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ABSTRACT Root-knot nematodes (Meloidogyne spp.; RKN) are major plant-parasitic nematodes that
cause significant loss to agricultural production. An accurate assessment of the RKN population density
at a field level is crucial for decisions about the application of control measures to minimise yield losses.
Traditionally, RKNpopulations are identified and counted by nematologists using amicroscope. Thismethod
is a specialised, time-consuming process and prone to errors. In our study, we investigated three semi-
automated methods to detect and count RKN eggs using image analysis: contour arc (CA), skeleton structure
(SS), and extreme point (EP). These methods were used to automate the length measurement of RKN eggs,
and the results were compared with traditional methods of quantification. The EP method produced the
highest correlation with the manual length measurement of RKN eggs. Further, these methods were used to
detect and count RKN eggs to quantify low and highly cluttered images. We estimated the optimal range
of the ratio of each method to detect and count RKN eggs. Overall, the EP method computed using mid-
width of RKN eggs revealed better detection and counting of RKN eggs as compared to the SS and CA
methods. A counting correlation up to R2

= 0.905 was obtained. This study found that the difference between
mid-width and the average width of RKN eggs and soil particles could be used to discriminate 70-80 % of
soil particles. Our research thus contributes a new feature that can be used to discriminate or classify objects
in object detection techniques.

INDEX TERMS Plant-parasitic nematode, root-knot nematode egg, computer-vision, image analysis,
nematode egg detection, image segmentation, morphological-analysis, medial-axis transform, root-knot
nematode detection.

I. INTRODUCTION
Nematodes are ecologically diverse microfauna and bioindi-
cators adaptive to different habitats, providing evolutionary
benefits for their survival [1], [2]. The continuous evolution
of nematodes in the rhizosphere and the dynamic relation
between nematodes and plants resulted in plant-parasitic
nematodes [3], [4]. Plant-parasitic nematodes (PPN) are
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attracted to the roots of host plants through semiochemicals
produced by roots [5], [6], [7]. PPN damage the root tissues
of plants. Some nematodes remain outside of plant roots
(ectoparasites), whereas others enter roots to complete their
life cycle (endoparasites) [4]. Nematode-induced distress
does not directly originate from cell death or necrosis
but is caused by the interference in the root system
which obstructs plants from absorbing nutrients from the
rhizosphere [8]. Among these endoparasitic nematodes, root-
knot nematodes (Meloidogyne spp.; RKN), cyst nematodes
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(including Heterodera spp. and Globodera spp.), and root
lesion nematodes (Pratylenchus spp.) are the top three PPN
with economic importance [9].

Plant-parasitic nematodes (PPN) can be major limiting
factors to crop and vegetable production worldwide. In the
US, PPN damage to crops is estimated to be US $80-110
billion per year [10], [11]. It is estimated that PPN cause
5-20% losses in crop yield worth over AU$80 million in
Australia [12], [13].

On average, RKN cause 10-20 % yield loss in horticultural
crops [14]. Australian growers lost around AU$123million in
one year due to root-lesion nematodes [15]. These nematodes
need to be identified and quantified so that farmers can
be advised on the appropriate nematode treatment options
[16]. Thus, an appropriate quantification method is required
to assess plant-parasitic nematodes before applying control
measures. Various methods have been developed to identify
nematodes including morphology, molecular and differential
host test [17]. RKN infestation can be determined based
on the number of eggs in the roots [18], [19], juvenile
populations in the soil [20], [21], the number of adult females
in the roots [22], [23], and root gall index and reproduction
factor [24]. The number of egg mass and gall rating are also
used for nematode infestation [25].

