ha)

while the points at the higher end of the graph came from

experiments with high levels of N fertilizer use (greater than

230 kg N/ha). There was a limited number (n = 5) of obser-

vations for mungbean yield but the model was able to capture

the yield differences between the Katherine and Douglas Daly

locations (Figure 4).

Rice yield was well predicted across both the Katherine

and Tortilla Flats locations (Figure 5). The data points from

Katherine were clustered between 2 and 4 t/ha (for both the

observed and predicted values), while there was a greater

range in the data points for Tortilla Flats. The summary statis-

tics for rice yield confirmed an acceptable agreement between

observed and modeled values with an R2 of 0.81, a CCC of

0.74, a mean bias of 0.3 t/ha, and a bias correction of 0.93,
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1364 PEMBLETON AND RADANIELSON

F I G U R E 3 Modeled versus observed soybean yield, days to anthesis and days to maturity in the Northern Territory of Australia. The broken

diagonal line represents 1:1 fit (i.e., y = x) while the solid line represents the line of best fit between the modeled data observed data. CCC,

concordance correlation coefficient; RMSE, residual mean square error.

F I G U R E 4 Modeled versus observed yield of maize and mungbeans grown in the Northern Territory of Australia. The broken diagonal line

represents 1:1 fit (i.e., y = x) while the solid line represents the line of best fit between the modeled data observed data. CCC, concordance

correlation coefficient; RMSE, residual mean square error.

despite a high RMSE of 1.45 t/ha. A similar relationship

between observations and modeled values was also present

for rice biomass, despite some data points for Katherine clus-

tered at the lower end of the range of biomass observations

(Figure 5). Summary statistics for rice biomass were an R2 of

0.76, an RMSE of 2.31 t/ha, a CCC of 0.87, a mean bias of

0.3 t/ha, and a bias correction of 0.99. The days from sow-

ing to maturity for rice was well predicted for Tortilla Flats.

However, for Katherine, the days from sowing to maturity was

generally underpredicted. This resulted in overall summary

statistics of an R2 of 0.81, an RSME of 21.9 days, a CCC of

0.91, a mean bias of 14.7 days, and a bias correction of 0.67.

The Bland and Altman plot for crop yields (Figure 6) is sug-

gestive of specific conditions where model performance may

be less than an ideal optimum. Specifically, there were four

high-yielding maize crops (>13.1 t/ha) that were present in the

dataset (grown at Douglas Daly) and two high-yielding rice

crops (>9.7 t/ha) at Tortilla Flats. These instances fell on the

lower side of the limits of agreement (two standard deviations

from the mean difference between modeled and observed

values). There were also three instances of the difference

between modeled and observed rice biomass being less than

the limit of agreement. However, unlike for yield, these

seemed unrelated to the magnitude of biomass.

 14350645, 2024, 3, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/agj2.21567 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [21/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



PEMBLETON AND RADANIELSON 1365

F I G U R E 5 Modeled versus observed rice yield, biomass and days to maturity in the Northern Territory of Australia. The broken diagonal line

represents 1:1 fit (i.e., y = x) while the solid line represents the line of best fit between the modeled data observed data. CCC, concordance

correlation coefficient; RMSE, residual mean square error.

F I G U R E 6 Bland–Altman plots for yield, biomass, days to anthesis and days to maturity of sorghum, maize, rice, soybean, and mungbean

grown at Douglas Daly, Katherine, and Tortilla Flats the Northern Territory of Australia. The center broken line represents the mean difference

between the modeled and observed values. The upper and lower broken lines represent the mean ± two standard deviations (referred to the limits of

agreement).

The Bland and Altman plot (Figure 6) presented two obser-

vations for days from sowing to anthesis for soybeans that

were considerably overpredicted by the model (Figure 3),

being well over two standard deviations above the mean dif-

ference between the modeled and observed values. All other

differences between modeled and observed values for days

from sowing to anthesis were well within the two standard

deviations from the mean. Between modeled and observed

days to maturity, all the points for rice grown at Katherine

were clustered either below two standard deviations from the

mean or just above it.

