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ABSTRACT 

Over the last few decades, there has been a rapid increase in the volume and weight 

of heavy vehicles using national road networks. More than half of the bridges around 

the world are over forty years old. The deterioration of these existing bridges due to 

increased traffic loading, progressive structural aging, and reinforcement corrosion 

from severe environmental conditions has become a major problem in most 

countries. Several techniques have been used to strengthen these structures around 

the world. External post-tensioning is one of the widely used strengthening 

techniques in many countries due to its advantages over other methods. Furthermore, 

flexural strengthening using external post-tensioning has become a well established 

technique over the past few decades. However, when external post-tensioning is used 

to strengthen shear damaged reinforced concrete members, unlike flexural damage, 

the efficiency is significantly reduced by existing shear cracks. 

This research study was carried out to investigate the behaviour of reinforced 

concrete beams with existing shear cracks when strengthened by external means. The 

study consists of two parts: experimental investigations of reinforced concrete beams 

with different parameters and numerical analysis of reinforced concrete beams using 

simplified theoretical formulation and finite element modelling.  

To study the behaviour of shear damaged concrete beams, two different 

strengthening techniques, namely external post-tensioning and external clamping, 

were used. In addition to the strengthening, the effect of cracks on the behaviour of 

reinforced concrete beams was investigated by repairing such cracks using epoxy 

resin injection. Experimental results showed that existing shear cracks have a 

substantial effect on the member capacity when strengthened by external post-

tensioning. Although there are concerns about the practical applications of external 

clamping, the experimental results suggest that external clamping could be a more 

effective technique than external post-tensioning to reduce the effect of existing 

shear cracks on the behaviour of concrete beams.  Furthermore, proper repair of the 

shear cracks could significantly reduce their impact.  
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In the numerical analysis, a simplified mathematical approach was developed to 

estimate the capacity of shear damaged reinforced concrete beam by expanding the 

modified compression field theory (MCFT). In addition to the simplified theoretical 

formulation, a finite element model was developed using the commercial finite 

element package, Abaqus. Comparison between the predicted behaviour using finite 

element analysis (FEA) and the experimental data illustrated that the developed 

finite element model could be used as a reliable tool to estimate the capacity of shear 

damaged reinforced concrete beams. A parametric study was conducted to 

investigate the effect of different parameters such as concrete strength, amount of 

shear reinforcement and crack width, using the developed finite element model. 

From the numerical study, it was concluded that the simplified approach developed 

in this study can be used as a reliable and conservative technique to predict the 

member capacity of a cracked reinforced concrete beam strengthened by external 

means. Furthermore, the parametric study showed that crack width is the most 

sensitive parameter that affects the capacity of a cracked beam strengthened by 

external post-tensioning. 

Based on this research study it can be concluded that existing shear cracks have a 

substantial effect on the behaviour of reinforced concrete beams strengthened by 

external post-tensioning. The simplified mathematical approach developed in this 

study can be used to estimate the capacity of such beams. 
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Chapter 1 

INTRODUCTION 

 

1.1 General 

The concrete repair, protection, and strengthening industry is driven by deterioration 

of, damage to, and defects in concrete structures along with changes in the use of 

concrete and the development and enhancement of code requirements. Each year 

large amounts of concrete are used in every country around the world. Much of the 

concrete is custom-made for each job, using local materials of varying quality. 

Designs that are not standard and accelerated construction processes sometimes 

result in quality being sacrificed in the interest of meeting a schedule. Such factors, 

in addition to general causes such as increase in loads and environmental conditions, 

may also increase or accelerate the deterioration of concrete structures.  

 

The annual cost to owners for repair, protection, and strengthening is estimated to be 

between $18 to $21 billion in the U.S. alone (Emmons and Sordyl 2006). The 

explosive growth of the repair industry in the past 25 years has resulted in the need 

for many improvements in areas such as materials, design practices, installation 

procedures and education. These improvements are needed to increase service life 

and reduce costs and conflicts. They are of considerable importance when a damaged 

concrete structure needs to be strengthened to increase its capacity to meet current 

loading requirements.  
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1.2 Nature of Cracks in Reinforced Concrete Members 

A crack will form in concrete when the principal tensile stress at a location reaches 

the cracking strength of the concrete. In general the crack direction and orientation 

will depend on the loading and support condition. Cracks are generally classified as 

flexural cracks or shear cracks depending on their orientation and direction.  When 

loading is applied to a member, flexural cracks are, in general, generated 

perpendicular to the axis of bending (or parallel to the loading direction) while shear 

cracks are generated with an inclination to the loading direction (Figure 1.1). 

 

 

(a) Flexural cracks 

 

(b) Shear cracks 

Figure 1.1. Flexural and shear cracks in a member 
 

This PhD research project aims to investigate the effect of existing shear cracks in a 

reinforced concrete member when strengthened by external means such as post-

tensioning or external clamping and the effectiveness of repairing such cracks.  

 

1.3 Background 

Over the last few decades, there has been a rapid increase in the volume and weight 

of heavy vehicles using road networks. Coupled with this is the fact that more than 

50% of the bridges worldwide are over forty years old (Aravinthan and 

Suntharavadivel 2007). The deterioration of these existing bridges due to increased 

traffic loading, progressive structural aging, and reinforcement corrosion from severe 
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environmental conditions has become a major problem in most countries. 

Furthermore, the number of heavy trucks and the traffic volume on these bridges 

have resulted in extreme loading conditions that exceed their original design 

parameters. In some cases, such extreme loading has resulted in cracks that require 

urgent repair and rehabilitation.  

 

There are number of strengthening techniques in use around the world including 

external post-tensioning and the use of fibre composites. External post-tensioning is 

considered to be one of the most appropriate techniques for strengthening or 

rehabilitating existing structures. Over many years, extensive research has been 

conducted on the flexural behaviour of reinforced concrete members strengthened by 

external post-tensioning (Harajli 1993; Moon and Burns 1997a; Moon and Burns 

1997b; Naaman and Alkhairi 1991; Tan et al. 2001). However, there has been 

relatively limited research on the shear strengthening of concrete members using 

external post-tensioning (Tan and Ng 1998). While some studies claim that the shear 

capacity of reinforced concrete beams could be improved by external post-

tensioning, the effects of existing cracks have not been evaluated in most of the 

previous studies (Tan and Ng 1998; Tan and Tjandra 2003).  

 

Some of the previous studies conducted at the University of Southern Queensland 

suggested that existing shear cracks may have a substantial effect on the member 

capacity of a reinforced concrete member especially when it is strengthened by 

external post-tensioning (Aravinthan et al. 2004; Snelling 2003; Woods 2004). 

Preliminary investigation by these researchers revealed that repair of cracks by 

epoxy injection could potentially enhance the shear strength of structures when 

strengthened by external post-tensioning. Even though shear crack repair prior to 

strengthening of reinforced concrete beams was recommended by some 

recommendations in the literature (American Concrete Institute 2003), there was no 

clear definition on the criteria for repair or the technique for repair.  It was not 

specified which cracks (width) need to be repaired and the gain of member capacity 

with and without repair was not detailed. The knowledge gap that exists in 
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understanding the behaviour of structures with existing shear cracks forms the 

motivation for this research.  

 

1.4 Objective of the Research 

1.4.1 Main Objective of the Research  

The main objective of this research was to investigate the effect of existing shear 

cracks in a reinforced concrete member when strengthened by external means such 

as post-tensioning or external clamping. The effectiveness of epoxy injection for 

repairing existing shear cracks is also further investigated. 

 

The project was conducted with a view to proposing a simplified approach to 

estimate the capacity of shear damaged reinforced concrete members strengthened 

by external means. It also aimed to investigate the influence of various parameters 

such as concrete strength, post-tensioning force and crack width on the capacity of 

cracked beams strengthened by external post-tensioning. 

 

1.4.2 Specific Objectives 

In order to achieve the main objective, the following specific objectives were 

established: 

 Contribute to the understanding of the mechanism of shear cracks and how 

they affect the behaviour of reinforced concrete member strengthened by 

external post-tensioning. 

 Review the current state-of-art experimental and theoretical developments 

related to existing shear cracks in a reinforced concrete member. 

 Investigate the behaviour of existing shear crack in a reinforced concrete 

member through experiments.  Conduct a set of large scale experiments with 

various test parameters including amount of shear reinforcement and concrete 

strength. 
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 Study the efficiency of epoxy resin repairs in eliminating the effect of 

existing shear cracks in a reinforced concrete member.   

 Propose simplified approach to estimate the capacity of shear damaged 

reinforced concrete members strengthened by external means. 

 Model the behaviour of such cracks using finite element method. Use the 

model to perform a parametric study to gain a better understanding of the 

contribution of various parameters in eliminating the effect of existing shear 

crack. 

 

1.4.3 Research Significance 

To determine the retrofitting technique for a shear damaged reinforced concrete 

beam, the effect of existing shear cracks must be known. However, the influence of 

existing shear cracks on the behaviour of externally post-tensioned (or clamped) 

members has not been adequately investigated. Therefore, an experimental and finite 

element study was conducted to study the influence of existing shear cracks on the 

behaviour of the reinforced concrete beams strengthened by external post-tensioning. 

Moreover, the effect of epoxy injection in the repair of existing cracks when 

strengthened by external post-tensioning or clamping done through a systematic 

approach contributes significantly to the knowledge gap that exist in this area.  

 

1.5 Research Limitations 

Due to the complexity and magnitude of this project, a number of constraints were 

applied to this study in order to retain appropriate focus. These constraints are as 

follows:  

 The dimensions of the experimental specimens were chosen to suit the 

capacity of available testing infrastructure in the civil engineering laboratory 

of the University of Southern Queensland. Only one beam geometry was 

investigated. 
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 Testing was limited to four-point bending with simple support at each end 

and two equal point loads applied at third points of the span. All experiments 

were performed at ambient temperature. 

 Only straight tendons were used for post-tensioning in the experiments due to 

the limitation of laboratory resources.  

 Loading was limited to a monotonically increasing load with a constant 

loading rate. The effect of cyclic loading and other long-term effects of the 

beam were not investigated. 

 For numerical modelling, an epoxy resin with a higher compressive and 

tensile strength than concrete was used. 

 Epoxy resin was modelled as a fully elastic material during loading.  

 No temperature effect on the epoxy resin was considered in the numerical 

modelling. 

 

1.6 Structure of the Thesis 

This thesis is divided into seven chapters including the introduction chapter. A brief 

summary of each chapter is outlined below. 

 

Chapter 1, the current chapter, gives a brief outline of the background and 

significance of the research project. It also gives the objective of the research 

followed by the structure of the dissertation. 

 

In Chapter 2, a comprehensive literature review related to this research study is 

presented. A brief introduction to the application of external post-tensioning, 

different conceptual models and shear design procedures including methods to 

evaluate the shear failure, cracks in a reinforced concrete member are summarised in 

this chapter. In addition, a brief background and history of the development of 

theoretical and experimental investigations are presented. Moreover, a brief 
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overview of current standards related to predicting shear capacity of a reinforced 

concrete member and its shortcomings are also discussed in the chapter. 

 

To study the behaviour of existing shear cracks in a reinforced concrete member, 

sixteen beams were tested in the civil engineering laboratory of the University of 

Southern Queensland. Details of the experimental program methodology are given in 

Chapter 3. Details of test specimens, material properties, instrumentation, and 

testing procedures are briefly explained in this chapter.  

 

Results obtained from the experimental program are presented in Chapter 4. Brief 

discussions on the effect of existing shear cracks in a reinforced concrete member, 

the influence of various parameters including quantity of shear reinforcement and 

concrete strength on the behaviour of such cracks are also presented in the Chapter 4. 

A comparison of experimental results with Australian (Standards Australia 2001) 

and American (American Concrete Institute 2002) code predicted values are also 

given in this chapter. 

 

Chapter 5 details the theoretical background and modelling of existing shear crack 

behaviour in a reinforced concrete member that is strengthened by external 

prestressing.  A simplified mathematical approach to estimate the shear capacity of a 

shear damaged reinforced concrete beam is explained. This is followed by the 

techniques and material constitutive models used in the finite element modelling 

using the commercial finite element software, Abaqus (Abaqus Inc. 2006).  

 

Results from the numerical analysis including the simplified mathematical approach 

and the parametric study are presented in Chapter 6 together with discussion based 

on the comparison of experimental and numerical results.  

 

Finally, Chapter 7 presents the general and specific conclusions of this research 

study followed by recommendations for future research in this area. 
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Further information on the experimental results, material data and other relevant 

information are given in Appendices.  

 

Some of this research has been published or is being published in journals and peer-

reviewed conferences. Details are provided below: 

1. Thiru Aravinthan and T.G Suntharavadivel (2007), “Effect of Existing 

Shear Damage on Externally Post Tensioned Repair of bent Caps” ASCE 

Journal of Structural Engineering, vol. 133 no. 11, pp. 1662-1669 

2. T.G. Suntharavadivel and Thiru Aravinthan (2007), “Analytical Studies on 

Externally Post Tensioned Concrete Girders with Existing Shear Cracks” 

Concrete Institute of Australia 23rd Biennial Conference, Adelaide Australia 

(peer-reviewed)  

3. T.G. Suntharavadivel and Thiru Aravinthan (2007), “Strengthening of 

Shear Damaged RC Beam with External Clamping” 4th International 

Structural Engineering and Construction Conference (ISEC-4), Melbourne 

Australia (peer-reviewed) 

4. T.G. Suntharavadivel, Thiru Aravinthan and Steven Luther (2006), “Shear 

Strengthening of Cracked RC Beam Using External Post-Tensioning” 19th 

Australasian Conference on the Mechanics of Structures and Materials 

(ACMSM19), Christchurch New Zealand (peer-reviewed) 

5. T.G. Suntharavadivel and Thiru Aravinthan (2006), “Effect of Existing 

Cracks in Concrete Bridge Members Strengthened by External Post-

Tensioning” Second International fib Conference, Naples Italy (peer-

reviewed) 

6. T.G. Suntharavadivel and Thiru Aravinthan (2005), “Overview of External 

Post-Tensioning in Bridges” Southern Engineering Conference 2005, 

Toowoomba Australia (peer-reviewed) 

Most of above publications are freely available through the ePrints collection 

(http://eprints.usq.edu.au/) of the University of Southern Queensland. 
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Chapter 2 

LITERATURE REVIEW 

 

This chapter outlines the state-of-art of the research project. It gives a brief overview 

of external post-tensioning and its applications in structural systems. It also provides 

a basic explanation of shear cracks in a reinforced concrete member and the 

mechanism of shear transfer across shear cracks. Some discussion on the application 

of external post-tensioning as a strengthening technique for reinforced concrete 

members with un-repaired shear cracks is presented. 

 

2.1 Introduction to External Post-Tensioning 

External post-tensioning is one of the latest developments in prestressed concrete 

technology. It refers to a prestressing technique where the prestressing tendons are 

placed outside the concrete section and the prestressing force is transferred to the 

concrete by means of end anchorages, deviators (see Figure 2.1) and saddles.  The 

application of the external post-tensioning in strengthening leads to a new structural 

system where the behaviour is different from the original structural member (Tan 

and Ng 1998). Because of its practical advantages, external post-tensioning is 

becoming popular in the construction industry. 

 

External post-tensioning and plate bonding are the two methods that proving to be 

very useful in increasing the capacity of short and medium span bridges. However, 
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external post-tensioning has many advantages over other strengthening techniques. 

Some of the advantages include: 

 economical construction; 

 easy monitoring and maintenance; 

 easier tendon layout, placement and easier construction and compaction; 

 application in wide a range of the bridges (small, medium and long span 

bridges). 

 

Figure 2.1 shows a typical layout of an externally post-tensioned box girder bridge. 

Generally, the external tendons are placed in the hollow section of the box girder.  

The prestressing force is transferred to the beam through end anchorages and 

deviators. 

 

Diaphragm Anchorage

External Tendons

Deviator Blocks

 

Figure 2.1. Typical layout of an externally post-tensioned box girder bridge 
Source: Aravinthan (1999) 

 

Strengthening by external post-tensioning is simply the application of an axial load 

combined with a hogging bending moment to improve the flexural and/or shear 

capacity of a structural member. This method can also be used to improve 

serviceability. For example, the increased stiffness provided by external post-

tensioning can reduce in-service deflections and vibrations. The stress range at a 

critical location can also be reduced, thus improving fatigue performance. The 

presence of large deflections or sag in a bridge can be reduced or removed. It is also 

possible to use post-tensioning to increase the strength of a structural member. For 

example, the objective might be to provide continuity across a support, i.e., change a 

series of simply supported spans to a continuous one. It can also be used to provide 
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continuity across an unsupported joint, for example, across the joint between two 

cantilever spans (Daly and Witarnawan 2000). 

 

Post-tensioning of bridges has been in use since the 1950s and there are many 

examples throughout the world. In most situations, the load is applied through 

prestressing cables, either single or grouped strands. In some applications, the stress 

is applied through high tensile bars. In a few cases, the stress is applied using more 

unconventional techniques. For example, stress in a tendon can be developed by 

anchoring a straight tendon in place and imposing a deflection at mid-span. The 

deflection is then retained by fixing the deflected point. Prestress can also be 

developed by applying a load to impose a deflection in the deck prior to anchoring 

the tendons or bars. An extension on the use of external tendons is to place them at 

large eccentricities. This is possible only when external post-tensioning is used, since 

the tendons need not be arranged within the concrete section (Figure 2.2). 

 

End Anchorage DeviatorExternal Tendon
End Anchorage DeviatorExternal Tendon  

(a) Conventional tendon placement 

 

End Anchorage
Deviator

Large Eccentric External Tendon  

(b) Tendon with large eccentricity 

Figure 2.2. Possible tendon placement in external post-tensioning 
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2.1.1 External Post-Tensioning in New Bridge Construction 

External post-tensioning is used in many countries in the construction of new 

bridges. The world’s first externally post-tensioned concrete bridge was built in 

Germany in 1936 (Virlogeux 1993).  The main span of the first bridge was 25.2 m. 

Since then, the design and application has changed and currently external post-

tensioning is used in large span modern bridges. However, the application of external 

post-tensioning was limited until the late 1970s due to some serious shortcomings 

with the external tendons. The major issue was the corrosion of the external steel 

tendons which were inadequately protected. 

 

External post-tensioning was developed and applied in many countries, particularly 

for new bridges, during the 1980s after the invention of high performance steel with 

adequate protection against corrosion. The development of fibre reinforced plastic 

(FRP) tendons led to a remarkable increase in the use of external post-tensioning in 

bridges. Because an external post-tensioning system is simpler to construct and 

easier to inspect and maintain than an internal tendon system, it has recently been 

proposed in the construction of segmental bridges as well (Miyamoto et al. 2000; 

Rabbat and Sowlat 1987). Some recent applications of external post-tensioning in 

new bridges are listed below. 

 Segmental viaduct (Figure 2.3) 

 Girder Bridges with large eccentricity (Figure 2.4) 

 Composite bridges (Figure 2.5) 

 High-performance lightweight aggregate concrete bridges (Figure 2.6) 
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(a) Shigenobu river bridge, Japan 

 
(b) External tendons inside box-girder 

Figure 2.3. Segmental viaduct with external post-tensioning 
Source: PS Corporation, Japan 

 

Figure 2.4. Pedestrian bridge with large eccentricity post-tensioning tendons 
Source: DPS Bridge Works, Tokyo, Japan 
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(a) Completed view of Shirasawa bridge, Japan 

Upper concrete slab 

Lower concrete slab 

External tendons 

Corrugated steel web

Corrugated steel web 

 

(b) Typical section of a prestressed concrete bridge with corrugated webs 

Figure 2.5. Composite bridges 
Source: DPS Bridge Works, Tokyo, Japan 

 

(a) Shirarika river bridge made of HLA concrete (b)  Transparent sheaths used for inspection of 
grouting 

Figure 2.6. High-performance lightweight aggregate (HLA) concrete bridges 
Source: DPS Bridge Works, Tokyo, Japan 
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2.1.2 External Post-Tensioning in Strengthening of Existing Bridges 

While new bridges are constructed using external post-tensioning as discussed in the 

previous section, over the last two decades external post-tensioning has also been 

considered as one of the most powerful techniques for structural strengthening and 

rehabilitation. External post-tensioning is preferred for bridge strengthening projects 

due to its advantages which include: 

 minimal disruption to traffic; 

 low weight of the additional components; 

 speed and short duration of construction; 

 low costs involved; 

 future re-stressing operations can be carried out quickly and conveniently (if 

required). 

 

The following projects are some examples of the application of external post-

tensioning in strengthening bridges (Figure 2.7, Figure 2.8 and Figure 2.9). 

 

(a) Condet bridge, Indonesia (b) Kemlaka Gede bridge, Indonesia 
Figure 2.7. Flexural strengthening of bridge girders 

Source: A method for increasing the capacity of short & medium span bridges (Daly and Witarnawan 
2000) 
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a) Morrison bridges headstock, USA 

Source: http://www.co.multnomah.or.us/ 

 
(b) Tenthill Creek bridge, QLD 

 

Figure 2.8. Shear strengthening of bridge girders 
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Figure 2.9. Rehabilitation with lightweight concrete – Puttesund Bridge, Norway 
Source: http://gallery.kak.net/ 

 

2.2 Application of External Post-Tensioning to Strengthen 
RC Members  

External post-tensioning is a well established strengthening technique for reinforced 

concrete members in flexure (Harajli et al. 1999; Miyamoto et al. 2000; Moon and 

Burns 1997a; Moon and Burns 1997b; Pisani 1999). However, the studies on the 

shear failure and post cracking behaviour of externally prestressed reinforced 

concrete members are limited. In 1993 Tan and Naaman (1993) developed a strut-

and-tie model for externally prestressed concrete members. It simplified the analysis 

of such concrete members and explained the possible failure modes of the member. 

This model was widely adopted by many researchers and included in codes of 

practice (ACI 318-02) to predict the behaviour of externally post-tensioned 

reinforced concrete members. Even though the strut-and-tie model could be 

effectively used to analyse reinforced concrete beams strengthened by external post-

tensioning, this model could not be directly used to predict the post shear cracking 

behaviour of a reinforced concrete member strengthened by external post-tensioning.  
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2.2.1 Flexural Strengthening Using External Post-Tensioning 

Flexural strengthening of reinforced concrete members using external post-

tensioning has been investigated by many researchers. This section briefly 

summarises some of the significant investigations carried out on flexural 

strengthening of reinforced concrete structures using external post-tensioning with a 

special focus on the effect of existing flexural cracks. 

 

A series of experimental studies were conducted by Harajli  to investigate the effect 

of existing flexural cracks in externally prestressed reinforced concrete beams 

(Harajli 1993; Harajli et al. 2002). He tested 16 reinforced concrete beams in total. 

Each specimen had a 127229 mm rectangular cross section and was simply 

supported over a 3000 mm span. Two external prestressing profiles were used for 

each different type of specimen: a straight horizontal tendon profile and a single-

point draped tendon profile with a saddle (deviator) at mid span.  To simulate actual 

conditions of flexural members, large fatigue deformations were induced in the 

beams, prior to the external post-tensioning, by subjecting them to between 5000 and 

10000 cycles of large amplitude fatigue loading at constant load range, which varied 

from 30% to 80% of the calculated ultimate flexural capacity of the specimen.  All 

specimens were loaded in four-point bending using two symmetrical concentrated 

loads applied at third-points of the span length. To ensure the flexural failure of the 

beams, enough shear reinforcement was provided to prevent shear cracks. The 

experimental results showed that the external post-tensioning increased the flexural 

resistance of the specimens by up to 146%. Harajli also observed that existing cracks 

were reduced in width or completely closed by the external post-tensioning. 

Therefore, the existing flexural cracks had no significant effect on the capacity of the 

reinforced concrete beams strengthened by external post-tensioning.  

 

Aravinthan et al. reported results of another experimental study on the behaviour of 

flexural cracks in a reinforced concrete member strengthened by external post-

tensioning (Aravinthan et al. 2004). Their experimental program consisted of three 

model cantilever specimens with a rectangular cross section throughout the whole 

length of 4500 mm. All three specimens were tapered shaped cantilevers with a 
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rectangular cross section of 300250 mm at the toe end and 400250 mm at the heel 

end. The main variable in their study was the effective prestressing force. Two 

different prestressing forces of 150 kN and 300 kN were used to strengthen the 

cracked specimens. From the study they concluded that reinforced concrete members 

such as headstocks can be effectively strengthened in flexure by external post-

tensioning and the strength could be increased by as much as 60%. They also noted 

that the strength increase was proportional to the amount of post-tensioning force 

applied and a significant reduction in the ductile behaviour occurred when 

prestressing was applied. 

 

2.2.2 Shear Strengthening Using External Post-Tensioning 

The report published by ACI-ASCE (ASCE-ACI Committee 445 on Shear and 

Torsion 1998) gives a brief historical background of the research and development 

related to the shear failure of reinforced concrete members.  

 

In this section, experimental works focussed on shear cracked reinforced concrete 

beams strengthened by external post-tensioning are reviewed. 

 

Collins and Roper (1990) evaluated various methods for shear repair of reinforced 

concrete beams by testing twenty beams with dimensions of 751501800 mm, 

shear span-to-depth ratio equal to 2.8 and without shear reinforcement in critical 

region. The beams were point-loaded at the mid-span in order to initiate a shear 

crack (except the control beam).  The initial crack on one side was held at a constant 

width using a clamping plate and loading was continued until a major shear crack 

developed on the other side. Then the shear cracks were repaired. Repair techniques 

included epoxy injection, vertical post-tensioning, stitching with 4 mm reinforced 

steel and bonding external steel shear reinforcement in a ‘U-shape’ with epoxy resin.  

In all cases, the strength and ductility were significantly increased compared with the 

control beam. However, in most cases a brittle shear failure was observed in the 

beams repaired using the stitching and epoxy injection techniques. The post-

tensioning tests resulted in flexural and ductile failure modes.  
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Teng et al. (1996) reported an experimental study on the performance of 

strengthened pre-cracked concrete deep beams under shear. They introduced vertical 

clamping to reduce the effect of the shear cracks in the prestressed concrete and 

tested a total of 18 prestressed and non-prestressed deep concrete beams to failure, 

followed by strengthening and re-testing to failure for a second time. The beams had 

cross sectional dimensions of 150 to 160 mm width and 600 mm depth. Spans of the 

beams were 1800 and 1200 mm for beams having span-to-depth (a/d) ratios of 3.0 

and 2.0 respectively. They found that the vertical clamping technique significantly 

increased the shear capacity and eliminated the effect of the crack.  

 

A similar technique was tested independently by Khaloo (2000) using 24 reinforced 

concrete beams with dimensions of 801501800 mm. These beams were tested 

under different test variables. These included concrete compressive strength, shear 

span-to-effective depth ratio (a/d), longitudinal tensile reinforcement, level of post-

tensioning, presence of shear reinforcement, use of external clamping and presence 

of shear cracks. Beams were loaded in four-point bending. Test results showed that 

in the presence of post-compression stress, as low as 0.04 f'c, for strengthening, shear 

strength increased significantly and the mode of failure of the beams changed from 

brittle shear to ductile bending (where f'c denotes the concrete strength). Also, for 

this level of post-compression, ductile failure was dominant and the impact of all 

other parameters was limited. Even though Khaloo successfully attempted to identify 

a technique which could reduce the effect of shear cracks in a reinforced concrete 

beam, it should be noted that the specimen sizes were notably small. In a shear 

failure of reinforced concrete beams, size plays a major role in determining the 

capacity of the beam. Bazant and Yu (2005a, 2005b) reported a number of results on 

the size effect of a reinforced concrete beam in the shear capacity.  

 

Aravinthan et al.  (Aravinthan 2006; Aravinthan and Heldt 2005; Aravinthan and 

Suntharavadivel 2007; Suntharavadivel and Aravinthan 2007) reported a series of 

experimental studies on the behaviour of shear cracks in a reinforced concrete 

member strengthened by external post-tensioning. Their experimental program 
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consisted of three cantilever specimens, three scaled models of a (Tenthill Creek 

bridge, QLD) bridge bent cap and six beams. The cantilever specimens had 

rectangular cross section throughout the whole length of 2500 mm and were of 

tapered shape with cross sections of 350250 mm at the toe end and 400250 mm at 

the heel end. The main variable in their study was the effective post-tensioning force. 

Two different post-tensioning forces of 150 kN and 300 kN were used to strengthen 

the cracked specimens. Specimens were loaded at both ends using active and passive 

loading. The scaled models of a bridge bent cap had a uniform rectangular cross 

section of 420220 mm and each were 2300 mm long. These specimens were tested 

under asymmetric loading at a distance of about 2/3 of the span from one end. The 

beam specimens had rectangular cross sections of 300150 mm throughout the 

whole length of 2500 mm. The effective span of the beam was set as 2000 mm. 

Four-point static loading was applied with the shear span 750 mm. External post-

tensioning was applied to the beam using two high strength mild steel bars attached 

to the beam. In the beam specimens and scaled bridge bent cap specimens, they also 

investigated the effect of injecting epoxy resin to repair existing shear cracks. From 

the experimental results they concluded that existing shear cracks could have a 

substantial effect on the member capacity of a reinforced concrete beam 

strengthened by external post-tensioning and that epoxy resin repair could be a 

suitable treatment for the shear cracks. They also reported that a 50-70% increase in 

the member capacity was possible with the proper repair of the shear cracks using 

epoxy injection before strengthening by external post-tensioning. 

