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ABSTRACT 
 

Rapid determination of sugarcane quality using low-cost and portable equipment is 

more practical for field use. Thus, this study explored the potential application of a 

portable visible and shortwave near infrared spectroradiometer (VNIRS) to predict pol 

and brix from sugarcane juice samples. A total of 100 sugarcane juice samples for each 

clear and raw juice samples were assessed. The spectral data were collected by scanning 

the juice samples in a cuvette with 10 mm path length using transmittance mode. Partial 

least squares (PLS) and principal component analysis (PCA) were applied to interpret 

the spectra and develop both calibration and prediction models. The prediction 

performances for the clear juice samples were good with coefficient of determination 

(R
2
) values of pol and brix were 0.85 and 0.84, respectively. For the raw juice samples, 

the prediction performances were acceptable with R
2
 values for pol and brix were 0.73 

and 0.74, respectively. Based on these results, it was concluded that the VNIRS 

combined with PLS models could be applied to predict sugarcane quality from both 

clear and raw sugarcane juices.  
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INTRODUCTION 

 

Sugarcane (Saccahrum spp.) is an important crop in Australia with the production value 

ranging from AUD$1.5 to 2.5 billion per year (Canegrowers, 2011). In the Australian 

sugarcane industry, growers are paid based on both yield and quality of their product. 

Sugarcane quality is determined based on its sugar content, known as commercial cane 

sugar (CCS). CCS is derived from brix (soluble solids content), pol (sucrose content) 

and fibre content. The brix and pol are usually measured in a laboratory using 

conventional measurement methods including refractometer, polarimeter and 

chromatographer. Lately, the applications of laboratory spectroscopic methods as rapid 

and simple measurement systems in measuring sugarcane quality parameters have been 

reported [1-3]. Recently, there is a growing interest within the industry to measure 

sugarcane quality in the field. Ability to measure sugarcane quality in the field will be 

very useful to the industry for assessing the crops growth and development, harvesting 

management and adoption of the precision agriculture technique. Unfortunately, the 

conventional measurement methods and laboratory spectroscopic methods have great 

limitations for field uses because they are often time-consuming, operator dependent, 
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and require hazardous reagents [1]. Moreover, these laboratory technologies are not 

suitable to be used in the field considering the potential damage due to harsh and dusty 

environment in the field. This laboratory equipment is also expensive, thus should be 

handled with a great care. Therefore, a portable, robust and low-cost spectrometer is 

more preferable for field use. A portable visible and shortwave near infrared 

spectroradiometer (VNIRS) with a wavelength range from 350 to 1100 nm appears 

promising for predicting fruit quality since the instrument is low-cost and portable 

enough for in-field measurements [4]. The applications of this equipment to measure 

sugarcane quality from stalk samples have been reported by Nawi, Jensen [5], Mat 

Nawi, Chen [6] and Mat Nawi, Chen [7]. However, no study has reported the use of this 

equipment to measure sugarcane quality from juice samples. The application of this 

equipment seems to be feasible because it is small, portable and low-cost compare to 

other spectroscopy sensors. Therefore, the objectives of this study were (1) to 

investigate the feasibility of using VNIRS to predict brix and pol in sugarcane juice 

samples; (2) to compare the prediction performance between clear and raw juice 

samples. 

 

MATERIALS AND METHODS 

 

Sugarcane Juice Samples 

 

A total of 100 juice samples were collected for each clear and raw sugarcane juices. 

Each juice sample was extracted from a sample set consisted of a group of six whole 

stalk samples. Each sample set was collected from different field trials in Bundaberg, 

Australia throughout the harvest season in 2012. The selection of the sample sets from 

different harvest locations helped to establish sufficiently robust calibration models that 

are applicable to all varieties. Each sample set was passed through the Spectracane 

system at the Bureau of Sugar Experimental Station (BSES) research station in 

Bundaberg, Queensland, Australia. Each sample set was first fibrated using a sugarcane 

disintegrator (Dedini, Model D-2500-II) with a 10 Hp, 400 V motor and operating at 

3340 rpm. The first expressed juice was collected by hydraulically pressed the fibrated 

sugarcane samples at 25 MPa for 1 minute. Then, the collected juices of each sample set 

were filtered and divided into two sets, one to determine brix and another one to 

determine pol. The brix measurement was done on raw juices using a Bellingham and 

Stanley RFM 310 refractometer. For pol measurement, the raw juice samples were first 

clarified using lead acetate to produce clear juices (Figure 1). Pol measurement was 

done on clear juice samples using a Polartronic Universal automatic polarimeter 

(Schmidt + Haensch, Berlin, Germany).  