Females of RKN and cyst nematode remain inside plant
roots to complete their lifecycle. The duration of the
nematode’s life cycle is influenced by environmental factors
such as temperature, host plant, and species [26]. The
juveniles in the second stage move through root tissues
until a suitable feeding site is found. Once the feeding site
is established, they moult several times to become adults.
After three weeks of growth, the female RKN lays eggs in
the gelatinous matrix [8], which protects the eggs against
predators or microorganisms [27], [28]. These nematode
species can lay 50 to 500 eggs per female. RKN egg size
and shapes vary, and the average egg is 95 µm in length
and 40 µm wide [26]. The length of the second stage
juveniles of different species of RKN ranges from 250 to
600 µm. Depending on environmental factors, some second-
stage juveniles remain in the egg state through winter [28],
[29]. Plant-parasitic nematodes mature from first (J1) to
second stage larvae (J2) inside the egg. Heterodera glycines
can take 172 hours to develop from a single-celled egg
to a fully grown second-stage juvenile [30]. Thus, the
assessment of plant-parasitic nematodes includes quantifying
eggs for complete and precise quantification of plant-parasitic
nematode population [31], [32], [33].

Nematodes are not only parasitic to plants but also to
animals. Some studies focused on identifying and counting
animal parasitic nematodes eggs in faecal matter to estimate
the burden on the gastrointestinal tract of animals [34]
have been undertaken. Worm egg count is essential for
knowing when to implement controls to prevent disease and
improve livestock growth. Roberts and Swan [35] found
a strong correlation (r=0.83) between the number of eggs
and the number of Haemonchus contortus vermiform stages,

suggesting that it is beneficial to predict the level of infection.
Ostergaard [36] investigated image processing techniques
to detect and characterise eggs of intestinal parasites. The
image processing techniques such as thresholding, filtering,
morphological operation, colour plane extraction, and image
calibration for measurement were explored to detect parasite
eggs [36]. The study found that image processing methods
were statistically significant in differentiating parasite eggs
and suggested the use of automated image processing
methods for parasite egg detection and identification.

Similarly, Huang et al. [21] developed a method to
count gastrointestinal eggs of parasites. Faecal egg counting
requires sample processing to separate eggs from faeces.
Stained eggs in a McMaster chamber were captured using
a fluorescence microscope or smartphone. The images were
processed using ImageJ software to count particles with a
specific range of pixels.

Few studies have used machine learning techniques to
detect and count plant parasitic nematodes. A deep learning
model was used to count soyabean cyst nematodes (SCN)
eggs in a high cluttered image without significant changes
in accuracy. Moreover, Qazi et al. [37] proposed real-time
identification of nematode eggs in terms of genus and species.
The investigation showed that photoluminescence spectral
measurement could discriminate species of nematode eggs
as each species of nematodes has a distinct emission
spectrum. These studies used different sensors to discern
plant-parasitic nematodes from soil and plants and animal
parasitic nematode eggs from faeces. However, to the best
of our knowledge, RKN eggs have not been detected using
image analysis. Most nematode infestation assessments in
literature used both the number of juveniles and the number
of eggs in the roots [38], [39]. RKN juveniles were quantified
for the assessment of RKN populations using image analysis
[40]. Thus, this study aimed to investigate RKN egg size and
detect RKN eggs in terms of their length, width, and the
ratio of length to width. This study used a new feature to
discriminate between RKN eggs and soil particles based on
the difference between the mid-width and average width of
RKN eggs. In addition, a novel extreme point (EP) method
was used to analyse the size and detect eggs. This study
also determined the optimal ratio range to detect and count
RKN eggs. Further, the morphological features (length, mid-
width, average-width, and the difference between mid-width
and average width measurement) were analysed to detect and
count RKN eggs.

II. METHODS
The detection of RKN eggs was carried out using the
detection model depicted in Fig. 1. Initially, a sample
of RKN eggs was prepared and collected. The samples
were processed using the Hussey and Barker method [41].
Then, images of RKN eggs were captured and analysed
using image processing techniques. Finally, eggs in the
images were measured, counted, and compared with manual
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quantification. These procedures are described in detail in the
following sections.