 

Pantelides et al.  (2001) reported another experimental study on the effect of shear 

cracks in bridge bent cap specimens and the efficiency of epoxy repair of such shear 

cracks before retrofitting with fibre reinforced polymer (FRP) composites. They 

found that the epoxy repaired specimens performed better than the original 

specimens without any retrofitting. Even though FRP composites were used to 

retrofit the reinforced concrete specimen, which may have other practical problems 

such as separation of the FRP from the specimen due to weaker bonding, it shows 

the importance of the crack repair prior to the any kind of retrofitting. 
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It should be noted that while there are several past research done on the shear 

strengthening of girders with external post-tensioning, the above two are the only 

research conducted with crack repairs of existing cracks. From their conclusions, it is 

evident that deeper understanding the behaviour of crack repairs is important to 

effectively retrofit reinforced concrete girders with  external post-tensioning or other 

means. 

 

2.2.3 Numerical Studies on the Effect of the Cracks in RC Members  

The problem of modelling the behaviour of concrete remains one of the most 

difficult tasks in the field of structural engineering. Ngo and Scordelis identified 

some of the complexities of using the of finite element method for reinforced 

concrete members, especially after cracking (Ngo and Scordelis 1967). These are 

listed below: 

 The structural system is three dimensional and is composed of two different 

materials; concrete and steel.  

 The structural system has a continuously changing character due to the 

cracking of the concrete under increasing load. 

 Effects of dowel action in the steel reinforcement, bond between the steel 

reinforcement and concrete, and bond slip are difficult to incorporate into a 

general analytical model. 

 The stress-strain relationship for concrete is nonlinear and is a function of 

many variables. 

 Concrete deformations are influenced by creep and shrinkage and are time-

dependent. 

 

Technological development and on-going research work in this area could resolve 

some of these issues, but there is still no basic analytical approach that can be used to 

predict accurately the behaviour of a reinforced concrete member throughout its 

loading history.  
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There are a number of constitutive laws proposed by different researchers for 

reinforced concrete members under different conditions (Bangash 2001; Maekawa et 

al. 2003). Based on such models, several analyses have been completed on the 

behaviour of reinforced concrete members strengthened by external post-tensioning.  

However, there are very limited analytical studies reported on the post cracking 

behaviour of the reinforced concrete members. The analytical study reported by 

Pisani considered cracks in concrete members prior to flexural strengthening by 

external post-tensioning (Pisani 1999). In his study, numerical models were 

simulated with cyclic loading and compared with the experimental results reported 

by Harajli (1993). Basically the concrete section was subdivided into layers and the 

history of stresses and strains in each concrete layer and in each steel bar or cable 

was recorded. The constitutive laws proposed by Karsan and Jirsa (1969) and 

Filippou et al. (1983) were used in the computation to describe the behaviours of the 

concrete and the steel (without bond-slip) respectively.  

 

Flexural cracks are mostly vertical (parallel to the line of loading) and they are able 

to be closed with the application of horizontal forces such as external post-

tensioning. However, this does not apply to shear cracks due to their inclination. 

Unlike vertical flexural cracks, the application of horizontal external prestressing 

will not close the inclined shear cracks and may cause a decrease in the shear 

capacity. Therefore, the modelling of shear crack and the stress transferring 

mechanism across the crack is a more complex task. Vecchio et al. (2006) modelled 

reinforced concrete beams to predict the critical shear regions when the beams were 

strengthened by external post-tensioning. They modelled the concrete beams with 

different axial compression and identified the critical shear failure regions. However, 

to the best of the author’s knowledge, there is no study reported on the finite element 

modelling of shear strengthening of concrete members by external post-tensioning in 

the presence of shear cracks. 

 

2.3 Review of the Current Standards 

A number of different methods and equations have been recommended and used to 

estimate the shear capacity of the reinforced concrete beams worldwide. In this 
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thesis, the equations given in the American code ACI 318-02 (American Concrete 

Institute 2002) and Australian code AS3600 (Standards Australia 2001) are 

reviewed.  

 

2.3.1 ACI Standard (ACI 318-02)  

According to ACI 318-02 (American Concrete Institute 2002), the nominal shear 

strength of reinforced concrete beam, Vn, is given by, 

scn VVV  ,      (2.1) 

where,  

Vc = Nominal shear strength provided by concrete, and 

Vs = Nominal shear strength provided by shear reinforcement. 

 

The nominal shear strength provided by shear reinforcement, Vs, is calculated as, 

s

dfA
V syv

s  ,      (2.2) 

where,  

Av = Cross sectional area of shear reinforcement, 

fsy = Yield strength of shear reinforcing steel, 

d = 
Distance from the extreme compressive concrete fibre to the 
centroid of the outer most layer of tensile reinforcement, and 

s = Centre -to-centre spacing of shear reinforcement. 

 

The nominal shear strength provided by concrete, Vc, is calculated from following 

equations: 

For non prestressed concrete members subject to shear and flexure only, 

db
M

dV
fV w

u

u
wcc 








 25009.1 ' ,    (2.3) 

For non prestressed concrete members subject to axial compression, 
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dbf
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N
V wc
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'

2000
12 










 ,     (2.4) 

where,  

f’
c = Characteristic compressive cylinder strength of concrete, 

w = Flexural steel reinforcement ratio given by Equation 2.5, 

Vu = Ultimate shear force, 

Mu = Ultimate moment capacity, 

bw = 
Effective width of web for shear (equal to width, b, for rectangular 
cross section), 

Nu = Ultimate axial force, and 

Ag = Gross area of a concrete cross section. 

The flexural steel reinforcement ratio, w, is given by, 









bd

Ast
w      (2.5) 

where,  

Ast = Cross sectional area of tension reinforcement, and 

b = Width of the section. 

 

2.3.2 Australian Standard (AS3600: 2001) 

According to Australian Standard AS3600 (Standards Australia 2001), the ultimate 

shear capacity of a reinforced concrete beam, Vu, is given by, 

usucu VVV  ,      (2.6) 

where,  

Vuc = Ultimate shear strength of the concrete, and 

Vus = Contribution by shear reinforcement to the ultimate shear strength. 

 

Note that Vn, Vc, and Vs in ACI 318-02 denote the same quantities as Vu, Vuc, and Vus 

in AS3600 respectively. ACI 318-02 also uses some other parameters with slightly 

different notations from AS3600. Those parameters are clearly defined in both places 

as appropriate. 

 



Chapter 2  Literature Review 

 - 26 - 

The contribution by shear reinforcement, Vus, can be calculated using the following 

equation: 

vosy
sv

us df
s

A
V cot ,    (2.7) 

where,  

Asv = Cross sectional area of shear reinforcement, 

fsy = Yield strength of shear reinforcing steel, 

do = 
Distance from the extreme compressive concrete fibre to the 
centroid of the outer most layer of tensile reinforcement, 

θv = 
Angle between the concrete compression strut and the longitudinal 
axis of the member, and 

s = Centre-to-centre spacing of shear reinforcement. 

 

The value of Vuc is given by Equation (2.8) or Equation (2.9) for the reinforced 

concrete beams without and with external forces respectively. 

For reinforced concrete beam without prestress; 

3

1

0

'

0321 









db

fA
dbV

v

cst
vuc  ,      (2.8) 

For reinforced concrete beam with prestress; 

 
vdec

ov

cptst
ovuc PV

db

fAA
dbV 







 


3

1

321  ,    (2.9) 

where,  

β1, 

β2, 

β3  
= 

Multiplying factors for determining Vuc as given in AS 3600: 2001 
Clause 8.2.7.1,  

bv = 
Effective width of web for shear (equal to width, b, for rectangular 
cross section), 

do = 
Distance from the extreme compressive concrete fibre to the 
centroid of the outer most layer of tensile reinforcement, 

Apt = Cross sectional area of prestressed tendons, 

Vdec = Shear force at the decompression moment, and 

Pv = Vertical component of prestressing force. 
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It should be noted that the there is no special provision to account for existing cracks 

in the current code of practice AS3600 and ACI 318-02.  

 

2.3.3 Comparison of Test Data with Code Prediction 

Values for the shear capacity predicted by the Equations 2.1 and 2.6 are tabulated 

along with the respective test data in Table 2.1. Three sets of experimental data 

reported by Aravinthan and Heldt (2005), Aravinthan and Suntharavadivel (2007) 

and Khaloo (2000) were considered for this comparison purpose (see Appendix C for 

details of these experimental parameters).  

 

Basically code expressions for the shear strength of reinforced concrete beams are 

formulated by considering the behaviour of a reinforced concrete beam at the 

commencement of diagonal cracking (Collins and Mitchell 1991), which is referred 

to as ‘uncracked beam’ in this dissertation. Since there is no special provision for 

existing shear cracks in the beams, the Vuc component of the cracked specimen was 

ignored when calculating the capacity of the cracked specimen. The repaired beam 

was assumed to be free of cracks and, therefore, treated as an uncracked beam for the 

purpose of these calculations. For comparison purposes, the calculated and 

experimental values are plotted as normalized values (dividing by the cross sectional 

area of the specimens) in Figure 2.10 and Figure 2.11. 
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Table 2.1: Shear capacity of the RC beams strengthened by external post-tensioning 

Specimen 
Type of 
Loading 

Maximum Force [kN] 

Remarks Experimental 
value 

Code prediction 

AS 3600 ACI 318 

RB1 

Asymmetric 
loading 

366 323 321 
Bridge bent 

caps 
(Aravinthan et 

al. 2005) 

RB2(a) 333 352 348 

RB2(b) 420 338 335 

RB3 546 391 390 

RCB1 

Symmetric 
loading 

176.2 176 175 
Rectangular 

beams 
(Aravinthan et 

al. 2007) 

RCB2 262.2 248 239 

RCB3 278.9 286 284 

RCB4 286 268 258 

1 

Loaded 
equally at 
two points 

31 25 24 

The beams 
strengthened 
after cracking 

(Khaloo 2000) 

2 32.4 25 24 

3 46 36 36 

4 40 36 36 

5 29 25 24 

6 29 25 24 

7 28 25 24 

8 39 36 36 

9 28.5 25 24 

10 39 36 34 

11 25 25 24 

12 27 36 34 

13 44 37 36 

14 46 37 36 

15 62 54 52 

16 60 54 52 

17 46 37 36 

18 56 54 52 

19 39 37 36 

20 42 54 52 

21 45 37 36 

22 42 37 36 

23 23 37 36 

24 43 37 36 
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Figure 2.10. Maximum force predicted by ACI 318-02 code vs. experiment 
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Figure 2.11. Maximum force predicted by AS3600:2001 code vs. experiment 

 

It can be observed from Figure 2.10 that the ACI 318-02 predictions for maximum 

load show a poor correlation with the test data when an unrepaired shear crack 

exists. It also noted that the effect of a shear crack is significantly large when the 
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member was strengthened by conventional external post-tensioning compared with 

external clamping. In general Figure 2.11 also shows similar behaviour when an 

unrepaired shear crack exists in a reinforced concrete member. This suggests that the 

existing codes of practice can effectively predict the shear capacity of reinforced 

concrete members with no cracks. However, when there is significant shear cracking 

is present and when the crack is not properly repaired to bring the beam to its 

original condition, the code equations are not applicable.  This is mainly due to the 

loss of aggregate interlocking factor is lost when large shear cracks are present in a 

reinforced concrete beam. This indicates that there is need to understand the 

behaviour of shear damaged beams when strengthened by external post-tensioning.  

 

2.4 Review of the Theoretical Development 

2.4.1 General Background 

Shear failure mechanism of reinforced concrete members is still the subject of 

theoretical research after several years of studies. A crack will form in concrete when 

the principal tensile stress at a location reaches the cracking strength of the concrete. 

When the member is subjected to a shear force, the directions of the principal 

stresses are inclined to the longitudinal direction.  Hence the shear crack will be 

inclined to the longitudinal axis. When a concrete member is strengthened by 

external post-tensioning, the crack inclination will be reduced by the application of 

axial compression. However, the transfer of axial compression across an existing 

shear crack is a complex function of many parameters including inclination, crack 

width and amount of shear reinforcements. As the width of the crack increases, the 

aggregate interlocking will decrease, which will reduce the capacity of the member. 

Only a few theoretical models have been developed to explain this phenomenon. 

 

2.4.2 Shear Strength of Reinforced Concrete Members 

Many experimental studies have been conducted to investigate the behaviour of 

shear failure.  Even though the estimation of shear capacity of reinforced concrete is 

still under investigation, many researchers have proposed various methods to 

estimate shear capacity of reinforced concrete members. The report published by 
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ACI-ASCE committee 445 (ASCE-ACI Committee 445 on Shear and Torsion 1998) 

summarised the research and development related to the shear failure of reinforced 

concrete members until 1998. This section briefly reviews the major developments 

included in the report and some of the recent studies in this area. 

 

Among the number of proposed models, the strut-and-tie model (Tan and Naaman 

1993) is gaining widespread use and respect as a rational method for prediction of 

shear strength of beams. Provisions for complex beam design such as deep beams 

using the strut-and-tie model have been included in several codes and guidelines for 

practice, including AASHTO LRFD (AASHTO 2004) and ACI 318 (American 

Concrete Institute 2005). Detail of the model is discussed in Chapter 5.  

 

Following the development of the strut-and-tie model, a number of theoretical 

models have been reported by researchers. In recent times, Choi et al.  developed a 

unified shear strength model for reinforced concrete beams (Choi and Park 2007; 

Choi et al. 2007).  This model was based on the failure mechanism of the 

compression zone of the specimen which varies according to the span-to-depth ratio 

(a/d). This model can be applied to both slender and deep beams and describes the 

failure mechanism of RC beams which changes from a diagonal tension failure to a 

shear compression failure as a/d decreases. The model was verified by a number of 

experimental results and it was found that the developed model predicted the shear 

capacities of a range of beams (both slender and deep beams with and without shear 

reinforcement) better than current design methods. 

 

A number of different methods have been proposed to predict the shear capacity of 

reinforced concrete beams under different conditions. These conditions include, but 

are not limited to, different slenderness ratios, deep beams and beams with and 

without shear reinforcements. However, these methods cannot be applied directly to 

a beam with existing shear cracks or a beam with repaired shear cracks. Only a few 

attempts to determine the shear capacity or behaviour of shear damaged (cracked) 

beams are reported in the literature. These are outlined in the following section. 
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2.4.3 Reinforced Concrete Members with Existing Shear Cracks 

Wagner treated an analogous problem in his study of the post buckling shear 

resistance of thin-webbed metal girders (Wagner 1929). He developed the tension 

field theory to determine the angle of inclination of the diagonal tension. Wagner 

considered the deformations of the system to determine the angle of the diagonal 

tension and assumed the angle of the diagonal tensile stresses would coincide with 

the angle of the principle strain (Collins and Mitchell 1991).   

 

This approach was adopted by Collins and Mitchell (1991) to develop the 

compression field theory. In the compression field theory it is assumed that, after 

cracking, the concrete carries no tension and that the shear is carried by a field of 

diagonal compression.  

 

Later the compression field theory was modified to include the contribution of the 

tensile stresses in the concrete between cracks. This modification was later referred 

to as the modified compression field theory (Collins and Mitchell 1991; Vecchio and 

Collins 1986). Based on the modified compression field theory, the maximum axial 

force that can be transferred across the shear crack depends on the shear stress along 

the crack plane, vci, which depends on the width of the shear crack. This relationship 

is given by, 

16

24
3.0

18.0 '






a

w
f

v c
ci ,     (2.10) 

where,  

w = Shear crack width, and 

a = Maximum aggregate size. 

 

This limits the amount of the stress that can transfer across the crack. When the 

amount of the stress reaches the vci, additional stress could cause a possible slip 

along the crack plane which could result in a negative effect (decrease the shear 

capacity of the member) in some cases.  
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The modified compression field theory was recognized as a useful approach to 

determine the behaviour of cracked reinforced concrete beams (Bentz et al. 2006; 

Stevens 2007; Vecchio and Bucci 1999; Vecchio et al. 2006). The method enables 

prediction not only of the strength of the cracked member but also the load-

deflection characteristic of the member (Bentz 2001). Based on the modified field 

compression theory, the crack width in a reinforced concrete beam is an important 

parameter in the analysis of the post cracking behaviour of the member. However, it 

is a challenging task to determine the crack width in a reinforced concrete member 

due to various limitations in currently available theory. Therefore, further studies in 

this area are needed to analyse the actual behaviour of a reinforced concrete member 

with shear cracks.  

 

Furthermore, to the best of author’s knowledge, no mathematical models or 

significant analytical studies to investigate or study the effect of shear cracks in a 

reinforced concrete beam strengthened by external post-tensioning have been 

reported. This dissertation aims to fill or reduce this gap. 

 

2.5 Summary 

This chapter has provided some background on the development of theory to enable 

the prediction of the shear capacity of reinforced concrete beams strengthened by 

external post-tensioning, including a brief overview of external post-tensioning and 

its use in civil and structural engineering applications. It is clear that external post-

tensioning is a widely used technique for strengthening and that it has significant 

potential in a wide range of civil engineering applications.  

 

Although external post-tensioning has been used and is increasingly being used in a 

variety of civil engineering applications, the most significant application in recent 

years appears to be in the area of rehabilitation of existing structures.  The success of 

external post-tensioning in a rehabilitation project depends on various factors 

including the effect of existing damage in the structure. Even though it is well 

proven that existing flexural cracks have no significant effect in the application of 
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external post-tensioning, there is a lack of experimental investigations relating to the 

effect of existing shear cracks and current repair techniques in the strengthening of 

reinforced concrete beams using external post-tensioning.  

 

In addition to the lack of experimental data, shortcomings in current codes of 

practice has also been well documented as a major inhibitor to the wider usage of 

this technique in rehabilitation applications especially in shear damaged structures. 

Current Australian codes of practice for the design of prestressed concrete members 

(AS3600) do not have any provision to account for the effect of existing shear cracks 

or to cater for the loss of aggregate interlocking in the shear capacity of a reinforced 

concrete beam. 

 

Over recent years there have been international efforts to investigate the behaviour of 

existing shear cracks in reinforced concrete beams (Collins and Roper 1990; Vecchio 

and Collins 1993). Collins and Vecchio’s proposed modified compression field 

theory can be used to analyse the behavior of cracked reinforced concrete members 

(Vecchio and Collins 1986). This theory explains the amount of maximum shear 

transfer across a shear crack in a reinforced concrete beam. Other than this theory, 

there are no significant research outcomes reported in this area. Furthermore, due to 

its complexity no significant numerical works incorporating the effect of existing 

shear cracks in an externally post-tensioned reinforced beam have been reported. 

 

Unlike flexural cracks, existing shear cracks have a substantial effect in the 

efficiency of externally post-tensioned members (Aravinthan and Suntharavadivel 

2007). Thus, there is no doubt that research on the behaviour of existing shear 

damage in reinforced concrete beams strengthened by external post-tensioning has 

the potential to bring about far reaching innovations in civil and structural 

engineering especially in the rehabilitation of existing structures. A good 

understanding of repairing these cracks by techniques such as epoxy injection further 

add value not only from a research perspective but also to those who may be 

envisaging to use such technology in practice.  
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Chapter 3 

EXPERIMENTAL PROGRAM 

 

To gain a better understanding about the behaviour of existing shear cracks in 

reinforced concrete members, sixteen beams were tested with different variables 

under monotonically increasing load at the civil engineering laboratory of the 

University of Southern Queensland. The primary test variables were the concrete 

strength, the amount of shear reinforcement and the strengthening technique. This 

chapter describes the objectives of the experimental program, details of the beam 

specimens, material properties, instrumentation, and test procedures that were used 

during the experiment. Test results and discussion on the results are presented in 

Chapter 4. 

 

3.1 Objective of the Experimental Program 

The experimental program was designed to achieve the following objectives. 

 Investigate the influence of the following parameters on the behaviour of the 

existing shear cracks in a reinforced concrete member:  

- compressive strength of the concrete; 

- amount of shear reinforcement; 

- orientation of the prestressing force. 

 Evaluate the efficiency of an epoxy resin repair technique to existing shear 

cracks. 
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 Study the influence of existing shear cracks on the behaviour of a reinforced 

concrete member strengthened by external post-tensioning. 

 Formulate the behaviour of existing shear cracks in a reinforced concrete 

beam strengthened by external post-tensioning. This formulation may be used 

to model the shear crack behaviour using finite element method. 

 

3.2 Design of Test Specimen 

To achieve the above objectives, the beams were designed mainly in three major 

groups as follows: 

Group 1 – RC beams with minimum shear reinforcement (spaced at 250 mm centres) 

and externally post-tensioned, some beams repaired with epoxy injection. 

Group 2 – RC beams with additional shear reinforcement (spaced at 175 mm 

centres) and externally post-tensioned, some beams repaired with epoxy injection.  

Group 3 – RC beams with minimum shear reinforcement (spaced at 250 mm centres) 

and strengthened by external clamping (vertical, inclined or combination).   

 

A total of sixteen beams were tested in the above three groups under monotonically 

increasing load. Test variables of each beam will be explained later in this section. 

All the beams were designed with a rectangular cross section of 150×300 mm and a 

length of 2500 mm. These dimensions were selected by considering the facilities 

available in the civil engineering laboratory at the University of Southern 

Queensland. These were: 

 construction facilities – casting, curing & storage of specimens; 

 testing facilities – loading capacity of the testing machine; 

 handling facilities – lifting and moving the specimen. 

 

These specimens were tested under a four-point loading arrangement as shown in 

Figure 3.1. The span of the specimens was selected as 2000 mm with a clearance of 
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250 mm in each end to prevent any slip from the supports during the testing. The 

shear span of the specimens was kept at 750 mm during the experiment.  

 

 

(a) Typical reinforcement arrangement in a specimen 

 
(b) Cross section at the centre line 

 
Figure 3.1. Test set-up and reinforcement arrangements of the specimen 

 

In general, reinforced concrete beams are designed to have flexural failure rather 

than shear failure. However, in this research, all the specimens were designed such 

that under loading they would fail in shear. This was achieved by boosting the 

flexural capacity of each specimen by providing less shear reinforcement than the 

minimum shear reinforcement recommended in AS 3600 (2001) together with large 

longitudinal steel areas in the top and the bottom. This type of design (with less shear 

reinforcement than that specified in code of practices) is a general approach used by 

many researchers to develop shear cracks in the specimens (Kahloo 2000, Teng et al. 

1996). 

 

d 
=

 2
57

 

25
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N-type (hot rolled steel; design yield strength, fsy = 500 MPa) bars were used for 

longitudinal reinforcement while high strength mild steel bars were used as shear 

reinforcement.  Two N24 (N-type; diameter = 24 mm) bars were used as tensile 

reinforcement and two N16 bars were used as compressive reinforcement (Figure 

3.2). To change the amount of shear reinforcement, different spacings of 250 mm 

and 180 mm were selected while keeping the stirrup size constant at 6 mm.  

 

 

Figure 3.2. Reinforcement arrangement in a specimen 
 

Additional shear reinforcements were provided at both ends of the specimen (Figure 

3.2 and Figure 3.3) to carry the transverse tensile force developed by the application 

of the external post-tensioning. As seen in Figure 3.3, a special arrangement was 

made to fix the end plate of the external post-tensioning tendons (bars) by using four 

ferrules (1045 Zinc Elephant feet) at both ends of each specimen.  
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Figure 3.3. Detail of the reinforcement and cage arrangement that was fixed at each end of the 

specimens 
 

The specimens were prepared in three groups. First and second groups consist of 

four beams each and there were eight beams in Group 3. The beams in a group were 

prepared (Figure 3.4) using same batch of concrete (except Group 3, where two 

batches were used) and allowed to cure under same conditions.  

 

 
Figure 3.4. Specimens after casting 

 

Ferrules

Ferrules – to fix 
the plate using 
bolts 

End plate 

Hole – to fix the 
post-tensioning 
bars 

Beam 

End View of the 
beam 
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Test variables are listed in Table 3.1.  Specimens are labelled such that they have the 

strengthening technique identification first followed by the group and then by the 

individual specimen number. For example ECL21 refers to the external clamped 

beam from the second group with specimen number identification 1. Details of both 

external clamping and external post-tensioning techniques will be explained later 

(Section 3.5) in this chapter.  

 

Basically the specimens in Groups 1 and 2 were designed and tested under the same 

conditions except that the amount of shear reinforcement in the shear span was 

varied to investigate the effect of shear reinforcement on the behaviour of the 

cracked beam. Group 3 specimens were designed with the same specifications as 

Group 1 and tested with external clamping instead of external post-tensioning as 

used in Group 1. 
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Table 3.1: Details of specimen and reinforcements 

Group Detail Specimen

Dimension 

b×D 

[mm] 

Shear 
R/F 

Spacing

[mm] 

Longitudinal 
Reinforcement 

Tension 
side 

Compression 
side 

1 

Minimum 
shear R/F 

& External 
post-

tensioned  

EPT11 150×300 250 2-N24 2-N16 

EPT12 150×300 250 2-N24 2-N16 

EPT13 150×300 250 2-N24 2-N16 

EPT14 150×300 250 2-N24 2-N16 

2 

Near 
minimum 
shear R/F 

& External 
post-

tensioned 

EPT21 150×300 180 2-N24 2-N16 

EPT22 150×300 180 2-N24 2-N16 

EPT23 150×300 180 2-N24 2-N16 

EPT24 150×300 180 2-N24 2-N16 

3 

Minimum 
shear R/F 

& External 
clamping 
(vertical) 

ECL31 150×300 250 2-N24 2-N16 

ECL32 150×300 250 2-N24 2-N16 

ECL33 150×300 250 2-N24 2-N16 

ECL34 150×300 250 2-N24 2-N16 

Minimum 
shear R/F 

& External 
clamping 
(inclined) 

ECL35 150×300 250 2-N24 2-N16 

ECL36 150×300 250 2-N24 2-N16 

ECL37 150×300 250 2-N24 2-N16 

ECL38 150×300 250 2-N24 2-N16 

Note:  EPT = External Post-tensioning 
 ECL = External Clamping 
 

3.3 Materials Properties 

3.3.1 Concrete 

Concrete was ordered from a ready-mix concrete supplier (Wagner Concrete, 

Toowoomba). All of the specimens were prepared with this concrete which had the 

following properties: 

 slump = 80 mm; 

 20 mm nominal size aggregate; 

 compressive strength = 32 MPa. 
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Each batch of concrete was tested for its properties during casting (fresh concrete: 

slump of the concrete) and during testing of the beams (hardened concrete: 

compressive and tensile strength of concrete) as specified below: 

During casting 

 slump of the fresh concrete – to measure the workability of the concrete 

During testing of beams 

 compressive strength of concrete (Figure 3.5) 

 tensile strength of the concrete (Figure 3.6). 

 

All these tests were conducted according to the Australian Standard AS 1012–1981 

(Standards Australia 1981). It should be noted that some parts of AS 1012, were 

revised in later years and the tests were carried out in accordance with the revised 

versions as follows: 

 sampling of fresh concrete: AS 1012.1–1993 (Standards Australia 1993)  

 indirect tensile strength of concrete: AS 1012.10–2000 (Standards Australia 

2000) 

 compressive strength of concrete: AS 1012.14–1991 (Standards Australia 

1991). 
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Figure 3.5. Testing of compressive strength of the concrete 

 
 

 
Figure 3.6. Testing of indirect tensile strength of the concrete 
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The compressive strength of the specimens at the time of tests ranged from 29 MPa 

to 42 MPa, a significant variation from the ordered specification of 32 MPa. Table 

3.2 lists the test results on the concrete strength at the time of test specimens.  

 

Table 3.2: Properties of the fresh and hardened concrete  

Specimen 
Average Compressive 

Strength* 

[MPa] 

Slump 

 [mm] 

EPT11 39.9 100 

EPT12 40.3 100 

EPT13 40.4 100 

EPT14 40.4 100 

EPT21 29.3 120 

EPT22 32.3 120 

EPT23 35.3 120 

EPT24 36.5 120 

ECL31 39.4 100 

ECL32 37.7 100 

ECL33 41.6 100 

ECL34 37.7 100 

ECL35 41.6 110 

ECL36 41.5 110 

ECL37 40.0 110 

ECL38 39.0 110 

* Tested on the same day of the testing of the specimen 

 

It was found that the average tensile strength of the concrete was in the range of 7% 

to 10% of the average compressive strength in most of the cases. Detailed results can 

be found in Appendix A. 
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3.3.2 Reinforcing Steel 

N24 and N16 bars were used as bottom (tensile) and top (compressive) 

reinforcements respectively. The N24 bars were pre-ordered from the manufacturer 

(Smorgan steel, Toowoomba) as they could not be cut and bent on site due to the 

limitation of the facilities in the laboratory.  

 

Mild steel bars were used as shear reinforcement in the test specimens. Since the 

yield strength of shear reinforcement is a critical parameter in the shear capacity of 

the specimens, it is important to determine the actual yield strength of the high 

strength mild steel bars. For this purpose, a tensile test was performed using four 

mild steel bar samples at the University of Southern Queensland. Load was applied 

at a constant rate of 2 mm/min (strain-controlled). Test results are summarised in 

Table 3.3.  