 

 

Instrument and Spectral Collection 

 

The transmission spectra of the samples were measured using a handheld VNIRS 

(FieldSpecHandHeld and FieldSpec Pro FR, 325 to 1075 nm, Analytical Spectral 

Devices (ASD), Inc., Boulder, USA). The spectral measurements were conducted inside 

a black measurement box (900 x 600 x 450 mm). The box was built to enclose the 

sensor and the samples from the ambient light (Figure 2). The juice samples were 

placed into a plastic cuvette with 10 mm of optical path length. The field of view (FOV) 

of the spectroradiometer was 10°, giving a working distance of 45 mm from the cuvette 
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with the diameter of the scanning area of 10 mm. A cuvette holder was built to firmly 

hold the cuvette inside the box throughout the experiments. One side of the cuvette was 

scanned using the sensor while on another side was illuminated with halogen lamp 

(Lowell Pro-Lam 14.5 V tungsten bulb, Ushio Lighting, Inc., Japan). The lamp was 

placed about 300 mm away from the measurement samples.  

 

 
 

Figure 1. A comparison between raw and clear juice samples. 

 

 
 

Figure 2. Simplified diagram of the transmittance measurement inside the measurement 

box 

 

The reference spectrum was acquired using the cuvette filled with distilled water 

and the dark spectrum was acquired when the lamps were off. Transmission spectra 

from 375 to 1075 nm were measured at 1.5 nm intervals with an average reading of 20 

scans per spectrum. All spectral data were stored in a computer and processed using the 

RS3 software for Windows (Analytical Spectral Devices, Inc., Boulder, Colo.), 

designed with a graphical user interface. The transmission spectra were transformed into 

ASCII format by using the ASD ViewSpecPro software (Analytical Spectral Devices, 

Boulder, USA). Then, three spectra for each sample were averaged into one spectrum 

and transformed by log (1/T) into absorbance spectrum.  
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Multivariate Analysis 

 

Before the calibration, the spectral data was pre-processed for optimal performance. 

Pre-processing of spectral data is a key part of spectral analysis to improve the 

accuracy. In this study, the effect of several pre-processing techniques on calibration 

model performance was investigated including smoothing technique of moving average, 

multiplicative scatter correction (MSC), first and second derivatives, standard normal 

variate (SNV) transformation and mean normalisation. After some trials and 

computations, MSC was found to be the best pre-processing technique for this study. In 

fact, MSC is the most popular normalisation technique offered by most chemometrics 

software packages. MSC was used to correct the light scattering variations in the 

spectral data [8]. The pre-processing processes were implemented using The 

Unscrambler, V 9.6 software (Camo Process AS, Oslo, Norway).  

Prior to the development of calibration model, principal component analysis 

(PCA) was applied in analyzing the spectra data to extract useful information, decrease 

the noise and reduce the number of principle components (PCs). PCA is a well-known 

chemometrics method used to search for directions of maximum variability in sample 

grouping and uses them as new axes called principle components (PCs) that can be used 

as new variables, instead of the original data, in the following calculations (Blanco & 

Villarroya, 2002). PCA was also used to detect spectral outliers that might affect model 

performance in each data set [9]. Two outliers were found in this study and they were 

removed prior to spectral analysis using partial least square (PLS) regression.   

 

Partial least squares (PLS) analysis is commonly applied in the near infrared 

spectroscopy analysis. PLS analysis could be used to establish a regression model to 

perform the prediction of sugar content from sugarcane juices. PLS simultaneously 

considers the variable of matrix Y (brix and pol) and the variable of matrix X (spectral 

data). In this paper, PLS was applied as a regression method as well as a way to extract 

the latent variables (LVs). The LVs were considered as new eigenvectors of the original 

spectra to reduce the dimensionality and compress the original spectra data [10]. The 

maximum numbers of LVs used in this study was set to ten. Due to a limited number of 

samples used, full cross validation (leave-one-out) was used to evaluate the prediction 

quality and prevent over fitting of the calibration model [11]. External validation 

method was also used in this study to check the performance of the PLS models. The 

external validation procedure determines the predictive ability of an equation, based on 

a sample set which has not been used in the calibration development. Before the 

calibration, samples were divided into two sets. One set (75% of samples) was used to 

develop a prediction equation (calibration set) and another set (25% of samples) was 

used to validate the predictive equation (validation set). Samples for validation were 

selected by taking one of every four samples from the entire sample set, taking care to 

ensure that each set included samples that covered the entire range of sugarcane quality 

values. In this paper, both PCA for PLS modeling were run using the Unscrambler V 

9.6. The performance of the final PLS models was evaluated by the coefficient of 

determination for calibration (R
2
), root mean squares of calibration (RMSEC), and the 

coefficient of determination for prediction (R
2
) and root mean squares of prediction 

(RMSEP). A proper model should have a low RMSEC, RMSEP and a high R
2
 for both 

calibration and prediction models. 
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RESULTS AND DISCUSSION 

 

Overview of the Spectra and Statistical Values of Brix and Pol 

 

The typical absorbance spectra for each raw and clarified juice are shown in Figure 3. 