A. SOIL SAMPLE PREPARATION AND EGG COLLECTION
Tomato plants were grown in propagating sand and potting
mix in a greenhouse located at 24◦54′5′′ S, 152◦18′45′′ E,
Central Queensland University (CQU), Bundaberg Campus,
Queensland, Australia. The greenhouse temperature was
maintained at 20 ±5 ◦C with 12 hours light/12 hours
dark. The tomato plants were inoculated with RKN eggs
(Meloidogyne incognita) after 1 to 1.5 months of plant
growth. Then, the plants were grown with regular irrigation
for a further 1 to 1.5 months. Subsequently, a few plants were
pulled out of the container to check for the presence of root
galls to confirm infestation by RKN. If galls were present,
plants were then removed from the pots, the plant tops
removed, and the roots collected and gently washed free of
the sand: soil mix. These root samples were processed at the
CQU’s Science laboratory located in the Bundaberg Campus
using the Hussey and Barker method [41]. This involved
cutting the tomato plant roots into less than 1 cm pieces
and stirring them gently with a glass rod in a 0.5% sodium
hypochlorite (NaClO) solution for 5 minutes. Subsequently,
the root pieces were washed on a 25 µm-aperture sieve
stacked on 150 µ-aperture sieve. The residue was collected
in 450 ml water from a 25 µm-aperture sieve using a wash
bottle. After collection of the eggs from the root tissue, a
5 ml egg sample was put in the petri dish and placed on the
microscope stage.

B. IMAGE ACQUISITION
Initially, images of RKN eggs were captured using Olympus
DP73 camera attached to the Olympus BX53 microscope.
The images were captured on high contrast, ISO 200 sensi-
tivity settings and saved in a 1600× 1200 size frame. The 4x
objective lens was selected for this study. With these settings,
RKN eggswere viewed on themicroscopewhile adjusting the
focus to take clear images. CellSens software was installed
in the computer and utilised to acquire images and measure
dimensions manually. Once all the camera parameters were
set, images of RKN were taken at the proper focus and
saved in a jpg format. Then, the copies of the images were
measured manually. The measurements of 111 RKN eggs
are described in the ‘manual and automated measurement’
section.

C. IMAGE ANALYSIS AND PROCESSING
The captured RGB (red, green, and blue) images were
converted to gray images for RKN eggs detection. A seg-
mentation technique was applied to distinguish soil particles
from RKN eggs in the images. The triangle threshold method
was implemented to segment gray images (Fig. 2(a)) into
binary image (Fig. 2(b)) [42]. Among other thresholding
methods, the triangle threshold method was found to be the
best in segmenting rice roots [43]. We investigated other
thresholdingmethods such as Otsu,MaxEntropy, Yenmethod

and found the triangle method to be the most suitable for
segmenting RKN egg images. The triangle threshold of pixel
value (T ) was computed as the longest distance between the
histogram and the line from histogram peak to base point
[42]. To compute the threshold value (T ), we first computed
the line between the highest and the lowest grayscale value
in the histogram of gray images. The distance between
the histogram and each point on the line was calculated.
Finally, we selected pixel intensity value as threshold (T )
that has maximum distance between histogram and the line.
The threshold of image g(x, y) is defined as shown in
Equation 1.

g(x, y) =

{
1, if f (x, y) > T
0, if f (x, y) < T

(1)

where T is the threshold value at point (x, y)
f (x, y) is the gray level of the image pixel.
Subsequently, the soil particles smaller than the minimum