3.2 Influence of N and water stress on
model performance

Nitrogen and water stress were present within the datasets

used for this validation. When the stress factors were plotted
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1366 PEMBLETON AND RADANIELSON

with the difference between modeled and observed values as

color-scaled scatter plots, there was no clear influence of the

level of stress on the difference between the observed and

modeled yield (Figures S1–S4). This means that the model

was equally accurate in representing the yield of crops grown

with or without these stressors. For biomass, observed data

points were limited, and there were limited cases with N stress

limiting crop growth. Similarly, for day to anthesis, there was

a limited range in the level of water and N stress in the simu-

lations, which limits any conclusions regarding a relationship

between stress and model deviation from observed values.

There were two points for soybeans (plotted over each other)

where water stress was associated with a deviation in days to

anthesis. For days to maturity, as N stress increased the devia-

tion between observed and modeled also increased. Similarly,

as water stress increased the difference between modeled and

observed days to maturity increased. This may suggest that

the model has reduced accuracy in predicting development

and maturity dates for crops experiencing N or water deficit

stress.

Across all the crops, there was no discernible impact from

individual rainfall totals or maximum and minimum tem-

peratures on the difference between modeled and observed

yields (Figures S5 and S6). However, grouping all crops

together hides the potential crop-specific trends. There was

a discernible effect of temperatures on model accuracy for

sorghum and rice (Figures S7 and S8). For both crops,

exposure to cool temperatures during vegetative growth was

associated with an underprediction of yield. For sorghum

yield, there was a trend towards underprediction by the model

with exposure to daily maximum temperatures less than 28˚C,

particularly in the vegetative growth stages (Figure S7). For

rice (Figure S8), an underprediction of yields was associated

with exposure to maximum temperatures less than 26˚C and

minimum temperatures less than 8˚C during the vegetative

growth stages. For maize, mungbean, and soybean, there was

also no discernible impact of individual daily maximum and

minimum temperatures on the difference between modeled

and observed yields (Figures S9–S11).

4 DISCUSSION

The results of this study for yield, phenology, and biomass

are in agreement with other multisite analysis of the APSIM

frameworks performance (e.g., Gaydon et al., 2017; Pemble-

ton et al., 2013; Ojeda et al., 2018; Radanielson et al., 2018).

Compared to the analysis presented in Carberry et al. (1996),

the agreement between observed and modeled values was

lower in our analysis. However, there were some key differ-

ences between the approaches that needed to be highlighted.

These are as follows:

1. Our analysis covered an additional two locations (Douglas

Daly and Tortilla Flats) and three additional crops (rice,

soybean, and mungbean).

2. Our analysis used predicted soil properties sourced from a

general description of major agricultural soils in the North-

ern Territory (Hill et al., 2011) as opposed to directly

measured soil properties from each experiment.

The second point adds a level of uncertainty to our analy-

sis that is not present in other APSIM validations and testing

studies. However, this level of uncertainty exists in the current

and recent applications of APSIM in the Northern Territory

(CSIRO, 2018), and it is important to test the model under

similar levels of uncertainty. The reduction in agreement

between the two studies should not be interpreted as a reduc-

tion in model performance over time. Our study is also the

first to evaluate the capacity of APSIM 7.10 to simulate rice,

soybean, and mungbean in the Northern Territory. Our results

for rice and soybeans for the most part are promising with

yield and phenology well predicted across a wide range of

maturity types. This is testament to the robustness of the sci-

ence behind the APSIM modeling framework components as

described in Robertson and Carberry (1998), Robertson et al.