Both curves show a downward trend as the wavelength increased. A higher absorption 

level by raw juices was due to the presence of impurities, colour pigments and fine 

fibers [12]. At 680 nm, spectra curve for raw juice displayed a weak peak while this 

peak was not observed for clear juice curve. The peak at 680 nm could be related to 

chlorophyll pigments [13]. For the clarified juice sample, the chlorophyll content was 

eliminated through clarification process. For the raw juice sample, it can be seen that 

there was some noises in the range of 400-550 nm. Hence, to afford better comparison 

with better prediction performance, only the wavelength region from 600 to 1000 nm 

was used for the analysis in this study. 

 

 
 

Figure 3.Typical absorbance spectra of raw and clear sugarcane juices (CJ = clear juice/ 

RJ=raw juice) 

 

Table 1. Statistical characteristic of the juice samples 

 

Parameters Data set Max Min Mean 
Standard 

Deviation 

Brix 
Calibration 25.2 19.3 22.7 1.48 

Prediction 24.7 19.3 22.8 1.46 

Pol 
Calibration 100.6 71.0 88.3 8.07 

Prediction 98.8 71.7 88.8 7.31 

 

The statistical characteristics of brix and pol for the juice samples for both 

calibration and prediction are shown in Table 1. Since, the samples in calibration and 

validation sets were selected systematically, it was found that the range and mean values 
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of brix and pol were almost identical in both data sets. Since the data was collected from 

different locations throughout the whole harvest season, the brix and pol values in both 

data sets would be considered sufficient to represent the typical quality values of 

sugarcane during harvest.  

 

PLS Models Performance 

 

PLS models were developed to correlate the spectral data with the sugarcane quality 

components in both calibration and prediction data sets. The performances of the both 

calibration and prediction models for both juice samples were evaluated using R
2
, 

RMSEC and RMSEP (Table 2). Table 2 shows that both calibration and prediction 

models for clear juice were good with R
2
 values being 0.84 and 0.85 respectively. For 

raw juice samples, the performance of calibration models for both brix and pol were 

good with R
2
 values being 0.84 for both components. The prediction performance of the 

clear juice samples was good with R
2
 values for brix and pol were 0.84 and 0.85, 

respectively. For the raw juice samples, the prediction performance was acceptable with 

R
2
 values for brix and pol were 0.74 and 0.73, respectively. The prediction performance 

of clear juice was better than raw juice because raw juice was an opaque, frothy and 

viscous liquid owing to the presence of colloidal substance. These substances would 

absorb energy from light source thus influence the prediction of sucrose content in the 

juices. In clear juice samples, those colloidal substances were removed through 

clarification process. However, despite lower accuracy, raw juice samples were still 

acceptable for field screening as complex sample preparation and processing could be 

avoided.  

 

Table 2. PLS model performances for both juice samples. 

 

Samples Parameters LVs 
Calibration Prediction 

R
2
 RMSEC R

2
 RMSEP 

Clear juice 
Brix 7 0.86 0.81 0.84 1.01 

Pol 8 0.88 4.01 0.85 4.49 

Raw juice 
Brix 6 0.84 0.83 0.74 0.99 

Pol 6 0.84 4.62 0.73 5.68 

 

It can be seen from Table 2 that pol prediction for clear juice samples was better 

than brix prediction. This finding is consistent with the study reported by Berding, 

Brotherton [14]. The performance of prediction models of pol for both juice samples are 

presented by the scatter plots in Figure 4(a) and (b), respectively. The performances of 

these models were evaluated by 23 juice samples in the prediction set. The R
2
 for clear 

juice and raw juice were 0.87 and 0.75, respectively. Pol yielded better prediction 

performance than brix probably because pol was an estimation of sucrose content in 

juice whereas brix was just an estimation of soluble solids content in the juices. Roggo, 

Duponchel [15]  claimed that spectroscopic method could be an accurate method to 

determine pol (sucrose content) and brix. The authors also reported that brix and sucrose 

are highly correlated, where sucrose content in brix was about 80%. This fact explained 

why pol prediction was better than brix prediction. 
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Figure 4.  Scatter plots of reference versus predicted pol; (a) clear juice (b) raw juice 

 

CONCLUSIONS 

 

The results obtained in this study demonstrated the potential of the VNIRS to predict 

brix and pol content in both clear and raw sugarcane juices. For the clear juice samples, 

the R
2
 values for brix and pol prediction were 0.84 and 0.85, respectively. While for the 

raw juice samples, the prediction accuracies of brix and pol were slightly lower than the 

clear juice samples with R
2
 values of 0.74 and 0.73, respectively. The results of this 

study suggest that a low-cost and portable VNIRS could offer the possibility to predict 

sugarcane quality in the field without the need for costly and laborious analysis using 

the conventional methods. However, the development of a portable mini sugarcane 

crusher would be needed to supply juice samples for the instrument in the field. Further 

studies are also needed in order to improve calibration specificity, accuracy and 

robustness, and to further interpret and develop new applications of this technique in the 

sugarcane industry. 
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