RKN egg size were removed using a morphological operation
(Fig. 3(a)). To do this, we determined the size of the
connected component of the pixel. If the component size
was less than the smallest size of the RKN egg, then
we removed the connected components. The connected
components larger than the minimum egg size remained in
the image. Furthermore, a morphological closing operation
was applied to restore the missing edges of the foreground
object (Fig. 3(b)). The closing operation involved dilation of
the object followed by an erosion operation. This operation
joined the broken section and narrowed down the gap in
the contour [44]. The morphological opening operation was
employed in the skeleton method to avoid unnecessary
branch formation in the skeleton. The morphological opening
operation comes in handy to smooth contours and remove
sharp peaks or caps [45]. The holes inside the object were
filled. Ultimately, each contour in the image was detected
to compute the size of the object. For size analysis, the
length of RKN eggs was computed using contour arc (CA),
skeleton structure (SS), and extreme point (EP) methods.
These methods are described in the ‘egg measurement
and quantification’ section. The width of RKN eggs was
measured at the middle of the egg. The measured values
were saved in a Microsoft excel file. Then, we computed
descriptive statistics such as minimum and maximum values
of the ratio. Similarly, we calculated minimum and maximum
area from 111 RKN eggs using OpenCV function based
on Green Theorem [46] as shown in Algorithm 1. The
minimum and maximum value of ratio and area were used
in Algorithm 2. These values were implemented in the
algorithm to detect and count RKN eggs. The algorithm
computed egg sizes based on CA, SS, and EP methods
as shown in Algorithm 2. The automated measurement
was compared with manual measurement. The correlation
between manual measurement and machine measurement
was observed using the coefficient of determination (R2) and
mean absolute error (MAE) metrics.
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FIGURE 1. Nematode egg detection and counting framework.

FIGURE 2. (a) Sample image of root-knot nematode (RKN) eggs; (b) Triangle threshold segmentation of root-knot nematode (RKN) egg image.

FIGURE 3. (a) Binary image after small particles were removed using morphological operation; (b) morphological closing and filling operation of
root-knot nematode (RKN) egg in rectangular box.

D. EGG MEASUREMENT AND QUANTIFICATION OF RKN
1) EGG LENGTH COMPUTATION
The length of RKN eggs was computed using contour
perimeter length, skeleton structure, and extreme point

distance. The contour of an RKN egg in Fig. 4(a) was
computed using computer vision, as shown in Fig. 4(b).
The perimeter of the contour was divided into one half to
obtain the length of the eggs. Then, half of the contour
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Algorithm 1 Compute Area of Contour Using Green
Theorem

Input: contour points: (x0, y0),(x1, y1 ),(x2, y2),.(xn−1, yn−1), (xn, yn)
where n is number of points, (xk , yk ) is k th point ordered in counter
clockwise direction.
Output: Area of contour
Compute area(a)=

∑k
n=0 1/2(xk+1 + xk )(yk+1 − yk )

Return area (a)

Algorithm 2 Pseudocode for Root-Knot Nematode Egg
Detection
1. Load image (Img (x, y))
2. Convert RGB image to gray, f (x, y) =Gray (Img (x, y))
3. Apply triangle thresholding (T ) to gray image

Img(x, y) =

{
1, if f (x, y) > T
0, if f (x, y) < T

a) Apply morphological small particle removal operation
b) Apply morphological closing operation
c) Fill holes in the image
d) Find all contours(c) in the image (Img (x, y))
e) For each contour(c):

if (Minimum Area<contourArea(c)<Maximum Area)
a. Create mask of each contour
b. Compute Width, Length, Ratio and Area
c. if (Minimum Ratio < ratio <Maximum Ratio):
• contourArea(c)= RKN
• Save mask image and measurement

d. else
• contourArea(c)=Soil Particle or Rubbish

e. Save Image

perimeter was computed as the length of RKN. In the second
method, eggs were then converted to skeleton structure using
morphological thinning operation (Fig. 4 (c)). The largest
length of the skeleton branch was computed as the length
of RKN eggs [47]. In the third method, extreme pixels of
RKN eggs were identified as the farthest endpoints from
the centre in the four directions, as shown in Fig. 4(d). The
largest Euclidian distance between any two extreme points
was estimated as the length of RKN eggs.

2) RKN EGG WIDTH COMPUTATION
The width of RKN eggs was computed at the middle part
of egg to identify and discriminate between eggs and soil
particles. The mid-point of the egg was computed using the
centroid of the blob known as the image moment. The width
at mid-point was estimated using the distance transform of the
medial axis. The distance transform of the medial axis is the
distance to the boundary from all medial axis points [48].
The width at the middle of RKN egg and the average width
of RKN egg was used to estimate the size of the RKN eggs.
The difference between the mid-width and average width was
used to discriminate eggs from soil particles.