 

Table 3.3: Yield stress of the shear reinforcement bar 

Specimen 
Diameter 

[mm] 

Yield Load 

[kN] 

Yield Stress 

[MPa] 

1 6.0 10.4 368 

2 6.0 10.3 364 

3 6.0 10.4 368 

4 6.1 10.5 359 

Average  365 

 

It can be noted that the yield stress of shear reinforcement bars tested was 365 MPa 

which is considerably higher than the commonly used nominal strength of shear 

reinforcement (250 MPa). This higher yield strength was used in the calculation of 

theoretical capacities of the specimens (in Chapter 4 and Chapter 6) and numerical 

simulation using Abaqus software.  
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3.3.3 Prestressing Steel 

3.3.3.1 External Post-Tensioning Steel 

Two 26.5 mm high tensile Macalloy bars were used to apply the external post-

tensioning force to the specimens. Both of the rods were used within their elastic 

limit during the testing. Further details of these bars are given in Appendix A. The 

properties of these high strength mild steel bars were not tested separately since the 

maximum expected stress (< 280 MPa – estimated using the equation proposed by 

Naaman et al 1991 ) in these bars was found to be less than their minimum 0.1 % of 

proof stress (>830 MPa)*. 

  

3.3.3.2 External Clamping Steel 

External clamping was done using six 16 mm mild steel bolts in each side of the 

specimens. To determine the properties of these mild steel bolts, a tensile test was 

carried out using six specimens (cut from the mild steel bolts used for external 

clamping) at the University of Southern Queensland. Load was applied at a constant 

rate of 2 mm/min (strain-controlled). Summary of the results from the tensile testing 

of the steel are shown in Table 3.4. 

 

Table 3.4: Properties of external clamping rod 

Parameter Value 

Average Load at offset Yield (kN) 65.6 

Average Stress at Offset Yield (MPa) 338.4 

Average Peak Load (kN) 77.5 

Average Peak Stress (MPa) 397.5 

Average Breaking Load (kN) 53.7 

Average Breaking  Stress (MPa) 275.1 

 

 

                                                 
* Also see http://www.structuralsystems.com.au/ssl/tech/docs/broch/2007/2007-BarPT-broch.pdf 
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3.3.4 Epoxy Resin 

In the finite element model, the mechanical properties of the epoxy resin were 

defined from the values given in the data sheet provided by the manufacturer. 

However, the Elastic module (E) of the epoxy resin is not given in the provided data 

sheet. In order to get the Elastic modulus of the resin (Nitofill LV), five standard 

specimens (Figure 3.7) were prepared and tested using MTS Alliance RT/10 

machine (Figure 3.8) at the University of Southern Queensland.  

 

 

Figure 3.7. Epoxy resin specimens 
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(a) Specimen fixed in the MTS machine 

 

 
(b) Failure of the specimen 

Figure 3.8. Testing of the epoxy resin in MTS alliance RT/10 machine 
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Tests were carried out according to the International Standard, ISO 527-2: 1993 

(International Organization for Standardization 1993). Important testing 

specifications are given Table 3.5.  

 

Table 3.5: Specifications of the epoxy tensile testing 

Parameter Value 

Clamping Pressure 1 MPa 

Test Speed 2 mm/min 

Specimen Preparation 
Method 

Specimens Machined to Size on Router Template, Edges 
Sanded Smooth & Defect Free 

 

A 300300 mm plate specimen was prepared using the epoxy resin. After 2 weeks of 

curing, five test specimens were cut from the plate specimen. Sample detail and test 

results of these specimens are presented in Table 3.6. The stress-strain curves of the 

specimens are shown in Figure 3.9. 

 

Table 3.6: Material properties of epoxy resin  

Specimen 

Average dimension 

[mm] 
Peak 
Load 

[N] 

Peak 
Stress 

[MPa] 

Peak 
Strain 

[%] 

Break 
Strain  

[%] 

Elastic 
Modulus

[MPa] Thickness Width 

1 4.84 10.95 1953 36.88 1.17 1.17 3391 

2 4.80 10.14 1847 37.93 1.46 1.46 2679 

3 4.85 10.41 1663 32.90 1.08 1.08 3328 

4 4.85 10.92 2021 38.18 1.37 1.37 3011 

5 4.84 10.74 2269 43.68 1.81 1.81 2763 

Mean 4.84 10.63 1950 37.91 1.38 1.38 3034 

Std Dev 0.02 0.35 224 3.86 0.29 0.29 321 
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Figure 3.9. Stress-strain curve of the epoxy specimens 
 

The minimum strength of the epoxy resin in compression, tension and flexure are 

given in Table 3.7 (provided by the manufacturer - Parbury Technologies Pty Ltd). It 

can be noted that the measured tensile strength values (Table 3.6) are significantly 

higher than the minimum tensile strength value given in Table 3.7. It should be also 

noted that the minimum compressive and tensile strengths of epoxy resin are 

significantly higher than those of concrete (more than 200%). As the epoxy took 

seven days to reach these minimum strengths, it was decided that the epoxy repaired 

specimens should be cured for at least one week before testing. 

 

Table 3.7: Minimum strength of the epoxy resin 

Minimum Strength 
Value 

[MPa] 

Compressive Strength 83 

Tensile Strength 25 

Flexural Strength 50 
Source: Data sheet of Nitofill LV, Parbury Technologies Pty Ltd † 

 

                                                 
† See Appendix A 

Specimen 3 

Specimen 4 

Specimen 1 

Specimen 2 

Average 
curve

Specimen 5 
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3.4 Instrumentation 

The behaviour of the specimens, the load, displacement, strain in concrete and 

reinforcements and the crack width were continuously recorded using various 

instruments as described below.  

 

3.4.1 Load Measurement 

Applied load was measured using load cells.  For this research study, LW0-125 type 

load cells shown in Figure 3.10 were used. Specification of the load cell is given in 

Table 3.8.  

 

Figure 3.10. LW0-125 type load cell 
Source: http://www.transducertechniques.com/  

 

Table 3.8: Specification of LW0-125 load cell 

Parameter Value 

Rated Capacity 556 kN [125, 000 lbs] 

Accuracy 0.1 kN [25 lbs] 

Resolution 
Depends on the readout A/D (data 

Acquisitions system) 

Rated Output (R.O.) 2 mV/V nominal 

Excitation Voltage 10 VDC 

 

3.4.2 Deflection Measurement 

The deflection of the specimen was measured at the mid point of the specimen using 

LVDT and/or string pot (Figure 3.11). Specifications of the String pot and LVDT are 

given in Table 3.9. 
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(a) String pot 

Source: http://www.celesco.com/   
 

 

 
(b) LVDT  

Source: http://www.payab-zamzam.com/LVDT.htm  
 

Figure 3.11. Instruments for deflection measurement 
 

Table 3.9: Specifications of string pot and LVDT 

Parameter 
Value 

LVDT String Pot 

Linearity Range  50 mm 50 mm 

Accuracy 0.01 mm 0.05 mm 

Resolution Depends on the readout A/D 
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3.4.3 Strain Measurement 

Variation of strain in the reinforcement bar was measured by 2 mm (FLA-2-11 type) 

strain gauges (Figure 3.12) while 30 mm (PFL-30-11 type) gauges (Figure 3.13) 

were used to measure the strain in concrete. Both types were 120.4   ( 0.5%) 

linear strain gauges with a gauge factor of 2.11 ( 1%). Data sheets of both 2mm and 

30 mm strain gauges are attached in Appendix A. 

 

 
Figure 3.12. Strain gauge attached in shear reinforcement 

 

 

 
Figure 3.13. Strain gauges attached to concrete 
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A total of 15 strain gauges were placed in the longitudinal reinforcements, shear 

reinforcements and on the surface of the concrete. The strain gauge locations are 

shown in Figure 3.14. 

 

 

(a) Strain gauge locations in concrete (attached outer surface of the beam) 

[FS – flexure side; FP – flexure plan; S – shear; T – top; B – bottom; R – right; L – left; V – vertical; 
H – horizontal; I – inclined] 

 
 

 

(b) Strain gauge locations in steel bars 

[F – flexure; S – shear; T – top; B – bottom; R – right; L – left] 

Figure 3.14. Strain gauge locations in the testing specimen 
 

3.4.4 Prestressing Force Measurement 

During the study, two types of strengthening techniques were used. Conventional 

post-tensioning was applied in a horizontal direction and external clamping was 

applied in a vertical or inclined direction. Due to the limited number of load cells, 

two different techniques were used to measure the external prestressing force. 

1. Measured directly by load cells: this was used to measure the external post-

tensioning force. 

2. Converted from strain reading: this was used to measure the force in the 

external clamping rods. 

Details of the measurements from the above two techniques are outlined below. 
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3.4.4.1 Measured Directly From Load Cells 

The external post-tensioning force was continuously measured using two load cells 

attached to the external post-tensioning rod at the ‘dead’ end (See Figure 3.15). The 

load cells used were the same as those used to measure the applied load (Figure 

3.10). 

 

 
Figure 3.15. Locations of the load cells attached to the post-tensioning rod  

(Plan view from top) 
 

3.4.4.2 Converted From Strain Readings 

The External clamping force was measured using strain measurement. One 2 mm 

strain gauge was attached to the mid-length of each of the four clamping rods as 

shown in Figure 3.16. Then the strain measurements were converted into force using 

the load-deflection behaviour of the rod. 

 

 
Figure 3.16. Strain measurement in the external clamping rod 

Active 
End  

Load 
Cells 

Dead 
End 

Tendon

Loading 
points 

Enlarged area 

Strain 
gauge 
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3.4.5 Data Acquisition System 

The data acquisition system utilised during the experiments was a System 5000 

(Model 5100B scanner). This scanner accepts up to four input cards (five channels 

per card and up to 20 channels per scanner – see Figure 3.17) which can be changed 

according to the requirement. Each channel can be connected to the gauge through 

input plugs.  

 

 

Figure 3.17. Sensor cards used in System 5000 (Model 5100B scanner) 
Source: www.vishay.com  

 

Two types of input cards were used for all the experiments conducted during this 

research project. 

1. A high level input card (one card per scanner). Inputs to the strain gauge 

input card are made through the 9-pin D-sub connectors. LVDT and string 

pots were connected through this card during all experiments performed for 

this research project. 

2. A strain gauge input card (three cards per scanner). Inputs to the strain gauge 

input card are also made through the 9-pin D-sub connectors. During all of 

the experiments performed for this project, strain gauges and load cells were 

connected to the strain gauge input card using a quarter bridge (with built-in 

internal dummy) circuit arrangement as shown in Figure 3.18. 
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Figure 3.18. Quarter bridge (with internal dummy) circuit arrangement 
Source: System 5000 Instruction Manual (Vishay Micro-Measurements 2003) 

[P+: Positive connection to excitation; P-: Negative connection to excitation; HB: Half bridge; S+: 

Positive signal input to amplifier; S-: Negative signal input to amplifier; D: Dummy; SHLD: Shield] 

 

All of the measurements, except the crack width measurement which was recorded 

manually, were transferred to the computer through System5000s (Figure 3.19). 

During testing two System 5000s were connected in series so that up to 40 channels 

could be used if required. 

 

 

Figure 3.19. System5000 (top) attached to the computer (bottom) 
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3.5 Strengthening Techniques 

In this research study, the following two strengthening techniques were used to 

investigate the effect of existing shear cracks under different conditions: 

 external post-tensioning; 

 external Clamping. 

Details of these techniques are explained below. 

 

3.5.1 External Post-Tensioning 

External post-tensioning was applied through two 24 mm mild steel bars attached to 

the specimens with an eccentricity of 50 mm. Initially about 150 kN force was 

applied (75 kN at each rods) to the specimens from the ‘active’ end (see Figure 

3.15).  A hydraulic jack was used to apply the post-tensioning force to the steel bars 

as shown in Figure 3.20.  

  

 

Figure 3.20. Hydraulic jacking system used for post-tensioning at the ‘active’ end of the specimen 
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3.5.2 External Clamping 

External clamping, using 12 mm high strength mild steel bars, was applied in two 

ways. 

1. Vertical clamping – clamping rods were vertical as shown in Figure 3.21. 

2. Inclined clamping – the clamping rods were inclined 450 to the vertical and 

nearly perpendicular to the shear crack (see Figure 3.22). 

 

C L 
250 250 

P/2 

125 

 
Figure 3.21. Arrangement of vertical clamping rods 

 

 

200 250 250 
P/2 

L C 
 

Figure 3.22. Arrangement of inclined clamping rods 
 

As explained under ‘Testing Procedure’ (Section 3.7), a combined vertical and 

inclined clamping technique was also tested. This arrangement is shown in Figure 

3.23.  

 

 

375 100 400 
P/2 

L C 
 

Figure 3.23. Arrangement of combined external clamping 
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A total of six rods (three rods on each side) were used in each shear span of the 

specimen and each rod was tightened with a constant torque of 15 Nm. To uniformly 

distribute stresses, thin wooden pieces were used between the concrete surface and 

steel angle on the top and bottom surface of the specimen, as shown in Figure 3.24.  

 

 

Figure 3.24. Wooden pieces provided in between the concrete and steel 
 

3.6 Repair of Shear Cracks Using Epoxy Resin Injection 

Initially, the cracks were sealed using a structural epoxy adhesive paste and filler 

(Lokset E). After allowing two days for the external seal to cure a low viscosity 

epoxy (Nitofill LV) was injected through holes at various points along the cracks 

(see Figure 3.25). The low viscosity epoxy was capable of repairing cracks with 

width as small as 0.2 mm at the surface and cracking tapering internally down to 

0.01 mm. The epoxy was injected from bottom part of the crack to ensure the crack 

was properly filled with the epoxy. The repaired specimens were kept under normal 

environmental conditions for curing for a week. 

 

Wood 

Steel 
angle 
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Figure 3.25. Epoxy repaired specimen 
 

3.7 Testing Procedure 

All specimens were tested under four-point loading using a monotonically increasing 

load under a displacement control method. In the test set-up, two wedge type 

supports were used at both ends of the specimen. The only possible longitudinal 

force acting in the beam is the friction force. As the beam was designed to have 

shear failure, the deflection (or curvature) of the beam is small.  Therefore, the 

magnitude of the friction force is also significantly small compared with the applied 

load.  In addition to that, all specimens have same dimensions, tested under same 

conditions. These will further eliminate the influence of the small friction force on 

the test results. Therefore, the influence of the longitudinal (friction) force can be 

ignored. The displacement was applied at a constant rate of 2 mm/min. To generate 

the shear crack, specimens were loaded up to 90% of their estimated shear capacity.  

 

3.7.1 Testing of Group 1 Specimens 

The first specimen EPT11 served as a control beam. A monotonically increasing 

load was applied to the specimen until its failure. This was loaded without any 

strengthening.  

Repaired crack 

Nozzles 
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The second beam EPT12 was pre-loaded to cracking and later strengthened by 

external post-tensioning and reloaded until failure. Details of the post-tensioning 

procedure were explained under ‘External Post-tensioning’ (Section 3.5.1) in this 

chapter. 

 

The third specimen, EPT13, was also pre-loaded to cracking and these generated 

cracks were repaired by epoxy injection. Thereafter EPT13 was strengthened by 

external post-tensioning and loaded again until failure. Details of the epoxy resin 

injection can be found under ‘Repair of shear cracks using epoxy resin injection’ 

(Section 3.6) in this chapter. 

 

The last beam, EPT14, was strengthened by external post-tensioning and tested 

under monotonically increasing loading. This simulated the condition of a new beam 

with external post-tensioning. These test variables are summarised in Table 3.10. 

 

Table 3.10: Test variables for external post-tensioned specimens 

Specimen Preloading 
Epoxy 

Repair of 
Cracks 

External Post-
tensioning 

Remarks 

EPT11 No No No 
Control 

Specimen 

EPT12 Yes No After preloading - 

EPT13 Yes Yes After Repair - 

EPT14 No No Yes 
Uncracked 
specimen 

 

3.7.2 Testing of Group 2 Specimens 

As explained above in this chapter, Group 1 and Group 2 specimens were prepared 

to investigate the effect of shear reinforcement ratio. Therefore, Group 2 specimens 

were tested under the same conditions as Group 1.  
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3.7.3 Testing of Group 3 Specimens 

The control beam ECL31 was loaded until failure. Other specimens were 

strengthened by external clamping.  

 

Specimen ECL32 was initially loaded up to about 90% of the estimated capacity and 

then unloaded. Then vertical clamping was applied to the specimen (Figure 3.21) 

which was reloaded until failure. Details of the clamping procedure are explained 

under ‘External Clamping’ (Section 3.5.2) in this chapter. 

 

Specimen ECL33 was initially loaded up to about 90% of the estimated capacity and 

then unloaded. Then the specimen was repaired using epoxy resin injection before 

vertical clamping was applied to the specimen. Finally the specimen was reloaded 

until failure. 

 

Specimen ECL34 was strengthened with vertical clamping without any initial cracks 

and loaded to failure. 

 

Specimen ECL35 was tested similarly to ECL33. However, the initial loading was 

applied up to the peak load then unloaded. This means that the specimen was loaded 

almost to failure before it was repaired using epoxy resin injection. 

 

Specimens ECL36 and ECL37 were also initially loaded up to about 90% of their 

estimated capacity and then unloaded. Inclined clamping was applied, as shown in 

Figure 3.22, to both specimens before they were reloaded to failure. Specimen 

ECL37 was repaired using epoxy resin injection before applying the external 

clamping. 

 

The last specimen ECL38 was strengthened with combined vertical and inclined 

clamping as shown in Figure 3.23. This arrangement was chosen to avoid local 

crushing of the concrete due to a ‘wedge’ action of the force near to the loading point 
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(see Figure 3.26) that occurred in the specimens with inclined clamping. The test 

variables are summarised in Table 3.11.  

 

 

Figure 3.26. Failure area due to ‘wedge’ action 
 

Table 3.11: Test variables for external clamping specimens 

Specimen Preloading 
Epoxy Repair 

of Cracks 
Strengthening Technique 

ECL31 No No No 

ECL32 Yes No Vertical clamping after preloading 

ECL33 Yes Yes Vertical clamping after repair 

ECL34 No No Vertical clamping 

ECL35 Yes Yes Vertical clamping after repair 

ECL36 Yes No Inclined clamping after preloading 

ECL37 Yes Yes Inclined clamping after repair 

ECL38 Yes No 
Combination of vertical and 
inclined clamping after preloading 

 

3.8 Safety Assessment  

Workshop health and safety is emphasized heavily in civil engineering laboratories 

at the University of Southern Queensland. As this experimental program involved a 

heavy loading machine, post-tensioning, handling of epoxy resins and construction 

of significantly heavy reinforced concrete specimens, there were a number of safety 

issues involved. 

 

Crack 

P/2
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Wedge  
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Simple safety measures were observed for the construction and loading of the 

specimens. Steel capped boots were worn at all times and hard hats were worn when 

the specimens were loaded. Other pieces of personal protective equipment (PPE) 

were worn for specific activities during the construction. These included safety 

glasses when cutting reinforcement with a cutting wheel and a dust mask when 

grinding the sealant off the beam. 

 

During the post-tensioning process the following safety precautions were taken to 

avoid any possible hazardous incidents. These methods were adopted from 

guidelines for prestressing and other good practices developed over the years at 

USQ: 

 To avoid possible injures if post-tensioning rods slipped or broke, no-one 

stood behind the ends of the rods during stressing or loading; 

 Additional nuts were placed as ‘stoppers’ in each post-tensioning rod as 

shown in Figure 3.27 to prevent possible slipping or breakage of post-

tensioning rods during loading and post-tensioning process; 

 Warning signs were displayed to advise that stressing was in progress.  

 

 

Figure 3.27. ‘Stoppers’ placed in the external post-tensioning rod 

‘Stoppers’ 
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Reference was made to relevant material safety data sheets (MSDS) so that safety 

issues relating to the use of epoxy resins were known. As the epoxy resins use in 

these tests are toxic if swallowed and can cause skin and eye irritation, gloves were 

worn when using the resins and care was taken to avoid contact with the skin. 

 

Furthermore, before starting the experimental program the author undertook the 

General Safety Induction Construction Industry course provided by Downs Group 

Training (Provider No. 1719), Australia. In addition, the test set-up and loading 

arrangements were checked and a detailed risk assessment was prepared by the 

University safety officer. The risk assessment sheet prepared for this research is 

included in Appendix A. 

 

3.9 Summary  

Details of the experimental program carried out in this research study were presented 

in this chapter. In order to achieve the objectives of the research a total of sixteen 

beams were tested under three groups, with a monotonically increasing load. The 

parts of the experimental program explained in this chapter were: 

 design and preparation of test specimens; 

 testing of material properties; 

 measurement and instrumentation; 

 testing procedure. 

 

Further details of some of the data and product descriptions explained in this chapter 

can be found in Appendix A.  The results obtained from this experimental program 

are given and discussed in the following chapter. 
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Chapter 4 

EXPERIMENTAL RESULTS 

 

This chapter presents a summary of experimental results obtained from the sixteen 

specimens tested in the civil engineering laboratory at the University of Southern 

Queensland and discussion of these results. Experimental setups including specimen 

design, construction and instrumentation were explained in Chapter 3. 

 

As explained in Chapter 3, for each specimen data was collected through more than 

20 data channels connected to the data acquisition system (System 5000).  Since data 

was collected at a sampling rate of 1 Hz, a large amount of data was obtained. A 

summary of the data (filtered) is given in Appendix B.  

 

4.1 Overview of the Experimental Results 

The experimental results of the sixteen beams tested are summarised in Table 4.1. 

The table summarises the main features of each specimen including concrete 

strength, ultimate load and approximate cracking load. Other characteristics are 

discussed as appropriate.  
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Table 4.1: Summary of experimental results 

Specimen 

Average 
Compressive 

Strength  

[MPa] 

Ultimate 
Load^, Pu 

[kN] 

Cracking 
Load^, Pcr

* 

[kN] 
Remarks 

Failure 
mode 

EPT11 39.9 196 65 Control beam 
Shear 

(ductile) 

 EPT12 40.3 194 65 
Pre-cracked + 

Post-
tensioned 

EPT13 40.4 310 65 

Pre-cracked 
& Repaired + 

Post-
tensioned 

Shear 
(brittle) 

 
EPT14 40.4 354 65 

Post-
tensioned 

EPT21 29.3 197 55 Control beam 

Shear 
(ductile) EPT22 32.3 173 55 

Pre-cracked + 
Post-

tensioned 

EPT23 40.5 293 65 

Pre-cracked 
& Repaired + 

Post-
tensioned 

Shear 
(brittle) 

 
EPT24 36.5 288 62 

Post-
tensioned 

ECL31 39.4 176 60 Control beam 

Shear 
(ductile) 

 

ECL32 37.7 262 62 
Pre-cracked + 

Clamped 

ECL33 41.6 279 65 
Pre-crack & 
Repaired + 
Clamped 

ECL34 37.7 287 65 Clamped 

ECL35 41.6 260 65 
Loaded & 
Repaired + 
Clamped 

ECL36 41.5 214 65 Failed due to 
concrete 
crushing 

Concrete 
crushing 

ECL37 40.0 233 65 

ECL38 39.0 243 62 
* Approximate value (load recorded when the first crack was observed) 
^ Total load applied to the specimen  
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It can be noted that the approximate cracking force Pcr (force applied when the first 

flexural crack was observed) is approximately the same in all specimens with a 

similar concrete strength. The maximum load, Pu, of the specimens varies 

significantly and this will be discussed in the following sections. 

 

4.2 Failure Mode 

As mentioned in Chapter 3 (Section 3.2) all specimens were expected to fail in shear. 

Nevertheless, some specimens (ECL36, ECL37 and ECL38) failed due to local 

concrete crushing as shown in Figure 4.1. All other specimens failed in shear as 

shown in Figure 4.2 and Figure 4.3.  

 

 
Figure 4.1. Failure due to concrete crushing 

 

The failure mode of Group 1 specimens (with shear reinforcement at 250 mm 

spacing) is different from that of Group 2 specimens (with shear reinforcement 

spacing of 180 mm). Group 1 specimens EPT11, EPT12, EPT13 and EPT14 failed 

with single shear crack appearing in the shear span as shown in Figure 4.2 while 

specimens in the Group 2 failed with two shear cracks appearing in the shear span as 

shown in Figure 4.3. It suggests that the additional shear reinforcement in the shear 

span area supports the load transfer when cracks develop in that section. 
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Figure 4.2. Single shear crack appeared in Group 1 specimens 
 

 

 

Figure 4.3. Shear failure of Group 2 specimens 
 

The failure mode of specimens with external clamping was much different from the 

failure mode of specimens with external post-tensioning. As external clamping 

divided the shear span into a number of segments, many shear cracks developed 

from the bottom parts of the external clamping as shown in Figure 4.4.  This 

behaviour can be attributed due to “strut-and-tie” action formed by the clamping. 

More detail about the “strut-and-tie” model is explained in Chapter 5. 

Crack 

First crack 

Second 
crack 
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Figure 4.4. Shear cracks appeared in the specimens with external clamping  
(Right hand side end of beam is shown) 

 

4.3 Specimens Strengthened By External Post-Tensioning 

As mentioned in Chapter 3, there were eight beams tested in two groups to 

investigate the effect of existing shear cracks in reinforced concrete members 

strengthened by external post-tensioning. Two different shear reinforcement ratios 

were used in the specimens.  

 

4.3.1 Behaviour of Specimens during Testing 

In this section a brief summary is given on the observed behaviour of the specimens 

during the experiment. It explains the experimental procedures as well as the effect 

of shear cracks in the specimens. 

 

4.3.1.1 Group 1 (EPT11, EPT12, EPT13 and EPT14) 

Initially, some flexural cracks were observed in the bottom of the mid span section in 

the control beam EPT11. However, they did not develop further with the increased 
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load. The first shear crack appeared at 125 kN near the tension side at the support 

and progressed with further loading. The beam achieved 196 kN before it failed in 

shear and the load-deflection behaviour is shown in Figure 4.5. The formation of 

shear cracks reduced its stiffness, as indicated in the figure. The maximum crack 

width at failure was 2.5 mm (see Figure 4.6). 
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Figure 4.5. Load-deflection behaviour of control specimen EPT11 

 

 

Figure 4.6. Failure of control specimen EPT11  
(Right hand side of the specimen is shown) 
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The second beam, EPT12, was initially loaded up to 90% (about 180 kN) of its 

estimated capacity to generate the initial shear cracks. The formation of cracks and 

the beam’s performance (see Figure 4.7) were very similar to EPT11. The applied 

load was then released and the beam was strengthened. After applying a 152 kN 

post-tension force using external rods, the specimen was reloaded until failure. Even 

though high prestress was applied, external post-tensioning did not fully close the 

initial shear cracks. The same cracks further widened and led to failure during the 

second stage of loading, as shown in Figure 4.8. The failure occurred at 194 kN, 

slightly lower than the load on the control beam. The load-deflection curve of EPT12 

is shown in Figure 4.9. At the maximum load, the crack width was 3 mm and it 

increased to 8 mm at failure. 
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Figure 4.7. Initial loading of EPT12 
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Figure 4.8. Failure of EPT12 (Post-tensioned without crack repair) 
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Figure 4.9. Load-deflection behaviour of EPT12 

 

The third specimen, EPT13, was loaded the same way as EPT12 and initial shear 

crack generated. The cracks were repaired with epoxy injection and left for a week to 

cure the resin and to develop a good bond. Then the specimen was post-tensioned to 

150 kN, similar to EPT12, and reloaded until failure. An interesting result was 

observed in the crack propagation. A new shear crack developed leading to failure of 

the beam (Figure 4.10). The repaired cracks did not open-up again during the 
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subsequent loading. This suggested that the epoxy repair was properly done. 

Furthermore, it increased the capacity of the member to 310 kN, a 58% increment on 

the control beam capacity. Brittle failure was observed in specimen EPT13, which 

was very different from EPT12. The change in failure mode is evident from the 

sudden drop in the load after the peak in the load-deflection curve (shown in Figure 

4.11) for specimen EPT13. At maximum load the crack width was 3 mm and 7 mm 

at failure. 

 

 

Figure 4.10. Failure of EPT13 (Post-tensioned after epoxy repaired) 
* Repaired crack is highlighted 
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Figure 4.11. Load-deflection behaviour of EPT13 

 

The last beam of Group 1, EPT14, was tested to determine the effect of external 

post-tensioning on the uncracked reinforced concrete beam. The beam was 

strengthened with same post-tensioning force of 152 kN and tested under similar 

loading conditions. The load-deflection behaviour of EPT14 is shown in Figure 4.12. 

The beam reached an ultimate load of 354 kN before it failed due to shear. The 

failure mode of EPT14 is similar to that of EPT13. 
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Figure 4.12. Load-deflection behaviour of EPT14 
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Force in the post-tensioning bars (tendons) will increase as the deflection of the 

beam increases, due to the expansion of the bars length. This variation of the external 

post-tensioning force for beams EPT12, EPT13 and EPT14 is shown in Figure 4.13. 
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Figure 4.13. Increase in external post-tensioning force with deflection of the beams 

 

It can be noted that the post-tensioning force in specimens EPT13 and EPT14 has 

increased dramatically more than that of specimen EPT12. This means that beam 

EPT12 did not expand in length as much as EPT13 and EPT14. The increased values 

of prestress are summarised in Table 4.2. 

 

Table 4.2: Increase in the post-tensioning force 

Specimen Total Post-Tensioning Force 

 [kN] 

Initial Peak 

EPT11 - - 

EPT12 152 184 

EPT13 150 223 

EPT14 152 228 
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The reason for this is that the total deflection that occurred in EPT12 was mainly due 

to the increasing crack width and not to the beam bending. This further proves that 

existing shear cracks have a substantial effect on the behaviour of reinforced 

concrete beams strengthened by external post-tensioning. When a beam was repaired 

properly by epoxy injection (EPT13), its behaviour was similar to that of the 

uncracked beam (EPT14). Once again, it shows that the behaviour of a beam can be 

improved by proper repair of existing cracks prior to strengthening using external 

post-tensioning. Moreover, epoxy injection could be an effective repair technique for 

structures that exhibit shear cracks.  