(2002), and Gaydon et al. (2017). The two instances where

there was deviation between the modeled and observed values

for soybean days to anthesis were associated with water deficit

stress. The addition of a water stress modifier to the chick-

pea (Cicer arietinum L.) model has been shown to improve

model performance (Chauhan et al., 2019). Given the similar

model structures of chickpea and soybean (Robertson et al.,

2002), adding similar modifiers to soybeans could improve

this result.

The model deviation for yield occurred in high-yielding

maize and rice crops events with the model underpredicting

yield (Figure 6). Assuming there was no error in the mea-

surements associated with the yield data, this may suggest

that the model’s equations and parametrization were unable

to fully capture crop growth and soil processes for the spe-

cific situations of a high production potential. Archontoulis

et al. (2020) found that APSIM was able to capture the high

yields of soybean grown in Iowa. As soybean in APSIM is

not reliant on the soil to supply N, this suggests that the

errors observed in the current study may be due to the soil

N component of the model. This is not surprising considering

APSIM’s pedigree in dryland, low-input systems (McCown

et al., 1996). The deviation for crop phenology for the dif-

ferent crops studied was associated with N and water stress

in the simulations (Figures S3 and S4), highlighting poten-

tial limitations are the ability of APSIM to represent the

effect of N and water stress on crop phenology. In most crop

model representations, crop phenology is mainly driven by

thermal time accumulation and cultivar-specific parameters
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with limited mechanistic adjustments made from nutrient and

water stress. Predicting phenology accurately is key to pre-

dicting yield accurately (Chauhan et al., 2019), improving the

models’ representation of stress effects on development

should be a key focus of development and improvement

efforts.

In this analysis, we observed no impact on extreme weather

that is commonly experienced in tropical environments such

as rainfall (and its potential impacts on lodging, disease, and

nutrient leaching) or high-temperature events (and its poten-

tial impact through heat stress, pollen sterility, and high water

use). While many crop models are acknowledged to not fully

capture the impacts of weather extremes (Rötter et al., 2018),

this result (albeit with a limited dataset) suggests that within

the limits of these extremes as they are experienced in the

Northern Territory, APSIM can capture these impacts. Inter-

estingly, the exposure to cooler temperature during vegetative

growth was associated with an underprediction of yield for

rice and sorghum; however, these temperatures would not

be considered extreme. Both the rice (Li et al., 2017) and

sorghum (Hammer & Muchow, 1994) models have a differ-

ent model structure and approaches compared to the maize

(Carberry et al., 1989), soybean, and mungbean (Robertson

et al., 2002) models. Recent efforts by the APSIM initia-

tive (www.APSIM.info) to update the APSIM framework

and standardize the crop model development process called

APSIM next generation (D. Holzworth et al., 2018) and the

plant modeling framework (Brown et al., 2014) are making a

significant contribution to facilitate and invest efforts in the

area of model improvement and standardization, which will

ultimately address the N stress, water stress, and low temper-

ature limitations that we have identified. A recent example

of this is demonstrated in Pasley et al. (2023), which has

improved the representation of mungbeans in APSIM next

gen across a range of environments including the Northern

Territory.

5 CONCLUSION

The overall acceptable performance of the APSIM framework

in this regional-level validation analysis provides confidence

that the model and its derivative decision support tools can

be used with confidence to aid and guide the expansion and

diversification of a field cropping industry in the Northern

Territory of Australia. These tools when used by growers,

advisors, and government will aid in de-risking the transi-

tion from pastoral agriculture to crop production and will

provide confidence to those investing in the expansion of

the sector. Through our analysis, we have identified areas

for model improvement, specifically the simulation of high-

yielding crops, the impacts of low temperatures, and the

impacts of N and water stress on crop phenology in tropi-

cal environments. The impact of high rainfall and temperature

events on yield was appropriately captured. Further efforts to

validate other rotation crops such as chickpeas and peanuts

would also be of considerable value as these are crops that

have also been identified as having a potential role in future

Northern Territory farming systems (Ash et al., 2017). This

future work will require field experimentation where the use

of data for model validation is a key design consideration.
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