3) RKN EGG RATIO COMPUTATION
To compute the ratio, first, we calculated the difference
between RKN egg length and mid-width / average-width
and then the ratio was computed as the difference to
the mid-width, as shown in Table 1. The ratio of length

TABLE 1. Ratio specifications of root-knot nematode (rkn) eggs.

to mid-width could not distinguish RKN eggs from soil
particles. Thus, the difference between the length and mid-
width/average-width was calculated to discriminate between
elliptical structures and other shapes. The length of the egg
represented the major-axis of ellipse, whereas the width
denoted the minor-axis of the ellipse (Fig 5). The vertical
and the horizonal lines in Fig. 5 indicate the length and mid-
width of RKN egg (major-axis and minor-axis of ellipse),
respectively. Thus, we used the difference between the length
and mid-width in the ratio to capture the elliptical structure
of RKN eggs.

III. EVALUATION CRITERIA
A. MANUAL AND AUTOMATED MEASUREMENT
The length and width of RKN eggs were measured manually
using cellSens software. The length was measured as the
maximum longitudinal distance of the RKN egg in the
image. The mid-width of RKN eggs was measured at the
centre of the RKN eggs. The average-width of RKN eggs
was measured at three equal intervals on the body of
RKN eggs (Fig. 6(a) and (b)). The distribution of manually
measured length, width, and ratio are shown in Fig. 8 using a
density plot. The automated measurement of the length was
computed using three approaches: contour arc (CA), skeleton
structure (SS), and Extreme point (EP). The width of the egg
was measured based on the average width and the mid-width.
The ratio was computed as shown in Table 1 The manual and
automated measurements were assessed using Coefficient of
Determination (R2), and Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE).

B. CO-EFFICIENT OF DETERMINATION (R2)
The coefficient of determination was used to characterise the
proportion of variance explained by the statistical model [49].
R2 computes the percentage of the variance of the response
variable resolved by a linear relationship with explanatory
variables. It is defined as the ratio of explained and the total
sum of squares [50]:

R2 = ESS/TSS = 1− RSS/TSS

where RSS, ESS, and TSS are residual, explained, and the
total sum of squares, respectively.
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FIGURE 4. (a) Colour image of root-knot nematode (RKN) egg; (b) Root-knot nematode (RKN) egg with contour structure; (c) Skeleton structure of
root-knot nematode (RKN) egg;(d) Root-knot nematode (RKN) egg with extreme point.

FIGURE 5. Schematic diagram of root-knot nematode (RKN) egg.

C. MEAN ABSOLUTE ERROR (MAE)
Mean absolute error is defined as the sum of the absolute
difference between actual value (y) and predicted value (y′)
[51]. MAE is most suitable for natural measures of average

error magnitude. It is suitable for the evaluation of any
dimension and comparison of model performance [52].

MAE = 1/n
∑n

1
|y− y′|

where y is actual value, and y′ is predicted value and n is
number of samples.

D. MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)
Mean absolute percentage error is one of the most popular
error metrics used in prediction or detection methods
because of its scale consistency [53]. It provides an easily
comprehensible gauge of error [54]. Mathematically, MAPE
is defined as [55]:

MAPE = 1/n
∑n

1

|y− y′|
y
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FIGURE 6. (a) Sample image of root-knot nematode (RKN) egg; (b) manual measurement of root-knot nematode (RKN) egg.

FIGURE 7. Distribution of manual measurement of Root-knot nematodes (RKN) eggs (a) length distribution of root-knot nematode (RKN) eggs, (b) width
distribution of root-knot nematode eggs, (c) ratio distribution of root-knot nematode eggs.