 

4.3.1.2 Group 2 (EPT21, EPT22, EPT23 and EPT24) 

The behaviour of specimens in Group 2 was similar to that of Group 1 except for the 

propagation of shear crack. In the Group 2 specimens, unlike Group 1, two parallel 

cracks developed during the loading stage and led to failure. As expected, the shear 

capacities of the Group 2 specimens were also slightly higher than that of Group 1 

specimens. The load-deflection behaviour of the control specimen, EPT21, is shown 

in Figure 4.14.  The specimen reached 197 kN before failure. 
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Figure 4.14. Load-deflection behaviour of control specimen EPT21 
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The load-deflection behaviour of specimen EPT22 after strengthening is shown in 

Figure 4.15 along with its preloading behaviour. Similarly the load-deflection 

behaviour of specimens EPT23 and EPT24 are shown in Figure 4.16. It was noted 

that the behaviour of these specimens was similar to that of the corresponding 

specimens in Group 1. However, the amount of increase or decrease in capacity after 

cracking and after repair is different from that of Group 1.  
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Figure 4.15. Load-deflection behaviour of EPT22 
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Figure 4.16.  Load-deflection behaviour of EPT23 and EPT24 
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It should also be noted that, due to the low strength of the concrete (32.3 MPa) 

compared to other specimens, some cracks developed on the top of specimen EPT22 

during the post-tensioning process. However, specimens EPT23 and EPT24 that 

were tested a week later reached a strength of more than 35 MPa and no cracks were 

observed on the top of these specimens during the strengthening process. The 

variation in the force of external post-tension for this particular group was similar to 

Group 1 specimens, which is given in Appendix B.  

 

A summary of the experimental results for specimens in Group 1 and 2 are listed in 

Table 4.3 below. 

 

Table 4.3: Summary of the experimental results of external post-tensioned beams 

Specimen 

Average 
Compressive 

Strength 

[MPa] 

Preloading 
[kN] 

Ultimate Load  

[kN] 

Maximum 
Deflection at 
Centre Point* 

[mm] 

EPT11 39.9 - 196 9.4 

EPT12 40.3 181 194 5.2 

EPT13 40.4 188 310 13.1 

EPT14 40.4 - 354 15.3 

EPT21 29.3 - 197 11.1 

EPT22 32.3 202 173 9.2 

EPT23 40.5 177 293 17 

EPT24 36.5 - 288 14.2 
* Measured (after post-tensioned, if applicable) at the time of the maximum load 
 

4.3.2 Effect of Shear Cracks  

It is evident from the above observations and Table 4.3 that, existing shear cracks 

have a substantial impact on the capacity of a reinforced concrete member 

strengthened by external post-tensioning. This section will look at the main 

parameters that may have influenced the effect of shear cracks on the behaviour of 

such members. The following parameters are discussed in this section:  
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 amount of shear reinforcement; 

 repair by epoxy resin; 

 strength of concrete. 

 

4.3.2.1 Effect of Shear Reinforcement Ratio 

Two different amounts of shear reinforcements were used to investigate the effect of 

shear reinforcement on the behaviour of shear cracks in a reinforced concrete 

member that was strengthened by external post-tensioning. Specimens of Group 1 

had two stirrups within the shear span while Group 2 specimens had three within the 

same area. Since the concrete strength varies between the specimens, the capacities 

need to be normalised by concrete strength.  

 

As the concrete strength differs between the specimens in Group 1 and 2, the 

ultimate capacities need to be normalised to understand the effect of the shear 

reinforcement ratio on the behaviour of the cracked and repaired beams. According 

to the Australian Standard AS3600 (Standards Australia 2001), the influence of shear 

reinforcement on the shear capacity is given by the term Vus and the influence of 

concrete is given by Vuc (Equation 2.6). For the convenience of the reader, Equation 

2.6 is reproduced below: 

usucu VVV       (4.1) 

As given in Equations 2.8 and 2.9 (Chapter 2), the ultimate shear strength of 

concrete, Vuc, can be expressed as a function of   3/1'
cf , where f’c is the characteristic 

strength of concrete. Therefore the ultimate load, Pu obtained from the experiment 

was normalised by dividing by   3/1'
cf  in order to eliminate the influence of the 

concrete strength. 

 

Figure 4.17 compares the contribution of the normalised ultimate load of each 

specimen from Groups 1 and 2. It can be noted from the results that, the effect of 

shear reinforcement in cracked beams is very minimal compared with that of 

repaired or new beams. This implies that the existing shear cracks have a substantial 
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effect on the capacity of a reinforced concrete beam when beams have minimum or 

near minimum shear reinforcement within the shear span area. 

 

0

20

40

60

80

100

120

1 2 3 4

Specimen Number

N
or

m
al

is
ed

 U
lt

im
at

e 
L

oa
d,

 P
u/

(f
c' )1/

3 [k
N

/M
P

a1/
3 ]

Shear R/F @ 250 mm

Shear R/F @ 180 mm

 
Figure 4.17. Effect of shear reinforcement ratio on the shear capacity 

 

4.3.2.2 Effect of Repair of Cracks by Epoxy Resin 

As part of this research study, the efficiency of repairing existing shear cracks using 

epoxy injection was investigated.  As discussed in Chapter 2, experiments reported 

by Pantelides et al. (2001) are the only other investigations reported in this area. 

From these current research results it can be seen that epoxy resin repair could 

significantly increase the capacity of a shear damaged reinforced concrete beam.  

Due to limited resources only one type of epoxy resin was used in this experimental 

work. A parametric study simulating different resin types is presented in Chapter 6. 

 

4.3.2.3 Effect of Concrete Strength 

It was noted that the concrete strength of the specimens differed significantly 

between the two groups and this could affect the shear capacity of the specimens. 

However, with only two specimens of each type in the experimental program, it is 

not possible to explain in detail the effect of the concrete strength. A parametric 
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study simulating different concrete strengths and discussion on the effect of concrete 

strength are presented in Chapter 6. 

  

4.3.2.4 Effect of External Post-Tensioning 

It can be seen that the increase in external post-tension was substantial in beams with 

no shear crack or when the cracks were fully repaired using epoxy injections. In both 

groups, it was evident that when the crack was not repaired, the post-tensioning was 

not effective. This is shown by a drop in the external post-tensioning force, where it 

is believed that the aggregate interlocking was not effective, thus making the beam to 

slide along the crack.  

 

4.3.2.5 Variation in Strain in Steel Reinforcement 

The measured strain variation with applied loading is discussed in detail in Appendix 

B.5.2.  It was noted that the shear reinforcements reached the yield strain in all the 

specimens, while the main steel reinforcement did not yield at mid span.  

 

4.4 Specimens Strengthened by External Clamping 

In Group 3, eight test beams were strengthened by external clamping. Loading and 

support conditions were the same as for Groups 1 and 2. Each specimen was 

clamped in both of their shear spans using high strength mild steel rods. Three pairs 

of rods were used in each shear span and each rod was given a same 15 Nm torque. 

Four beams were clamped vertically (ECL32, ECL33, ECL34 and ECL35); two 

were clamped with rods inclined about 450 to the vertical (ECL36 and ECL37); one 

beam (ECL38) was clamped with a combined (vertical and inclined) technique; and 

one was tested as control beam without any clamping (ECL31). Details of the 

external clamping and instrumentations can be found in Chapter 3. 

 

The behaviour of the control beam, ECL31, was similar to that of the control beams 

of Group 1 and 2; EPT11 and EPT21. Control beam, ECL31, exhibited flexural 
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cracks at the bottom of mid span section at a load of about 100 kN. However, they 

did not appear to develop further with an increasing load until 110 kN. The first 

shear crack appeared at 110 kN and progressed with further loading. The control 

beam reached a load of 176 kN before failure. The load-deflection behaviour of this 

control beam is shown in Figure 4.18. Except for the initial seating error, the 

behaviour of the control beam was linear until about 120 kN. The formation of shear 

cracks reduced its stiffness, which is indicated in the Figure at a load of about 120 

kN. The maximum crack width at failure was about 6 mm. The failure mode of the 

control beam is shown in Figure 4.19. 
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Figure 4.18. Load-deflection behaviour of control beam ECL31 
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Figure 4.19. Failure of control beam ECL31 

 

4.4.1 Specimens with Vertical Clamping 

Specimen ECL32 was loaded up to 145 kN to generate the initial shear cracks in the 

specimen. The formation of cracks and the beam’s behaviour were similar to those of 

control beam ECL31. The load was released and the beam was strengthened by 

vertical clamping. Then the specimen was reloaded until failure. It was noted that the 

original crack reopened during the reloading process and some local shear cracks 

also developed between the vertical clamping as shown in Figure 4.20. The specimen 

later failed at a load of 262 kN. The load-deflection relationship for ECL32 is shown 

in Figure 4.21. A maximum crack width of 11 mm was observed at failure.  
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Figure 4.20. Failure of ECL32 
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Figure 4.21. Load-deflection behaviour of ECL32 plotted with ECL31 

 

Specimen ECL33 was loaded in the same way as ECL32 and the initial crack 

generated. The behaviour of ECL33 during this preloading was observed to be 

similar to that of specimen ECL32. The cracks were repaired with epoxy injection 

and a week was allowed for the resin to cure and to develop a good bond. Then the 

specimen was externally clamped, similar to ECL32, and reloaded. A completely 
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crack 



Chapter 4  Experimental Results 

 - 87 - 

new shear crack developed and lead to failure of this beam as shown in Figure 4.22. 

The beam reached a load of 279 kN before failure. The repaired crack did not open 

up during the whole reloading process. This suggested that epoxy resin injection is 

an efficient repair technique which significantly reduces the effect of existing shear 

cracks. Furthermore, it also increased the capacity of the member to 279 kN which is 

18 kN higher than specimen ECL32. Load-deflection relationship including 

preloading for the ECL33 is shown in Figure 4.23. 

 

 

Figure 4.22. Failure of ECL33  
(Initial crack is highlighted) 
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Figure 4.23. Load-deflection behaviour of ECL33 

 

Specimen ECL34 was initially strengthened by vertical clamping and then loaded 

until failure. Clamping force was applied using 15 Nm torque as with the other 

specimens in Group 3. This uncracked RC beam with vertical clamping failed at a 

load of 287 kN. The major shear crack and local shear cracks were observed to be 

similar to those of ECL33 (Figure 4.24).  

 

 

Figure 4.24. Failure of ECL34 
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Specimen ECL35 was repaired with epoxy resin after it failed during the preloading. 

The repaired specimen was strengthened by vertical clamping and retested. It was 

noted during repair that the repaired crack width was considerably large (6 mm). 

However, the specimen reached a load of 260 kN before failure. This shows that, 

even with a crack width of 6 mm which is significantly large for a reinforced 

concrete beam, the epoxy resin could significantly increase the capacity of the 

member. 

 

The load-deflection behaviour of specimens ECL34 and ECL35 are shown in Figure 

4.25. With reference to the load-deflection behaviour of all specimens it can be noted 

that, after strengthening, specimen ECL33 showed more ductile behaviour than 

ECL32 and that the behaviours of ECL33 and ECL34 were very similar. This 

implies that the epoxy repair technique can improve the behaviour of a cracked 

specimen to match the behaviour of an uncracked specimen. Since specimen ECL35 

was repaired after failure, it showed the most ductility among the Group 3 

specimens. However, the capacity of ECL35 did not increase as much as the other 

repaired specimen, ECL33. 
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Figure 4.25. Load – deflection behaviour of specimens with vertical clamping 
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The effect of the external clamping and the epoxy injection can also be seen from the 

strain variation in the external clamping rods as shown in Figure 4.26. The strain 

measurement was recorded using the strain gauges attached to the clamping rods. 
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Figure 4.26. Variation of strain in the external clamping rods 
 

It can be noted from Figure 4.25 and Figure 4.26 that, in the beam ECL34, there is 

no significant strain increase at the external clamping rods until the load reaches 

about 110 kN, which corresponds to the load at which a major shear crack developed 

in that specimen. This means that, until the formation of a major shear crack, the 

contribution of the external clamping in carrying the shear force was insignificant. 

Beyond the load of 110 kN, the strain in the external clamping increased gradually 

with the load increase indicating that the external clamping contributed to carrying 

additional load. As the crack width increased with the loading, the stress transferred 

through the concrete, which is mostly by aggregate interlocking, decreased. A 

gradual increment in the force on the external clamping due to this process was 

observed in the strain gauge readings.  

 

The variation of strain in the external clamping rods of beams ECL33 and ECL35 

(repaired with epoxy injection) were similar to that of ECL34. However, the 
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behaviour observed in specimen ECL32, which was not repaired with epoxy 

injection, was quite different from the other three specimens. From the strain 

measurements, it was noted that the force in the external rods increased right from 

the beginning of the reloading state in specimen ECL32. This implies that the 

concrete did not contribute much towards carrying the shear loads.  In other words, 

the cracks immediately reopened during the reloading stage leaving the external 

clamps to take most of the additional loads. From this observation, it can be deduced 

that the epoxy repair significantly changed the behaviour of the cracked beams. 

 

4.4.2 Specimens with Inclined Clamping 

Specimen ECL36 was initially loaded up to 164 kN to create initial cracks. The 

formation of cracks and the performance of the beam were similar to that of the 

control beam ECL31. The load was then released and strengthening was carried out 

by inclined clamping. The same clamping force was applied using 15 Nm torque as 

vertical clamping. A crack approximately 3.5 mm wide was observed after the 

release of the loading. This crack width was reduced to less than 3 mm by the 

clamping. It was also noted that the same crack was reopened during the reloading 

process. However, the width of the crack was much less than ECL32 (with vertical 

clamping) for the same load. The inclined clamping restricted the crack opening 

compared to vertical clamping. Even though the inclined clamping effectively 

restricted the crack from opening, the specimen failed at a load of 214 kN due to 

premature crushing of concrete near the loading point (Figure 4.27 and Figure 4.28). 

A maximum crack width of 8 mm was observed at failure. This premature crushing 

near the loading zone occurred due to the ‘wedge’ shape formed by action of tensile 

forces (force along the existing crack plane and in line with the inclined clamping 

force) in the failure zone. 
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 Failure 
zone P/2 

 

Figure 4.27. Failure zone of ECL36 and ECL37 
 

 

Figure 4.28. Localised concrete failure near loading point of ECL36 and ECL37 
 

Specimen ECL37 was loaded the same way as ECL36 and a similar progress applied 

for initial crack generation. After epoxy repair and curing, the specimen was 

externally clamped (similar to ECL36 – inclined clamping), and reloaded. A 

completely new shear crack was observed and that lead to failure of the beam. The 

repaired crack did not open up during the reloading process. This again proves that 

the epoxy resin injection is an efficient repair technique and significantly reduces the 

effect of existing shear cracks. Furthermore, it increased the capacity of the member 

to 233 kN from 214 kN when the crack was unrepaired. However, the beam also 

failed due to the concrete crushing near to the loading point, similar to ECL36. At 

the maximum load, the crack width was 4 mm and it increased to 7 mm at failure. 
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Load-deflection curves for specimens ECL36 and ECL37 are shown in Figure 4.29 

along with the preloading curves for those specimens. 
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Figure 4.29. Load – deflection curves for specimens with inclined clamping 

 

From the failure of ECL36 and ECL37 it could be concluded that, even though the 

inclined clamping effectively controlled further opening of the crack in the beam, 

failure occurred near to the loading point due to high stress concentration, which was 

further aggravated by the horizontal force component of the inclined clamping. 

Consequently, the last beam, ECL38, was strengthened with combined vertical and 

inclined clamping. The vertical clamping rods were placed near the support and the 

loading point, and the inclined clamping rod was placed in the middle region. With 

this arrangement the stress concentration was reduced at the loading point and the 

support region. This specimen was loaded up to 175 kN to generate initial cracks and 

then strengthened by clamping as described previously and as shown in Figure 4.30. 

When it was reloaded specimen ECL38 reached a load of 240 kN before failure. The 

load-deflection curve for specimen ECL38 is shown in Figure 4.31. 
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Figure 4.30. Specimen with combined vertical and inclined clamping 
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Figure 4.31. Load–deflection curve for ECL38 

 

Although the effect of inclined clamping could not be observed very clearly due to 

the localised concrete failure near the loading point, the load-deflection behaviours 

of ECL36, ECL37 and ECL38 show that the epoxy repaired specimen exhibited 

better behaviour and carried significantly higher load than the un-repaired specimen. 
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As discussed earlier, the inclined clamping successfully controlled the crack width 

during the loading. However, due to the premature failure, the effectiveness of the 

inclined clamping could not be investigated in detail. Furthermore, specimens 

ECL36 and ECL37 failed even before the yielding of external clamping rods due to 

this premature failure (see Appendix B for detail discussion regarding the variation 

of stain in external clamping rod of specimens ECL36 and ECL37). Therefore, 

further investigation is necessary to explain the effectiveness of the inclined 

clamping technique. The test results are summarised in the Table 4.4.  

 

Table 4.4: Summary of the experimental program of external clamping 

Specimen 
External 
Clamping 
Technique 

Average 
Compressive 

Strength 

[MPa] 

Initial 
Loading 

[kN] 

Ultimate 
Load, Pu  

[kN] 

Maximum 
Mid-Span 
Deflection* 

[mm] 

Gain^ in 
Ultimate 
Load [%] 

ECL31 Control beam 39.4 - 176.2 8.6 - 

ECL32 Vertical  37.7 144.8 262.3 14.0 48.9 

ECL33 Vertical 41.6 141.3 278.9 21.2 58.3 

ECL34 Vertical 37.7 - 286.6 17.6 62.7 

ECL35 Vertical 41.6 176.0 260.0 24.8 47.6 

ECL36 Inclined 41.5 164.6 213.7 14.3 21.3 

ECL37 Inclined 40.0 151.8 233.0 12.1 32.2 

ECL38 Combined 
(Vertical + Inclined) 39.0 189.0 242.6 12.1 37.7 

* Measured (after clamping, if applicable) at the time of the maximum load 
^ ‘Percentage gain’ is with respect to the control beam’s ultimate load 

 

4.5 Summary 

Based on the experimental results and discussion presented in this chapter, the 

following conclusions have been reached:  

General Behaviour of Shear Damaged Reinforced Concrete Beams 

 Existing shear cracks have a substantial effect on the shear capacity of reinforced 

concrete members.   

 The width of existing cracks influences the behavior of these beam members.  
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 A suitable crack repair technique must be determined for concrete members with 

existing shear damage before attempting to strengthen them by external post-

tensioning. An epoxy resin injection technique was found to be effective for 

crack repairs in this study.   

 The failure of all the epoxy repaired beams, regardless of the type of 

strengthening method, was similar to that of new beams strengthened with the 

corresponding technique. In particular, the crack development was very similar 

to a new beam. This suggests that the injection of epoxy resin into shear cracks is 

an effective repair technique in shear strengthening.  

 

External Post-Tensioned Specimens 

 Unrepaired existing shear cracks have a significant effect on the capacity of a 

reinforced concrete beam strengthened by external post-tensioning. It was 

observed that, even with a higher post-tensioning force, the member capacity did 

not increase. 

 The proper repair of existing shear cracks can increase the capacity of a member 

be as much as 70% when externally post-tensioned.  

 The external post-tensioning force increased up to 50% of its initial value during 

the loading process.  

 

Specimen with External Clamping 

 Strengthening by external clamping can be used to reduce the effect of existing 

shear cracks. 

 Vertical clamping is a more effective method to increase the member capacity 

than inclined clamping. However, both external clamping methods effectively 

reduced the reopening of existing shear cracks.  

 Inclined clamping might be an effective technique to reduce the effect of shear 

cracks provided that localised concrete failure due to high stress concentration 

can be avoided.  The appropriate positioning of inclined clamping could prevent 
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the localised crushing near the loading point, which needs to be further 

investigated.  

 

Further research is needed to determine a more effective strengthening technique for 

shear damaged reinforced concrete members. As a small number of specimens were 

tested in each case, the above experimental results regarding the effect of existing 

shear cracks in a reinforced concrete beam are not generally conclusive. Therefore, 

numerical analysis was used to investigate the effect of shear damage in a reinforced 

concrete member. This numerical investigation is presented in the following 

chapters.  
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Chapter 5 

NUMERICAL ANALYSIS 

METHODOLOGY 

 

In order to understand the effect of existing shear cracks in a reinforced concrete 

beam, a comprehensive numerical analysis was conducted. This was completed in 

two phases as follows: 

1. Simple mathematical method – to develop a simple mathematical model to 

explain the behaviour of the shear damaged reinforced concrete beam. 

2. Finite element method (FEM) – to model the shear damaged reinforced 

concrete member and analyse using a finite element package.   

 

This chapter presents a brief summary of the numerical analysis and verifications of 

the models based on the results obtained from the experimental program (Chapter 4).  

 

5.1 Objectives of the Numerical Study 

Overall goal of the numerical study related to this study was to develop a reasonably 

accurate method to determine the behaviour of shear damaged reinforced concrete 

members strengthened by external post-tensioning. To understand the influence of 

various parameters on the behaviour of such members, first a simplified 
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mathematical model was developed to estimate the capacity of such members based 

on the modified compression field theory (Vecchio and Collins 1986) and the strut-

and-tie model (Tan and Naaman 1993). Later a finite element analysis was 

completed using a commercial finite element package, Abaqus (Version 6.6).  

 

The objectives of this numerical study were as follows: 

 development of a simplified mathematical model to estimate the capacity of 

cracked reinforced concrete members strengthened by external post-

tensioning or external clamping; 

 verification of the simplified mathematical model using the experimental 

results; 

 development of a finite element model to describe the behaviour of a shear 

damaged reinforced concrete beam;  

 verification of the finite element model using the results of the experimental 

program described in Chapter 4. 

 

5.2 Simplified Model to Estimate the Shear Capacity 

As explained in Chapter 2 current design codes including AS3600 (2001), and 

various empirical equations proposed by researchers to estimate the shear strength of 

a reinforced concrete beam are defined by functions of a number of primary design 

parameters such as the compressive strength of concrete, the amount of tensile 

reinforcement and the size of the beam. However, most of the proposed equations 

were developed for an uncracked beam and, therefore, do not explain the influence 

of any existing shear cracks on the capacity of a beam. In this section, a theoretical 

approach to predict the shear capacity of shear damaged reinforced concrete beams 

strengthened by external post-tensioning is presented. For this purpose, the following 

two basic theories were considered: 

 strut-and-tie model; 

 modified compression field theory. 
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5.2.1 Strut-and-Tie Model 

The strut-and-tie model was developed on the basis that concrete is strong in 

compression (compression struts) and steel is strong in tension (tension ties). The 

basic concept of the model is to visualize a truss-like system (see Figure 5.1) to 

transfer load to the supports where: 

 compressive forces are resisted by concrete “struts”; 

 tensile forces are resisted by steel “ties”; and 

 struts and ties meet at “nodes”. 

 

Figure 5.1. Basic concept of the strut-and-tie model 
 

When a structure is subjected to external loads, the stresses and internal forces of 

that structure can be plotted and visualized in the form of trajectories. The trajectory 

patterns and the motion of forces flowing from the loaded edges throughout the 

structure and into the supports give very helpful information to enable the correct 

understanding of the load-bearing performance of a given structure. However, 

trajectory patterns are fairly complicated and are, at best, available only for linear 

elastic material behaviour. Accordingly, in the case of an RC structure in which 

concrete exhibits cracking and plastic deformation and in which the paths of the 

tensile forces must follow the reinforcement, the stress trajectories need to be 

simplified and adopted to suit the specific characteristics and properties of structural 

concrete. Based on these factors, a more generalized truss model named the “strut-

and-tie model” was developed and is broadly applied to all kinds of RC members 
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and entire structures (Dux 2007; Tan and Naaman 1993; Wight and Parra-

Montesinos 2003; Zwicky and Vogel 2006).  

 

The strut-and-tie model approach evolves as one of the most useful design methods 

for shear critical members. Basically this model provides a rational approach by 

representing a complex structural member with an appropriate simplified truss 

model. Due to this reason, there is no single, unique strut-and-tie model for most 

design situations encountered. In this study, strut-and-tie model is used to predict the 

crack pattern of externally post-tensioned reinforced concrete beams. Comparison of 

strut-and-tie model predicted crack pattern with experimental results can be found in 

Appendix D.  

 

5.2.2 Modified Compression Field Theory 

Modified compression field theory (MCFT) was introduced in 1986 by Vecchio and 

Collins (1986) and was developed from the original compression field theory 

developed by Mitchell and Collins (1974). In these theories, the relationship between 

average stresses and strains was postulated based on experimental observations. 

Cracks, in these theories, are treated in a distributed sense.  

 

The following assumptions apply to the modified compression field theory: 

 There is a one-to-one correspondence between stresses and strains. That is, 

the model is non-linear elastic. 

 Average stresses and strains are used for all calculations. 

 There is perfect bonding between reinforcing bars and concrete (i.e. no slip). 

 The longitudinal and transverse reinforcing bars are uniformly distributed. 

 The principal strain directions are coincident with the principal stress 

directions. 
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Three main components of the modified compression field theory are: equilibrium 

equations, constitutive relationships and load transmission conditions at cracks. 

These components are extensively described elsewhere (Vecchio and Collins 1986) 

and are briefly outlined below for completeness. 

 

5.2.2.1 Constitutive Relationships in Modified Compression Field Theory 

The constitutive relationships involved in modified compression field theory are 

presented in principal stress-strain space. Vecchio and Collins (1986) reported that 

the principal compressive stress at a point in concrete depends on both the principal 

tensile and compressive strains, while the principal tensile stress was only dependent 

on the principal tensile strain (i.e. decoupled from the compressive strain). 

 

The compressive stress is calculated in modified compression field theory as 


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where,  

fc2 = Average principal compressive stress in concrete, 

o = Strain at the peak stress in a uniaxial compression test, and 

2 = Average principal compressive strain in concrete. 

 

The factor fc2,max accounts for the state of biaxial tension-compression state and is 

calculated as, 

o

c
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34.08.0 
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where,  

fc
’ = Compressive strength of the concrete, and 

1 = Average principal tensile strain in concrete. 
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The stress-strain curve of concrete under tension is defined as linear elastic up to 

cracking as 

11 cc Ef  .     (5.3) 

 

After cracking, the tensile stress in the concrete is taken as 

1

1
2001 

 cr
c

f
f .    (5.4) 

where,  

fc1 = Average principal tensile stress in concrete,  

Ec = Modulus of elasticity of concrete, and 

fcr = Cracking strength of the concrete. 

 

The above stress-strain relationship of the cracked reinforced concrete member is 

illustrated in Figure 5.2. 
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Figure 5.2. Compressive stress–strain relationship for cracked concrete defined in MCFT 
Source: Prestressed Concrete Structures (Collins and Mitchell 1991) 

 

5.2.2.2 Equilibrium Equations 

Equilibrium equations are used to calculate the average stresses at a point from the 

concrete and steel contributions. The average shear stress contribution by the steel is 

neglected in the derivation of the following equilibrium equations. 

cxyxy

sysxcyy

sxsxcxx
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     (5.5) 

where,  

x = 
Average stresses in the X direction calculated at a material 
point in reinforced concrete, 

y = Average stresses in the Y direction calculated at a material 
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point in reinforced concrete, 

xy = 
Average shear stress calculated at a material point in reinforced 
concrete, 

cx = Axial stresses in the concrete in the X direction, 

cy = Axial stresses in the concrete in the Y direction, 

sx = Axial stresses in the steel in the X direction, 

sy = Axial stresses in the steel in the Y direction, 

sx = Reinforcement ratios in the X direction, and 

sy = Reinforcement ratios in the Y direction, 

 

The X and Y directions are the global coordinate axis system defined along the 

longitudinal direction and along the depth direction of the beam. Reinforcement ratio 

in any direction is defined as the total area of reinforcement provided along that 

direction divided by the effective area normal to that direction (see Equation 2.5 in 

Chapter 2).   

 

5.2.2.3 Load Transmission Conditions at Cracks 

The stress-strain relationships described above are valid in an average sense. 

However, stresses in the steel at cracks will be higher than their average values. 

Therefore, it is necessary to ensure that the steel reinforcement is capable of 

transmitting the demanded average tensile stresses across cracks. 

 

Vecchio and Collins (1986) derived the following conditions which are used to 

ensure that enough capacity exists in the concrete and steel to properly transmit 

tension across cracks: 
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where,  

sxcr = Axial stresses in the steel in the X direction at the crack face, 

sycr = Axial stresses in the steel in the Y direction at the crack face, 

ci = Compressive stress acting on the crack, 

vci = 
Shear stress along the shear crack plane, which can be 
estimated using the Equation 2.10 given in Chapter 2, 

 = 
Angle between the concrete compression strut and the 
longitudinal axis of the member,, 

yield
yx  = Yield stress in the X direction, and 

yield
yy  = Yield stress in the Y direction. 

 

5.2.3 Shear Strength Equation for the Shear Damaged Beams  

In this section an attempt has been made to estimate theoretically the shear strength 

of a shear damaged reinforced concrete beam strengthened by one of the following 

techniques:  

 external post-tensioning – with horizontal tendon profile only; 

 external clamping.  

Detail of these strengthening techniques can be found in Chapter 3 under Section 

3.5. Basically the two existing theories outlined in the Sections 5.2.1 and 5.2.2 are 

used and extended as appropriate to develop a theoretical model.  

 

5.2.3.1 Reinforced Concrete Beam Strengthened By External Post-
Tensioning 

Based on the modified compression field theory, the equilibrium of the stress acting 

on a cracked beam can be shown by the Mohr’s circle as shown in Figure 5.3. 
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Figure 5.3. Mohr’s circle for the equilibrium of the element 
 

 

From the Mohr’s stress circle following relationship can be derived: 

  12 cottan cc fvf       (5.7) 

where, the shear stress acting along the section, v, is given by 

jdb

V
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      (5.8) 

where,  

V = Shear capacity of the section, and 

bv = 
Effective width of web for shear (equal to width, b, for rectangular 
cross section), 

jd = 
Flexural lever arm (the distance between the compressive 
reinforcement and tensile reinforcement). 
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To satisfy the equilibrium of the horizontal forces, the following requirement should 

be satisfied: 

  sbfffA vccvv  2
2

2
2 cossin     (5.9) 

where,  

Av = Cross section area of shear reinforcement, 

fv = Average stress in the stirrups (shear reinforcement), and 

s = Centre-to-centre spacing of shear reinforcement. 

 

Substituting for fc2 from Equation 5.7 gives 

 cotcot1 jd
s

fA
jdbfV vv

vc      (5.10) 

 

In the above explanation local variation of stresses were not considered.  Figure 5.4 

shows the local stresses acting along the crack plane. 

 

 

Figure 5.4. Transmitting forces across cracks 
Source: Prestressed Concrete Structures (Collins and Mitchell 1991) 
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To maintain the equilibrium (Figure 5.4) the following condition should be satisfied: 

 vsy
v

v
cic ff

bs

A
vf  tan1      (5.11) 

where,  

fsy = Yield strength of shear reinforcement. 

 

By substituting Equation (5.11) into the Equation (5.10), the shear capacity of the 

cracked beam is given by 

cotjd
s

fA
jdbvV syv

vci     (5.12) 

 

With the prestressing tendons the following relationship can be obtained for the 

equilibrium: 

jdbfVfAfA vcpplsx 1cot       (5.13) 

where, 

Asx = Cross sectional area of longitudinal reinforcement steel, 

Ap = Cross sectional area of prestressing steel,  

fl = Average stress in the longitudinal reinforcing steel, and 

fp = Average stress in the prestressing steel. 

 

Now V could be expressed as 

     2tantantan jdbvfAfAff
s

jdA
V vcipplsxvsy

v   (5.14) 

 

It should be noted that the expression of the shear capacity of a RC member, V, as 

the sum of the concrete contribution and the steel contribution (Equations 5.12 and 

5.14). That is, it has a similar form as in the AS3600 shear strength equation, where 

the concrete contribution is replaced by a function of the shear stress acting along the 

cracked plane, vci. 
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5.2.3.2 Reinforced Concrete Beams Strengthened By External Clamping 

As explained above, the shear capacity of a cracked beam without external clamping 

can be given by Equation 5.10 or Equation 5.12. For the cracked beam with external 

clamping, the clamping is assumed as extra shear reinforcement attached externally. 

This assumption was made based on the following observations from the 

experimental program: 

 crack was reopened immediately; 

 force was transferred through the external clamping immediately after the 

loading. 

 

Based on the above observations, it is reasonable to assume that the possibility of 

forming a new strut-and-tie arrangement by external clamping is minimal. By 

considering this fact coupled with modified compression field theory, the shear 

capacity of a cracked reinforced concrete beam with external clamping can be 

expressed as follows:  

extv
vv

vc Pjd
s

fA
jdbfV ,1 cotcot      (5.15) 

where,  

Pv,ext = Force in the external clamping rods within the crack zone. 

 

To calculate the shear capacity using the above equation, it is important to estimate 

the clamping force as a function of crack width and/or some other known 

parameters. Detail of this discussion is in Chapter 6. 

 

5.3 Finite Element Modelling of Reinforced Concrete 
Beams 

Even for a simply supported rectangular reinforced concrete beam retrofitted with 

external post-tensioning, shear failure is a far more complex mechanism than 

flexural failure. One reason for this is that the behaviour of these beams is 

determined by a large number of parameters such as the beam dimensions, the 
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amount of steel reinforcement and the external post-tensioning force. As a 

consequence, even though there have been a large number of experimental studies, 

the failure mechanisms are still not fully understood and the influences of several 

parameters are not yet clear.  

 

Nonlinear finite element method (FEM) provides a powerful tool to study the 

behaviour of concrete structures. The general-purpose finite element program 

Abaqus (Abaqus Inc. 2006) was used in this research project to investigate the 

behaviour of shear damaged reinforced concrete beams strengthened by external 

post-tensioning. Details of the finite element modelling of reinforced concrete 

members using Abaqus is outlined in the following sections. 

 

5.3.1 Modelling of Concrete  

5.3.1.1 Constitutive Model 

Concrete in compression is modelled as an elastic–plastic material with strain 

softening. The stress-strain relation used in Abaqus to model this behaviour is shown 

in Figure 5.5.  

 

 

Figure 5.5. Stress-strain curve for concrete in compression 
Source: Abaqus User Manual (Abaqus Inc. 2006) 

fco 

fcu 
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To define the above relationship, a number of parameters such as ultimate stress (fcu) 

and linear range (fco) need to be given through input data. The following stress–strain 

relationship for concrete in uniaxial compression proposed by Carreira and Chu 

(1985) was used in this study to estimate the required parameters to define the stress-

strain curve in Abaqus. 
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where,  

c = Compressive stress in concrete, 

γ = Multiplying factor defined by Equation 5.17, 

c = Strain in concrete, and 

c
’ = Strain corresponding to fc

’ (MPa). 

 

55.1
4.32

3'

 cf      (5.17) 

 

The strain c
’ is usually taken as 0.002 (Liang et al. 2004; Liang et al. 2005). In the 

present study, the stress–strain behaviour of concrete in compression was assumed to 

be linear elastic up to 0.4 fc
’. Beyond this point, it is in the plastic region in which 

plastic strain should be given as input to define the stress–strain relationship in the 

finite element model. The failure ratio option was used to define the failure surface 

of concrete. The ratio of the ultimate biaxial compressive stress to the ultimate 

uniaxial compressive stress was taken as 1.16. The ratio of the uniaxial tensile stress 

to the uniaxial compressive stress at failure was taken as 0.0836 (Liang et al. 2005). 

 

The behaviour of the concrete and the reinforcement in the concrete beam were 

modelled independently. The interaction between the concrete and reinforcing bars 

was simulated using the tension stiffening model. Tension stiffening was defined in 

the present study by using stress–strain data. Generally the tension stiffening of 

concrete was defined as shown in Figure 5.6. However, for the computational 
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purpose of this study, the model assumes that the direct stress across a crack 

gradually reduces to zero as the crack opens. This approximation was effectively 

used by many researchers for their computational calculation of the concrete element 

(Liang et al. 2005) and it significantly reduced the computational time of the finite 

element analysis.  

 

 

Figure 5.6. General form of tension stiffening model of concrete 
Source: Abaqus User Manual (Abaqus Inc. 2006) 

 

This study uses the stress–strain relationship as shown in Figure 5.7. It assumes that 

the tensile stress increases linearly with an increase in tensile strain up to concrete 

cracking. After concrete cracking, the tensile stress decreases linearly to zero as the 

concrete softens. The value of tension stiffening is an important parameter that 

affects the outcome of a nonlinear analysis of reinforced concrete. Tension stiffening 

is influenced by the density of reinforcing bars, the bond and the relative size of the 

aggregate compared to the rebar diameter. For heavily reinforced concrete members, 

the total strain at which the tensile stress is zero is usually taken as 10 times the 

strain at failure in the tension stiffening model. 

 

fto 
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Figure 5.7. Stress-strain curve used for concrete in tension 
 

The reduction in shear modulus due to concrete cracking was defined as a function 

of direct strain across the crack in the shear retention model. The shear modulus of 

cracked concrete is defined as  

cGG       (5.18) 

where,  

Gc = Elastic shear modulus of uncracked concrete, and 

φ = Reduction factor given by Equation 5.19. 
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where,  

εc = Direct strain across the crack, and 

εmax = Maximum stain in concrete. 

 

The shear retention model states that the shear stiffness of open cracks reduces 

linearly to zero as the crack opening increases. Parameters εmax=0.005 and φ=0.95 

were used in the present study to define the shear retention of concrete as suggested 

by Liang et al. (2004). 
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5.3.1.2 Concrete Element 

There are number of element types available in Abaqus to model the beam using the 

thick shell element such as S4R, S8R, S10R and more. Many of these shell element 

types in Abaqus use reduced (lower-order) integration to form the element stiffness. 

The mass matrix and distributed loading are still integrated exactly. Reduced 

integration usually provides more accurate results and significantly reduces running 

time.  

 

In this study, the concrete is modelled with four-node doubly curved thick shell 

element (S4R) with reduced integration (Figure 5.8). Unlike conventional shell 

elements, larger depths can be used for these shell elements. These elements allow 

transverse shear deformation. They use thick shell theory as the shell thickness 

increases and become discrete Kirchhoff thin shell element as the thickness 

decreases; the transverse shear deformation becomes very small as the shell 

thickness decrease (Abaqus Inc. 2006).  

 

 

Figure 5.8. Four-node doubly curved thick shell element (S4R) 
Source: Abaqus User Manual (Abaqus Inc. 2006) 

 

The element type S4R accounts for finite element membrane strains and arbitrarily 

large rotations; therefore, they are suitable for large-strain analysis. In general, the 

use of such shell element for an intrinsically plane stress problem is incorrect. 

However, in the modelling made for this study, the applied loads and boundary 

constraints are in the plane of shell element (1-2 plane). Therefore, the stresses 
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developed due to loading are primarily in the 1-2 plane and stress normal to the 1-2 

plane can be negligible. In addition to that, shell properties such as shell thickness 

were defined by considering the bending in the 1-2 plane (about the axis normal to 

the shell plane). Therefore, bending properties about other axes were not counted for 

the analysis. Due to these reasons, the shell element S4R could be effectively used to 

model the concrete beam in this study. That means, even though S4R element was 

classified under shell element in Abaqus, it can be used as plane stress element by 

defining its boundary conditions and loading accordingly.  

 

5.3.2 Modelling of Reinforcement  

5.3.2.1 Constitutive Model 

The stress–strain curve of the reinforcing bar is assumed to be elastic perfectly 

plastic as shown in Figure 5.9. This is a reasonable assumption for the reinforcing 

steel bars and it is successfully used by other researchers in nonlinear finite element 

analysis using Abaqus (Hu et al. 2004). The same behaviour was assumed for both 

compression and tension. Material properties, such as the Young’s modulus, 

Poisson’s ratio, the yield stress were given as input to define the stress–strain curve.   

 

 

Figure 5.9. Stress-Strain Curve for Steel 
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As explained in Chapter 3, two types of steel bars, longitudinal reinforcement (N-

type) and shear reinforcement (high strength mild steel), were used in the test 

specimens. To represent these two types of steels, two different material properties 

were defined in finite element analysis (FEA). Steel properties used in this FEA are 

shown in Table 5.1. Since the N-type bars were used as tensile and compressive 

reinforcements and they did not reach their  ultimate strength during the experiment, 

the Elastic modulus (E) will be the governing factor in finite element model. 

Therefore, the standard values given by manufacturer were used to define its 

mechanical properties. 

 

Table 5.1: Material properties of steel used in analytical approximation 

Properties Value 

Young's modulus of steel rebar (GPa) 200 

Poisson's ratio of steel, ν 0.3 

Yield stress of N-type bars, fsy (MPa ) 500* 

Yield stress of shear reinforcement bars, fsy (MPa ) 365** 

* From the material data sheet provided by manufacturer 

** Experimental values (refer Table 3.3) 

 

In Abaqus, steel reinforcement is treated as an equivalent uniaxial material smeared 

through out the element section. However, the bond–slip effect between concrete and 

steel is not considered. In order to model properly the constitutive behaviour of the 

reinforcement, the cross sectional area, the spacing, position and orientation of each 

layer of steel bar within each element needs to be specified. As the analysis was 

performed in 2-D model, an equivalent cross sectional area of reinforcing bar was 

used at the effective depth of the beam.   

 

5.3.2.2 Steel Element 

Steel reinforcement bars were modelled as a truss element using the ‘rebar’ option 

available in the shell element that is used for concrete. Bar diameter, depth and 

spacing need to be given as input for provide the reinforcement in a shell element. 

For an undamaged reinforced concrete beam or beam with a small crack width, the 
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same steel properties as explained above were assigned. However, the properties of 

the steel within a crack in a reinforced concrete beam with a significantly larger 

crack width were assumed to be slightly different from those explained in the 

previous section. In such cases, the steel within the crack (Figure 5.10) was assumed 

to be fully yielded and to behave as yielded steel during the loading process. This 

assumption will be justified in the following chapter (Chapter 6). 

 

 

Figure 5.10. Detail of the cracked zone of shear damaged reinforced concrete beam 
 

5.3.3 Modelling of Connectors  

Several assumptions were made to simplify model development of shear crack 

without any loss in the accuracy of the representation. The cracked beam was 

modelled into two separate parts and connected with the ‘connectors’ (node-to-node 

connection) as shown in see Figure 5.11.  

 

 

 

Yielded longitudinal steel 

Yielded shear reinforcement 
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(a) Mesh arrangement near the shear crack 

 

 

 

 

(b) Detail of a connector element 

Figure 5.11. Detail of connectors 
 

The properties of the connectors were defined using the relationship between the 

maximum stress that can be transferred across the crack and the crack width as 

defined in the modified compression field theory (Vecchio and Collins 1986). The 

equation (Equation 2.10) and associated parameters were defined in Chapter 2. For 

convenience, the equation is reproduced below: 

 

16

24
3.0

18.0 '






a

w
f

v c
ci      (5.20) 

 

For modelling purposes, an average crack width was assumed to represent the 

properties of the connector. After some trial and error, it was found that using a 

crack width of about 70% of the maximum crack width measured at peak load 

enabled the prediction of the behaviour of the cracked beam with a reasonable 

degree of accuracy. This value was further verified by the theoretical calculation. 

Detailed discussion on this assumption can be found in Chapter 6. All the cracks 

were assumed as straight lines which were approximately similar in orientation to 

those obtained in the experimental program.  

Centre 
line 

Connector 
element 

Element of Part 1 

Element of Part 2 

w
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5.3.4 Modelling of Epoxy 

To analyse the epoxy repaired reinforced concrete beam, it was assumed that the 

crack zone was completely filled with epoxy. Perfect bonding (no slip) property was 

also assumed between the epoxy and the concrete as well as the epoxy and the 

reinforcement steels. Detail of the modelling of the epoxy component is outlined 

below. 

 

5.3.4.1 Constitutive Model 

In the finite element modelling, the epoxy resin was assumed to be linear elastic 

material with significantly higher compressive and tensile strengths than concrete. 

This assumption is reasonable as the material testing of the epoxy (see Chapter 3 

and Appendix A) showed a perfect elastic behaviour almost until its failure in 

tension. I also noted that, no cracks or failure were observed during experimental 

process along the repaired shear cracks using epoxy resin injection. A constant 

value of Young's modulus obtained from material testing was used with the 

minimum strength values provided by the manufacturer. These values are reported 

in Table 5.2. As discussed in Chapter 3, these minimum tensile and compressive 

strength values are significantly higher than tensile and compressive strength values 

of concrete respectively.  

 

Table 5.2: Material properties of epoxy 

Property Value 

Young's modulus (GPa) 3.03* 

Compressive strength (MPa ) 83# 

Tensile strength (MPa ) 25# 

* Experimental values (refer to Table 3.6) 
# From the material data sheet provided by manufacturer (refer Table 3.7) 
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5.3.4.2 Epoxy Element 

The same element type used for the concrete (general purpose shell element S4R) 

was also used for the modelling of the epoxy. As explained under Section 5.3.2.2, 

the steel elements within the epoxy elements were considered as fully yielded and to 

behave as yielded steel during the loading process.  

 

5.3.5 Beam Geometry and Boundary Conditions 

The size of finite element models can be reduced significantly by the use of 

symmetry, resulting in substantial computational savings. In order to make use of 

symmetry, both loading and structural configuration must be symmetric. For the 

purpose of the parametric study of this study, a rectangular cross sectional beam 

with same the dimensions as in the experimental program (1503002500 mm) was 

used with four-point loading as shown in Figure 5.12(a). As the beam had one plane 

of symmetry about the centre line in the X-Y plane, only one half of each beam was 

analysed and symmetric boundary conditions were placed along the symmetric axis 

as shown in Figure 5.12(b). 

 

With consideration of the symmetric behaviour of both the beam geometry and 

loading, the following restraint conditions were set for the finite element model: 

 At the left support, no displacement was allowed in Y direction while 

displacement in X direction and rotation about Z-axis were allowed; 

 At the centre line, only vertical (along Y-axis) displacement was allowed. 
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(a) Full beam 

 
(b) Boundary condition at the centre line for the half beam (LHS) 

Figure 5.12. Symmetric property of the beam and loading 
 

Following methods were used to simulate the loading and external post-tensioning 

forces in the FEA: 

 Loading: Vertical displacement was applied to the model at a constant rate 

of 2 mm/min; 

 External post-tensioning force: Horizontal force was applied at both ends of 

the model at a depth of 200 mm (same as the experimental program). The 

external post-tensioning force was applied through the load input (load case) 

option available in the Abaqus for cater the increase in the post-tensioning 

force during the loading process. 

 

 

 

 

C 

Centre line 
X 

Y 
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5.4 Summary 

In this chapter an explanation of the numerical analysis carried out in this study was 

presented in two sections: 

 the development of a simplified mathematical model to estimate the shear 

capacity of a cracked beam with external post-tensioning as well as external 

clamping; 

 the finite element modelling of reinforced concrete beam with and without 

shear crack using the commercial finite element package, Abaqus. 

 

Validation of both the simplified mathematical model and the finite element model 

will be presented and discussed in the Chapter 6. A parametric study using the 

developed finite element model will also be presented. 
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Chapter 6 

NUMERICAL RESULTS, 

VERIFICATION & DISCUSSION 

 

The experimental program to investigate the behaviour of shear damaged reinforced 

concrete beams strengthened with external post-tensioning or external clamping has 

been explained in Chapters 3 and 4, followed by a brief discussion on the 

experimental results. The previous chapter (Chapter 5) explained the techniques and 

simplifications used in the numerical analysis of this research study in two stages: 

 development of a simplified mathematical model to estimate the shear 

strength of cracked beams strengthened by external post-tensioning or 

external clamping; 

 the finite element modelling of cracked and repaired beams using the 

commercial finite element package, Abaqus. 

 

This chapter presents the results of the numerical analysis that includes a brief 

parametric study performed using the finite element model as well as the simplified 

mathematical model. At the end of this chapter the experimental and numerical 

results are discussed with a view to proposing for an effective strengthening system 

for shear damaged reinforced concrete beams. The influence of various parameters 

such as concrete strength, prestressing force and shear reinforcement ratio are 

considered.  
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These results are presented in the following sequence: 

 verification of the developed mathematical equations to estimate the shear 

capacity of cracked reinforced concrete beams using the experimental results;  

 discussion on the practical limitations and approximations related to the 

estimation of the shear capacity of cracked beam using the theoretical 

equations; 

 verification of the developed finite element models using the experimental 

results; 

 parametric studies to investigate the influence of a number of the primary 

parameters including concrete strength (fc
’), post-tensioning, type of epoxy 

resin and force amount of shear reinforcement on the behaviour of shear 

damaged reinforced concrete beams strengthened by external post-

tensioning; 

 discussion on the effect of existing shear cracks on the behaviour of cracked 

reinforced concrete beams when strengthened by external post-tensioning and 

the influence of various parameters on the behaviour. 

 

6.1 Shear Capacity of Cracked Reinforced Concrete 
Beams 

The development of the shear strength equations is outlined in Chapter 5. Based on 

some of the existing theories such as modified compression field theory a number of 

assumptions were made to develop these equations. In this section, the application of 

the developed shear strength equations will be examined and the limitations or 

assumptions in the use of them in practical applications will be discussed. 

 

First, the shear strength equation for cracked reinforced concrete beams strengthened 

by external post-tensioning is considered. As explained in Chapter 5, the shear 

strength of a cracked reinforced concrete beam is given by Equation 5.12. Similarly, 

for a cracked reinforced concrete beam with axial force, the shear capacity can be 
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expressed by Equation 5.14. For the reader’s convenience both equations are 

reproduced below: 

For a cracked beam without axial force, 

cotjd
s

fA
jdbvV syv

vci  ;    (6.1) 

For a cracked beam with axial force, 

     2tantantan jdbvfAfAff
s

jdA
V vcipplsxvsy

v  . (6.2) 

All parameters used in the above two equations were defined in Chapter 5. 

 

In both of the above equations, it can be noted that the shear capacity of the cracked 

beam is given as a function of the average width of the shear crack. Practically it is 

difficult to determine the exact value of the average crack width as the crack width 

changes from point to point along the crack. Even though in ideal conditions it is 

possible to estimate the average crack width using some complex theoretical 

approaches, such methods may not be possible in practical situations. Therefore, this 

study used an approximate average shear crack width, which could be measured or 

estimated easily, to estimate shear capacity using the above equations. For this 

purpose, it was decided to use the average crack width as a linear function of 

maximum crack width measured in the specimen. That means the average crack 

width, w, can be expressed as, 

maxwkw w  ,     (6.3) 

where,  

kw = Multiplying factor for average crack width, and 

wmax = Maximum measured crack width (during experiment). 

The value of the multiplying factor, kw needs to be determined. 

 

As explained in Chapter 5, the shear capacity of a cracked beam, V, with external 

clamping is given by Equation 5.15. For the reader’s convenience that equation is 

reproduced below: 
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extv
vv

v Pjd
s

fA
jdbfV ,1 cotcot   ,   (6.4) 

All parameters used in the above equation are defined in Chapter 5. In this equation, 

fc1 is limited by a function of average crack width, w, and the same approach as 

explained above is used to estimate the value of w.  

 

In order to estimate the multiplier, kw the experimental shear capacities of the crack 

specimens EPT12, EPT22 and EPT32 were used. The experimental results were 

compared to the estimated capacities for different values of kw and results are shown 

in Table 6.1.  

 

Table 6.1: Comparison of shear capacities for different kw for external post-tensioned specimens 

Specimen 
Experimental 

Capacity 
[kN] 

Estimated Capacity [kN] kw value to get 
the 

Experimental 
Capacity 

kw = 0.65 kw = 0.7 kw = 0.75 

EPT12 194 207 192 179 0.70 

EPT22 173 181 162 154 0.73 

ECL32 262 274 262 251 0.71 

 

From the table above it can be noted that when kw = 0.7, the equation predicts the 

shear capacity with significant accuracy. However, it was not possible to make a 

conclusion about the value of kw from a sample size of three. To confirm this finding 

further analysis was conducted using finite element model developed as described in 

the previous chapter. 

 

6.2 Comparison of Experimental Results with Theoretical 
Predictions 

In this section, a comparison of experimental results with the theoretical estimation 

is discussed. As indicated in Chapter 2, a number of different methods and equations 

have been recommended and used worldwide to estimate the shear capacity of 

reinforced concrete beams with no cracks. In this section the equations given in the 
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Australian code AS3600 are used to estimate the shear capacity of the specimens 

wherever possible.  The details of the equations are given in Chapter 2 under Section 

2.3.2 or can be found in the relevant code. For the reader’s convenience those 

equations are reproduced below as Equations 6.5–6.8: 

 

Ultimate shear capacity of a reinforced concrete beam, Vu, is given by, 

usucu VVV  ,      (6.5) 

 

Contribution by shear reinforcement, Vus, is given by, 

vosy
sv

us df
s

A
V cot ,    (6.6) 

 

Contribution by concrete, Vuc is given by the following two equations: 

For reinforced concrete beams without axial force; 

3

1

0

'

0321 









db

fA
dbV

v

cst
vuc  ,     (6.7) 

For reinforced concrete beams with axial force; 

 
vdec

ov

cptst
ovuc PV

db

fAA
dbV 







 


3

1

321  .   (6.8) 

All parameters used in these equations were defined in Chapter 2. 

 

In this theoretical calculation the repaired beam was assumed to be free of cracks 

and, therefore, treated as an uncracked beam for the purpose of these capacity 

predictions.  

 

It should be noted that, in the current code of practice AS3600 (2001), there are no 

provisions to estimate the shear capacity of reinforced concrete beams with cracks. 

Therefore, to estimate the theoretical shear capacity of the cracked beams, Equations 
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6.1, 6.2 and 6.4 were used. As discussed previously in this chapter, a multiplier, kw, 

of 0.7 was used for these estimations.  

 

Based on these equations and assumptions ultimate loads were calculated for all 

specimens used in the experiment. For the loading arrangement used in the 

experimental program (four-point loading), the ultimate load Pu is given as 

uu VP 2      (6.9) 

The results are tabulated together with the experimental data in Table 6.2. 
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Table 6.2: Comparison of experimental results with theoretical estimations 

Specimen 

Average 
Compressive 

Strength  

[MPa] 

Pre- 
loading 

[kN] 

Ultimate Load, Pu  

[kN] Remarks 

Experimental Theoretical 

EPT11 39.9 - 196 162 Control beam 

EPT12 40.3 180 194 192* 
Pre-cracked 

+ Post-
tensioned 

EPT13 40.4 188 310 341 

Pre-cracked 
& Repaired + 

Post-
tensioned 

EPT14 40.4 - 354 344 Post-
tensioned 

EPT21 29.3 - 197 163 Control beam 

EPT22 32.3 202 173 162* 
Pre-cracked 

+ Post-
tensioned 

EPT23 40.5 177 293 349 

Pre-cracked 
& Repaired + 

Post-
tensioned 

EPT24 36.5 - 288 279 Post-
tensioned 

ECL31 39.4 - 176 176 Control beam 

ECL32 37.7 145 262 262* Pre-cracked 
+ Clamped 

ECL33 41.6 145 279 286 
Pre-crack & 
Repaired + 
Clamped 

ECL34 37.7 - 287 268 Clamped 

ECL35 41.6 176 260 286 
Loaded & 
Repaired + 
Clamped 

ECL36 41.5 165 214 N/A 
Failed due to 

concrete 
crushing 

ECL37 40.0 152 233 N/A 

ECL38 39.0 189 243 N/A 

* Calculated using a crack width of 70% of the maximum crack width as measured 

in the experiment. 

 

Since specimens ECL36, ECL37 and ECL38 failed due to concrete crushing near to 

the loading points, the failure mode was different from the other specimens reported 
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above. As it was expected that, in this research study, the failure of all specimens 

would be due to shear failure and, therefore, all the theoretical equations used in this 

dissertation are based on that assumption. The theoretical capacities of specimens 

ECL36, ECL37 and ECL38 were not calculated, as the assumption did not apply.  

 

The theoretical equations discussed above predicted the capacity of the specimens 

reasonably well. For estimation of the capacity of cracked beams, a crack width of 

70% of maximum crack width as measured in the experiment was used.  

 

In Group 1 specimens, the experimental capacity was slightly less than the 

theoretical estimation for EPT13, while EPT11 and E PT14 had higher experimental 

values than theoretical estimations. This can be attributed to the presence of smaller 

cracks that may not have been filled during the epoxy injection process. For 

specimen EPT12, the average crack width was taken as 70% of the maximum crack 

width measured in the experiment and the theoretical capacity was almost the same.  

A similar pattern was evident in Group 2 and in Group 3.  

 

From this it can be noted that the developed shear strength equations and the use of a 

multiplier as 0.7 to estimate the average crack width predicted the shear capacity of 

the cracked beams to a significant accuracy. This is comparable to the accuracy of 

the predicted shear capacity of uncracked beams using the code (Australian 

Standard, AS3600). Furthermore, it can be noted that the assumptions applied to the 

repaired beams also predicted the shear capacity with reasonable accuracy.  

 

Further investigations using finite element modelling were undertaken to determine 

the behaviour of post-tensioned reinforced concrete beams with existing shear cracks 

and to test further the assumption made to estimate the theoretical shear capacities. 

This is explained in the following sections.  
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6.3 Finite Element Analysis of Shear Damaged RC Beams 

6.3.1 Convergence of the Finite Element Modelling 

In general, it is necessary to conduct a convergence test on a finite element model to 

confirm that a sufficiently fine element discretization has been used. Therefore, 

convergence of this model was checked to decide the suitability of the mesh and 

optimum mesh (element) size by considering the accuracy and required time to run 

each case. The running time of a model depends on various factors including the 

complexity of the finite element mesh arrangement, the material constitutive models 

and the specification of the computer used for the analysis.  

 

6.3.1.1  Material Constitutive Model 

The material constitutive models for steel, concrete and epoxy used in this analysis 

were explained in Chapter 5. 

 

6.3.1.2 Computer Specifications 

For this analysis a Pentium 4 (DELL) desktop computer with the following 

specifications was used: 

 Operation System: Microsoft Window® XP Professional (Service Pack 2) 

 CPU: 2.40 GHz & 512 MB RAM, 40 GB Hard drive 

 

6.3.1.3 Mesh Arrangement 

Initially a simple model without any pre-crack or strengthening (Figure 6.1) was 

modelled in Abaqus according to the specifications given in Chapter 5. Different 

mesh sizes as shown in Table 6.3 and Table 6.4 were selected to check the 

convergence of the model.  