FIGURE 8. Automated and manual measurement of root-knot nematode eggs length using mid- width (a) contour arc (b) skeleton structure, and
(c) extreme point methods.

where y is actual value, and y′ is predicted value and n is
number of samples.

IV. RESULT AND DISCUSSION
Traditionally, RKN eggs are quantified by observing a
sample on a microscope and manually counted by a nema-
tologist. Although identifying and counting RKN eggs is

relatively simple based on this traditional method, it requires
considerable time both in training to identify nematodes
morphologically and assess a sample, can cause eye strain,
and is prone to errors as the number of samples and
density increases. This study presented alternative automated
methods of detecting and counting RKN eggs. To discern
and count the RKN eggs, the manual measurements of RKN
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TABLE 2. Comparison between automated and manual length of root-knot nematode (rkn) eggs using mid-width and average-width.

FIGURE 9. Automated and manual measurement of root-knot nematode (RKN) egg length using average- width (a) contour arc (b) skeleton structure, and
(c) extreme point methods.

TABLE 3. Comparison of ratio based on different length measurement methods.

eggs were compared with automated measurements. The
distribution of the manual measurements is shown in Fig. 7.
The automated measurements were computed using the CA,
SS, and EP methods. These measurements were evaluated
in terms of coefficient of determination (R2), mean absolute
error (MAE), and mean absolute percentage error (MAPE).
One hundred and eleven RKN eggs were measured manually
and using an automated method. Further, the images were

classified based on two categories: low cluttered and high
cluttered. There were 733 low cluttered images having a total
of 1908 RKN eggs and 203 high cluttered images consisting
of 1526 RKN eggs.

This study used the RGB image analysis method to detect
and count RKN eggs. The CA and SS methods were initially
applied to detect RKN juveniles but can also be used to
detect and count RKN eggs. In addition, the new approach of
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TABLE 4. Comparison of automated and manual root-knot nematode (rkn) egg count with ratio variation (low-cluttered).

FIGURE 10. Line plot of MAPE based on contour arc (CA), skeleton structure (SS) and extreme point (EP) methods.

extreme point (EP) was used to detect and count RKN eggs.
The length of RKN eggs was computed using the CA, SS, and
EP. The comparison of manual and automated measurements
of length based on contour arc (CA), skeleton structure (SS),
and the extreme point (EP) is shown in Fig. 8.

The length of RKN eggs was computed using EP based
on mid-width and found the highest accuracy with R2

=

0.827, MAE=23.834, and MAPE=0.271 (Table 2). Also,
the automated computed length variance was less than the
CA and SS. Further, these methods were investigated using

average-width. The graphical representation of manual and
automated measurement using average width is shown in
Fig. 9. The correlation of length of RKN eggs was slightly
less than using mid-width.

The ratio of RKN eggs (as shown in Table 1) computed
by proposed method was highly correlated with manual
measurement using mid-width than the average-width.

The ratio of RKN eggs was highly correlated with the
manual measurement compared to RKN juvenile [40]. The
skeleton structure had the highest correlation between
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TABLE 5. Comparison of automated and manual root-knot nematode (rkn) eggs count with ratio variation (high-cluttered).

the manual and automated ratio computation with R2 of 0.540
(Table 3). The reason behind the high correlation of ratio was
because of the clear representation of RKN egg using skeleton
structure. The width of the RKN eggs were computed using
distance transform in the middle part of RKN eggs and the
average width of RKN eggs. The difference between the mid-
width and average width of the RKN egg was computed as a
discriminable feature of RKN eggs. The difference between
the average width and mid-width of RKN eggs and soil
particles was analysed to find the differences between RKN
eggs and soil particles. The result showed that 70-80% of soil
particles misidentified as RKN eggs had a width greater than
20 pixels. This approach was accurate for all the methods
except the EP method used with mid-width of the egg. The
EP method effectively discriminated the RKN eggs and soil
particles based on the elliptical shape analysis. The width
difference was low for the bean-shaped egg whereas it was
high with objects that were more circular in shape.