 

                                                 
 Registered trade mark of Microsoft 
 Trade mark of Dell Corporation  
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Figure 6.1. FEM mesh of the uncracked beam used to check the convergence 

 

The model was analysed using displacement-control until it reached the peak loads. 

The time to run each case and the maximum load are shown in Table 6.3. 

Convergence of the model analysis is shown in Figure 6.3. 

 

Table 6.3: Convergence and analysis time for the uncracked beam model 

Number of Element 

X-direction  Y-direction 

Element size [mm] 

X-direction  Y-direction 

Approximate 
Time Taken to 

Run One 
Model 

Ultimate 
Load  

[kN] 

10030 2510 5 hrs 15 min 193.5 

12530 2010 6 hrs 45 min 193.8 

25030 1010 10 hrs 30 min 194.0 

33330 7.510 12 hrs 45 min 194.0 

 

To ensure the convergence of the cracked model, the same analysis was carried out 

for the cracked reinforced concrete beam (Figure 6.2) with external post-tensioning 

under a monotonically increasing load (with displacement control). The results are 

shown in Table 6.4 and Figure 6.3. 
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Figure 6.2. FEM mesh of the cracked beam used to check the convergence 

 

Table 6.4: Convergence and analysis time for the cracked beam model 

Number of Element 

X-direction  Y-direction 

Element size [mm] 

X-direction  Y-direction 

Approximate 
Time Taken 
to Run One 

Model 

Ultimate 
Load  

[kN] 

10030 2510 6 hrs 00 min  192.6 

12530 2010 8 hrs 15 min 193.1 

25030 1010 14 hrs 15 min 193.2 

33330 7.510 17 hrs 00 min 193.2 
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Figure 6.3. Convergence of the finite element model 

 

Based on the above results, it was decided that an element size of 2010 would be 

suitable for subsequent analysis to obtain reasonable accuracy with significantly 

reduced time. 

 

6.3.2 Verification of the Finite Element Model 

In this section, the validity of the developed model including the material 

constitutive models for steel, concrete and epoxy is verified by comparing with the 

corresponding experimental data given in Chapter 4. For verification purposes, the 

specifications of Group 1 specimens were used. Details of the specimens and the 

loading arrangements, including loading rate, were given in Chapters 3 and 4 and are 

not duplicated in this section. 

 

The load-displacement curve of the control beam, EPT11, (no initial cracks, no 

strengthening) predicted by the finite element model was plotted with experimental 

data as shown in Figure 6.4. Similarly the comparison of the load-displacement 

behaviour of cracked beam, EPT12, (pre-cracked, strengthened by external post-

tensioning) is shown in Figure 6.5. 
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Figure 6.4. Comparison of the load-displacement behaviour of the control beam 
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Figure 6.5. Comparison of the load-displacement behaviour of the cracked beam 
 

From the above figures, it can be noted that the experimental data and the finite 

element results have quite good correlation. For the control beam, the predicted 

ultimate load capacity 193.8 kN (within 1.2% accuracy) did not vary significantly 

from the experimental ultimate load capacity 196 kN. Similarly for the cracked beam 

with external post-tensioning the predicted ultimate load capacity was approximately 
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96% of that of the experimental value. It also can be noted that the initial stiffness of 

both of the above beams predicted by finite element model is similar to that of the 

experimental one. However, the experimental behaviour of the above two beams 

shows more ductile behaviour than that predicted by the finite element analysis.  

This variation can be attributed to the simplifications made to develop constitutive 

models of the steel and the concrete for finite element modelling. 

 

Based on the above comparison, the developed finite element model and material 

constitutive models were accepted as able to simulate to a significant accuracy of the 

behaviour of reinforced concrete beams with existing shear cracks strengthened by 

external post-tensioning. From this, it was concluded that the finite element model 

developed in this study is reliable in predicting the behaviour, up to the ultimate load 

capacity, of reinforced concrete beams with exiting shear cracks.  

 

In order to validate the crack pattern used in the finite element model, a separate 

analysis was performed using a computer program called Response-2000 (Bentz 

2001). This program was developed based on the modified compression field theory 

(MCFT) proposed by Collins et al. This is a useful tool to get an indication of crack 

pattern and crack width in reinforced concrete beams. The results are presented in 

Appendix E. It can be noted that even though the program predict a number of 

smaller crack in the shear span region, the sum of these predicted crack widths is 

nearly the same as the observed single crack width during the experiment. 

 

6.4 Parametric Study 

To investigate the influence of various parameters on the behaviour of shear 

damaged reinforced concrete beams, a parametric study was conducted using the 

developed finite element model as explained in Chapter 5.  

 

Since a large amount of computation and time is involved in the analysis of each 

finite element model, using symmetry of loading and geometry a half model of 
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reinforced concrete beams was used for the parametric study. A boundary condition 

equivalent to a roller support was used along the centre line of the half beam model. 

More details can be found in Chapter 5. As expected the half beam model yielded 

almost the same results (193.72 kN) as the full beam model as explained in the 

previous section (193.78 kN).  

 

Although there are a number of various parameters that could influence the 

behaviour of a shear damaged reinforced concrete beam, only the following major 

parameters were considered in this study: 

 concrete strength; 

 shear reinforcement ratio; 

 post-tensioning force; 

 crack width; 

 type of epoxy resin. 

Details of the parametric study concluded to investigate the influence of each of the 

above parameters on the behaviour of shear damaged reinforced concrete beams are 

explained in the following sub sections.  

 

6.4.1 Concrete Strength 

A range of concrete strength from 25 MPa to 50 MPa was considered in this 

parametric study to investigate the influence of concrete strength on the shear 

capacity of cracked and repaired reinforced concrete beams strengthened by external 

post-tensioning. In order to understand the effect of concrete strength, other 

parameters were fixed at experimental values as follows: 

 initial post-tensioning force = 150 kN; 

 Young’s modulus of the epoxy = 3.0 GPa; 

 maximum crack width is taken as 4 mm; 

 shear reinforcement spacing = 250 mm & 180 mm. 
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The predicted ultimate loads from the finite element analysis of the cracked and 

repaired reinforced concrete beams strengthened by external post-tensioning for 

different concrete strengths are summarised in Table 6.5. Furthermore, this variation 

is shown in Figure 6.6 and Figure 6.7 for cracked and repaired beams respectively. 

 

Table 6.5: Maximum load of reinforced concrete beams strengthened by external post-tensioning 

Specimen 
Spacing of 
Shear R/F 

[mm] 

Ultimate Load [kN] 

'
cf = 25 

MPa 

'
cf =32 

MPa 

'
cf =40 

MPa 

'
cf =50 

MPa 

Cracked 
250 146 161 188 207 

180 155 168 194 211 

Repaired 
250 N/A* 326 357 388 

180 N/A* 338 364 396 

* Applied post-tensioning force is not suitable for 25 MPa concrete.  
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Figure 6.6. Shear capacities of cracked reinforced concrete beam for different concrete strengths 
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Figure 6.7. Shear capacities of repaired reinforced concrete beam for different concrete strengths 
 

From the results presented above it can be noted that the capacity of both cracked 

and repaired beam increases with the strength of the concrete. However, the capacity 

of the cracked and repaired beams does not increase as much as the concrete strength 

does. This may be due to the constant area of longitudinal reinforcement placed in 

the beam, which could limit the force that could be carried by concrete section.  

 

Since the 150 kN post-tensioning force is significantly higher for the 25 MPa 

concrete, the corresponding case was not analysed using finite element model. More 

detail on the limitation of the post-tensioning force that could be applied for a given 

section is explained in Section 6.4.3. 

 

6.4.2 Amount of Shear Reinforcement 

As indicated in Section 6.4.1 above, two different spacings (250 mm and 180 mm) 

were used to examine the influence of the shear reinforcement ratio on the behaviour 

of shear damaged reinforced concrete beams. These two different spacings were only 

applied within the effective span (distance between supports) of the specimen. The 

variation of the shear capacities of cracked and repaired beams for different shear 

reinforcement ratios can be seen in Figure 6.6 and Figure 6.7 respectively. 
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The effect of shear reinforcement is higher in low grade concrete in the case of 

cracked beams. This implies that the shear reinforcement plays a major part in the 

stress transferring mechanism when the concrete is weaker. In the case of repaired 

beams also, as concrete strength increases, the influence of the shear reinforcement 

ratio decreases. 

 

6.4.3 Post-Tensioning Force 

External post-tensioning force is another important parameter in the design of post-

tensioned reinforced concrete members. The amount of applied post-tensioning force 

is limited by a number of conditions. For an uncracked reinforced concrete beam 

these limitations can be expressed by the following inequality (Burgoyne 2005): 

 

allowablecallowablet f
Z

M

Z

Pe

A

P
f ,,     (6.10) 

where 

ft,allowable = Permissible tensile stress in concrete, 

fc,allowable = Permissible compressive stress in concrete, 

P = Prestressing force, 

A = Cross section area of the section, 

e = Eccentricity, 

Z = Elastic section modulus, and 

M = Applied moment. 

 

It was necessary to check the tensile and compressive stresses, in both the top and 

bottom fibre of the section, for every load case. The critical sections are normally, 

but not always, the mid-span and the sections over supports (for continuous beams). 

The stresses at any position are made up of three components, one of which normally 

has a different sign from the other two (see Equation 6.10); consistency of sign 

convention is essential. 
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When these limitations are plotted in a diagram, which is also known as ‘Magnel 

diagram’, the desirable post-tensioning force should be within the ‘feasible region’ 

of the diagram as shown in Figure 6.8. However, for a reinforced concrete beam with 

an existing shear crack an additional limitation need to be considered to satisfy the 

amount of stress that can be transferred across the shear crack.  

 

 

Figure 6.8.  Magnel diagram for an uncracked section 
Source: (Burgoyne 2005) 

[Subscripts b and t denote bottom and top respectively] 
 

In the case of a cracked section, the prestressing force applied to the section should 

satisfy the internal equilibrium of the forces. Modified compression field theory 

(MCFT) explains the basic stress transfer mechanism across the shear crack and the 

internal force equilibrium of a reinforced concrete section with existing shear cracks. 

Details of the MCFT can be found in Chapter 5. 

 

By considering these facts together, a range of initial post-tensioned forces were 

selected to investigate the influence of initial external post-tensioning force on the 

behaviour of shear damaged reinforced concrete beams strengthened by external 

post-tensioning. Other parameters were fixed at experimental values as follows: 
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 concrete strength = 40 MPa; 

 Young’s modulus of the epoxy = 3.0 GPa; 

 maximum crack width = 5 mm; 

 shear reinforcement spacing = 250 mm. 

Results obtained from the finite element analysis for different post-tensioning forces 

are summarised in Table 6.6. 

 

Table 6.6: Variation of ultimate load for different initial post-tensioning force 

Post-Tensioning Force 
[kN] 

Ultimate Load [kN] 

Cracked beam Repaired beam 

125 161 304 

140 176 332 

150 188 357 

160 192 365 

 

From Table 6.6, it can be noticed that existing shear crack has a significant influence 

on the capacity of the cracked beam with higher post-tensioning force. The increase 

in capacity is significantly lower in the cracked beam compared with that of the 

repaired beam as the post-tensioning force increases. In other words, a higher post-

tensioning force does not increase the capacity of a cracked beam as much as it does 

in a repaired beam. A possible explanation is that the higher post-tensioning could 

lead to slip along the cracked plane. This is because the additional post-tensioning 

force increases the stress that needs to be transferred through the crack even before 

loading has commenced. That end up with early slip along the crack plane as the 

maximum stress that can transferred across the crack is the same regardless the 

amount of the post-tensioning force.  

 

6.4.4 Crack Width  

To investigate the influence of crack width in a shear damaged reinforced concrete 

beam strengthened by external post-tensioning, different multiplier values, kw, were 
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considered to vary the average crack width according to Equation 6.3. Results 

obtained for different values of kw are summarised in Table 6.7. Other parameters 

were set as follows: 

 concrete strength = 40 MPa; 

 initial post-tensioning force = 150 kN; 

 maximum crack width = 5 mm; 

 shear reinforcement spacing = 250 mm. 

 

Table 6.7: Variation of ultimate load of a cracked beam with different value of kw 

kw Ultimate load [kN] 

0.6 227 

0.65 205 

0.7 188 

0.75 174 

0.8 163 

 

It can be noted from Table 6.7 that the ultimate load of a cracked section is quite 

sensitive to the average crack width (or kw value).  As can be seen from Figure 6.9 

the stress that can be transferred across the shear crack, vci is very sensitive to the 

change of crack width for lower values of crack width. In general, the average crack 

width of an existing structure could be up to 2-3 mm, which is within the most 

sensitive range in terms of the maximum stress that could transfer across the crack. 

That means the crack width is one of the most important parameters in the 

determination of the capacity of cracked reinforced concrete members. 
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Figure 6.9. Variation of vci with crack width according to MCFT 

 

6.4.5 Type of Epoxy Resin 

To investigate the effect of the epoxy on the behaviour of a repaired beam, different 

values of Young’s modulus for the epoxy resin were considered. For this parametric 

study a range from 2 GPa to 4 GPa was selected, which is the common range for 

most epoxies. Other parameters were fixed to the experimental values as follows: 

 initial post-tensioning force = 150 kN; 

 concrete Strength = 40 MPa; 

 maximum crack width = 5 mm; 

 shear reinforcement spacing = 250 mm. 

The average crack width was taken as 0.7 of the maximum crack width. 

 

The variation of the ultimate load of repaired reinforced concrete beams after 

strengthening by external post-tensioning is given in Table 6.8 for different values of 

Young’s modulus for the epoxy resin while other parameters were set as above. It 

should be noted that normally the Young’s modulus of commercially available 

epoxy resin will be close to 3 GPa. 
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Table 6.8: Variation of ultimate load for different values of Young’s modulus of epoxy resin 

Young’s Modulus of 
Epoxy [GPa] 

Predicted Ultimate Load 
[kN] 

Increase in Ultimate 
Load* [%] 

2.0 337 - 5.6 

3.0 357 0  

4.0 366 2.5 

* Young’s modulus of 3.0 GPa is considered as the reference value. 

 

It can be seen from Table 6.8 that the increase in the Young’s modulus of the epoxy 

from 2 GPa to 4 GPa (by 100%) could increase the capacity only by about 8.6%. 

This could be due to the following reasons: 

 The epoxy filling region is insignificant compared to the volume of concrete. 

 The epoxy has significantly higher compressive and tensile strengths than 

concrete. 

 The epoxy was modelled as perfectly elastic material. 

 

By considering these facts and the general range of Young’s modulus in 

commercially available epoxy resin, it is suggested that the influence of different 

types of epoxy on the capacity of repaired beams will be minimal provided that the 

compressive and tensile strengths of the epoxy are significantly higher than those of 

concrete. 

 

6.5 Discussion on Experimental and Numerical Results 

In this section a comparison between the predicted shear capacities (or ultimate 

loads) using the finite element analysis (FEA) and experimental data is presented and 

discussed. Convergence and verification of the developed finite element model for 

cracked reinforced concrete beam are presented in Section 6.3 of this chapter.  

 

As the FEA was performed only for cracked and repaired beams in this study, 

experimental data of the cracked and repaired beams strengthened by external post-
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tensioning are compared with the predicted capacities of similar beams using FEA. 

Experimental data of the second (cracked) and the third (repaired) beams of both 

Group 1 and 2 (EPT12, EPT13, EPT22 and EPT23) are given with the predicted 

capacities of similar beams using FEA in Table 6.9. As explained previously, details 

of the experimental results were given in Chapter 4. The FEA predicted values are 

taken from the parametric study results presented in the previous section (Section 

6.4). 

 

Table 6.9: Comparison of finite element predicted ultimate loads with experimental data 

Specimen 

Experimental Data Finite Element Analysis 

Remarks 
Average 

Compressive 
Strength 

[MPa] 

Ultimate 
load 
[kN] 

Concrete 
Strength 
[MPa] 

Predicted 
Ultimate 

Load [kN] 

EPT12 40.3 194 40 188 Pre-cracked + 
Post-tensioned EPT22 32.3 173 32 168 

EPT13 40.4 310 40 357 Pre-cracked & 
Repaired + 

Post-tensioned EPT23 40.5 293 40 364 

 

From Table 6.9 it can be noted that the finite element model predicts the capacities 

of externally post-tensioned cracked reinforced concrete beams to a reasonable level 

of accuracy. As noted earlier, the behaviour of the cracked beam strengthened by 

external post-tensioning is similar to that obtained from the FEA. Based on this it 

can be concluded that the finite element model developed in this study is reliable and 

conservative in predicting the ultimate strength of a shear damaged reinforced 

concrete beam strengthened by external post-tensioning. 

 

Furthermore, it can also be noted from Table 6.9 that, the finite element predicted 

capacity is higher than that obtained from the experiment for the repaired beams 

strengthened by external post-tensioning. This is due to the assumption made in the 

FEA. As discussed in Chapter 5, to reduce the complexity associated with the 

repaired beam and simplify the modelling work for this study it was assumed that the 

beams were fully repaired with epoxy resin and free from any cracks. However, in 
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practice it is not possible to achieve this assumption as there will be some minor 

cracks which are not possible to repair due to following reasons: 

 Some cracks may not be filled with the epoxy due to its viscosity. The epoxy 

(Nitofill LV) used in this research project can be used to fill cracks down to 

a width of 0.01 mm.  

 Some cracks may be not visible from outside. 

 

Due to these reasons the experimental beams reached a lower capacity than predicted 

using FEA and possibly with a lower Young’s modulus. This can be seen in Figure 

6.10 which compares the behaviour of an epoxy repaired beam as predicted by the 

FEA with the experimental data.  
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Figure 6.10. Comparison of FEA predicted behaviour of repaired beam with experimental data 

 

The variation in the capacities of a repaired beam and the theoretical predictions can 

also be noted in Table 6.2, where the same assumption was made to predict the 

capacity of repaired beams strengthened by external post-tensioning. For comparison 

purposes the corresponding theoretical predictions of the repaired beams are 

reproduced in Table 6.10. 
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Table 6.10: Comparison of ultimate loads of repaired beams strengthened by external post-tensioning 

Specimen 

Average 
Compressive 

Strength 
[MPa] 

Ultimate load [kN] 

RemarksExperimental 
Data 

Theoretical 
Prediction* 

Finite 
Element 
Analysis^ 

EPT13 40.4 310 341 357 Pre-cracked 
& Repaired 

+ Post-
tensioned 

EPT23 40.5 293 349 364 

* No effect of epoxy resin was considered 

^ Concrete strength was taken as 40 MPa 

 

From the comparison it can be concluded that the developed finite element model is 

reliable in predicting capacities of repaired reinforced concrete beams strengthened 

by external post-tensioning.  

 

In general, it can be concluded that the developed finite element model could be used 

to estimate the capacities of both cracked and epoxy repaired reinforced concrete 

beams strengthened by external post-tensioning. In addition the developed finite 

element model is conservative in predicting the capacity of cracked reinforced 

concrete beams strengthened by external post-tensioning. Further improvements may 

be needed in the finite element modelling of repaired beams to make it a more 

conservative model for predicting capacities.  

 

The experimental results reported in Chapter 4 indicate that compared to 

conventional external post-tensioning, external clamping significantly reduces the 

influence of shear cracks on the behaviour of cracked reinforced concrete beams and 

on the capacity of the member. In addition the increase in member capacity due to 

epoxy repair was insignificant with the external clamped specimens compared to the 

specimens with external post-tensioning. Since the experimental results suggested 

that external clamping could reduce the effect of existing shear cracks on member 

capacity, the influence of other parameters such as concrete strength, and crack 

width may be minimal. However due to time limitation of the PhD program, a 
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detailed parametric study related to external clamping was not carried out as part of 

this project. 

  

6.6 Summary 

The results of numerical analysis including theoretical predictions and finite element 

results were presented in this chapter. The numerical results were verified using the 

data obtained from the experimental program presented in Chapter 4. An attempt to 

determine an assigned value for average shear crack width using the maximum crack 

width appearing in a reinforced concrete beam was also presented. Using the 

experimental data, it was suggested that a value of 0.7 of the maximum crack width 

can be used as the average crack width to calculate the capacity of a cracked 

reinforced concrete beam to a reasonable level of accuracy. Available computer 

program for crack width prediction is also useful to get idea about the crack pattern 

and crack width in a reinforced concrete beam with a reasonable level of accuracy. 

 

Results of a detailed parametric study were also presented in this chapter. The 

influence of a number of parameters such as concrete strength, amount of shear 

reinforcement, crack width, epoxy resin type and post-tensioning force on the 

behaviour of shear damaged reinforced concrete beams were investigated in the 

parametric study. It was concluded that crack width and post-tensioning force have a 

significant influence on the capacity of shear damaged concrete beams. In the case of 

repaired beams, the post-tensioning force is the most influential parameter while the 

type of epoxy has only a minimal effect on the capacity of repaired beams, provided 

that the epoxy resin has significantly higher compressive and tensile strengths than 

concrete. 

 

In general, based on the outcomes of the parametric study, the following 

experimental results were confirmed: 

 Shear cracks have a substantial effect on capacity of the reinforced concrete 

beams strengthened by external post-tensioning. The crack width and the 
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external post-tensioning force are the most important parameters when 

estimating the capacity of such members. 

 Proper repair could significantly minimise the effect of shear cracks on the 

behaviour of cracked beams. 

Detailed conclusions of this research study are given in the next chapter. 
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Chapter 7 

CONCLUSIONS 

 

The main objective and the background of this research project are outlined in the 

initial chapters of this thesis.  The experimental program and the numerical study 

performed during the research project to achieve the objective are explained and 

discussed in Chapters 3 to 6. In general, both the main and specific objectives as 

indicated in Chapter 1 have been achieved.  

 

This chapter will conclude the research study with the view to design an effective 

strengthening technique for shear damaged reinforced concrete beams. Due to time 

and resource constraints, it was not possible to address all of the issues associated 

with the current topic and, therefore, a number of possible scenarios are listed at the 

end of this chapter for researchers who are interested in this area. 

 

7.1 General and Specific Conclusions 

7.1.1 Conclusions Based on the Experimental Results 

Based on the experimental data obtained from sixteen beams, the following 

conclusions were made: 

 Existing shear cracks have a substantial effect on the shear capacity of 

reinforced concrete members. Unrepaired shear cracks significantly reduce 
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the efficiency of strengthening when the reinforced concrete members are 

strengthened by external post-tensioning. 

 Compared to external post-tensioning, the application of external clamping to 

a shear damaged reinforced concrete member is more effective in reducing 

the effect of existing shear cracks on the behaviour of shear damaged 

concrete beams.  

 Vertical clamping is a more effective method to increase member capacity 

than inclined clamping. However, both external clamping methods 

effectively reduced the reopening of existing shear cracks. Inclined clamping 

is an effective technique to reduce the effect of shear cracks provided that 

localised concrete failure due to high stress concentration is avoided.  Further 

investigation is required in this regard. 

 A suitable crack repair technique must be determined for concrete members 

with existing shear damage before attempting to strengthen them by external 

post-tensioning. An epoxy injection technique was found to be effective for 

crack repairs in this study.  The proper repair of existing shear cracks using 

epoxy resin injection increases the capacity of a member as much as 70% 

when used with external post-tensioning. 

 The failure of all the epoxy repaired beams, regardless of the type of 

strengthening methods, was similar to that of a new beam with the same 

strengthening technique. In particular, the crack development in repaired 

beams is very similar to a new beam.  

 

7.1.2 Conclusions Based on the Simplified Mathematical Approach 

A simplified approach to estimate the shear capacity of cracked beams strengthened 

by external post-tensioning and external clamping was developed in this research 

and presented in detail in Chapter 5. Results from the simplified approach developed 

in this study had a good correlation with the experimental results. 
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The attempt to relate the average crack width with the maximum crack width using a 

multiplier, kw of 0.7 (linear relation) predicted the capacity to a reasonable level of 

accuracy.  

 

It can be concluded that the simplified approach developed in this research is reliable 

and conservative in predicting the capacity of shear damaged concrete members 

strengthened by external applications.  

 

7.1.3 Conclusions Based on the Numerical Results 

A finite element model of shear damaged concrete beams was developed using the 

finite element package, Abaqus. Constitutive models of materials and element types 

were discussed in Chapter 5. Based on the parametric study performed using the 

developed finite element model, the following conclusions were drawn: 

 Member capacity is very sensitive to the change of average crack width 

compared to the other parameters used in this study such as concrete 

strength, post-tensioning force and type of epoxy. This implies that the crack 

width need to be measured accurately and incorporated into the design of 

strengthening project for shear damaged reinforced concrete beams. 

 The type of epoxy resin does not have much influence on the behaviour of 

repaired beams provided that the compressive and tensile strengths of the 

epoxy resin are significantly higher than those of concrete. 

 Post-tensioning force also plays an important role in determining the 

capacity of cracked beams. A higher post-tensioning force did not increase 

the capacity as expected. In addition to the normal limitations considered 

during any prestressing reinforced concrete design, the limitation of the 

maximum stress transfer across the shear crack also needs to be considered 

when deciding the feasible post-tensioning force for a cracked reinforced 

concrete beam. 
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7.1.4 Overall Conclusions 

Based on both the experimental and numerical results and discussions presented in 

previous chapters the following conclusions were made: 

 Shear cracks in reinforced concrete beams have a substantial effect on the 

capacity and the behaviour of the beams when strengthened by conventional 

external post-tensioning. Although the effect of shear cracks is minimal when 

strengthened by external clamping, proper repair could increase the capacity 

by a significant amount (up to 20% of the unrepaired beam capacity). 

 The simplified mathematical approach developed in this research project can 

be effectively used to estimate the shear capacity of the cracked reinforced 

concrete members strengthened by either external post-tensioning or external 

clamping. 

 Any existing shear cracks need to be properly repaired prior to the 

strengthening of reinforced concrete beams. Epoxy resin can be used as an 

effective technique to repair the cracks. 

 

7.2 Recommendations for Future Studies 

Based on the findings and conclusions of this study, the following recommendations 

are provided for future research in the field of strengthening of shear damaged 

reinforced concrete members: 

 A similar study is needed to investigate the effect of existing shear cracks in 

deep beams and to evaluate the influence of different parameters on the 

behaviour of such beams when strengthened with external post-tensioning. 

 Further experimental studies are needed to understand the effect of external 

clamping, particularly inclined clamping, on the behaviour of shear damaged 

reinforced concrete beams. Special attention may be required to avoid 

localised failure near the clamping or loading positions as reported in this 

study. The use of high strength concrete may help to overcome this issue. 

 It is also possible to eliminate the influence of shear cracks on the behaviour 

of cracked beams by using a combination of vertical clamping together with 
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external post-tensioning.  By selecting correct values for external clamping 

and external post-tensioning, it is possible to get a similar effect as with 

inclined clamping. This will also prevent localised failure which happened 

with inclined clamping in this research. This could be an interesting topic for 

future research.  

 There is a need to investigate a simplified standard method to measure the 

crack width as it is the most influential parameter in determining the member 

capacity of a cracked reinforced concrete member. 

 In the numerical analysis associated with this research study, the epoxy 

repaired beams were assumed to be free of cracks after repair. The numerical 

methods predicted higher capacities than the experimental results as minor 

cracks were likely to have remained unrepaired. Therefore, further study is 

needed to develop a more reliable model to estimate the correct capacity of 

repaired beams. Although it is quite challenging to estimate internal cracks, 

they can significantly influence the capacity of repaired beams. A more 

effective strengthening method for shear damaged reinforced concrete 

structures could result from this model development. 

 Further expansion of the strut-and-tie model to predict the crack pattern of a 

reinforced concrete beam with external clamping could be another potential 

area that needs to be investigated. This study could also combine the 

application of external post-tensioning together with the external clamping to 

investigate the optimum ratio of these external strengthening techniques. 
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Appendix A 

EXPERIMENTAL DATA 
(Supplement to Chapter 3) 

A.1 Material Properties 

A.1.1 Concrete Strength 

Details of the testing procedures to measure the concrete strength (both compressive 

and tensile strengths) were explained in Section 3.3.1.  

 

Detailed results of the compressive and tensile strength tests are given in Table A. 1 

and Table A.2 respectively. Average compressive strength was given in Table 3.2 (in 

Chapter 3). As specified in Chapter 3, the following ready-mix concrete was used to 

prepare the specimens:   

 concrete mix - Ready mix; 

 specification - 32 MPa, 20 mm nominal aggregate, 80 mm slump; 

 supplier - Wagner, Toowoomba. 