Further, the CA, SS, and EP methods were employed to
detect and count RKN eggs in the low- and high- cluttered
images based on mid-width. Then, the comparison between
manual eggs count was compared with automated eggs count
(Table 4 and Table 5, respectively). The CA, SS, and EP
methods were used to compute optimal detection of RKN

eggs at a different ratio range. The detection at the optimal
range discerns a maximum number of RKN eggs and reduces
unnecessary image processing and analysis burden of soil
particles or root tissue. The EP method had the highest
correlation between manual and automated egg count at a
ratio range 0.8 - 2.2 in low cluttered images with R2

= 0.905,
MAE = 0.088, and MAPE = 0.028. The SS method had the
lowest correlation of egg count at 0.7-2.5 in low cluttered
images with R2

= 0.788, MAE= 0.192, andMAPE= 0.074.
The CA method had the optimal range of ratio at 0.7-3.5 in
low cluttered images with R2

= 0.883, MAE=0.103, and
MAPE = 0.037. The EP and CA methods were found to be
better in the detection and quantification of RKN as compared
to the detection using the PCR (Polymerase Chain Reaction)
method. The quantification of root-knot nematodes, lesion
nematodes, and dagger nematodes found a correlation of the
manual and PCR methods to be R2

=0.83 [17].
The optimal ranges of ratio were different for CA, SS,

and EP methods. The main cause of this difference is the
length. The perimeter of contour is larger than the distance
between two endpoints of RKN eggs. The optimal range of
the ratios was also slightly different in the low and high
cluttered images for each method due to numerous RKN eggs
and soil particles in high cluttered images compared to low
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TABLE 6. Comparison of automated and manual root-knot nematode (rkn) eggs count with ratio variation (low-cluttered).

123200 VOLUME 10, 2022



T. B. Pun et al.: Detection and Quantification of Root-Knot Nematode (Meloidogyne Spp.) Eggs in Tomato Plants

TABLE 7. Comparison of automated and manual root-knot nematode (rkn) eggs count with ratio variation (high-cluttered).
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cluttered images. The optimal ratios range of EP and SS were
slightly different for both highly cluttered and lowly cluttered
images. This is because highly cluttered images consist of
numerous RKN eggs with varied shapes and soil particles.

The number of misidentifications of RKN eggs and
undetected eggs were greater in the highly cluttered images
because the structure of the soil particles was similar to that
of the RKN egg. Some RKN eggs were not detected because
their structure was deformed by soil particles attached to
them. The soil particles were misidentified as RKN eggs, and
the number of undetected eggs were less in the low-cluttered
images. The increment in the density of RKN eggs also
increased the overlapped eggs and soil particles which could
decrease the performance of the RKN egg detection method.
Besides these, some soil particles were from the background
of the image. The threshold segmentation technique could
not discriminate these soil particles. The color segmentation
technique was also tested for the sample images. However,
RKN eggs have a transparent area between embryo and
eggshell that captures the colour of the background. Thus,
it hindered the perfect segmentation of RKN eggs.

In addition, the average width of the object was investi-
gated to detect and count the RKN eggs. The CA, SS, and
EP methods could not perform well based on average width
compared with the mid-width. Nevertheless, the CA method
was found to be more accurate than AP and SS. The average
width methods showed lower R2 erroneous outcomes in both
lowly-cluttered and highly cluttered images (Table 6 and 7).

The SS method was best suited for the detection of RKN
juveniles in a previous study [40]. However, it could not
detect RKN eggs with a high level of accuracy. RKN eggs
have a transparent feature, making it difficult to obtain a
perfect shape during segmentation. In contrast, the image
acquisition of live RKN juveniles was hindered by the
dorso-ventral waves that originate from head to tail [56].
These waves are formed by the contraction and relaxation
of longitudinal muscles on the dorsal and ventral parts of
the nematode. The movement of the nematode resulted in
the transparent appearance of head and tail parts. Thus, the
important features of a juvenile at the head and tail parts
were missed in the image. Another problem with live RKN
juveniles is the high chance of tangling with each other as
their density increases. The RKN egg detection method was
not affected by the movement of juveniles [40]. Besides this,
the intraspecific variability ofmorphological features of RKN
can hinder the RKN juvenile quantification process [24].