 
Table A. 1: Experimental results of concrete compressive strength 

Specimen 
Average 
Diameter 

[mm] 

Peak 
Load 

[kN] 

Compressive Strength 

[MPa] 

Individual Average 

EPT11 

99.95 317 40.4 

39.9 99.99 318 40.5 

100.00 300 38.2 
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99.95 317 40.4 

100.04 316 40.2 

EPT12 

100.00 322 41 

40.3 

100.03 312 39.7 

100.02 308 39.2 

99.95 317 40.4 

100.00 322 41 

EPT13 

100.02 319 40.6 

40.4 

99.97 314 40 

100.04 305 38.8 

100.01 315 40.1 

100.00 333 42.4 

EPT14 

100.03 312 39.7 

40.4 

100.02 308 39.2 

99.95 317 40.4 

100.02 319 40.6 

100.05 331 42.1 

EPT21 

100.20 243 30.8 

29.3 

99.50 214 27.5 

100.10 224 28.5 

100.04 240 30.5 

99.96 229 29.2 

EPT22 

100.25 257 32.5 

32.3 

100.05 248 31.6 

99.98 248 31.6 

99.97 257 32.8 

100.00 258 32.8 

EPT23 

100.00 319 40.6 

40.5 

99.94 314 40 

99.92 305 38.9 

100.12 319 40.5 

100.10 334 42.4 

EPT24 

100.02 289 36.8 

36.5 
99.97 276 35.2 

100.04 292 37.2 

100.01 290 36.9 

ECL31 
100.00 309 39.3 

39.4 
100.03 316 40.2 
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100.02 303 38.5 

99.95 310 39.5 

100.02 309 39.3 

ECL32 

100.05 317 40.3 

37.7 

99.95 301 38.3 

99.99 280 35.6 

100.00 295 37.6 

99.95 288 36.7 

ECL33 

100.04 334 42.5 

41.6 

100.00 324 41.2 

100.03 319 40.6 

100.02 328 41.8 

99.95 329 41.9 

ECL34 

100.00 317 40.3 

37.7 

99.89 300 38.3 

100.00 280 35.6 

99.94 295 37.6 

99.92 288 36.7 

ECL35 

100.12 335 42.5 

41.6 

100.10 324 41.2 

99.87 318 40.6 

100.05 329 41.8 

99.98 329 41.9 

ECL36 

99.97 333 42.4 

41.5 

100.00 324 41.2 

100.00 324 41.2 

99.94 320 40.8 

99.92 329 41.9 

ECL37 

100.12 320 40.6 

40.0 

100.10 315 40 

100.02 303 38.5 

99.97 315 40.1 

100.04 322 40.9 

ECL38 

100.01 304 38.7 

39.0 

100.03 300 38.2 

100.02 310 39.4 

99.95 308 39.2 

100.00 310 39.5 
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Table A.2: Experimental results of concrete indirect tensile strength 

Specimen 
Average 
Diameter 

[mm] 

Height 

[mm] 

Peak Load 

[kN 

Tensile Strength 

[MPa] 

Individual Average 

EPT11 
150.35 299.6 210 2.97 

3.04 
150.2 299.8 220 3.11 

EPT12 
150.15 300 225 3.18 

3.21 
150.3 299.9 230 3.25 

EPT13 
150.1 300 230 3.25 

3.29 
150.05 300 235 3.32 

EPT14 
150.15 299.9 240 3.39 

3.36 
150.1 299.9 235 3.32 

EPT21 
150.1 299.9 185 2.62 

2.58 
150.15 300 180 2.54 

EPT22 
150.1 300.2 195 2.76 

2.86 
149.95 300 210 2.97 

EPT23 
149.95 300.1 255 3.61 

3.54 
149.9 299.9 245 3.47 

EPT24 
149.9 299.8 210 2.97 

3.08 
150 300 225 3.18 

ECL31 
149.65 299.7 190 2.70 

2.91 
149.9 299.9 220 3.12 

ECL32 
150 300.1 220 3.11 

3.04 
150.1 300 210 2.97 

ECL33 
150.1 299.6 285 4.03 

3.96 
150 299.9 275 3.89 

ECL34 
150 300.1 220 3.11 

3.04 
150.1 300 210 2.97 

ECL35 
149.85 300.1 285 4.03 

3.97 
149.75 300 275 3.90 

ECL36 
149.65 299.6 270 3.83 

3.86 
149.9 299.9 275 3.89 

ECL37 
150.25 300 270 3.81 

3.78 
150.2 300.1 265 3.74 

ECL38 
150 300 255 3.61 

3.54 
150.1 300 245 3.46 
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A.2 Data Sheets 

A.2.1 Epoxy Resin 

In the experimental program, cracked reinforced concrete beams were repaired using 

epoxy resin. Two types of epoxy components, namely Lokset E (structural epoxy 

adhesive paste and filler) and Nitofill LV (a low viscosity epoxy) were used for these 

repair purposes. Initially, the cracks were sealed with Lokset E. After allowing two 

days to cure the external seal, Nitofill LV was injected through holes at various 

points along the cracks. Details of the both Lokset E and Nitofill LV are given below 

(Figure A.1 and Figure A.2): 
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Figure A.1. Data sheet of Lokset E 
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Figure A.2. Data sheet of Nitofill LV 
 

A.2.2 Strain Gauges 

In the experimental program, the strain in the reinforcement bar was measured by 2 

mm (FLA-2-11 type) strain gauges while 30 mm (PFL-30-11 type) gauges were used 

to measure the strain in the concrete. Both types were 120.4   ( 0.5%) linear strain 

gauges with a gauge factor of 2.11 ( 1%). Data sheets for both the 2 mm and the 30 

mm strain gauges are shown in Figure A.3 and Figure A.4. 
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Figure A.3. Data sheet of 2 mm strain gauge 
 



Appendix A  Experimental Data 

 176 

 

Figure A.4. Data sheet of 30 mm strain gauge 
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A.2.3 Post-tensioning Bar 

In the experimental program, Two 26.5 mm high tensile Macalloy bars were used to 

apply the external post-tensioning force to the specimen. The mechanical properties 

of these Macalloy post-tensioning bars are given in Figure A.5. 

 
Figure A.5. Mechanical properties of Macalloy post-tensioning bars 

Source: http://www.structuralsystems.com.au/ 
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A.3 Risk Assessment 

All test set-up and loading arrangements were checked and a detailed risk assessment 

was prepared by the University safety officer. The risk assessment sheet prepared for 

this research is shown in Table A.3. 

 
Table A.3: Risk assessment sheet prepared during the experimental program 

Hazard People at Risk 
Injury 
Type 

Risk 
Level 

Risk Management 

Cuts when 
assembling cages 

Only the People 
involved in the 

process  

(1-2 people) 

Cuts to 
hands and 

arms 
Low 

Hold reinforcement in vice 
when cutting, take care 
when assembling cages 

Slipping on wet 
floor when casting 

All in the area  

(up to 6 people) 

Could 
injure any 

part of body 
Low 

Avoid too much spillage 
of concrete, Wear boots 

with slip resistant or good 
grip sole 

Eye contact with 
concrete 

All in the area  

(up to 6 people) 
Eye 

irritation 
Low Personal care 

Test beams falling 
over when loading, 

post tensioning, 
moving, or curing 

People within 1m 
of beams  

(up to 6 people) 

Crushing of 
legs or feet 

High 

Wear steel capped boots, 
check support conditions, 

secure chains when 
moving, and avoid high 

stacks when curing 

Lifting heavy 
objects (i.e. 
moving or 

positioning beams) 

Up to 6 people 

Muscular 
injuries to 
back, legs, 

or arms 

Moderate 

Use lifting trolley or 
forklift to move beams, 
manual lifting only for 
final positioning (use 

correct lifting position) 

Breaking or 
slipping of post 
tensioning rods 

All in area  

(up to 6 people) 

Severe 
impact to 

any part of 
body 

Very high 

Check equipment 
thoroughly, no standing 

allowed behind either end 
of the rods when loaded, 
erect warning signs when 

post-tensioning in progress 

Contact with epoxy 
resin or crack 

sealant 

People when 
applying 
adhesives  

(1-2 people 

Skin 
irritation, 

respiratory 
problems 

Low 
Wear gloves and long 

sleeve shirt, Follow MSDS 
handling instructions 

Removal of Lokfix 
E sealant 

People grinding 
sealant off  

(1-2 people) 

Respiratory 
problems 

Low 
Wear dust mask when 

grinding sealant 
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Appendix B 

EXPERIMENTAL RESULTS 
(Supplement to Chapter 4) 

 

B.1 General 

In this appendix the experimental data obtained during the testing of sixteen beams 

are given in detail. As the sampling rate of 1 Hz was used in System 5000, large 

amounts of data were recorded. Therefore, the data were filtered and given in the 

simplest form. These data were used to plot the graphs presented in Chapter 4. Full 

data are available in the CD Rom attached to this dissertation. Full data attached to 

the CD Rom are in text format which can be open in Excel. In order to identify the 

required data, guidance is given below. 

 

A number of gauges were used to obtain measurements during the experiment. For 

the convenience of readers, a brief summary of instrumentation is given below. 

Displacement:  Measured at the mid point of the beam using String pot and/or 

LVDT. 

Applied load: Measured using a load cell attached to the loading machine. 

Post-tensioning force: Measured using load cells attached to the post-tensioning 

rods. 

Strains in reinforcement bars & concrete: Measured using strain gauges attached 

to the reinforcements and concrete as shown in Figure B.1. 
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Strains in external clamping rods: Measured using strain gauges attached to the 

external clamping rods. 

Details of instrumentation and gauge details were explained in Chapter 3. 

 

 

(a) Strain gauge locations in concrete (attached outer surface of the beam) 

[FS – flexure side; FP – flexure plan; S – shear; T – top; B – bottom; R – right; L – left; V – vertical; 
H – horizontal; I – inclined] 

 
 

 

(b) Strain gauge locations in steel bars 

[F – flexure; S – shear; T – top; B – bottom; R – right; L – left] 

Figure B.1. Strain gauge locations in the testing specimen 
 

The gauges indicated above were attached to the System 5000 through a channel 

using either a high level card or a strain gauge card. Again full details of System 

5000 can be found in Chapter 3 under Section 3.4.5 (Data Acquisition System). 

Table B.1 summarises the details of the channel allocations for each of these gauges 

during the experiments.  
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Table B.1: Channels allocation in System 5000 for each measurement 

Gauge Detail 
Channel Number 

Remarks 
Group 1 Group 2 Group 3 

LVDT 1 1 1 
Displacement 

String Pot 2 2 2 

SRV 20 11 11 

Strain gauges 
attached to the 

reinforcement bars 

SRI 19 12 12 

SRH 18 13 13 

FPT 14 14 14 

FST 16 16 16 

FSB 17 17 17 

SLH 13 18 18 

SLI 12 19 19 

SLV 11 20 20 

SR[1] 21 or 22 29 or 30 21 

Strain gauges 
attached to the 

concrete 

SR[2] 23 or 24 27 or 28 22 

FT 31 31 23 

FB[1] 25 25 24 

FB[2] 26 26 25 

SL[2] 27 or 28 23 or 24 26 

SL[1] 29 or 30 21 or 22 27 

Load cell 1 40 40 40 Applied load 

Load cell 2 39 39 - Post-tensioning 
force  Load cell 3 38 38 - 

Strain gauge 1 - - 35 
Strain gauges 
attached to the 

external clamping 
roads 

Strain gauge 2 - - 36 

Strain gauge 3 - - 37 

Strain gauge 4 - - 38 

 

Filtered data in its simplest format, for each group, is given in the following sections. 
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B.2 Group 1 

Group 1 consisted of four reinforced concrete beams. All beams were designed with 

a rectangular cross section of 150300 mm and a length of 2500 mm. 2-N24 bars 

were used as tensile reinforcement and 2-N16 bars were used as compressive 

reinforcement. R6 bars were placed at a spacing of 250 mm as shear reinforcements. 

Beams were named EPT11, EPT12, EPT13 and EPT14. All beams except the first 

beam EPT11 were strengthened by external post-tensioning.  

 

Filtered data obtained for the specimens EPT11, EPT12, EPT13 and EPT14 are 

summarised in Table B.2, Table B.3, Table B.4 and Table B.5 respectively. 

 

Table B.2: Experimental results for specimen EPT11 

Deflection [mm] Load [kN] 

0 0 

0.25 5.3 

0.51 14.94 

0.71 23.43 

1.01 33.84 

1.24 41.34 

1.5 50.21 

2 66.81 

2.24 75.05 

2.51 82.71 

2.75 91.17 

3.01 99.31 

3.25 107.38 

3.51 114.99 

3.77 122.41 

4 127.68 

4.05 129.41 

4.1 124.52 

4.18 128.89 

4.21 129.77 

4.26 130.4 

4.49 134.41 

4.74 137.38 

5.01 140.13 

5.26 146.03 

5.5 150.81 
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5.73 155.57 

6 159.69 

6.24 165.51 

6.5 170.43 

6.75 175.54 

6.99 178.26 

7.27 181.89 

7.51 182.65 

7.76 184.96 

7.99 186.8 

8.23 189.3 

8.45 189 

8.44 187.02 

8.49 189.6 

8.73 193.64 

8.99 195.18 

9.26 196.28 

9.51 195.92 

9.74 194.85 

10.01 193.45 

10.18 192.35 

10.29 181.64 

10.32 174.41 

10.62 174.08 

10.66 173.45 

 

Table B.3: Experimental results for specimen EPT12 

Pre-Loading Loading after post-tensioning  

Deflection 
[mm] 

Load 
[kN] 

Deflection 
[mm] 

Load 
[kN] 

Additional 
deflection 
after PT 

[mm] 

0 0.02 4.05 0.0 0.0 

0.25 8.35 4.29 5.19 0.24 

0.49 16.75 4.54 13.18 0.49 

0.99 33.04 4.8 22.33 0.75 

1.26 40.27 5.06 33.65 1.01 

1.49 46.78 5.3 44 1.25 

1.76 55.05 5.54 54.36 1.49 

1.98 62.05 5.8 66.56 1.75 

2.25 69.2 6.06 78.21 2.01 

2.48 74.47 6.3 88.7 2.25 

2.53 76.48 6.55 97.66 2.5 

2.55 77.99 6.8 106.17 2.75 

2.58 78.84 7.05 115.18 3 
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2.76 84.28 7.31 124.33 3.26 

3 91.75 7.54 132.38 3.49 

3.26 99.77 7.79 141.34 3.74 

3.5 107.41 8.05 150.43 4 

3.77 115.87 8.3 158.45 4.25 

4 122.96 8.55 166.42 4.5 

4.25 128.73 9.07 182.54 5.02 

4.51 138.51 9.3 186.67 5.25 

4.75 145.16 9.57 190.18 5.52 

5 150.57 9.81 191.42 5.76 

5.25 155.35 10.05 193.18 6 

5.5 157.82 10.32 193.42 6.27 

5.76 162.82 10.56 193.48 6.51 

6 168.4 10.78 192.96 6.73 

6.26 172.22 11.03 191.39 6.98 

6.51 175.35 11.3 188.75 7.25 

6.76 177.82 11.54 185.95 7.49 

6.97 179.52 11.97 154.14 7.92 

2.15 0.00 12.06 152.44 8.01 

  12.28 151.97 8.23 

  12.57 149.83 8.52 

  12.76 148.01 8.71 

  13.04 147.02 8.99 

  13.36 145.81 9.31 

  13.54 145.54 9.49 

  13.81 145.16 9.76 

  14.04 143.81 9.99 

  14.26 142.63 10.21 

  14.54 140.98 10.49 

  14.81 139.55 10.76 

  15.05 134.99 11 

 

Table B.4: Experimental results for specimen EPT13 

Pre-Loading Loading after post-tensioning  

Deflection 
[mm] 

Load 
[kN] 

Deflection 
[mm] 

Load 
[kN] 

Additional  
deflection 
after PT 

[mm] 

0 0 -0.58 0 0 

0.25 5.98 -0.38 0.63 0.2 

0.49 10.38 -0.1 2.58 0.48 

0.74 15.21 0.16 9.2 0.74 

1.01 24.69 0.43 23.21 1.01 

1.27 32.52 0.66 36.15 1.24 

1.49 39.47 0.91 48.45 1.49 
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1.77 47.58 1.19 61.34 1.77 

2.01 54.25 1.46 75.02 2.04 

2.27 62.49 1.67 83.12 2.25 

2.51 70.1 1.9 93.62 2.48 

2.77 77.49 2.19 107.35 2.77 

3 84.99 2.46 119.28 3.04 

3.25 93.73 2.66 127.74 3.24 

3.51 101.39 2.88 137.11 3.46 

3.76 109.83 3.18 150.02 3.76 

4.01 116.91 3.42 160.05 4 

4.03 114.61 3.69 172.41 4.27 

4.05 115.87 3.93 181.91 4.51 

4.08 117.24 4.2 193.84 4.78 

4.14 120.27 4.43 202.38 5.01 

4.24 123.67 4.69 212.54 5.27 

4.51 128.67 4.94 222.43 5.52 

4.77 135.49 5.16 227.19 5.74 

5.01 141.36 5.4 236.09 5.98 

5.27 146.91 5.65 244.58 6.23 

5.5 151.23 5.92 252.46 6.5 

5.75 155.62 6.16 256.77 6.74 

5.99 160.51 6.41 261.42 6.99 

6.25 164.69 6.68 268.15 7.26 

6.5 168.26 6.92 269.74 7.5 

6.75 171.8 7.19 272.51 7.77 

7.02 175.21 7.44 274.58 8.02 

7.26 178.53 7.66 278.06 8.24 

7.5 180.65 7.93 281.77 8.51 

7.63 182.9 8.16 285.34 8.74 

7.65 182.08 8.43 287.87 9.01 

7.38 162.68 8.66 290.98 9.24 

5.6 87.68 8.94 295.62 9.52 

2.02 -0.03 9.18 299.19 9.76 

  9.44 300.45 10.02 

  9.67 304.05 10.25 

  9.91 301.91 10.49 

  10.16 304.6 10.74 

  10.43 305.12 11.01 

  10.67 302.95 11.25 

  10.9 303.06 11.48 

  11.19 307.49 11.77 

  11.44 309.13 12.02 

  11.65 309.79 12.23 

  11.89 305.98 12.47 
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  12.9 158.48 13.48 

  5.64 0 6.22 

 

Table B.5: Experimental results for specimen EPT14 

Deflection 
[mm] 

Load [kN] 

0.00 -0.03

0.24 15.54

0.49 27.08

0.74 41.34

1.01 57.8

1.26 73.59

1.51 88.34

1.75 101.64

2.01 114.94

2.25 125.73

2.52 137.49

2.75 151.31

2.99 162.44

3.24 171.5

3.5 179.69

3.73 187.41

3.99 194.85

4.24 198.53

4.51 207.65

4.77 212.05

4.98 213.94

5.25 218.37

5.49 222.35

5.75 225.37

5.99 231.53

6.25 237.08

6.52 242.38

6.76 245.37

7 251.14

7.25 254.85

7.51 259.85

7.75 264

7.98 268.23

8.24 272.49

8.51 273.64

8.76 280.04

9.01 284.68

9.25 288.23

9.51 291.63

10 298.81
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10.25 300.29

10.51 305.95

10.77 310.15

11 313.2

11.25 316.41

11.48 319.22

11.74 323.47

11.99 325.54

12.26 328.86

12.49 331.8

12.76 334.44

12.98 334.02

13.25 338.2

13.48 340.97

13.75 343.72

14 345.97

14.23 347.9

14.53 351.88

14.76 353.67

14.97 353.94

15.92 141.42

7.91 0

 

B.3 Group 2 

Group 2 also consisted of four reinforced concrete beams. All beams were designed 

similar to Group 1 except for the spacing of the shear reinforcement which was 180 

mm in Group 2 and 250 mm in Group 1. Beams were named EPT21, EPT22, EPT23 

and EPT24. All beams except the first beam EPT21 were strengthened by external 

post-tensioning.  

 

Filtered data obtained for the specimens EPT21, EPT22, EPT23 and EPT24 are 

summarised in Table B.6, Table B.7, Table B.8 and Table B.9 respectively. 
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Table B.6: Experimental results for specimen EPT21 

Deflection 
[mm] 

Load 
[kN] 

0 0 

0.5 19.57 

0.8 28.06 

1.1 38.19 

1.5 51.29 

1.6 54.12 

1.7 56.95 

1.8 60.03 

1.9 62.31 

2 64.86 

2.1 68.61 

2.2 70.91 

2.3 73.02 

2.4 75.13 

2.5 77.13 

2.6 80.24 

2.7 82.4 

2.8 85.4 

2.9 87.23 

3 88.95 

3.1 91.42 

3.2 94.25 

3.3 95.61 

3.4 97.03 

3.5 99.11 

3.6 100.05 

3.7 101.74 

3.8 104.6 

3.9 105.77 

4 107.77 

4.1 109.93 

4.2 110.82 

4.3 113.01 

4.4 115.48 

4.5 117.29 

4.6 118.15 

4.7 120.23 

4.8 122.86 

4.9 123.95 

5 125.64 

5.1 126.17 

5.2 128.05 

5.3 128.22 

5.4 130.11 

5.5 125.5 

5.6 128.36 

5.7 133.05 

5.8 135.58 

5.9 137.63 
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6 138.99 

6.1 140.32 

6.2 142.13 

6.3 143.79 

6.4 145.15 

6.5 147.01 

6.6 147.4 

6.7 149.92 

6.8 151.01 

6.9 152.39 

7 154.17 

7.1 154.95 

7.2 156.59 

7.3 158.78 

7.4 159.61 

7.5 160.66 

7.6 163.41 

7.7 163.02 

7.8 165.69 

7.9 166.02 

8 167.91 

8.1 168.1 

8.2 170.66 

8.3 171.04 

8.4 172.9 

8.5 172.93 

8.6 174.76 

8.7 175.6 

8.8 177.34 

8.9 178.32 

9 179.87 

9.1 180.56 

9.2 182.51 

9.3 182.95 

9.4 182.04 

9.5 181.92 

9.6 183.06 

9.7 184.64 

9.8 185.81 

9.9 186.42 

10 188.56 

10.1 189.2 

10.2 190.08 

10.3 191.64 

10.4 192.14 

10.5 194.02 

10.6 193.8 

10.7 195.3 

10.8 195.86 

10.9 197.05 

11 196.52 

11.1 197.6 



Appendix B  Experimental Results 

 190 

11.2 195.99 

11.3 196.41 

11.4 195.86 

11.5 192.14 

11.6 191.75 

11.7 191 

11.8 187.42 

11.9 187.72 

12 187.2 

12.1 185.86 

12.2 186.5 

12.3 184.45 

12.4 184.7 

12.5 182.98 

12.6 182.12 

12.7 181.98 

12.8 177.9 

12.9 164 

13 167.49 

13.1 168.96 

13.2 170.82 

13.3 171.93 

13.4 170.96 

13.5 171.13 

13.6 170.02 

13.7 169.35 

13.8 166.22 

13.9 165.47 

14 164.83 

14.1 162.44 

14.2 162.11 

14.3 160.17 

14.4 159.58 

14.5 159.14 

14.6 156.28 

14.7 156.31 

14.8 152.51 

14.9 152.23 

 
 

Table B.7: Experimental results for specimen EPT22 

Pre-Loading 
Loading after post-

tensioning  
Deflection 

[mm] 
Load 
[kN] 

Deflection 
[mm] 

Load 
[kN] 

0 0 0 0 

1.8 35.96 0.25 11.16 

2.05 40.71 0.51 17.68 

2.29 45.23 0.74 23.28 

2.55 51.26 1 28.22 

2.82 56.75 1.25 34.14 
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3.05 62.16 1.5 39.19 

3.31 68.99 1.74 43.96 

3.54 74.54 2.01 49.37 

4.01 85.98 2.25 53.73 

4.26 92.22 2.5 58.06 

4.49 98.63 2.77 62.39 

4.74 104.35 3 66.64 

5.01 108.71 3.26 71.41 

5.24 113.37 3.52 76.21 

5.49 118.59 3.75 80.35 

5.74 122.22 3.98 85.42 

5.99 123.25 4.25 90.03 

6.25 127.63 4.51 94.83 

6.51 131.66 4.77 100.13 

6.75 135.29 4.99 104.6 

6.99 139.32 5.25 109.38 

7.26 142.76 5.76 119.95 

7.49 146.34 6 125.06 

7.72 150.34 6.26 129.64 

8 153.78 6.5 135.21 

8.3 158.55 6.75 139.27 

8.52 162.02 7.01 145.01 

8.74 164.63 7.26 149.51 

9.03 169.32 7.52 154.14 

9.26 172.87 7.76 157.97 

9.48 175.9 7.99 161.94 

9.74 179.28 8.28 165.58 

10.01 182.2 8.52 168.63 

10.24 184.89 8.76 171.02 

10.49 187.47 9.01 172.27 

10.75 190.52 9.24 170.57 

11.02 192.94 9.73 165.88 

11.25 194.85 9.99 162 

11.52 197.21 12.14 130.88 

11.77 199.52   

12.01 200.85   

12.27 202.18   

12.48 202.96   

12.73 202.9   

13 201.74   

13.26 197.96   

13.28 196.8   

13.55 184.58   

 

Table B.8: Experimental results for specimen EPT23 

Pre-Loading 
Loading after post-

tensioning  
Deflection 

[mm] 
Load 
[kN] 

Deflection 
[mm] 

Load 
[kN] 

0 0 0 0 

0.26 12.32 0.25 14.32 
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0.49 20.12 0.53 24.34 

0.51 21.54 0.76 32.36 

0.75 25.87 0.99 39.88 

0.98 32.61 1.23 46.02 

1.03 32.94 1.48 53.95 

1.27 36.86 1.78 61.36 

1.52 41.38 2.03 68.47 

1.74 44.82 2.27 75.3 

2.02 50.29 2.76 89.67 

2.28 55.04 3.02 97.36 

2.49 58 3.51 110.65 

2.76 62.94 3.76 118.06 

2.99 67.39 3.99 125.5 

3.26 71.77 4.23 131.47 

3.51 76.02 4.5 139.13 

3.77 81.23 4.72 144.96 

4.01 86.4 4.99 152.45 

4.24 90.92 5.24 158.17 

4.52 96.14 5.47 165.24 

4.77 101.3 6.01 178.29 

4.99 105.21 6.24 183.48 

5.24 108.65 6.47 188.5 

5.51 112.85 6.75 194.8 

5.74 116.43 7.03 200.8 

6 117.4 7.26 205.49 

6.25 123.84 7.56 211.12 

6.5 128 8.03 220.64 

6.75 131.47 8.24 223.39 

7.01 136.1 8.49 226.36 

7.25 138.93 8.75 229.83 

7.52 142.49 9.01 232.99 

7.75 145.73 9.26 235.68 

8.01 148.62 9.52 238.12 

8.25 150.62 9.77 241.4 

8.51 153.17 9.98 244.67 

8.74 156.89 10.24 248.37 

9 160 10.51 251.7 

9.27 162.36 10.73 254.8 

9.51 165.52 11.02 259.08 

9.73 168.74 11.25 261.6 

10.03 171.82 11.51 263.94 

10.24 174.07 11.78 267.07 

10.51 176.68 12.02 270.18 

10.74 179.01 12.27 272.1 

11 178.04 12.48 274.68 

11.26 179.09 12.76 277.73 

11.55 178.45 12.98 279.87 

11.74 176.98 13.24 282 

12 170.57 13.5 283.81 

  13.76 285.75 

  14.02 287.53 
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  14.25 288.61 

  14.51 289.72 

  14.73 291.02 

  14.98 291.55 

  15.23 292.49 

  15.49 292.33 

  15.74 292.63 

  16.01 292.11 

  16.27 291.88 

  16.55 290.88 

  16.74 288.86 

  17 285.42 

 

Table B.9: Experimental results for specimen EPT24 

Deflection 
[mm] 

Load [kN] 

0 0 

2.27 88.17 

2.5 96.52 

2.74 105.18 

3.03 115.62 

3.24 123 

3.49 130.96 

3.77 137.93 

3.99 143.81 

4.23 148.06 

4.49 153.42 

4.75 159.55 

5.01 163.35 

5.26 168.21 

5.5 172.29 

5.76 178.01 

6.02 181.14 

6.24 186.89 

6.49 190.63 

6.74 195.13 

6.99 199.96 

7.26 204.15 

7.51 209.01 

7.75 212.5 

8 216.08 

8.26 220.16 

8.52 225.13 

8.78 229.16 

9.02 232.57 

9.25 236.01 

9.49 239.76 
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9.75 242.81 

9.99 245.86 

10.25 249.5 

10.51 252.58 

10.75 255.63 

11 259.21 

11.26 261.88 

11.5 264.43 

11.77 267.54 

12 270.18 

12.27 272.42 

12.49 274.51 

12.75 276.98 

13.01 278.75 

13.27 280.64 

13.5 282.33 

13.77 283.19 

14 284.47 

14.22 285.91 

14.49 286.11 

14.72 286.99 

14.98 287.08 

15.23 287.44 

15.51 286.47 

15.74 286.05 

16.01 283.3 

16.28 281.44 

16.54 276.59 

16.73 273.95 

16.98 272.17 

17.23 266.32 

 

B.4 Group 3 

Group 3 consisted of eight reinforced concrete beams. All beams were designed with 

the same dimensions as Group 1 and 2. 2-N24 bars were used as tensile 

reinforcement and 2-N16 bars were used as compressive reinforcement. R6 bars 

were placed at a spacing of 250 mm as shear reinforcements. Beams were named 

ECL31, ECL32, ECL33, ECL34, ECL35, ECL36, ECL37 and ECL38. All beams 

except the first beam, ECL31, were strengthened by external clamping. Specimens 

ECL32, ECL33, ECL34 and ECL35 were strengthened by vertical clamping. 
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Specimens ECL36 and ECL37 were strengthened by inclined clamping. Specimen 

ECL38 was strengthened by a combination of vertical and inclined clamping. 

 

Filtered data obtained for specimens ECL31, ECL32, ECL33, ECL34 AND ECL35 

are summarised in Table B.10, Table B.11, table B.12, table B.13 and Table B.14 

respectively.  