The detection of RKN juvenile relies on the computation of
the ratio of body length to greatest body diameter (De Man
Formulae). The maximum juvenile body width is found in
the middle part of the juvenile body [57]. Hence, the width
of the juvenile is calculated in the middle of the juvenile
body. As juveniles have irregular structures and shapes,
we computed the path of each pair of endpoints in the graph
using network/graph theory. The midpoint is computed in the
longest path in the graph. But the midpoint of the RKN egg
is computed using the centroid of the blob also known as

the image moment. Image moment is the weighted average
of pixel intensities. The ratio is formulated from the ellipse
equation as described in Figure 5 and Table 1.

The skeleton graphmethod chooses the longest path among
multiple paths in the graph to determine the length of the
juvenile. The juvenile structure can have many branches due
to the deformation of shape, whereas the skeleton structure
method used the sum of the two largest branches to calculate
the length of the skeleton structure consisting of multiple
branches. The CAmethod used to compute the length of RKN
juveniles, and eggs is similar, however the central idea of this
algorithm is the use of the ratio of the body length to greatest
body diameter. The calculation of the ratio is completely
different in the detection of RKN eggs and juveniles. Thus,
the algorithm is a modified version of a previously developed
algorithm [40]. The skeleton graph method showed better
results to detect RKN juveniles, whereas the EP method
performed well to detect RKN eggs.

The skeleton structure method significantly reduced the
original length of RKN eggs, so it could not achieve optimum
detection.

Although the presented method detected the RKN eggs at
the optimum level (R2

=0.905), the accuracy of the detection
technique could be further improved by using other segmen-
tation techniques such as contrast enhancement to obtain
quality images. The RKN egg extraction methods could limit
the acquisition of quality images, for examples, maceration
of roots from field grown plants could introduce plant tissue;
hence optimised methods for RKN egg extraction including
sugar centrifugation could be explored to remove soil and
particles of plant roots to produce a cleaner extraction. The
detection methods used the image segmentation technique,
so the increase in the density of objects formed object overlap
in the image. Thus, the detection methods could not detect
RKN eggs due to their deformed shape. The major challenge
to discerning objects in the microscopic image is illumination
techniques, transparency of an object, object movement and
contrast enhancement constraint.

V. CONCLUSION
This study provided a semi-automated approach to detect
and count RKN eggs that could be used instead of manually
counting that is associated with fatigue. This method used
image processing and computer vision that helps to quantify
RKN population and assess the nematode infestation in the
host plants. A new EP method was used to measure, detect,
and count the RKN eggs and compared with the other two
methods. The EP method based on mid-width outperformed
EP and SS methods with the correlation of R2

=0.905 to
detect and enumerate the RKN eggs in both low and high
cluttered images. This investigation supports image analysis
techniques to analyse the object shape and develop methods
for image annotation. The measurement data analysis showed
that the difference between the mid-width and average
width could be used to distinguish objects. Also, the width
difference was low for bean-shaped eggs compared to the
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perfect elliptical structure. This feature can be used to
discriminate objects in other object detection and image
analysis problems.

VI. FUTURE WORK
The methods developed in this study can be investigated
to detect other genus and species of nematode eggs such
as the cyst nematodes, or spores of arbuscular mycorrhiza
fungi. The RKN egg detection could be investigated with
various image acquisition settings with the different objective
lens. The segmentation methods such as clustering-based,
edge-based, region-based, and neural network segmentation
could be explored to discriminate RKN eggs and background
soil particles. These object detection methods can analyse
the shape and size of objects and automate image labelling
tasks essential for machine learning methods. The detection
and quantification of RKN eggs can be further extended to
machine learning approaches.
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