 

Table B.10: Experimental results for specimen ECL31 

Deflection 
[mm] 

Load 
[kN] 

0 0 

0.24 9.08 

0.51 26.47 

0.75 34.09 

1.01 41.21 

1.27 49.12 

1.5 56.82 

1.76 62.82 

2.01 69 

2.28 77.85 

2.5 86.49 

2.74 94.78 

3 99.71 

3.23 106.88 

3.5 114.33 

3.74 120.28 

4.01 126.23 

4.25 130.55 

4.52 134.8 

4.73 139.65 

4.99 143.32 

5.25 146.16 

5.51 148.63 

5.77 151.6 

6.01 155.09 

6.24 157.68 

6.49 160.22 

6.77 162.46 

7.01 163.25 

7.24 165.28 

7.51 167.93 

7.75 169.76 

8 172.15 

8.25 174.08 

8.5 175.6 

8.75 170.54 
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9 168.82 

9.25 169.02 

10.01 160.43 

 

Table B.11: Experimental results for specimen ECL32 

Pre-Loading 
Loading after 

clamping  
Deflection 

[mm] 
Load 
[kN] 

Deflection 
[mm] 

Load 
[kN] 

0.00 0.00 0 0 
0.40 7.19 0.52 22.48 
0.61 10.79 1.01 34.2 
0.81 14.37 1.59 47.09 
1.06 18.56 2.01 56.98 
1.29 23.54 2.2 61.84 
2.05 36.10 2.41 67.2 
2.50 45.26 3 81.74 
3.01 54.33 3.19 86.93 
3.20 56.33 3.37 92.01 
3.49 61.24 3.58 97.45 
3.70 65.33 3.82 103.18 
4.02 73.26 3.99 108.03 
4.21 76.33 4.22 113.24 
4.51 81.02 4.41 118.71 
4.70 83.97 4.62 124.2 
4.99 90.33 4.81 129.13 
5.20 93.54 4.99 133.63 
5.50 97.88 5.23 139.28 
5.70 101.01 5.4 142.76 
5.99 106.30 6.01 155.52 
6.25 113.17 6.21 159.67 
6.49 116.04 6.42 164.29 
6.76 120.77 6.59 167.7 
7.01 125.37 6.81 171.77 
7.52 133.07 6.99 174.72 
7.99 135.82 7.06 175.89 
8.20 134.65 7.17 177.54 
8.50 136.43 7.29 177.08 
8.90 136.94 7.5 181.56 
9.29 140.45 7.74 186.8 
9.50 141.59 8.05 191.8 
10.03 144.67 8.19 193.81 
10.24 144.57 8.55 199.2 
10.47 144.11 8.71 202.05 
10.75 141.82 8.98 206.37 
10.81 141.90 9.19 209.12 
10.85 136.33 9.41 212.52 

  9.58 215.17 
  9.81 218.5 
  9.98 220.79 
  10.22 224.58 
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  10.42 227.83 
  10.6 230.32 
  10.79 233.22 
  10.99 236.02 
  11.2 238.33 
  11.41 241.15 
  11.62 243.24 
  11.81 244.99 
  12.02 247.13 
  12.2 249.42 
  12.4 251.04 
  12.61 253.08 
  12.81 255.08 
  12.97 255.95 
  13.18 257.7 
  13.35 258.85 
  13.54 260.14 
  13.73 261.08 
  13.89 261.8 
  14.01 262.13 
  14.08 254.09 
  14.2 242.19 
  18.32 232.13 
  18.5 229.69 

 

Table B.12: Experimental results for specimen ECL33 

Pre-Loading 
Loading after 

clamping  
Deflection 

[mm] 
Load [kN] 

Deflection 
[mm] 

Load 
[kN] 

0 0 0 0 

0.28 6.75 0.54 11.72 

0.56 15.6256 0.79 16.89 

0.6 17.02356 1 20.88 

0.8 24.41 1.2 25.38 

1 30.59 1.61 36.82 

1.18 34.7 1.8 42.87 

1.38 40.4 2 50.22 

1.61 45.66 2.25 57.13 

1.81 51.36 2.47 64.76 

1.96 55.93 2.98 81.56 

2 56.72 3.19 87.84 

2.22 63.31 3.61 99.31 

2.42 68.98 3.8 105.69 

2.59 73.48 3.99 110.04 

2.8 80.14 4.21 115.53 

2.99 85.86 4.6 125.65 

3.17 91.4 4.81 130.1 

3.41 96.48 5.01 134.09 

3.6 101.04 5.2 138.36 

3.82 104.8 5.39 141.95 
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4 108.56 5.61 146.65 

4.19 111.92 5.81 150.97 

4.39 116.01 5.96 153.67 

4.59 119.72 6.19 158.8 

4.81 123.28 6.42 162.03 

4.99 125.82 6.61 165.8 

5.2 126.94 6.79 168.82 

5.42 131.16 7.01 172.76 

5.64 134.32 7.21 176.17 

5.81 136.73 7.41 179.52 

6.02 139.35 7.6 182.73 

6.19 140.27 7.81 185.65 

6.27 140.72 7.98 189.06 

6.3 140.24 8.23 193.08 

6.36 139.86 8.4 195.92 

6.42 140.29 8.6 198.95 

6.49 140.01 8.82 202.33 

6.59 139.4 8.97 204.11 

6.81 140.34 9.22 206.75 

6.99 140.93 9.39 208.99 

7.18 141.18 9.59 211.71 

7.24 135 9.8 215.07 

10.02 218.04 

10.25 220.89 

10.6 225.72 

10.8 227.86 

10.99 230.04 

11.21 232.38 

11.42 234.08 

11.61 236.14 

11.8 238.05 

12 239.47 

12.24 241.79 

12.45 243.9 

13 248.09 

13.21 249.8 

13.42 251.32 

13.66 253.18 

13.99 255.62 

14.21 257.07 

14.57 259.51 

14.79 261.03 

15 262.28 

15.21 263.75 

15.38 264.7 

15.59 265.94 

15.82 267.77 

16.02 268.71 

16.19 269.63 

16.6 272.07 

16.8 273.14 

16.98 274.03 
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17.2 274.89 

17.41 275.42 

17.6 275.42 

17.79 273.34 

18 273.62 

18.2 274.15 

18.44 274.92 

18.6 275.5 

18.83 276.01 

18.97 276.34 

19.2 276.72 

19.4 277.08 

19.6 277.51 

19.8 277.74 

20 277.97 

20.24 278.12 

20.49 278.48 

20.74 278.73 

21 278.78 

21.26 278.91 

21.51 278.88 

21.76 278.86 

22.01 278.63 

22.25 277.59 

22.52 277.41 

22.76 277.69 

23.01 277.94 

23.27 278.12 

23.51 278.09 

23.74 278.04 

24.01 277.89 

24.22 277.66 

24.52 277.28 

24.76 276.59 

24.99 276.01 

25.25 275.09 

25.35 274.08 

25.4 273.36 

25.4 260.81 

 

Table B.13: Experimental results for specimen ECL34 

Loading after 
clamping  

Deflection 
[mm] 

Load 
[kN] 

0 0 

0.49 7.52 

0.99 13.96 

1.61 28.4 

1.8 32.82 

2 38.34 



Appendix B  Experimental Results 

 200 

2.59 52.45 

2.79 56.21 

3 61.32 

3.71 77.87 

3.85 81.43 

4 84.15 

4.23 89.69 

4.45 96.74 

4.99 109.4 

5.26 115.7 

5.46 118.07 

5.99 132.1 

7.01 150.59 

7.2 155.54 

8.01 173.67 

8.25 178.65 

8.5 183.43 

8.72 188.44 

8.99 193.53 

9.23 197.6 

9.43 202.27 

9.49 194.8 

9.53 199.63 

9.65 204 

9.8 207.43 

10 211.96 

10.19 215.77 

10.4 219.33 

10.63 223.58 

10.8 225.46 

10.99 228.84 

11.21 231.64 

11.4 234.1 

11.58 236.24 

11.8 238.94 

12 241.6 

12.19 243.89 

12.42 246.89 

12.6 248.93 

12.76 250.81 

12.83 244.1 

12.86 246.56 

12.94 249.26 

13.01 251.14 

13.19 254.8 

13.43 257.22 

13.59 259.38 

13.82 261.49 

14 261.79 

14.07 262.68 

14.14 261.82 

14.3 262.63 
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14.49 265.33 

14.72 267.31 

14.87 268.78 

15.02 269.83 

15.21 271.5 

15.41 273.44 

15.6 274.86 

15.79 275.34 

16.02 277.5 

16.2 278.98 

16.4 279.82 

16.6 280.73 

16.79 282.05 

17.02 283.27 

17.21 283.91 

17.4 284.27 

17.6 285.16 

17.79 286.02 

18 286 

18.19 285.39 

18.39 283.89 

18.61 284.39 

18.8 285.26 

19 285.77 

19.19 285.05 

19.4 284.67 

19.6 283.63 

22 251.39 

 

Table B.14: Experimental results for specimen ECL35 

Loading after 
clamping  

Deflection 
[mm] 

Load 
[kN] 

0 0 

0.1 5.75 

0.2 7.22 

0.4 9.79 

0.61 11.7 

0.8 14.09 

1 16.99 

1.25 21.59 

1.48 24.88 

1.74 30.11 

2 31.38 

2.22 34.38 

2.41 37.83 

2.6 42.41 

2.8 45.54 

3 49.12 

3.2 53.8 
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3.4 57.23 

3.59 60.16 

3.82 65.29 

4.01 68.57 

4.21 73.51 

4.4 78.34 

4.59 84.46 

4.84 88.17 

5 93.87 

5.2 99.39 

5.39 104.37 

5.58 110.14 

5.8 113.9 

6.01 118.68 

6.19 121.51 

6.4 125.35 

6.6 128.62 

6.82 132.13 

6.99 135.77 

7.21 140.19 

7.41 143.85 

7.59 147.13 

7.8 150.97 

8 154.48 

8.2 157.1 

8.45 159.79 

8.62 163.51 

8.8 166.74 

9 170.5 

9.2 174.06 

9.39 177.08 

9.59 179.8 

9.82 183.67 

9.99 187.02 

10.2 190.99 

10.4 194.22 

10.61 197.4 

10.8 200.6 

11 203.83 

11.19 206.73 

11.4 209.4 

11.59 211.89 

11.8 215.58 

12.01 218.78 

12.2 220.89 

12.41 223.33 

12.6 225.92 

12.84 228.67 

13 230.35 

13.21 233.22 

13.4 235.13 

13.6 237.14 
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13.79 239.17 

14 240.47 

14.19 242.3 

14.39 242.96 

14.59 243.36 

14.81 243.19 

15.01 243.11 

15.24 242.91 

15.49 242.8 

15.74 243.06 

15.99 243.64 

16.26 244.48 

16.49 245.09 

16.75 245.91 

17.01 246.36 

17.25 246.95 

17.49 247.33 

 

Filtered data obtained for the specimens ECL36 and ECL37 are summarised in Table 

B.15 and Table B.16 respectively. 

 

Table B.15: Experimental results for specimen ECL36 

Pre-Loading 
Loading after 

clamping  
Deflection 

[mm] 
Load 
[kN] 

Deflection 
[mm] 

Load 
[kN] 

0.00 0.00 0 0 

0.10 1.99 0.2135 3.05 

0.21 4.10 0.42 6 

0.42 7.99 0.61 7.53 

1.03 19.99 0.8 13.93 

1.32 26.36 1 17.59 

1.41 28.71 1.2 22.68 

1.60 35.12 1.42 27.13 

1.82 40.76 1.6 31.81 

2.01 46.05 1.82 36.84 

2.20 51.51 2 41.59 

2.40 57.34 2.2 46.42 

2.61 61.48 2.41 51.87 

2.81 66.97 2.6 55.76 

3.00 72.39 2.8 59.7 

3.22 76.66 2.99 63.97 

3.41 80.60 3.2 68.47 

3.61 86.42 3.4 71.85 

3.80 91.15 3.61 77.19 

4.00 94.96 3.79 81.71 

4.19 99.82 4.01 87 

4.40 104.37 4.21 91.35 
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4.61 108.85 4.4 95.85 

4.80 112.68 4.59 100.43 

5.01 116.40 4.81 105.36 

5.21 118.68 5 110.11 

5.40 122.52 5.22 115.17 

5.61 125.85 5.4 119.16 

5.80 126.95 5.59 124.02 

6.00 130.00 5.8 129.16 

6.21 132.95 6 133.55 

6.42 135.74 6.19 137.8 

6.61 138.62 6.41 142.17 

6.82 141.29 6.59 146.24 

7.01 143.50 6.79 149.67 

7.21 145.89 7 153.05 

7.41 147.87 7.19 156.77 

7.60 149.88 7.39 159.33 

7.80 152.04 7.58 162.31 

8.00 153.97 7.79 165.16 

8.22 155.96 8 167.77 

8.40 157.99 8.2 170.55 

8.60 159.24 8.4 172.63 

8.81 161.27 8.61 174.56 

9.01 162.52 8.8 176.47 

9.20 163.66 9 178.66 

9.43 164.27 9.19 180.64 

9.47 163.81 9.41 182.55 

9.49 160.00 9.61 184.05 

  9.81 186.05 

  10.01 187.43 

  10.19 188.88 

  10.4 190.55 

  10.59 192.11 

  10.81 193.78 

  11 194.39 

  11.2 195.89 

  11.41 197.47 

  11.6 198.74 

  11.8 199.81 

  11.99 201.23 

  12.19 202.76 

  12.39 204.26 

  12.6 205.61 

  12.81 206.9 

  13 208.12 

  13.19 209.09 

  13.4 210.36 

  13.6 211.5 

  13.79 212.34 

  13.99 212.88 

  14.2 213.26 

  14.42 212.98 

  14.5 211.35 
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  14.52 209.34 

  14.61 198.61 

  14.82 182.09 

  14.99 177.89 

 

Table B.16: Experimental results for specimen ECL37 

Pre-Loading 
Loading after 

clamping  
Deflection 

[mm] 
Load 
[kN] 

Deflection 
[mm] 

Load 
[kN] 

0 0 0 0 

0.128 2.01 0.25 3.23 

0.321 5.06 0.48 10.71 

0.44 7 0.75 15.46 

0.64 9.46 1 19.33 

0.81 12.82 1.25 23.67 

1.01 16.96 1.49 28.2 

1.2 20.01 1.75 33.87 

1.4 24.94 2 39.01 

1.58 28.63 2.25 44.4 

1.8 32.65 2.51 49.76 

2.01 37.63 2.75 55.58 

2.2 41.55 3 60.84 

2.39 44.8 3.21 65.6 

2.58 48.51 3.41 70.56 

2.8 53.52 3.6 75.03 

3.03 58.05 3.8 78.67 

3.22 62.14 3.99 82.63 

3.42 65.9 4.2 87.57 

3.6 69.62 4.41 91.23 

3.79 73.66 4.6 96.16 

4.02 78.31 4.79 100.1 

4.19 81.26 5 104.14 

4.42 85.84 5.2 108.54 

4.61 90.06 5.39 112.53 

4.82 93.41 5.6 116.78 

5 97.45 5.8 120.77 

5.2 101.4 5.98 125.17 

5.4 104.12 6.2 129.11 

5.6 107.83 6.4 133.18 

5.64 105.54 6.6 136.28 

5.67 107.07 6.8 140.07 

5.8 109.05 7 143.78 

5.98 112.05 7.2 148.08 

6.04 109.25 7.39 151.51 

6.06 110.98 7.59 155.91 

6.21 112.86 7.81 159.59 

6.41 116.29 8.01 163.66 

6.61 119.37 8.2 167.04 

6.81 122.12 8.39 171.44 

6.98 124.35 8.6 175.61 
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7.13 126.44 8.8 179.04 

7.13 122.6 8.99 182.75 

7.15 121.99 9.21 185.32 

7.15 124.71 9.4 189.24 

7.21 126.64 9.6 192.95 

7.4 130.68 9.8 196.25 

7.6 131.32 10.01 199.69 

7.78 134.29 10.19 203.04 

8 135.59 10.4 206.6 

8.19 139.56 10.42 206.78 

8.41 142.61 10.61 209.37 

8.59 144.46 10.79 212.37 

8.8 147.52 11 215.91 

9.01 150.16 11.2 219.09 

9.22 151.84 11.4 223.18 

9.22 150.26 11.6 225.95 

9.23 149.04 11.81 229.46 

  12 231.75 

  12.12 232.99 

  12.17 232.08 

  12.26 226.69 

  12.41 224.35 

  12.6 223.28 

  12.79 222.44 

  13 222.14 

  13.19 221.96 

  13.39 222.06 

  13.59 222.97 

  13.78 224.07 

  14 225.16 

  14.21 226 

  14.4 226.86 

  14.59 227.55 

  14.79 226.84 

  15.01 226.28 

  15.2 224.55 

  15.39 221.7 

  15.6 220.86 

  15.79 220.69 

  15.99 220.46 

  16.19 220.36 

  16.4 219.21 

  16.59 217.97 

  16.82 215.91 

  17.01 212.17 

  17.21 210.21 

  17.4 209.63 

  17.6 208.66 

  17.8 208.61 

  18 208.38 

  18.2 207.62 

  18.4 207.42 
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  18.61 206.75 

  18.78 202.84 

  18.75 199.74 

 

Filtered data obtained for the specimens ECL38 is summarised in Table B.17. 

 

Table B.17: Experimental results for specimen ECL38 

Pre-Loading 
Loading after 

clamping  
Deflection 

[mm] 
Load 
[kN] 

Deflection 
[mm] 

Load 
[kN] 

0 0 0 0 

1.03 23.16 1.01 15.94 

1.19 25.88 1.2 21.53 

1.4 30.89 1.41 28.3 

1.59 35.84 1.6 33.15 

1.79 40.01 1.81 38.69 

1.99 44.79 2 43.78 

2.2 49.98 2.2 48.41 

2.39 54.86 2.38 52.45 

2.59 60.23 2.62 57.15 

2.8 65.26 2.8 61.78 

3 70.75 3 66.61 

3.2 76.35 3.21 70.88 

3.39 80.74 3.41 76.19 

3.6 86.74 3.6 81.48 

3.8 91.22 3.8 85.91 

4 96.94 4.01 90.76 

4.2 102.41 4.21 96.53 

4.41 107.44 4.4 101.9 

4.6 111.1 4.6 105.92 

4.8 116.24 4.79 110.8 

4.99 120.1 5 116.21 

5.03 120.84 5.2 121.91 

5.07 121.07 5.39 127.4 

5.1 121.19 5.61 132 

5.2 122.36 5.8 137.34 

5.41 126.1 6 142.7 

5.59 129.89 6.21 147.46 

5.79 134.21 6.41 152.44 

6 138.18 6.6 157.17 

6.2 141.58 6.79 163.07 

6.39 141.74 7.01 167.54 

6.59 144.99 7.19 172.7 

6.8 148.86 7.41 177.15 

7 152.44 7.61 181.45 

7.2 155.13 7.81 186.08 

7.41 157.88 8.02 190.2 

7.59 160.07 8.19 193.86 
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7.79 161.21 8.39 197.44 

8 163.55 8.59 200.9 

8.19 165.97 8.8 204.87 

8.41 169.07 8.98 208.2 

8.6 171.18 9.2 210.89 

8.8 173.08 9.4 214.07 

8.99 174.99 9.6 217.12 

9.19 177.23 9.8 220.04 

9.4 179.82 9.99 222.41 

9.6 182.34 10.21 224.54 

9.82 184.96 10.4 226.63 

10 186.69 10.61 228.84 

10.22 188.92 10.81 231.56 

10.26 188.97 11.01 233.14 

10.28 187.42 11.18 235.2 

10.38 184.93 11.4 236.7 

10.55 184.35 11.6 238.63 

10.6 181.3 11.79 240.21 

  11.98 242.06 

  12.08 242.55 

  12.32 231.54 

  12.39 231.56 

  12.6 235.17 

  12.67 233.82 

  12.67 232.38 

  12.71 230.06 

  12.7 230.04 

 

B.5 Experimental Data – Graphical Format 

B.5.1 Change in Post-tensioning Force (Group 2) 

Effect of shear crack on the behaviour of externally post-tensioned reinforced 

concrete beam also can be illustrated by the change in the post-tensioning force 

during loading process. This is discussed in Chapter 4 with by comparing the change 

of post-tensioning force among Group 1. As explained in Chapter 4, the behaviour of 

Group 2 specimens also very similar to that of Group 1 as shown in Figure B.2. 
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Figure B.2. Increase in external post-tensioning force with deflection of the beams (Group 2) 
 

B.5.2 Change in External Clamping Force (Group 3 – Specimens with 
Inclined Claming) 

In Group 3 specimens also a very similar behaviour was observed in first 5 

specimens (control beam and the specimens with vertical clamping) as in Group 1 

and Group 2, which is discussed in Chapter 4. However, in specimens with inclined 

clamping (ECL36 and ECL37) the variation of the strain in external clamping bars 

(Figure B.3) was much different from the first 5 specimens due to premature failure 

(detail of the failure is explained in Chapter 5).  

 



Appendix B  Experimental Results 

 210 

 

Figure B.3. Variation of strain in the external clamping rods of specimens with inclined clamping 
 

B.5.3 Change in Strain in Reinforcement during Loading 

In this section the strain variation in the shear reinforced bars are given.  As 

discussed in the main thesis, in all specimens the shear reinforcement reached 

yielding point and in most cases failed during loading. 

 

Figure B.4 shows the strain variation in the shear reinforcement (SR1) of Group 1 

specimens. It can be noted that these shear reinforcements reached yielding strain 

and failed during the experiment. The strain variation of cracked or repaired 

specimens was not provided as either one of the shear reinforcement in that 

specimen failed during the preloading process and, therefore, no data is available for 

that particular case.  
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Figure B.4. Variation of strain in the shear reinforcement (SR1) of Group 1 specimens 
 

Similarly the strain variation in the shear reinforcement (SR1) of Group 2 is shown 

in Figure B.5. A similar behaviour can be observed in Group 2 also. 

 

 

Figure B.5. Variation of strain in the shear reinforcement (SR1) of Group 2 specimens 
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A slight variation can be noted among the specimens in both groups due to 

difference in the concrete strength (capacity of the specimen).  

 

On the other hand, the strain in longitudinal reinforcement bars (either compressive 

or tensile reinforcement) was less than the yielding strain of those bars. The variation 

of the strain in longitudinal bars of Group 1 and Group 2 are shown in Figure B.6 

and Figure B.7, respectively. 

 

 

Figure B.6. Variation of strain in the compressive reinforcement of Group 1 specimens 
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Figure B.7. Variation of strain in the compressive reinforcement of Group 2 specimens 
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Appendix C 

ADDITIONAL DATA OF 
PREVIOUS INVESTIGATIONS 

(Supplement to Chapter 2) 

C.1 Material Properties 

In this appendix the three sets of experimental data reported by Aravinthan and Heldt 

(2005), Aravinthan and Suntharavadivel (2007) and Khaloo (2000) are given in 

detail. These data were used to calculate the capacity of the corresponding specimens 

and the capacities are reported in Chapter 2 (Section 2.3.3). Major parameters of the 

specimens tested by these researchers are summarised in Table C.1. 
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Table C.1: Specimen details of RC beam strengthened by external post-tensioning 

Specimen 
Dimension 

b×D [mm] 
Shear Span 

Shear 
R/F 
ratio 

Remarks 

RB1 

350-400×250 
(tapered) 

2L/3 
R6@250 

mm 

Bridge bent caps 
(Aravinthan et 

al. 2005) 

RB2(a) 

RB2(b) 

RB3 

RCB1 

300×150 750 mm 
R6@250 

mm 

Rectangular 
beams 

(Aravinthan et 
al. 2007) 

RCB2 

RCB3 

RCB4 

1 

80×150 

L/4 0.0097 

The beams 
strengthened 
after cracking 

(Khaloo 2000) 

L=1800 mm 

2 L/4 0.0097 

3 L/4 0.0145 

4 L/4 0.0145 

5 L/4 0.0097 

6 L/4 0.0097 

7 L/4 0.0097 

8 L/4 0.0145 

9 L/4 0.0097 

10 L/4 0.0145 

11 L/4 0.0097 

12 L/4 0.0145 

13 L/6 0.0097 

14 L/6 0.0097 

15 L/6 0.0145 

16 L/6 0.0145 

17 L/6 0.0097 

18 L/6 0.0145 

19 L/6 0.0097 

20 L/6 0.0145 

21 L/4 0.0145 

22 L/4 0.0145 

23 L/4 0.0145 

24 L/4 0.0097 
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Appendix D 

APPLICATIONS OF THE 
STRUT-AND-TIE MODEL 

(Supplement to Chapter 5) 

D.1 General 

The strut-and-tie model was developed on the basis that concrete is strong in 

compression (compression struts) and steel is strong in tension (tension ties). The 

concept of this model is explained in Chapter 5 (Section 5.2.1). A comparison of 

strut-and-tie model predicted crack with the experimental results is given in this 

appendix. 

 

D.2 Strut-and-tie Model for the Simply Supported Beam 

Strut-and-tie model was developed in a 2500 mm long reinforced concrete beam 

with four-point loading as shown in Figure D.1. In order to compare the effect of 

external post-tensioning in the crack pattern, the following two cases were 

considered. 

 Reinforced concrete beam without any post-tensioning (control beam) 

 Reinforced concrete beam with post-tensioning  
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Figure D.1. Simply supported prestressed concrete beam 
 

Based on the loading arrangements, the strut-and-tie model for the control beam is 

shown in Figure D.2.  

 

Figure D.2. Strut-and-tie model in non-prestressed beam 
 

As per definition of B- and D- regions, the angle θ1 is approximately 41.20. The 

detail of calculation is given below. 
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Similarly, the strut-and-tie model of post-tensioned beam is shown in Figure D.3. It 

has no tension chord at the bottom of the beam (Schlaich et al 1987).  

 

Figure D.3. Strut-and-tie model in prestressed beam (Schlaich et al 1987) 
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In this case the angle θ2 is highly depends on the values F and P. However, it can be 

noted that the angle θ2 is less than angle θ1 to satisfy the internal equilibrium. 

 

As the strut-and-tie model provides a rational approach by representing a complex 

structural member with an appropriate simplified truss model, there is no single, 

unique strut-and-tie model for most design situations encountered. For the purpose 

of this study, the above strut-and-tie models were further simplified as shown in 

Figure D.4. 

 

Figure D.4. Simplified Strut-and-tie model in prestressed beam 
 

Based on the experimental results, the crack inclination angle (θ), for the Group 1 

and Group 2 specimens are summarised in Table D.1. 

 

Table D.1: Crack inclination angle (θ) predicted by simplified strut-and-tie model 

Specimen 

Crack Inclination Angle, θ (deg) 

With Post-tensioning 
Force 

Without Post-tensioning 
Force 

EPT11 N/A 26.6 

EPT12 N/A* 26.6 

EPT13 20.1 N/A 

EPT14 18.2 N/A 

EPT21 N/A 23.6 

EPT22 N/A* 23.6 

EPT23 18.9 N/A 

EPT24 16.7 N/A 

* No new crack developed (initial crack re-opened during loading)  
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The crack inclination angle is reduced by the action of the external post-tensioning 

force. That means the crack in a post-tensioned reinforced concrete beam will be 

much flatter than crack in a reinforced concrete beam without any external post-

tensioning. This pattern was observed in the specimens tested in this project as 

explained in Chapter 4. It was clearly observed in epoxy repaired beam as shown in 

Figure D.5. From this, it can be noted that the strut-and-tie model predictions match 

well with the experimental results. 

 

 

Figure D.5. Failure of EPT13 (Post-tensioned after epoxy repaired) 
* Repaired crack is highlighted 
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Appendix E 

PREDICTION OF SHEAR 
CRACKS 

(Supplement to Chapter 6) 

E.1 General 

In this Appendix attempted to predict the shear crack in a reinforced concrete beam 

with and without post-tensioning force. These results will be then compared with the 

crack pattern used in finite element model as well as the experimental observation. 

 

E.2 Prediction of Shear Cracks Using Computer Program 

There are a number of approaches available to predict the shear crack in a reinforced 

concrete beams. In this appendix the computer program called “Response-2000” 

developed by Evan Bentz et al. (2001) based on the modified field compression 

theory (Vecchio, F. J., and Collins, M. P. 1986). 

 

A reinforced concrete beam with cross section 150×300 mm was used in this 

analysis. Loading and support conditions were given very similar to that used in the 

experimental program. Input cross section is shown in Figure E.1. 
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Cross Section

 

Figure E.1. Cross section of the reinforced concrete beam 
 

E.3 RC Beam without External Post-tensioning 

The crack diagram of a reinforced concrete beam without external post-tensioning is 

given in Figure E.2. 

Crack Diagram 
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1.63

0.99

0.41

 
Figure E.2. Analytical results of a reinforced concrete beam without external post-tensioning 

 

E.4 RC Beam with External Post-tensioning 

The crack diagram of a reinforced concrete beam with external post-tensioning is 

given in Figure E.3. In this program external post-tensioning was applied as an axial 

force with a moment (due to the eccentricity of the applied post-tensioning force in 

the experimental program) to the cross section. 
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Crack Diagram 
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Figure E.3. Analytical results of a reinforced concrete beam with external post-tensioning 

 

From Figure E.2 and Figure E.3and it can be noted that the shear cracks are almost 

straight lines in the critical regions. It is also noted that the crack width and the 

inclination of the crack were slightly reduced when external post-tensioning was 

applied. This result is very similar to the experimental observations discussed in 

Chapter 4.  Even though a number of cracks were predicted in this analysis, some of 

them were not observed since the Response-2000 is developed based on a simplified 

strut-and-tie model that may not always match with the experimental results. 

However, it can be noted that the sum of the maximum crack widths are nearly the 

same as that observed during the experiment. 
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